2 /*============================================================================
4 This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
5 Arithmetic Package, Release 2b.
7 Written by John R. Hauser. This work was made possible in part by the
8 International Computer Science Institute, located at Suite 600, 1947 Center
9 Street, Berkeley, California 94704. Funding was partially provided by the
10 National Science Foundation under grant MIP-9311980. The original version
11 of this code was written as part of a project to build a fixed-point vector
12 processor in collaboration with the University of California at Berkeley,
13 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
14 is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
15 arithmetic/SoftFloat.html'.
17 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
18 been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
19 RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
20 AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
21 COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
22 EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
23 INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
24 OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
26 Derivative works are acceptable, even for commercial purposes, so long as
27 (1) the source code for the derivative work includes prominent notice that
28 the work is derivative, and (2) the source code includes prominent notice with
29 these four paragraphs for those parts of this code that are retained.
31 =============================================================================*/
33 #if defined(TARGET_MIPS) || defined(TARGET_HPPA)
34 #define SNAN_BIT_IS_ONE 1
36 #define SNAN_BIT_IS_ONE 0
39 /*----------------------------------------------------------------------------
40 | Underflow tininess-detection mode, statically initialized to default value.
41 | (The declaration in `softfloat.h' must match the `int8' type here.)
42 *----------------------------------------------------------------------------*/
43 int8 float_detect_tininess
= float_tininess_after_rounding
;
45 /*----------------------------------------------------------------------------
46 | Raises the exceptions specified by `flags'. Floating-point traps can be
47 | defined here if desired. It is currently not possible for such a trap
48 | to substitute a result value. If traps are not implemented, this routine
49 | should be simply `float_exception_flags |= flags;'.
50 *----------------------------------------------------------------------------*/
52 void float_raise( int8 flags STATUS_PARAM
)
54 STATUS(float_exception_flags
) |= flags
;
57 /*----------------------------------------------------------------------------
58 | Internal canonical NaN format.
59 *----------------------------------------------------------------------------*/
65 /*----------------------------------------------------------------------------
66 | The pattern for a default generated single-precision NaN.
67 *----------------------------------------------------------------------------*/
68 #if defined(TARGET_SPARC)
69 #define float32_default_nan make_float32(0x7FFFFFFF)
70 #elif defined(TARGET_POWERPC)
71 #define float32_default_nan make_float32(0x7FC00000)
72 #elif defined(TARGET_HPPA)
73 #define float32_default_nan make_float32(0x7FA00000)
75 #define float32_default_nan make_float32(0x7FBFFFFF)
77 #define float32_default_nan make_float32(0xFFC00000)
80 /*----------------------------------------------------------------------------
81 | Returns 1 if the single-precision floating-point value `a' is a quiet
82 | NaN; otherwise returns 0.
83 *----------------------------------------------------------------------------*/
85 int float32_is_nan( float32 a_
)
87 uint32_t a
= float32_val(a_
);
89 return ( ( ( a
>>22 ) & 0x1FF ) == 0x1FE ) && ( a
& 0x003FFFFF );
91 return ( 0xFF800000 <= (bits32
) ( a
<<1 ) );
95 /*----------------------------------------------------------------------------
96 | Returns 1 if the single-precision floating-point value `a' is a signaling
97 | NaN; otherwise returns 0.
98 *----------------------------------------------------------------------------*/
100 int float32_is_signaling_nan( float32 a_
)
102 uint32_t a
= float32_val(a_
);
104 return ( 0xFF800000 <= (bits32
) ( a
<<1 ) );
106 return ( ( ( a
>>22 ) & 0x1FF ) == 0x1FE ) && ( a
& 0x003FFFFF );
110 /*----------------------------------------------------------------------------
111 | Returns the result of converting the single-precision floating-point NaN
112 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
113 | exception is raised.
114 *----------------------------------------------------------------------------*/
116 static commonNaNT
float32ToCommonNaN( float32 a STATUS_PARAM
)
120 if ( float32_is_signaling_nan( a
) ) float_raise( float_flag_invalid STATUS_VAR
);
121 z
.sign
= float32_val(a
)>>31;
123 z
.high
= ( (bits64
) float32_val(a
) )<<41;
127 /*----------------------------------------------------------------------------
128 | Returns the result of converting the canonical NaN `a' to the single-
129 | precision floating-point format.
130 *----------------------------------------------------------------------------*/
132 static float32
commonNaNToFloat32( commonNaNT a
)
134 bits32 mantissa
= a
.high
>>41;
137 ( ( (bits32
) a
.sign
)<<31 ) | 0x7F800000 | ( a
.high
>>41 ) );
139 return float32_default_nan
;
142 /*----------------------------------------------------------------------------
143 | Takes two single-precision floating-point values `a' and `b', one of which
144 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
145 | signaling NaN, the invalid exception is raised.
146 *----------------------------------------------------------------------------*/
148 static float32
propagateFloat32NaN( float32 a
, float32 b STATUS_PARAM
)
150 flag aIsNaN
, aIsSignalingNaN
, bIsNaN
, bIsSignalingNaN
;
153 aIsNaN
= float32_is_nan( a
);
154 aIsSignalingNaN
= float32_is_signaling_nan( a
);
155 bIsNaN
= float32_is_nan( b
);
156 bIsSignalingNaN
= float32_is_signaling_nan( b
);
166 if ( aIsSignalingNaN
| bIsSignalingNaN
) float_raise( float_flag_invalid STATUS_VAR
);
167 if ( aIsSignalingNaN
) {
168 if ( bIsSignalingNaN
) goto returnLargerSignificand
;
169 res
= bIsNaN
? bv
: av
;
172 if ( bIsSignalingNaN
| ! bIsNaN
)
175 returnLargerSignificand
:
176 if ( (bits32
) ( av
<<1 ) < (bits32
) ( bv
<<1 ) )
178 else if ( (bits32
) ( bv
<<1 ) < (bits32
) ( av
<<1 ) )
181 res
= ( av
< bv
) ? av
: bv
;
187 return make_float32(res
);
190 /*----------------------------------------------------------------------------
191 | The pattern for a default generated double-precision NaN.
192 *----------------------------------------------------------------------------*/
193 #if defined(TARGET_SPARC)
194 #define float64_default_nan make_float64(LIT64( 0x7FFFFFFFFFFFFFFF ))
195 #elif defined(TARGET_POWERPC)
196 #define float64_default_nan make_float64(LIT64( 0x7FF8000000000000 ))
197 #elif defined(TARGET_HPPA)
198 #define float64_default_nan make_float64(LIT64( 0x7FF4000000000000 ))
199 #elif SNAN_BIT_IS_ONE
200 #define float64_default_nan make_float64(LIT64( 0x7FF7FFFFFFFFFFFF ))
202 #define float64_default_nan make_float64(LIT64( 0xFFF8000000000000 ))
205 /*----------------------------------------------------------------------------
206 | Returns 1 if the double-precision floating-point value `a' is a quiet
207 | NaN; otherwise returns 0.
208 *----------------------------------------------------------------------------*/
210 int float64_is_nan( float64 a_
)
212 bits64 a
= float64_val(a_
);
215 ( ( ( a
>>51 ) & 0xFFF ) == 0xFFE )
216 && ( a
& LIT64( 0x0007FFFFFFFFFFFF ) );
218 return ( LIT64( 0xFFF0000000000000 ) <= (bits64
) ( a
<<1 ) );
222 /*----------------------------------------------------------------------------
223 | Returns 1 if the double-precision floating-point value `a' is a signaling
224 | NaN; otherwise returns 0.
225 *----------------------------------------------------------------------------*/
227 int float64_is_signaling_nan( float64 a_
)
229 bits64 a
= float64_val(a_
);
231 return ( LIT64( 0xFFF0000000000000 ) <= (bits64
) ( a
<<1 ) );
234 ( ( ( a
>>51 ) & 0xFFF ) == 0xFFE )
235 && ( a
& LIT64( 0x0007FFFFFFFFFFFF ) );
239 /*----------------------------------------------------------------------------
240 | Returns the result of converting the double-precision floating-point NaN
241 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
242 | exception is raised.
243 *----------------------------------------------------------------------------*/
245 static commonNaNT
float64ToCommonNaN( float64 a STATUS_PARAM
)
249 if ( float64_is_signaling_nan( a
) ) float_raise( float_flag_invalid STATUS_VAR
);
250 z
.sign
= float64_val(a
)>>63;
252 z
.high
= float64_val(a
)<<12;
256 /*----------------------------------------------------------------------------
257 | Returns the result of converting the canonical NaN `a' to the double-
258 | precision floating-point format.
259 *----------------------------------------------------------------------------*/
261 static float64
commonNaNToFloat64( commonNaNT a
)
263 bits64 mantissa
= a
.high
>>12;
267 ( ( (bits64
) a
.sign
)<<63 )
268 | LIT64( 0x7FF0000000000000 )
271 return float64_default_nan
;
274 /*----------------------------------------------------------------------------
275 | Takes two double-precision floating-point values `a' and `b', one of which
276 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
277 | signaling NaN, the invalid exception is raised.
278 *----------------------------------------------------------------------------*/
280 static float64
propagateFloat64NaN( float64 a
, float64 b STATUS_PARAM
)
282 flag aIsNaN
, aIsSignalingNaN
, bIsNaN
, bIsSignalingNaN
;
285 aIsNaN
= float64_is_nan( a
);
286 aIsSignalingNaN
= float64_is_signaling_nan( a
);
287 bIsNaN
= float64_is_nan( b
);
288 bIsSignalingNaN
= float64_is_signaling_nan( b
);
292 av
&= ~LIT64( 0x0008000000000000 );
293 bv
&= ~LIT64( 0x0008000000000000 );
295 av
|= LIT64( 0x0008000000000000 );
296 bv
|= LIT64( 0x0008000000000000 );
298 if ( aIsSignalingNaN
| bIsSignalingNaN
) float_raise( float_flag_invalid STATUS_VAR
);
299 if ( aIsSignalingNaN
) {
300 if ( bIsSignalingNaN
) goto returnLargerSignificand
;
301 res
= bIsNaN
? bv
: av
;
304 if ( bIsSignalingNaN
| ! bIsNaN
)
307 returnLargerSignificand
:
308 if ( (bits64
) ( av
<<1 ) < (bits64
) ( bv
<<1 ) )
310 else if ( (bits64
) ( bv
<<1 ) < (bits64
) ( av
<<1 ) )
313 res
= ( av
< bv
) ? av
: bv
;
319 return make_float64(res
);
324 /*----------------------------------------------------------------------------
325 | The pattern for a default generated extended double-precision NaN. The
326 | `high' and `low' values hold the most- and least-significant bits,
328 *----------------------------------------------------------------------------*/
330 #define floatx80_default_nan_high 0x7FFF
331 #define floatx80_default_nan_low LIT64( 0xBFFFFFFFFFFFFFFF )
333 #define floatx80_default_nan_high 0xFFFF
334 #define floatx80_default_nan_low LIT64( 0xC000000000000000 )
337 /*----------------------------------------------------------------------------
338 | Returns 1 if the extended double-precision floating-point value `a' is a
339 | quiet NaN; otherwise returns 0.
340 *----------------------------------------------------------------------------*/
342 int floatx80_is_nan( floatx80 a
)
347 aLow
= a
.low
& ~ LIT64( 0x4000000000000000 );
349 ( ( a
.high
& 0x7FFF ) == 0x7FFF )
350 && (bits64
) ( aLow
<<1 )
351 && ( a
.low
== aLow
);
353 return ( ( a
.high
& 0x7FFF ) == 0x7FFF ) && (bits64
) ( a
.low
<<1 );
357 /*----------------------------------------------------------------------------
358 | Returns 1 if the extended double-precision floating-point value `a' is a
359 | signaling NaN; otherwise returns 0.
360 *----------------------------------------------------------------------------*/
362 int floatx80_is_signaling_nan( floatx80 a
)
365 return ( ( a
.high
& 0x7FFF ) == 0x7FFF ) && (bits64
) ( a
.low
<<1 );
369 aLow
= a
.low
& ~ LIT64( 0x4000000000000000 );
371 ( ( a
.high
& 0x7FFF ) == 0x7FFF )
372 && (bits64
) ( aLow
<<1 )
373 && ( a
.low
== aLow
);
377 /*----------------------------------------------------------------------------
378 | Returns the result of converting the extended double-precision floating-
379 | point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
380 | invalid exception is raised.
381 *----------------------------------------------------------------------------*/
383 static commonNaNT
floatx80ToCommonNaN( floatx80 a STATUS_PARAM
)
387 if ( floatx80_is_signaling_nan( a
) ) float_raise( float_flag_invalid STATUS_VAR
);
394 /*----------------------------------------------------------------------------
395 | Returns the result of converting the canonical NaN `a' to the extended
396 | double-precision floating-point format.
397 *----------------------------------------------------------------------------*/
399 static floatx80
commonNaNToFloatx80( commonNaNT a
)
406 z
.low
= floatx80_default_nan_low
;
407 z
.high
= ( ( (bits16
) a
.sign
)<<15 ) | 0x7FFF;
411 /*----------------------------------------------------------------------------
412 | Takes two extended double-precision floating-point values `a' and `b', one
413 | of which is a NaN, and returns the appropriate NaN result. If either `a' or
414 | `b' is a signaling NaN, the invalid exception is raised.
415 *----------------------------------------------------------------------------*/
417 static floatx80
propagateFloatx80NaN( floatx80 a
, floatx80 b STATUS_PARAM
)
419 flag aIsNaN
, aIsSignalingNaN
, bIsNaN
, bIsSignalingNaN
;
421 aIsNaN
= floatx80_is_nan( a
);
422 aIsSignalingNaN
= floatx80_is_signaling_nan( a
);
423 bIsNaN
= floatx80_is_nan( b
);
424 bIsSignalingNaN
= floatx80_is_signaling_nan( b
);
426 a
.low
&= ~LIT64( 0xC000000000000000 );
427 b
.low
&= ~LIT64( 0xC000000000000000 );
429 a
.low
|= LIT64( 0xC000000000000000 );
430 b
.low
|= LIT64( 0xC000000000000000 );
432 if ( aIsSignalingNaN
| bIsSignalingNaN
) float_raise( float_flag_invalid STATUS_VAR
);
433 if ( aIsSignalingNaN
) {
434 if ( bIsSignalingNaN
) goto returnLargerSignificand
;
435 return bIsNaN
? b
: a
;
438 if ( bIsSignalingNaN
| ! bIsNaN
) return a
;
439 returnLargerSignificand
:
440 if ( a
.low
< b
.low
) return b
;
441 if ( b
.low
< a
.low
) return a
;
442 return ( a
.high
< b
.high
) ? a
: b
;
453 /*----------------------------------------------------------------------------
454 | The pattern for a default generated quadruple-precision NaN. The `high' and
455 | `low' values hold the most- and least-significant bits, respectively.
456 *----------------------------------------------------------------------------*/
458 #define float128_default_nan_high LIT64( 0x7FFF7FFFFFFFFFFF )
459 #define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
461 #define float128_default_nan_high LIT64( 0xFFFF800000000000 )
462 #define float128_default_nan_low LIT64( 0x0000000000000000 )
465 /*----------------------------------------------------------------------------
466 | Returns 1 if the quadruple-precision floating-point value `a' is a quiet
467 | NaN; otherwise returns 0.
468 *----------------------------------------------------------------------------*/
470 int float128_is_nan( float128 a
)
474 ( ( ( a
.high
>>47 ) & 0xFFFF ) == 0xFFFE )
475 && ( a
.low
|| ( a
.high
& LIT64( 0x00007FFFFFFFFFFF ) ) );
478 ( LIT64( 0xFFFE000000000000 ) <= (bits64
) ( a
.high
<<1 ) )
479 && ( a
.low
|| ( a
.high
& LIT64( 0x0000FFFFFFFFFFFF ) ) );
483 /*----------------------------------------------------------------------------
484 | Returns 1 if the quadruple-precision floating-point value `a' is a
485 | signaling NaN; otherwise returns 0.
486 *----------------------------------------------------------------------------*/
488 int float128_is_signaling_nan( float128 a
)
492 ( LIT64( 0xFFFE000000000000 ) <= (bits64
) ( a
.high
<<1 ) )
493 && ( a
.low
|| ( a
.high
& LIT64( 0x0000FFFFFFFFFFFF ) ) );
496 ( ( ( a
.high
>>47 ) & 0xFFFF ) == 0xFFFE )
497 && ( a
.low
|| ( a
.high
& LIT64( 0x00007FFFFFFFFFFF ) ) );
501 /*----------------------------------------------------------------------------
502 | Returns the result of converting the quadruple-precision floating-point NaN
503 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
504 | exception is raised.
505 *----------------------------------------------------------------------------*/
507 static commonNaNT
float128ToCommonNaN( float128 a STATUS_PARAM
)
511 if ( float128_is_signaling_nan( a
) ) float_raise( float_flag_invalid STATUS_VAR
);
513 shortShift128Left( a
.high
, a
.low
, 16, &z
.high
, &z
.low
);
517 /*----------------------------------------------------------------------------
518 | Returns the result of converting the canonical NaN `a' to the quadruple-
519 | precision floating-point format.
520 *----------------------------------------------------------------------------*/
522 static float128
commonNaNToFloat128( commonNaNT a
)
526 shift128Right( a
.high
, a
.low
, 16, &z
.high
, &z
.low
);
527 z
.high
|= ( ( (bits64
) a
.sign
)<<63 ) | LIT64( 0x7FFF000000000000 );
531 /*----------------------------------------------------------------------------
532 | Takes two quadruple-precision floating-point values `a' and `b', one of
533 | which is a NaN, and returns the appropriate NaN result. If either `a' or
534 | `b' is a signaling NaN, the invalid exception is raised.
535 *----------------------------------------------------------------------------*/
537 static float128
propagateFloat128NaN( float128 a
, float128 b STATUS_PARAM
)
539 flag aIsNaN
, aIsSignalingNaN
, bIsNaN
, bIsSignalingNaN
;
541 aIsNaN
= float128_is_nan( a
);
542 aIsSignalingNaN
= float128_is_signaling_nan( a
);
543 bIsNaN
= float128_is_nan( b
);
544 bIsSignalingNaN
= float128_is_signaling_nan( b
);
546 a
.high
&= ~LIT64( 0x0000800000000000 );
547 b
.high
&= ~LIT64( 0x0000800000000000 );
549 a
.high
|= LIT64( 0x0000800000000000 );
550 b
.high
|= LIT64( 0x0000800000000000 );
552 if ( aIsSignalingNaN
| bIsSignalingNaN
) float_raise( float_flag_invalid STATUS_VAR
);
553 if ( aIsSignalingNaN
) {
554 if ( bIsSignalingNaN
) goto returnLargerSignificand
;
555 return bIsNaN
? b
: a
;
558 if ( bIsSignalingNaN
| ! bIsNaN
) return a
;
559 returnLargerSignificand
:
560 if ( lt128( a
.high
<<1, a
.low
, b
.high
<<1, b
.low
) ) return b
;
561 if ( lt128( b
.high
<<1, b
.low
, a
.high
<<1, a
.low
) ) return a
;
562 return ( a
.high
< b
.high
) ? a
: b
;