KVM: x86: Add debug register saving and restoring
[qemu/qemu-dev-zwu.git] / target-i386 / kvm.c
blob2316d8fc4115304b35b095e392686cee46421455
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "sysemu.h"
23 #include "kvm.h"
24 #include "cpu.h"
25 #include "gdbstub.h"
26 #include "host-utils.h"
27 #include "hw/pc.h"
28 #include "ioport.h"
30 #ifdef CONFIG_KVM_PARA
31 #include <linux/kvm_para.h>
32 #endif
34 //#define DEBUG_KVM
36 #ifdef DEBUG_KVM
37 #define dprintf(fmt, ...) \
38 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
39 #else
40 #define dprintf(fmt, ...) \
41 do { } while (0)
42 #endif
44 #define MSR_KVM_WALL_CLOCK 0x11
45 #define MSR_KVM_SYSTEM_TIME 0x12
47 #ifdef KVM_CAP_EXT_CPUID
49 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
51 struct kvm_cpuid2 *cpuid;
52 int r, size;
54 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
55 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
56 cpuid->nent = max;
57 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
58 if (r == 0 && cpuid->nent >= max) {
59 r = -E2BIG;
61 if (r < 0) {
62 if (r == -E2BIG) {
63 qemu_free(cpuid);
64 return NULL;
65 } else {
66 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
67 strerror(-r));
68 exit(1);
71 return cpuid;
74 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
76 struct kvm_cpuid2 *cpuid;
77 int i, max;
78 uint32_t ret = 0;
79 uint32_t cpuid_1_edx;
81 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
82 return -1U;
85 max = 1;
86 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
87 max *= 2;
90 for (i = 0; i < cpuid->nent; ++i) {
91 if (cpuid->entries[i].function == function) {
92 switch (reg) {
93 case R_EAX:
94 ret = cpuid->entries[i].eax;
95 break;
96 case R_EBX:
97 ret = cpuid->entries[i].ebx;
98 break;
99 case R_ECX:
100 ret = cpuid->entries[i].ecx;
101 break;
102 case R_EDX:
103 ret = cpuid->entries[i].edx;
104 switch (function) {
105 case 1:
106 /* KVM before 2.6.30 misreports the following features */
107 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
108 break;
109 case 0x80000001:
110 /* On Intel, kvm returns cpuid according to the Intel spec,
111 * so add missing bits according to the AMD spec:
113 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX);
114 ret |= cpuid_1_edx & 0xdfeff7ff;
115 break;
117 break;
122 qemu_free(cpuid);
124 return ret;
127 #else
129 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
131 return -1U;
134 #endif
136 #ifdef KVM_UPSTREAM
138 #ifdef CONFIG_KVM_PARA
139 struct kvm_para_features {
140 int cap;
141 int feature;
142 } para_features[] = {
143 #ifdef KVM_CAP_CLOCKSOURCE
144 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
145 #endif
146 #ifdef KVM_CAP_NOP_IO_DELAY
147 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
148 #endif
149 #ifdef KVM_CAP_PV_MMU
150 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
151 #endif
152 { -1, -1 }
155 static int get_para_features(CPUState *env)
157 int i, features = 0;
159 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
160 if (kvm_check_extension(env->kvm_state, para_features[i].cap))
161 features |= (1 << para_features[i].feature);
164 return features;
166 #endif
168 int kvm_arch_init_vcpu(CPUState *env)
170 struct {
171 struct kvm_cpuid2 cpuid;
172 struct kvm_cpuid_entry2 entries[100];
173 } __attribute__((packed)) cpuid_data;
174 uint32_t limit, i, j, cpuid_i;
175 uint32_t unused;
176 struct kvm_cpuid_entry2 *c;
177 #ifdef KVM_CPUID_SIGNATURE
178 uint32_t signature[3];
179 #endif
181 env->mp_state = KVM_MP_STATE_RUNNABLE;
183 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, R_EDX);
185 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
186 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, R_ECX);
187 env->cpuid_ext_features |= i;
189 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
190 R_EDX);
191 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
192 R_ECX);
194 cpuid_i = 0;
196 #ifdef CONFIG_KVM_PARA
197 /* Paravirtualization CPUIDs */
198 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
199 c = &cpuid_data.entries[cpuid_i++];
200 memset(c, 0, sizeof(*c));
201 c->function = KVM_CPUID_SIGNATURE;
202 c->eax = 0;
203 c->ebx = signature[0];
204 c->ecx = signature[1];
205 c->edx = signature[2];
207 c = &cpuid_data.entries[cpuid_i++];
208 memset(c, 0, sizeof(*c));
209 c->function = KVM_CPUID_FEATURES;
210 c->eax = env->cpuid_kvm_features & get_para_features(env);
211 #endif
213 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
215 for (i = 0; i <= limit; i++) {
216 c = &cpuid_data.entries[cpuid_i++];
218 switch (i) {
219 case 2: {
220 /* Keep reading function 2 till all the input is received */
221 int times;
223 c->function = i;
224 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
225 KVM_CPUID_FLAG_STATE_READ_NEXT;
226 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
227 times = c->eax & 0xff;
229 for (j = 1; j < times; ++j) {
230 c = &cpuid_data.entries[cpuid_i++];
231 c->function = i;
232 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
233 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
235 break;
237 case 4:
238 case 0xb:
239 case 0xd:
240 for (j = 0; ; j++) {
241 c->function = i;
242 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
243 c->index = j;
244 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
246 if (i == 4 && c->eax == 0)
247 break;
248 if (i == 0xb && !(c->ecx & 0xff00))
249 break;
250 if (i == 0xd && c->eax == 0)
251 break;
253 c = &cpuid_data.entries[cpuid_i++];
255 break;
256 default:
257 c->function = i;
258 c->flags = 0;
259 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
260 break;
263 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
265 for (i = 0x80000000; i <= limit; i++) {
266 c = &cpuid_data.entries[cpuid_i++];
268 c->function = i;
269 c->flags = 0;
270 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
273 cpuid_data.cpuid.nent = cpuid_i;
275 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
278 #endif
279 void kvm_arch_reset_vcpu(CPUState *env)
281 env->exception_injected = -1;
282 env->interrupt_injected = -1;
283 env->nmi_injected = 0;
284 env->nmi_pending = 0;
286 #ifdef KVM_UPSTREAM
288 static int kvm_has_msr_star(CPUState *env)
290 static int has_msr_star;
291 int ret;
293 /* first time */
294 if (has_msr_star == 0) {
295 struct kvm_msr_list msr_list, *kvm_msr_list;
297 has_msr_star = -1;
299 /* Obtain MSR list from KVM. These are the MSRs that we must
300 * save/restore */
301 msr_list.nmsrs = 0;
302 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
303 if (ret < 0 && ret != -E2BIG) {
304 return 0;
306 /* Old kernel modules had a bug and could write beyond the provided
307 memory. Allocate at least a safe amount of 1K. */
308 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
309 msr_list.nmsrs *
310 sizeof(msr_list.indices[0])));
312 kvm_msr_list->nmsrs = msr_list.nmsrs;
313 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
314 if (ret >= 0) {
315 int i;
317 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
318 if (kvm_msr_list->indices[i] == MSR_STAR) {
319 has_msr_star = 1;
320 break;
325 free(kvm_msr_list);
328 if (has_msr_star == 1)
329 return 1;
330 return 0;
333 int kvm_arch_init(KVMState *s, int smp_cpus)
335 int ret;
337 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
338 * directly. In order to use vm86 mode, a TSS is needed. Since this
339 * must be part of guest physical memory, we need to allocate it. Older
340 * versions of KVM just assumed that it would be at the end of physical
341 * memory but that doesn't work with more than 4GB of memory. We simply
342 * refuse to work with those older versions of KVM. */
343 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
344 if (ret <= 0) {
345 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
346 return ret;
349 /* this address is 3 pages before the bios, and the bios should present
350 * as unavaible memory. FIXME, need to ensure the e820 map deals with
351 * this?
354 * Tell fw_cfg to notify the BIOS to reserve the range.
356 if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
357 perror("e820_add_entry() table is full");
358 exit(1);
360 return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
363 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
365 lhs->selector = rhs->selector;
366 lhs->base = rhs->base;
367 lhs->limit = rhs->limit;
368 lhs->type = 3;
369 lhs->present = 1;
370 lhs->dpl = 3;
371 lhs->db = 0;
372 lhs->s = 1;
373 lhs->l = 0;
374 lhs->g = 0;
375 lhs->avl = 0;
376 lhs->unusable = 0;
379 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
381 unsigned flags = rhs->flags;
382 lhs->selector = rhs->selector;
383 lhs->base = rhs->base;
384 lhs->limit = rhs->limit;
385 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
386 lhs->present = (flags & DESC_P_MASK) != 0;
387 lhs->dpl = rhs->selector & 3;
388 lhs->db = (flags >> DESC_B_SHIFT) & 1;
389 lhs->s = (flags & DESC_S_MASK) != 0;
390 lhs->l = (flags >> DESC_L_SHIFT) & 1;
391 lhs->g = (flags & DESC_G_MASK) != 0;
392 lhs->avl = (flags & DESC_AVL_MASK) != 0;
393 lhs->unusable = 0;
396 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
398 lhs->selector = rhs->selector;
399 lhs->base = rhs->base;
400 lhs->limit = rhs->limit;
401 lhs->flags =
402 (rhs->type << DESC_TYPE_SHIFT)
403 | (rhs->present * DESC_P_MASK)
404 | (rhs->dpl << DESC_DPL_SHIFT)
405 | (rhs->db << DESC_B_SHIFT)
406 | (rhs->s * DESC_S_MASK)
407 | (rhs->l << DESC_L_SHIFT)
408 | (rhs->g * DESC_G_MASK)
409 | (rhs->avl * DESC_AVL_MASK);
412 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
414 if (set)
415 *kvm_reg = *qemu_reg;
416 else
417 *qemu_reg = *kvm_reg;
420 static int kvm_getput_regs(CPUState *env, int set)
422 struct kvm_regs regs;
423 int ret = 0;
425 if (!set) {
426 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
427 if (ret < 0)
428 return ret;
431 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
432 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
433 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
434 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
435 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
436 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
437 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
438 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
439 #ifdef TARGET_X86_64
440 kvm_getput_reg(&regs.r8, &env->regs[8], set);
441 kvm_getput_reg(&regs.r9, &env->regs[9], set);
442 kvm_getput_reg(&regs.r10, &env->regs[10], set);
443 kvm_getput_reg(&regs.r11, &env->regs[11], set);
444 kvm_getput_reg(&regs.r12, &env->regs[12], set);
445 kvm_getput_reg(&regs.r13, &env->regs[13], set);
446 kvm_getput_reg(&regs.r14, &env->regs[14], set);
447 kvm_getput_reg(&regs.r15, &env->regs[15], set);
448 #endif
450 kvm_getput_reg(&regs.rflags, &env->eflags, set);
451 kvm_getput_reg(&regs.rip, &env->eip, set);
453 if (set)
454 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
456 return ret;
459 static int kvm_put_fpu(CPUState *env)
461 struct kvm_fpu fpu;
462 int i;
464 memset(&fpu, 0, sizeof fpu);
465 fpu.fsw = env->fpus & ~(7 << 11);
466 fpu.fsw |= (env->fpstt & 7) << 11;
467 fpu.fcw = env->fpuc;
468 for (i = 0; i < 8; ++i)
469 fpu.ftwx |= (!env->fptags[i]) << i;
470 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
471 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
472 fpu.mxcsr = env->mxcsr;
474 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
477 static int kvm_put_sregs(CPUState *env)
479 struct kvm_sregs sregs;
481 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
482 if (env->interrupt_injected >= 0) {
483 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
484 (uint64_t)1 << (env->interrupt_injected % 64);
487 if ((env->eflags & VM_MASK)) {
488 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
489 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
490 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
491 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
492 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
493 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
494 } else {
495 set_seg(&sregs.cs, &env->segs[R_CS]);
496 set_seg(&sregs.ds, &env->segs[R_DS]);
497 set_seg(&sregs.es, &env->segs[R_ES]);
498 set_seg(&sregs.fs, &env->segs[R_FS]);
499 set_seg(&sregs.gs, &env->segs[R_GS]);
500 set_seg(&sregs.ss, &env->segs[R_SS]);
502 if (env->cr[0] & CR0_PE_MASK) {
503 /* force ss cpl to cs cpl */
504 sregs.ss.selector = (sregs.ss.selector & ~3) |
505 (sregs.cs.selector & 3);
506 sregs.ss.dpl = sregs.ss.selector & 3;
510 set_seg(&sregs.tr, &env->tr);
511 set_seg(&sregs.ldt, &env->ldt);
513 sregs.idt.limit = env->idt.limit;
514 sregs.idt.base = env->idt.base;
515 sregs.gdt.limit = env->gdt.limit;
516 sregs.gdt.base = env->gdt.base;
518 sregs.cr0 = env->cr[0];
519 sregs.cr2 = env->cr[2];
520 sregs.cr3 = env->cr[3];
521 sregs.cr4 = env->cr[4];
523 sregs.cr8 = cpu_get_apic_tpr(env);
524 sregs.apic_base = cpu_get_apic_base(env);
526 sregs.efer = env->efer;
528 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
531 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
532 uint32_t index, uint64_t value)
534 entry->index = index;
535 entry->data = value;
538 static int kvm_put_msrs(CPUState *env, int level)
540 struct {
541 struct kvm_msrs info;
542 struct kvm_msr_entry entries[100];
543 } msr_data;
544 struct kvm_msr_entry *msrs = msr_data.entries;
545 int n = 0;
547 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
548 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
549 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
550 if (kvm_has_msr_star(env))
551 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
552 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
553 #ifdef TARGET_X86_64
554 /* FIXME if lm capable */
555 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
556 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
557 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
558 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
559 #endif
560 if (level == KVM_PUT_FULL_STATE) {
561 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
562 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
563 env->system_time_msr);
564 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
567 msr_data.info.nmsrs = n;
569 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
574 static int kvm_get_fpu(CPUState *env)
576 struct kvm_fpu fpu;
577 int i, ret;
579 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
580 if (ret < 0)
581 return ret;
583 env->fpstt = (fpu.fsw >> 11) & 7;
584 env->fpus = fpu.fsw;
585 env->fpuc = fpu.fcw;
586 for (i = 0; i < 8; ++i)
587 env->fptags[i] = !((fpu.ftwx >> i) & 1);
588 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
589 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
590 env->mxcsr = fpu.mxcsr;
592 return 0;
595 static int kvm_get_sregs(CPUState *env)
597 struct kvm_sregs sregs;
598 uint32_t hflags;
599 int bit, i, ret;
601 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
602 if (ret < 0)
603 return ret;
605 /* There can only be one pending IRQ set in the bitmap at a time, so try
606 to find it and save its number instead (-1 for none). */
607 env->interrupt_injected = -1;
608 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
609 if (sregs.interrupt_bitmap[i]) {
610 bit = ctz64(sregs.interrupt_bitmap[i]);
611 env->interrupt_injected = i * 64 + bit;
612 break;
616 get_seg(&env->segs[R_CS], &sregs.cs);
617 get_seg(&env->segs[R_DS], &sregs.ds);
618 get_seg(&env->segs[R_ES], &sregs.es);
619 get_seg(&env->segs[R_FS], &sregs.fs);
620 get_seg(&env->segs[R_GS], &sregs.gs);
621 get_seg(&env->segs[R_SS], &sregs.ss);
623 get_seg(&env->tr, &sregs.tr);
624 get_seg(&env->ldt, &sregs.ldt);
626 env->idt.limit = sregs.idt.limit;
627 env->idt.base = sregs.idt.base;
628 env->gdt.limit = sregs.gdt.limit;
629 env->gdt.base = sregs.gdt.base;
631 env->cr[0] = sregs.cr0;
632 env->cr[2] = sregs.cr2;
633 env->cr[3] = sregs.cr3;
634 env->cr[4] = sregs.cr4;
636 cpu_set_apic_base(env, sregs.apic_base);
638 env->efer = sregs.efer;
639 //cpu_set_apic_tpr(env, sregs.cr8);
641 #define HFLAG_COPY_MASK ~( \
642 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
643 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
644 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
645 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
649 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
650 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
651 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
652 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
653 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
654 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
655 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
657 if (env->efer & MSR_EFER_LMA) {
658 hflags |= HF_LMA_MASK;
661 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
662 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
663 } else {
664 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
665 (DESC_B_SHIFT - HF_CS32_SHIFT);
666 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
667 (DESC_B_SHIFT - HF_SS32_SHIFT);
668 if (!(env->cr[0] & CR0_PE_MASK) ||
669 (env->eflags & VM_MASK) ||
670 !(hflags & HF_CS32_MASK)) {
671 hflags |= HF_ADDSEG_MASK;
672 } else {
673 hflags |= ((env->segs[R_DS].base |
674 env->segs[R_ES].base |
675 env->segs[R_SS].base) != 0) <<
676 HF_ADDSEG_SHIFT;
679 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
681 return 0;
684 static int kvm_get_msrs(CPUState *env)
686 struct {
687 struct kvm_msrs info;
688 struct kvm_msr_entry entries[100];
689 } msr_data;
690 struct kvm_msr_entry *msrs = msr_data.entries;
691 int ret, i, n;
693 n = 0;
694 msrs[n++].index = MSR_IA32_SYSENTER_CS;
695 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
696 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
697 if (kvm_has_msr_star(env))
698 msrs[n++].index = MSR_STAR;
699 msrs[n++].index = MSR_IA32_TSC;
700 msrs[n++].index = MSR_VM_HSAVE_PA;
701 #ifdef TARGET_X86_64
702 /* FIXME lm_capable_kernel */
703 msrs[n++].index = MSR_CSTAR;
704 msrs[n++].index = MSR_KERNELGSBASE;
705 msrs[n++].index = MSR_FMASK;
706 msrs[n++].index = MSR_LSTAR;
707 #endif
708 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
709 msrs[n++].index = MSR_KVM_WALL_CLOCK;
711 msr_data.info.nmsrs = n;
712 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
713 if (ret < 0)
714 return ret;
716 for (i = 0; i < ret; i++) {
717 switch (msrs[i].index) {
718 case MSR_IA32_SYSENTER_CS:
719 env->sysenter_cs = msrs[i].data;
720 break;
721 case MSR_IA32_SYSENTER_ESP:
722 env->sysenter_esp = msrs[i].data;
723 break;
724 case MSR_IA32_SYSENTER_EIP:
725 env->sysenter_eip = msrs[i].data;
726 break;
727 case MSR_STAR:
728 env->star = msrs[i].data;
729 break;
730 #ifdef TARGET_X86_64
731 case MSR_CSTAR:
732 env->cstar = msrs[i].data;
733 break;
734 case MSR_KERNELGSBASE:
735 env->kernelgsbase = msrs[i].data;
736 break;
737 case MSR_FMASK:
738 env->fmask = msrs[i].data;
739 break;
740 case MSR_LSTAR:
741 env->lstar = msrs[i].data;
742 break;
743 #endif
744 case MSR_IA32_TSC:
745 env->tsc = msrs[i].data;
746 break;
747 case MSR_KVM_SYSTEM_TIME:
748 env->system_time_msr = msrs[i].data;
749 break;
750 case MSR_KVM_WALL_CLOCK:
751 env->wall_clock_msr = msrs[i].data;
752 break;
753 case MSR_VM_HSAVE_PA:
754 env->vm_hsave = msrs[i].data;
755 break;
759 return 0;
762 static int kvm_put_mp_state(CPUState *env)
764 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
766 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
769 static int kvm_get_mp_state(CPUState *env)
771 struct kvm_mp_state mp_state;
772 int ret;
774 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
775 if (ret < 0) {
776 return ret;
778 env->mp_state = mp_state.mp_state;
779 return 0;
781 #endif
783 static int kvm_put_vcpu_events(CPUState *env, int level)
785 #ifdef KVM_CAP_VCPU_EVENTS
786 struct kvm_vcpu_events events;
788 if (!kvm_has_vcpu_events()) {
789 return 0;
792 events.exception.injected = (env->exception_injected >= 0);
793 events.exception.nr = env->exception_injected;
794 events.exception.has_error_code = env->has_error_code;
795 events.exception.error_code = env->error_code;
797 events.interrupt.injected = (env->interrupt_injected >= 0);
798 events.interrupt.nr = env->interrupt_injected;
799 events.interrupt.soft = env->soft_interrupt;
801 events.nmi.injected = env->nmi_injected;
802 events.nmi.pending = env->nmi_pending;
803 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
805 events.sipi_vector = env->sipi_vector;
807 events.flags = 0;
808 if (level >= KVM_PUT_RESET_STATE) {
809 events.flags |=
810 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
813 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
814 #else
815 return 0;
816 #endif
819 static int kvm_get_vcpu_events(CPUState *env)
821 #ifdef KVM_CAP_VCPU_EVENTS
822 struct kvm_vcpu_events events;
823 int ret;
825 if (!kvm_has_vcpu_events()) {
826 return 0;
829 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
830 if (ret < 0) {
831 return ret;
833 env->exception_injected =
834 events.exception.injected ? events.exception.nr : -1;
835 env->has_error_code = events.exception.has_error_code;
836 env->error_code = events.exception.error_code;
838 env->interrupt_injected =
839 events.interrupt.injected ? events.interrupt.nr : -1;
840 env->soft_interrupt = events.interrupt.soft;
842 env->nmi_injected = events.nmi.injected;
843 env->nmi_pending = events.nmi.pending;
844 if (events.nmi.masked) {
845 env->hflags2 |= HF2_NMI_MASK;
846 } else {
847 env->hflags2 &= ~HF2_NMI_MASK;
850 env->sipi_vector = events.sipi_vector;
851 #endif
853 return 0;
856 static int kvm_guest_debug_workarounds(CPUState *env)
858 int ret = 0;
859 #ifdef KVM_CAP_SET_GUEST_DEBUG
860 unsigned long reinject_trap = 0;
862 if (!kvm_has_vcpu_events()) {
863 if (env->exception_injected == 1) {
864 reinject_trap = KVM_GUESTDBG_INJECT_DB;
865 } else if (env->exception_injected == 3) {
866 reinject_trap = KVM_GUESTDBG_INJECT_BP;
868 env->exception_injected = -1;
872 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
873 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
874 * by updating the debug state once again if single-stepping is on.
875 * Another reason to call kvm_update_guest_debug here is a pending debug
876 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
877 * reinject them via SET_GUEST_DEBUG.
879 if (reinject_trap ||
880 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
881 ret = kvm_update_guest_debug(env, reinject_trap);
883 #endif /* KVM_CAP_SET_GUEST_DEBUG */
884 return ret;
887 #ifdef KVM_UPSTREAM
888 static int kvm_put_debugregs(CPUState *env)
890 #ifdef KVM_CAP_DEBUGREGS
891 struct kvm_debugregs dbgregs;
892 int i;
894 if (!kvm_has_debugregs()) {
895 return 0;
898 for (i = 0; i < 4; i++) {
899 dbgregs.db[i] = env->dr[i];
901 dbgregs.dr6 = env->dr[6];
902 dbgregs.dr7 = env->dr[7];
903 dbgregs.flags = 0;
905 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
906 #else
907 return 0;
908 #endif
911 static int kvm_get_debugregs(CPUState *env)
913 #ifdef KVM_CAP_DEBUGREGS
914 struct kvm_debugregs dbgregs;
915 int i, ret;
917 if (!kvm_has_debugregs()) {
918 return 0;
921 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
922 if (ret < 0) {
923 return ret;
925 for (i = 0; i < 4; i++) {
926 env->dr[i] = dbgregs.db[i];
928 env->dr[4] = env->dr[6] = dbgregs.dr6;
929 env->dr[5] = env->dr[7] = dbgregs.dr7;
930 #endif
932 return 0;
935 int kvm_arch_put_registers(CPUState *env, int level)
937 int ret;
939 ret = kvm_getput_regs(env, 1);
940 if (ret < 0)
941 return ret;
943 ret = kvm_put_fpu(env);
944 if (ret < 0)
945 return ret;
947 ret = kvm_put_sregs(env);
948 if (ret < 0)
949 return ret;
951 ret = kvm_put_msrs(env, level);
952 if (ret < 0)
953 return ret;
955 if (level >= KVM_PUT_RESET_STATE) {
956 ret = kvm_put_mp_state(env);
957 if (ret < 0)
958 return ret;
961 ret = kvm_put_vcpu_events(env, level);
962 if (ret < 0)
963 return ret;
965 /* must be last */
966 ret = kvm_guest_debug_workarounds(env);
967 if (ret < 0)
968 return ret;
970 return 0;
973 int kvm_arch_get_registers(CPUState *env)
975 int ret;
977 ret = kvm_getput_regs(env, 0);
978 if (ret < 0)
979 return ret;
981 ret = kvm_get_fpu(env);
982 if (ret < 0)
983 return ret;
985 ret = kvm_get_sregs(env);
986 if (ret < 0)
987 return ret;
989 ret = kvm_get_msrs(env);
990 if (ret < 0)
991 return ret;
993 ret = kvm_get_mp_state(env);
994 if (ret < 0)
995 return ret;
997 ret = kvm_get_vcpu_events(env);
998 if (ret < 0)
999 return ret;
1001 ret = kvm_put_debugregs(env);
1002 if (ret < 0)
1003 return ret;
1005 ret = kvm_get_debugregs(env);
1006 if (ret < 0)
1007 return ret;
1009 return 0;
1012 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1014 /* Try to inject an interrupt if the guest can accept it */
1015 if (run->ready_for_interrupt_injection &&
1016 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1017 (env->eflags & IF_MASK)) {
1018 int irq;
1020 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1021 irq = cpu_get_pic_interrupt(env);
1022 if (irq >= 0) {
1023 struct kvm_interrupt intr;
1024 intr.irq = irq;
1025 /* FIXME: errors */
1026 dprintf("injected interrupt %d\n", irq);
1027 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1031 /* If we have an interrupt but the guest is not ready to receive an
1032 * interrupt, request an interrupt window exit. This will
1033 * cause a return to userspace as soon as the guest is ready to
1034 * receive interrupts. */
1035 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
1036 run->request_interrupt_window = 1;
1037 else
1038 run->request_interrupt_window = 0;
1040 dprintf("setting tpr\n");
1041 run->cr8 = cpu_get_apic_tpr(env);
1043 return 0;
1045 #endif
1047 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1049 if (run->if_flag)
1050 env->eflags |= IF_MASK;
1051 else
1052 env->eflags &= ~IF_MASK;
1054 cpu_set_apic_tpr(env, run->cr8);
1055 cpu_set_apic_base(env, run->apic_base);
1057 return 0;
1060 #ifdef KVM_UPSTREAM
1061 static int kvm_handle_halt(CPUState *env)
1063 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1064 (env->eflags & IF_MASK)) &&
1065 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1066 env->halted = 1;
1067 env->exception_index = EXCP_HLT;
1068 return 0;
1071 return 1;
1074 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1076 int ret = 0;
1078 switch (run->exit_reason) {
1079 case KVM_EXIT_HLT:
1080 dprintf("handle_hlt\n");
1081 ret = kvm_handle_halt(env);
1082 break;
1085 return ret;
1087 #endif
1089 #ifdef KVM_CAP_SET_GUEST_DEBUG
1090 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1092 static const uint8_t int3 = 0xcc;
1094 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1095 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1096 return -EINVAL;
1097 return 0;
1100 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1102 uint8_t int3;
1104 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1105 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1106 return -EINVAL;
1107 return 0;
1110 static struct {
1111 target_ulong addr;
1112 int len;
1113 int type;
1114 } hw_breakpoint[4];
1116 static int nb_hw_breakpoint;
1118 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1120 int n;
1122 for (n = 0; n < nb_hw_breakpoint; n++)
1123 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1124 (hw_breakpoint[n].len == len || len == -1))
1125 return n;
1126 return -1;
1129 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1130 target_ulong len, int type)
1132 switch (type) {
1133 case GDB_BREAKPOINT_HW:
1134 len = 1;
1135 break;
1136 case GDB_WATCHPOINT_WRITE:
1137 case GDB_WATCHPOINT_ACCESS:
1138 switch (len) {
1139 case 1:
1140 break;
1141 case 2:
1142 case 4:
1143 case 8:
1144 if (addr & (len - 1))
1145 return -EINVAL;
1146 break;
1147 default:
1148 return -EINVAL;
1150 break;
1151 default:
1152 return -ENOSYS;
1155 if (nb_hw_breakpoint == 4)
1156 return -ENOBUFS;
1158 if (find_hw_breakpoint(addr, len, type) >= 0)
1159 return -EEXIST;
1161 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1162 hw_breakpoint[nb_hw_breakpoint].len = len;
1163 hw_breakpoint[nb_hw_breakpoint].type = type;
1164 nb_hw_breakpoint++;
1166 return 0;
1169 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1170 target_ulong len, int type)
1172 int n;
1174 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1175 if (n < 0)
1176 return -ENOENT;
1178 nb_hw_breakpoint--;
1179 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1181 return 0;
1184 void kvm_arch_remove_all_hw_breakpoints(void)
1186 nb_hw_breakpoint = 0;
1189 static CPUWatchpoint hw_watchpoint;
1191 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1193 int handle = 0;
1194 int n;
1196 if (arch_info->exception == 1) {
1197 if (arch_info->dr6 & (1 << 14)) {
1198 if (cpu_single_env->singlestep_enabled)
1199 handle = 1;
1200 } else {
1201 for (n = 0; n < 4; n++)
1202 if (arch_info->dr6 & (1 << n))
1203 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1204 case 0x0:
1205 handle = 1;
1206 break;
1207 case 0x1:
1208 handle = 1;
1209 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1210 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1211 hw_watchpoint.flags = BP_MEM_WRITE;
1212 break;
1213 case 0x3:
1214 handle = 1;
1215 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1216 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1217 hw_watchpoint.flags = BP_MEM_ACCESS;
1218 break;
1221 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1222 handle = 1;
1224 if (!handle) {
1225 cpu_synchronize_state(cpu_single_env);
1226 assert(cpu_single_env->exception_injected == -1);
1228 cpu_single_env->exception_injected = arch_info->exception;
1229 cpu_single_env->has_error_code = 0;
1232 return handle;
1235 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1237 const uint8_t type_code[] = {
1238 [GDB_BREAKPOINT_HW] = 0x0,
1239 [GDB_WATCHPOINT_WRITE] = 0x1,
1240 [GDB_WATCHPOINT_ACCESS] = 0x3
1242 const uint8_t len_code[] = {
1243 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1245 int n;
1247 if (kvm_sw_breakpoints_active(env))
1248 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1250 if (nb_hw_breakpoint > 0) {
1251 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1252 dbg->arch.debugreg[7] = 0x0600;
1253 for (n = 0; n < nb_hw_breakpoint; n++) {
1254 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1255 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1256 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1257 (len_code[hw_breakpoint[n].len] << (18 + n*4));
1261 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1263 #include "qemu-kvm-x86.c"