Update Sparc parts in documentation
[qemu/qemu_0_9_1_stable.git] / hw / m48t59.c
blobda61313f1e76f90b24d4ec423314f7cc84990ec3
1 /*
2 * QEMU M48T59 and M48T08 NVRAM emulation for PPC PREP and Sparc platforms
4 * Copyright (c) 2003-2005, 2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "vl.h"
25 #include "m48t59.h"
27 //#define DEBUG_NVRAM
29 #if defined(DEBUG_NVRAM)
30 #define NVRAM_PRINTF(fmt, args...) do { printf(fmt , ##args); } while (0)
31 #else
32 #define NVRAM_PRINTF(fmt, args...) do { } while (0)
33 #endif
36 * The M48T08 and M48T59 chips are very similar. The newer '59 has
37 * alarm and a watchdog timer and related control registers. In the
38 * PPC platform there is also a nvram lock function.
40 struct m48t59_t {
41 /* Model parameters */
42 int type; // 8 = m48t08, 59 = m48t59
43 /* Hardware parameters */
44 qemu_irq IRQ;
45 int mem_index;
46 target_phys_addr_t mem_base;
47 uint32_t io_base;
48 uint16_t size;
49 /* RTC management */
50 time_t time_offset;
51 time_t stop_time;
52 /* Alarm & watchdog */
53 time_t alarm;
54 struct QEMUTimer *alrm_timer;
55 struct QEMUTimer *wd_timer;
56 /* NVRAM storage */
57 uint8_t lock;
58 uint16_t addr;
59 uint8_t *buffer;
62 /* Fake timer functions */
63 /* Generic helpers for BCD */
64 static inline uint8_t toBCD (uint8_t value)
66 return (((value / 10) % 10) << 4) | (value % 10);
69 static inline uint8_t fromBCD (uint8_t BCD)
71 return ((BCD >> 4) * 10) + (BCD & 0x0F);
74 /* RTC management helpers */
75 static void get_time (m48t59_t *NVRAM, struct tm *tm)
77 time_t t;
79 t = time(NULL) + NVRAM->time_offset;
80 #ifdef _WIN32
81 memcpy(tm,localtime(&t),sizeof(*tm));
82 #else
83 if (rtc_utc)
84 gmtime_r (&t, tm);
85 else
86 localtime_r (&t, tm) ;
87 #endif
90 static void set_time (m48t59_t *NVRAM, struct tm *tm)
92 time_t now, new_time;
94 new_time = mktime(tm);
95 now = time(NULL);
96 NVRAM->time_offset = new_time - now;
99 /* Alarm management */
100 static void alarm_cb (void *opaque)
102 struct tm tm, tm_now;
103 uint64_t next_time;
104 m48t59_t *NVRAM = opaque;
106 qemu_set_irq(NVRAM->IRQ, 1);
107 if ((NVRAM->buffer[0x1FF5] & 0x80) == 0 &&
108 (NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
109 (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
110 (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
111 /* Repeat once a month */
112 get_time(NVRAM, &tm_now);
113 memcpy(&tm, &tm_now, sizeof(struct tm));
114 tm.tm_mon++;
115 if (tm.tm_mon == 13) {
116 tm.tm_mon = 1;
117 tm.tm_year++;
119 next_time = mktime(&tm);
120 } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
121 (NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
122 (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
123 (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
124 /* Repeat once a day */
125 next_time = 24 * 60 * 60 + mktime(&tm_now);
126 } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
127 (NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
128 (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
129 (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
130 /* Repeat once an hour */
131 next_time = 60 * 60 + mktime(&tm_now);
132 } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
133 (NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
134 (NVRAM->buffer[0x1FF3] & 0x80) != 0 &&
135 (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
136 /* Repeat once a minute */
137 next_time = 60 + mktime(&tm_now);
138 } else {
139 /* Repeat once a second */
140 next_time = 1 + mktime(&tm_now);
142 qemu_mod_timer(NVRAM->alrm_timer, next_time * 1000);
143 qemu_set_irq(NVRAM->IRQ, 0);
147 static void get_alarm (m48t59_t *NVRAM, struct tm *tm)
149 #ifdef _WIN32
150 memcpy(tm,localtime(&NVRAM->alarm),sizeof(*tm));
151 #else
152 if (rtc_utc)
153 gmtime_r (&NVRAM->alarm, tm);
154 else
155 localtime_r (&NVRAM->alarm, tm);
156 #endif
159 static void set_alarm (m48t59_t *NVRAM, struct tm *tm)
161 NVRAM->alarm = mktime(tm);
162 if (NVRAM->alrm_timer != NULL) {
163 qemu_del_timer(NVRAM->alrm_timer);
164 if (NVRAM->alarm - time(NULL) > 0)
165 qemu_mod_timer(NVRAM->alrm_timer, NVRAM->alarm * 1000);
169 /* Watchdog management */
170 static void watchdog_cb (void *opaque)
172 m48t59_t *NVRAM = opaque;
174 NVRAM->buffer[0x1FF0] |= 0x80;
175 if (NVRAM->buffer[0x1FF7] & 0x80) {
176 NVRAM->buffer[0x1FF7] = 0x00;
177 NVRAM->buffer[0x1FFC] &= ~0x40;
178 /* May it be a hw CPU Reset instead ? */
179 qemu_system_reset_request();
180 } else {
181 qemu_set_irq(NVRAM->IRQ, 1);
182 qemu_set_irq(NVRAM->IRQ, 0);
186 static void set_up_watchdog (m48t59_t *NVRAM, uint8_t value)
188 uint64_t interval; /* in 1/16 seconds */
190 NVRAM->buffer[0x1FF0] &= ~0x80;
191 if (NVRAM->wd_timer != NULL) {
192 qemu_del_timer(NVRAM->wd_timer);
193 if (value != 0) {
194 interval = (1 << (2 * (value & 0x03))) * ((value >> 2) & 0x1F);
195 qemu_mod_timer(NVRAM->wd_timer, ((uint64_t)time(NULL) * 1000) +
196 ((interval * 1000) >> 4));
201 /* Direct access to NVRAM */
202 void m48t59_write (m48t59_t *NVRAM, uint32_t addr, uint32_t val)
204 struct tm tm;
205 int tmp;
207 if (addr > 0x1FF8 && addr < 0x2000)
208 NVRAM_PRINTF("%s: 0x%08x => 0x%08x\n", __func__, addr, val);
209 if (NVRAM->type == 8 &&
210 (addr >= 0x1ff0 && addr <= 0x1ff7))
211 goto do_write;
212 switch (addr) {
213 case 0x1FF0:
214 /* flags register : read-only */
215 break;
216 case 0x1FF1:
217 /* unused */
218 break;
219 case 0x1FF2:
220 /* alarm seconds */
221 tmp = fromBCD(val & 0x7F);
222 if (tmp >= 0 && tmp <= 59) {
223 get_alarm(NVRAM, &tm);
224 tm.tm_sec = tmp;
225 NVRAM->buffer[0x1FF2] = val;
226 set_alarm(NVRAM, &tm);
228 break;
229 case 0x1FF3:
230 /* alarm minutes */
231 tmp = fromBCD(val & 0x7F);
232 if (tmp >= 0 && tmp <= 59) {
233 get_alarm(NVRAM, &tm);
234 tm.tm_min = tmp;
235 NVRAM->buffer[0x1FF3] = val;
236 set_alarm(NVRAM, &tm);
238 break;
239 case 0x1FF4:
240 /* alarm hours */
241 tmp = fromBCD(val & 0x3F);
242 if (tmp >= 0 && tmp <= 23) {
243 get_alarm(NVRAM, &tm);
244 tm.tm_hour = tmp;
245 NVRAM->buffer[0x1FF4] = val;
246 set_alarm(NVRAM, &tm);
248 break;
249 case 0x1FF5:
250 /* alarm date */
251 tmp = fromBCD(val & 0x1F);
252 if (tmp != 0) {
253 get_alarm(NVRAM, &tm);
254 tm.tm_mday = tmp;
255 NVRAM->buffer[0x1FF5] = val;
256 set_alarm(NVRAM, &tm);
258 break;
259 case 0x1FF6:
260 /* interrupts */
261 NVRAM->buffer[0x1FF6] = val;
262 break;
263 case 0x1FF7:
264 /* watchdog */
265 NVRAM->buffer[0x1FF7] = val;
266 set_up_watchdog(NVRAM, val);
267 break;
268 case 0x1FF8:
269 /* control */
270 NVRAM->buffer[0x1FF8] = (val & ~0xA0) | 0x90;
271 break;
272 case 0x1FF9:
273 /* seconds (BCD) */
274 tmp = fromBCD(val & 0x7F);
275 if (tmp >= 0 && tmp <= 59) {
276 get_time(NVRAM, &tm);
277 tm.tm_sec = tmp;
278 set_time(NVRAM, &tm);
280 if ((val & 0x80) ^ (NVRAM->buffer[0x1FF9] & 0x80)) {
281 if (val & 0x80) {
282 NVRAM->stop_time = time(NULL);
283 } else {
284 NVRAM->time_offset += NVRAM->stop_time - time(NULL);
285 NVRAM->stop_time = 0;
288 NVRAM->buffer[0x1FF9] = val & 0x80;
289 break;
290 case 0x1FFA:
291 /* minutes (BCD) */
292 tmp = fromBCD(val & 0x7F);
293 if (tmp >= 0 && tmp <= 59) {
294 get_time(NVRAM, &tm);
295 tm.tm_min = tmp;
296 set_time(NVRAM, &tm);
298 break;
299 case 0x1FFB:
300 /* hours (BCD) */
301 tmp = fromBCD(val & 0x3F);
302 if (tmp >= 0 && tmp <= 23) {
303 get_time(NVRAM, &tm);
304 tm.tm_hour = tmp;
305 set_time(NVRAM, &tm);
307 break;
308 case 0x1FFC:
309 /* day of the week / century */
310 tmp = fromBCD(val & 0x07);
311 get_time(NVRAM, &tm);
312 tm.tm_wday = tmp;
313 set_time(NVRAM, &tm);
314 NVRAM->buffer[0x1FFC] = val & 0x40;
315 break;
316 case 0x1FFD:
317 /* date */
318 tmp = fromBCD(val & 0x1F);
319 if (tmp != 0) {
320 get_time(NVRAM, &tm);
321 tm.tm_mday = tmp;
322 set_time(NVRAM, &tm);
324 break;
325 case 0x1FFE:
326 /* month */
327 tmp = fromBCD(val & 0x1F);
328 if (tmp >= 1 && tmp <= 12) {
329 get_time(NVRAM, &tm);
330 tm.tm_mon = tmp - 1;
331 set_time(NVRAM, &tm);
333 break;
334 case 0x1FFF:
335 /* year */
336 tmp = fromBCD(val);
337 if (tmp >= 0 && tmp <= 99) {
338 get_time(NVRAM, &tm);
339 if (NVRAM->type == 8)
340 tm.tm_year = fromBCD(val) + 68; // Base year is 1968
341 else
342 tm.tm_year = fromBCD(val);
343 set_time(NVRAM, &tm);
345 break;
346 default:
347 /* Check lock registers state */
348 if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1))
349 break;
350 if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2))
351 break;
352 do_write:
353 if (addr < NVRAM->size) {
354 NVRAM->buffer[addr] = val & 0xFF;
356 break;
360 uint32_t m48t59_read (m48t59_t *NVRAM, uint32_t addr)
362 struct tm tm;
363 uint32_t retval = 0xFF;
365 if (NVRAM->type == 8 &&
366 (addr >= 0x1ff0 && addr <= 0x1ff7))
367 goto do_read;
368 switch (addr) {
369 case 0x1FF0:
370 /* flags register */
371 goto do_read;
372 case 0x1FF1:
373 /* unused */
374 retval = 0;
375 break;
376 case 0x1FF2:
377 /* alarm seconds */
378 goto do_read;
379 case 0x1FF3:
380 /* alarm minutes */
381 goto do_read;
382 case 0x1FF4:
383 /* alarm hours */
384 goto do_read;
385 case 0x1FF5:
386 /* alarm date */
387 goto do_read;
388 case 0x1FF6:
389 /* interrupts */
390 goto do_read;
391 case 0x1FF7:
392 /* A read resets the watchdog */
393 set_up_watchdog(NVRAM, NVRAM->buffer[0x1FF7]);
394 goto do_read;
395 case 0x1FF8:
396 /* control */
397 goto do_read;
398 case 0x1FF9:
399 /* seconds (BCD) */
400 get_time(NVRAM, &tm);
401 retval = (NVRAM->buffer[0x1FF9] & 0x80) | toBCD(tm.tm_sec);
402 break;
403 case 0x1FFA:
404 /* minutes (BCD) */
405 get_time(NVRAM, &tm);
406 retval = toBCD(tm.tm_min);
407 break;
408 case 0x1FFB:
409 /* hours (BCD) */
410 get_time(NVRAM, &tm);
411 retval = toBCD(tm.tm_hour);
412 break;
413 case 0x1FFC:
414 /* day of the week / century */
415 get_time(NVRAM, &tm);
416 retval = NVRAM->buffer[0x1FFC] | tm.tm_wday;
417 break;
418 case 0x1FFD:
419 /* date */
420 get_time(NVRAM, &tm);
421 retval = toBCD(tm.tm_mday);
422 break;
423 case 0x1FFE:
424 /* month */
425 get_time(NVRAM, &tm);
426 retval = toBCD(tm.tm_mon + 1);
427 break;
428 case 0x1FFF:
429 /* year */
430 get_time(NVRAM, &tm);
431 if (NVRAM->type == 8)
432 retval = toBCD(tm.tm_year - 68); // Base year is 1968
433 else
434 retval = toBCD(tm.tm_year);
435 break;
436 default:
437 /* Check lock registers state */
438 if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1))
439 break;
440 if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2))
441 break;
442 do_read:
443 if (addr < NVRAM->size) {
444 retval = NVRAM->buffer[addr];
446 break;
448 if (addr > 0x1FF9 && addr < 0x2000)
449 NVRAM_PRINTF("0x%08x <= 0x%08x\n", addr, retval);
451 return retval;
454 void m48t59_set_addr (m48t59_t *NVRAM, uint32_t addr)
456 NVRAM->addr = addr;
459 void m48t59_toggle_lock (m48t59_t *NVRAM, int lock)
461 NVRAM->lock ^= 1 << lock;
464 /* IO access to NVRAM */
465 static void NVRAM_writeb (void *opaque, uint32_t addr, uint32_t val)
467 m48t59_t *NVRAM = opaque;
469 addr -= NVRAM->io_base;
470 NVRAM_PRINTF("0x%08x => 0x%08x\n", addr, val);
471 switch (addr) {
472 case 0:
473 NVRAM->addr &= ~0x00FF;
474 NVRAM->addr |= val;
475 break;
476 case 1:
477 NVRAM->addr &= ~0xFF00;
478 NVRAM->addr |= val << 8;
479 break;
480 case 3:
481 m48t59_write(NVRAM, val, NVRAM->addr);
482 NVRAM->addr = 0x0000;
483 break;
484 default:
485 break;
489 static uint32_t NVRAM_readb (void *opaque, uint32_t addr)
491 m48t59_t *NVRAM = opaque;
492 uint32_t retval;
494 addr -= NVRAM->io_base;
495 switch (addr) {
496 case 3:
497 retval = m48t59_read(NVRAM, NVRAM->addr);
498 break;
499 default:
500 retval = -1;
501 break;
503 NVRAM_PRINTF("0x%08x <= 0x%08x\n", addr, retval);
505 return retval;
508 static void nvram_writeb (void *opaque, target_phys_addr_t addr, uint32_t value)
510 m48t59_t *NVRAM = opaque;
512 addr -= NVRAM->mem_base;
513 m48t59_write(NVRAM, addr, value & 0xff);
516 static void nvram_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
518 m48t59_t *NVRAM = opaque;
520 addr -= NVRAM->mem_base;
521 m48t59_write(NVRAM, addr, (value >> 8) & 0xff);
522 m48t59_write(NVRAM, addr + 1, value & 0xff);
525 static void nvram_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
527 m48t59_t *NVRAM = opaque;
529 addr -= NVRAM->mem_base;
530 m48t59_write(NVRAM, addr, (value >> 24) & 0xff);
531 m48t59_write(NVRAM, addr + 1, (value >> 16) & 0xff);
532 m48t59_write(NVRAM, addr + 2, (value >> 8) & 0xff);
533 m48t59_write(NVRAM, addr + 3, value & 0xff);
536 static uint32_t nvram_readb (void *opaque, target_phys_addr_t addr)
538 m48t59_t *NVRAM = opaque;
539 uint32_t retval;
541 addr -= NVRAM->mem_base;
542 retval = m48t59_read(NVRAM, addr);
543 return retval;
546 static uint32_t nvram_readw (void *opaque, target_phys_addr_t addr)
548 m48t59_t *NVRAM = opaque;
549 uint32_t retval;
551 addr -= NVRAM->mem_base;
552 retval = m48t59_read(NVRAM, addr) << 8;
553 retval |= m48t59_read(NVRAM, addr + 1);
554 return retval;
557 static uint32_t nvram_readl (void *opaque, target_phys_addr_t addr)
559 m48t59_t *NVRAM = opaque;
560 uint32_t retval;
562 addr -= NVRAM->mem_base;
563 retval = m48t59_read(NVRAM, addr) << 24;
564 retval |= m48t59_read(NVRAM, addr + 1) << 16;
565 retval |= m48t59_read(NVRAM, addr + 2) << 8;
566 retval |= m48t59_read(NVRAM, addr + 3);
567 return retval;
570 static CPUWriteMemoryFunc *nvram_write[] = {
571 &nvram_writeb,
572 &nvram_writew,
573 &nvram_writel,
576 static CPUReadMemoryFunc *nvram_read[] = {
577 &nvram_readb,
578 &nvram_readw,
579 &nvram_readl,
582 static void m48t59_save(QEMUFile *f, void *opaque)
584 m48t59_t *s = opaque;
586 qemu_put_8s(f, &s->lock);
587 qemu_put_be16s(f, &s->addr);
588 qemu_put_buffer(f, s->buffer, s->size);
591 static int m48t59_load(QEMUFile *f, void *opaque, int version_id)
593 m48t59_t *s = opaque;
595 if (version_id != 1)
596 return -EINVAL;
598 qemu_get_8s(f, &s->lock);
599 qemu_get_be16s(f, &s->addr);
600 qemu_get_buffer(f, s->buffer, s->size);
602 return 0;
605 static void m48t59_reset(void *opaque)
607 m48t59_t *NVRAM = opaque;
609 if (NVRAM->alrm_timer != NULL)
610 qemu_del_timer(NVRAM->alrm_timer);
612 if (NVRAM->wd_timer != NULL)
613 qemu_del_timer(NVRAM->wd_timer);
616 /* Initialisation routine */
617 m48t59_t *m48t59_init (qemu_irq IRQ, target_phys_addr_t mem_base,
618 uint32_t io_base, uint16_t size,
619 int type)
621 m48t59_t *s;
622 target_phys_addr_t save_base;
624 s = qemu_mallocz(sizeof(m48t59_t));
625 if (!s)
626 return NULL;
627 s->buffer = qemu_mallocz(size);
628 if (!s->buffer) {
629 qemu_free(s);
630 return NULL;
632 s->IRQ = IRQ;
633 s->size = size;
634 s->mem_base = mem_base;
635 s->io_base = io_base;
636 s->addr = 0;
637 s->type = type;
638 if (io_base != 0) {
639 register_ioport_read(io_base, 0x04, 1, NVRAM_readb, s);
640 register_ioport_write(io_base, 0x04, 1, NVRAM_writeb, s);
642 if (mem_base != 0) {
643 s->mem_index = cpu_register_io_memory(0, nvram_read, nvram_write, s);
644 cpu_register_physical_memory(mem_base, 0x4000, s->mem_index);
646 if (type == 59) {
647 s->alrm_timer = qemu_new_timer(vm_clock, &alarm_cb, s);
648 s->wd_timer = qemu_new_timer(vm_clock, &watchdog_cb, s);
650 s->lock = 0;
652 qemu_register_reset(m48t59_reset, s);
653 save_base = mem_base ? mem_base : io_base;
654 register_savevm("m48t59", save_base, 1, m48t59_save, m48t59_load, s);
656 return s;