signalfd compatibility
[qemu/qemu-dev-zwu.git] / cpu-all.h
blob67a32664d52e514196179f82f4d47fe18969003c
1 /*
2 * defines common to all virtual CPUs
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #ifndef CPU_ALL_H
20 #define CPU_ALL_H
22 #include "qemu-common.h"
23 #include "cpu-common.h"
25 /* some important defines:
27 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
28 * memory accesses.
30 * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
31 * otherwise little endian.
33 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
35 * TARGET_WORDS_BIGENDIAN : same for target cpu
38 #include "softfloat.h"
40 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
41 #define BSWAP_NEEDED
42 #endif
44 #ifdef BSWAP_NEEDED
46 static inline uint16_t tswap16(uint16_t s)
48 return bswap16(s);
51 static inline uint32_t tswap32(uint32_t s)
53 return bswap32(s);
56 static inline uint64_t tswap64(uint64_t s)
58 return bswap64(s);
61 static inline void tswap16s(uint16_t *s)
63 *s = bswap16(*s);
66 static inline void tswap32s(uint32_t *s)
68 *s = bswap32(*s);
71 static inline void tswap64s(uint64_t *s)
73 *s = bswap64(*s);
76 #else
78 static inline uint16_t tswap16(uint16_t s)
80 return s;
83 static inline uint32_t tswap32(uint32_t s)
85 return s;
88 static inline uint64_t tswap64(uint64_t s)
90 return s;
93 static inline void tswap16s(uint16_t *s)
97 static inline void tswap32s(uint32_t *s)
101 static inline void tswap64s(uint64_t *s)
105 #endif
107 #if TARGET_LONG_SIZE == 4
108 #define tswapl(s) tswap32(s)
109 #define tswapls(s) tswap32s((uint32_t *)(s))
110 #define bswaptls(s) bswap32s(s)
111 #else
112 #define tswapl(s) tswap64(s)
113 #define tswapls(s) tswap64s((uint64_t *)(s))
114 #define bswaptls(s) bswap64s(s)
115 #endif
117 typedef union {
118 float32 f;
119 uint32_t l;
120 } CPU_FloatU;
122 /* NOTE: arm FPA is horrible as double 32 bit words are stored in big
123 endian ! */
124 typedef union {
125 float64 d;
126 #if defined(HOST_WORDS_BIGENDIAN) \
127 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
128 struct {
129 uint32_t upper;
130 uint32_t lower;
131 } l;
132 #else
133 struct {
134 uint32_t lower;
135 uint32_t upper;
136 } l;
137 #endif
138 uint64_t ll;
139 } CPU_DoubleU;
141 #ifdef TARGET_SPARC
142 typedef union {
143 float128 q;
144 #if defined(HOST_WORDS_BIGENDIAN) \
145 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
146 struct {
147 uint32_t upmost;
148 uint32_t upper;
149 uint32_t lower;
150 uint32_t lowest;
151 } l;
152 struct {
153 uint64_t upper;
154 uint64_t lower;
155 } ll;
156 #else
157 struct {
158 uint32_t lowest;
159 uint32_t lower;
160 uint32_t upper;
161 uint32_t upmost;
162 } l;
163 struct {
164 uint64_t lower;
165 uint64_t upper;
166 } ll;
167 #endif
168 } CPU_QuadU;
169 #endif
171 /* CPU memory access without any memory or io remapping */
174 * the generic syntax for the memory accesses is:
176 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
178 * store: st{type}{size}{endian}_{access_type}(ptr, val)
180 * type is:
181 * (empty): integer access
182 * f : float access
184 * sign is:
185 * (empty): for floats or 32 bit size
186 * u : unsigned
187 * s : signed
189 * size is:
190 * b: 8 bits
191 * w: 16 bits
192 * l: 32 bits
193 * q: 64 bits
195 * endian is:
196 * (empty): target cpu endianness or 8 bit access
197 * r : reversed target cpu endianness (not implemented yet)
198 * be : big endian (not implemented yet)
199 * le : little endian (not implemented yet)
201 * access_type is:
202 * raw : host memory access
203 * user : user mode access using soft MMU
204 * kernel : kernel mode access using soft MMU
206 static inline int ldub_p(const void *ptr)
208 return *(uint8_t *)ptr;
211 static inline int ldsb_p(const void *ptr)
213 return *(int8_t *)ptr;
216 static inline void stb_p(void *ptr, int v)
218 *(uint8_t *)ptr = v;
221 /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
222 kernel handles unaligned load/stores may give better results, but
223 it is a system wide setting : bad */
224 #if defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
226 /* conservative code for little endian unaligned accesses */
227 static inline int lduw_le_p(const void *ptr)
229 #ifdef _ARCH_PPC
230 int val;
231 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
232 return val;
233 #else
234 const uint8_t *p = ptr;
235 return p[0] | (p[1] << 8);
236 #endif
239 static inline int ldsw_le_p(const void *ptr)
241 #ifdef _ARCH_PPC
242 int val;
243 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
244 return (int16_t)val;
245 #else
246 const uint8_t *p = ptr;
247 return (int16_t)(p[0] | (p[1] << 8));
248 #endif
251 static inline int ldl_le_p(const void *ptr)
253 #ifdef _ARCH_PPC
254 int val;
255 __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
256 return val;
257 #else
258 const uint8_t *p = ptr;
259 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
260 #endif
263 static inline uint64_t ldq_le_p(const void *ptr)
265 const uint8_t *p = ptr;
266 uint32_t v1, v2;
267 v1 = ldl_le_p(p);
268 v2 = ldl_le_p(p + 4);
269 return v1 | ((uint64_t)v2 << 32);
272 static inline void stw_le_p(void *ptr, int v)
274 #ifdef _ARCH_PPC
275 __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
276 #else
277 uint8_t *p = ptr;
278 p[0] = v;
279 p[1] = v >> 8;
280 #endif
283 static inline void stl_le_p(void *ptr, int v)
285 #ifdef _ARCH_PPC
286 __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
287 #else
288 uint8_t *p = ptr;
289 p[0] = v;
290 p[1] = v >> 8;
291 p[2] = v >> 16;
292 p[3] = v >> 24;
293 #endif
296 static inline void stq_le_p(void *ptr, uint64_t v)
298 uint8_t *p = ptr;
299 stl_le_p(p, (uint32_t)v);
300 stl_le_p(p + 4, v >> 32);
303 /* float access */
305 static inline float32 ldfl_le_p(const void *ptr)
307 union {
308 float32 f;
309 uint32_t i;
310 } u;
311 u.i = ldl_le_p(ptr);
312 return u.f;
315 static inline void stfl_le_p(void *ptr, float32 v)
317 union {
318 float32 f;
319 uint32_t i;
320 } u;
321 u.f = v;
322 stl_le_p(ptr, u.i);
325 static inline float64 ldfq_le_p(const void *ptr)
327 CPU_DoubleU u;
328 u.l.lower = ldl_le_p(ptr);
329 u.l.upper = ldl_le_p(ptr + 4);
330 return u.d;
333 static inline void stfq_le_p(void *ptr, float64 v)
335 CPU_DoubleU u;
336 u.d = v;
337 stl_le_p(ptr, u.l.lower);
338 stl_le_p(ptr + 4, u.l.upper);
341 #else
343 static inline int lduw_le_p(const void *ptr)
345 return *(uint16_t *)ptr;
348 static inline int ldsw_le_p(const void *ptr)
350 return *(int16_t *)ptr;
353 static inline int ldl_le_p(const void *ptr)
355 return *(uint32_t *)ptr;
358 static inline uint64_t ldq_le_p(const void *ptr)
360 return *(uint64_t *)ptr;
363 static inline void stw_le_p(void *ptr, int v)
365 *(uint16_t *)ptr = v;
368 static inline void stl_le_p(void *ptr, int v)
370 *(uint32_t *)ptr = v;
373 static inline void stq_le_p(void *ptr, uint64_t v)
375 *(uint64_t *)ptr = v;
378 /* float access */
380 static inline float32 ldfl_le_p(const void *ptr)
382 return *(float32 *)ptr;
385 static inline float64 ldfq_le_p(const void *ptr)
387 return *(float64 *)ptr;
390 static inline void stfl_le_p(void *ptr, float32 v)
392 *(float32 *)ptr = v;
395 static inline void stfq_le_p(void *ptr, float64 v)
397 *(float64 *)ptr = v;
399 #endif
401 #if !defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
403 static inline int lduw_be_p(const void *ptr)
405 #if defined(__i386__)
406 int val;
407 asm volatile ("movzwl %1, %0\n"
408 "xchgb %b0, %h0\n"
409 : "=q" (val)
410 : "m" (*(uint16_t *)ptr));
411 return val;
412 #else
413 const uint8_t *b = ptr;
414 return ((b[0] << 8) | b[1]);
415 #endif
418 static inline int ldsw_be_p(const void *ptr)
420 #if defined(__i386__)
421 int val;
422 asm volatile ("movzwl %1, %0\n"
423 "xchgb %b0, %h0\n"
424 : "=q" (val)
425 : "m" (*(uint16_t *)ptr));
426 return (int16_t)val;
427 #else
428 const uint8_t *b = ptr;
429 return (int16_t)((b[0] << 8) | b[1]);
430 #endif
433 static inline int ldl_be_p(const void *ptr)
435 #if defined(__i386__) || defined(__x86_64__)
436 int val;
437 asm volatile ("movl %1, %0\n"
438 "bswap %0\n"
439 : "=r" (val)
440 : "m" (*(uint32_t *)ptr));
441 return val;
442 #else
443 const uint8_t *b = ptr;
444 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
445 #endif
448 static inline uint64_t ldq_be_p(const void *ptr)
450 uint32_t a,b;
451 a = ldl_be_p(ptr);
452 b = ldl_be_p((uint8_t *)ptr + 4);
453 return (((uint64_t)a<<32)|b);
456 static inline void stw_be_p(void *ptr, int v)
458 #if defined(__i386__)
459 asm volatile ("xchgb %b0, %h0\n"
460 "movw %w0, %1\n"
461 : "=q" (v)
462 : "m" (*(uint16_t *)ptr), "0" (v));
463 #else
464 uint8_t *d = (uint8_t *) ptr;
465 d[0] = v >> 8;
466 d[1] = v;
467 #endif
470 static inline void stl_be_p(void *ptr, int v)
472 #if defined(__i386__) || defined(__x86_64__)
473 asm volatile ("bswap %0\n"
474 "movl %0, %1\n"
475 : "=r" (v)
476 : "m" (*(uint32_t *)ptr), "0" (v));
477 #else
478 uint8_t *d = (uint8_t *) ptr;
479 d[0] = v >> 24;
480 d[1] = v >> 16;
481 d[2] = v >> 8;
482 d[3] = v;
483 #endif
486 static inline void stq_be_p(void *ptr, uint64_t v)
488 stl_be_p(ptr, v >> 32);
489 stl_be_p((uint8_t *)ptr + 4, v);
492 /* float access */
494 static inline float32 ldfl_be_p(const void *ptr)
496 union {
497 float32 f;
498 uint32_t i;
499 } u;
500 u.i = ldl_be_p(ptr);
501 return u.f;
504 static inline void stfl_be_p(void *ptr, float32 v)
506 union {
507 float32 f;
508 uint32_t i;
509 } u;
510 u.f = v;
511 stl_be_p(ptr, u.i);
514 static inline float64 ldfq_be_p(const void *ptr)
516 CPU_DoubleU u;
517 u.l.upper = ldl_be_p(ptr);
518 u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
519 return u.d;
522 static inline void stfq_be_p(void *ptr, float64 v)
524 CPU_DoubleU u;
525 u.d = v;
526 stl_be_p(ptr, u.l.upper);
527 stl_be_p((uint8_t *)ptr + 4, u.l.lower);
530 #else
532 static inline int lduw_be_p(const void *ptr)
534 return *(uint16_t *)ptr;
537 static inline int ldsw_be_p(const void *ptr)
539 return *(int16_t *)ptr;
542 static inline int ldl_be_p(const void *ptr)
544 return *(uint32_t *)ptr;
547 static inline uint64_t ldq_be_p(const void *ptr)
549 return *(uint64_t *)ptr;
552 static inline void stw_be_p(void *ptr, int v)
554 *(uint16_t *)ptr = v;
557 static inline void stl_be_p(void *ptr, int v)
559 *(uint32_t *)ptr = v;
562 static inline void stq_be_p(void *ptr, uint64_t v)
564 *(uint64_t *)ptr = v;
567 /* float access */
569 static inline float32 ldfl_be_p(const void *ptr)
571 return *(float32 *)ptr;
574 static inline float64 ldfq_be_p(const void *ptr)
576 return *(float64 *)ptr;
579 static inline void stfl_be_p(void *ptr, float32 v)
581 *(float32 *)ptr = v;
584 static inline void stfq_be_p(void *ptr, float64 v)
586 *(float64 *)ptr = v;
589 #endif
591 /* target CPU memory access functions */
592 #if defined(TARGET_WORDS_BIGENDIAN)
593 #define lduw_p(p) lduw_be_p(p)
594 #define ldsw_p(p) ldsw_be_p(p)
595 #define ldl_p(p) ldl_be_p(p)
596 #define ldq_p(p) ldq_be_p(p)
597 #define ldfl_p(p) ldfl_be_p(p)
598 #define ldfq_p(p) ldfq_be_p(p)
599 #define stw_p(p, v) stw_be_p(p, v)
600 #define stl_p(p, v) stl_be_p(p, v)
601 #define stq_p(p, v) stq_be_p(p, v)
602 #define stfl_p(p, v) stfl_be_p(p, v)
603 #define stfq_p(p, v) stfq_be_p(p, v)
604 #else
605 #define lduw_p(p) lduw_le_p(p)
606 #define ldsw_p(p) ldsw_le_p(p)
607 #define ldl_p(p) ldl_le_p(p)
608 #define ldq_p(p) ldq_le_p(p)
609 #define ldfl_p(p) ldfl_le_p(p)
610 #define ldfq_p(p) ldfq_le_p(p)
611 #define stw_p(p, v) stw_le_p(p, v)
612 #define stl_p(p, v) stl_le_p(p, v)
613 #define stq_p(p, v) stq_le_p(p, v)
614 #define stfl_p(p, v) stfl_le_p(p, v)
615 #define stfq_p(p, v) stfq_le_p(p, v)
616 #endif
618 /* MMU memory access macros */
620 #if defined(CONFIG_USER_ONLY)
621 #include <assert.h>
622 #include "qemu-types.h"
624 /* On some host systems the guest address space is reserved on the host.
625 * This allows the guest address space to be offset to a convenient location.
627 #if defined(CONFIG_USE_GUEST_BASE)
628 extern unsigned long guest_base;
629 extern int have_guest_base;
630 extern unsigned long reserved_va;
631 #define GUEST_BASE guest_base
632 #define RESERVED_VA reserved_va
633 #else
634 #define GUEST_BASE 0ul
635 #define RESERVED_VA 0ul
636 #endif
638 /* All direct uses of g2h and h2g need to go away for usermode softmmu. */
639 #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
641 #if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
642 #define h2g_valid(x) 1
643 #else
644 #define h2g_valid(x) ({ \
645 unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
646 __guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS); \
648 #endif
650 #define h2g(x) ({ \
651 unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
652 /* Check if given address fits target address space */ \
653 assert(h2g_valid(x)); \
654 (abi_ulong)__ret; \
657 #define saddr(x) g2h(x)
658 #define laddr(x) g2h(x)
660 #else /* !CONFIG_USER_ONLY */
661 /* NOTE: we use double casts if pointers and target_ulong have
662 different sizes */
663 #define saddr(x) (uint8_t *)(long)(x)
664 #define laddr(x) (uint8_t *)(long)(x)
665 #endif
667 #define ldub_raw(p) ldub_p(laddr((p)))
668 #define ldsb_raw(p) ldsb_p(laddr((p)))
669 #define lduw_raw(p) lduw_p(laddr((p)))
670 #define ldsw_raw(p) ldsw_p(laddr((p)))
671 #define ldl_raw(p) ldl_p(laddr((p)))
672 #define ldq_raw(p) ldq_p(laddr((p)))
673 #define ldfl_raw(p) ldfl_p(laddr((p)))
674 #define ldfq_raw(p) ldfq_p(laddr((p)))
675 #define stb_raw(p, v) stb_p(saddr((p)), v)
676 #define stw_raw(p, v) stw_p(saddr((p)), v)
677 #define stl_raw(p, v) stl_p(saddr((p)), v)
678 #define stq_raw(p, v) stq_p(saddr((p)), v)
679 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
680 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
683 #if defined(CONFIG_USER_ONLY)
685 /* if user mode, no other memory access functions */
686 #define ldub(p) ldub_raw(p)
687 #define ldsb(p) ldsb_raw(p)
688 #define lduw(p) lduw_raw(p)
689 #define ldsw(p) ldsw_raw(p)
690 #define ldl(p) ldl_raw(p)
691 #define ldq(p) ldq_raw(p)
692 #define ldfl(p) ldfl_raw(p)
693 #define ldfq(p) ldfq_raw(p)
694 #define stb(p, v) stb_raw(p, v)
695 #define stw(p, v) stw_raw(p, v)
696 #define stl(p, v) stl_raw(p, v)
697 #define stq(p, v) stq_raw(p, v)
698 #define stfl(p, v) stfl_raw(p, v)
699 #define stfq(p, v) stfq_raw(p, v)
701 #define ldub_code(p) ldub_raw(p)
702 #define ldsb_code(p) ldsb_raw(p)
703 #define lduw_code(p) lduw_raw(p)
704 #define ldsw_code(p) ldsw_raw(p)
705 #define ldl_code(p) ldl_raw(p)
706 #define ldq_code(p) ldq_raw(p)
708 #define ldub_kernel(p) ldub_raw(p)
709 #define ldsb_kernel(p) ldsb_raw(p)
710 #define lduw_kernel(p) lduw_raw(p)
711 #define ldsw_kernel(p) ldsw_raw(p)
712 #define ldl_kernel(p) ldl_raw(p)
713 #define ldq_kernel(p) ldq_raw(p)
714 #define ldfl_kernel(p) ldfl_raw(p)
715 #define ldfq_kernel(p) ldfq_raw(p)
716 #define stb_kernel(p, v) stb_raw(p, v)
717 #define stw_kernel(p, v) stw_raw(p, v)
718 #define stl_kernel(p, v) stl_raw(p, v)
719 #define stq_kernel(p, v) stq_raw(p, v)
720 #define stfl_kernel(p, v) stfl_raw(p, v)
721 #define stfq_kernel(p, vt) stfq_raw(p, v)
723 #endif /* defined(CONFIG_USER_ONLY) */
725 /* page related stuff */
727 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
728 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
729 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
731 /* ??? These should be the larger of unsigned long and target_ulong. */
732 extern unsigned long qemu_real_host_page_size;
733 extern unsigned long qemu_host_page_bits;
734 extern unsigned long qemu_host_page_size;
735 extern unsigned long qemu_host_page_mask;
737 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
739 /* same as PROT_xxx */
740 #define PAGE_READ 0x0001
741 #define PAGE_WRITE 0x0002
742 #define PAGE_EXEC 0x0004
743 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
744 #define PAGE_VALID 0x0008
745 /* original state of the write flag (used when tracking self-modifying
746 code */
747 #define PAGE_WRITE_ORG 0x0010
748 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
749 /* FIXME: Code that sets/uses this is broken and needs to go away. */
750 #define PAGE_RESERVED 0x0020
751 #endif
753 #if defined(CONFIG_USER_ONLY)
754 void page_dump(FILE *f);
756 typedef int (*walk_memory_regions_fn)(void *, abi_ulong,
757 abi_ulong, unsigned long);
758 int walk_memory_regions(void *, walk_memory_regions_fn);
760 int page_get_flags(target_ulong address);
761 void page_set_flags(target_ulong start, target_ulong end, int flags);
762 int page_check_range(target_ulong start, target_ulong len, int flags);
763 #endif
765 CPUState *cpu_copy(CPUState *env);
766 CPUState *qemu_get_cpu(int cpu);
768 void cpu_dump_state(CPUState *env, FILE *f,
769 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
770 int flags);
771 void cpu_dump_statistics (CPUState *env, FILE *f,
772 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
773 int flags);
775 void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
776 __attribute__ ((__format__ (__printf__, 2, 3)));
777 extern CPUState *first_cpu;
778 extern CPUState *cpu_single_env;
780 #define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
781 #define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
782 #define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
783 #define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
784 #define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
785 #define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
786 #define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
787 #define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
788 #define CPU_INTERRUPT_NMI 0x200 /* NMI pending. */
789 #define CPU_INTERRUPT_INIT 0x400 /* INIT pending. */
790 #define CPU_INTERRUPT_SIPI 0x800 /* SIPI pending. */
791 #define CPU_INTERRUPT_MCE 0x1000 /* (x86 only) MCE pending. */
793 void cpu_interrupt(CPUState *s, int mask);
794 void cpu_reset_interrupt(CPUState *env, int mask);
796 void cpu_exit(CPUState *s);
798 int qemu_cpu_has_work(CPUState *env);
800 /* Breakpoint/watchpoint flags */
801 #define BP_MEM_READ 0x01
802 #define BP_MEM_WRITE 0x02
803 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
804 #define BP_STOP_BEFORE_ACCESS 0x04
805 #define BP_WATCHPOINT_HIT 0x08
806 #define BP_GDB 0x10
807 #define BP_CPU 0x20
809 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
810 CPUBreakpoint **breakpoint);
811 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
812 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
813 void cpu_breakpoint_remove_all(CPUState *env, int mask);
814 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
815 int flags, CPUWatchpoint **watchpoint);
816 int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
817 target_ulong len, int flags);
818 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
819 void cpu_watchpoint_remove_all(CPUState *env, int mask);
821 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
822 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
823 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
825 void cpu_single_step(CPUState *env, int enabled);
826 void cpu_reset(CPUState *s);
827 int cpu_is_stopped(CPUState *env);
828 void run_on_cpu(CPUState *env, void (*func)(void *data), void *data);
830 #define CPU_LOG_TB_OUT_ASM (1 << 0)
831 #define CPU_LOG_TB_IN_ASM (1 << 1)
832 #define CPU_LOG_TB_OP (1 << 2)
833 #define CPU_LOG_TB_OP_OPT (1 << 3)
834 #define CPU_LOG_INT (1 << 4)
835 #define CPU_LOG_EXEC (1 << 5)
836 #define CPU_LOG_PCALL (1 << 6)
837 #define CPU_LOG_IOPORT (1 << 7)
838 #define CPU_LOG_TB_CPU (1 << 8)
839 #define CPU_LOG_RESET (1 << 9)
841 /* define log items */
842 typedef struct CPULogItem {
843 int mask;
844 const char *name;
845 const char *help;
846 } CPULogItem;
848 extern const CPULogItem cpu_log_items[];
850 void cpu_set_log(int log_flags);
851 void cpu_set_log_filename(const char *filename);
852 int cpu_str_to_log_mask(const char *str);
854 #if !defined(CONFIG_USER_ONLY)
856 /* Return the physical page corresponding to a virtual one. Use it
857 only for debugging because no protection checks are done. Return -1
858 if no page found. */
859 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
861 /* memory API */
863 extern int phys_ram_fd;
864 extern ram_addr_t ram_size;
866 typedef struct RAMBlock {
867 uint8_t *host;
868 ram_addr_t offset;
869 ram_addr_t length;
870 char idstr[256];
871 QLIST_ENTRY(RAMBlock) next;
872 #if defined(__linux__) && !defined(TARGET_S390X)
873 int fd;
874 #endif
875 } RAMBlock;
877 typedef struct RAMList {
878 uint8_t *phys_dirty;
879 QLIST_HEAD(ram, RAMBlock) blocks;
880 } RAMList;
881 extern RAMList ram_list;
883 extern const char *mem_path;
884 extern int mem_prealloc;
886 /* physical memory access */
888 /* MMIO pages are identified by a combination of an IO device index and
889 3 flags. The ROMD code stores the page ram offset in iotlb entry,
890 so only a limited number of ids are avaiable. */
892 #define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
894 /* Flags stored in the low bits of the TLB virtual address. These are
895 defined so that fast path ram access is all zeros. */
896 /* Zero if TLB entry is valid. */
897 #define TLB_INVALID_MASK (1 << 3)
898 /* Set if TLB entry references a clean RAM page. The iotlb entry will
899 contain the page physical address. */
900 #define TLB_NOTDIRTY (1 << 4)
901 /* Set if TLB entry is an IO callback. */
902 #define TLB_MMIO (1 << 5)
904 #define VGA_DIRTY_FLAG 0x01
905 #define CODE_DIRTY_FLAG 0x02
906 #define MIGRATION_DIRTY_FLAG 0x08
908 /* read dirty bit (return 0 or 1) */
909 static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
911 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
914 static inline int cpu_physical_memory_get_dirty_flags(ram_addr_t addr)
916 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS];
919 static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
920 int dirty_flags)
922 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
925 static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
927 ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
930 static inline int cpu_physical_memory_set_dirty_flags(ram_addr_t addr,
931 int dirty_flags)
933 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] |= dirty_flags;
936 static inline void cpu_physical_memory_mask_dirty_range(ram_addr_t start,
937 int length,
938 int dirty_flags)
940 int i, mask, len;
941 uint8_t *p;
943 len = length >> TARGET_PAGE_BITS;
944 mask = ~dirty_flags;
945 p = ram_list.phys_dirty + (start >> TARGET_PAGE_BITS);
946 for (i = 0; i < len; i++) {
947 p[i] &= mask;
951 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
952 int dirty_flags);
953 void cpu_tlb_update_dirty(CPUState *env);
955 int cpu_physical_memory_set_dirty_tracking(int enable);
957 int cpu_physical_memory_get_dirty_tracking(void);
959 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
960 target_phys_addr_t end_addr);
962 void dump_exec_info(FILE *f,
963 int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
964 #endif /* !CONFIG_USER_ONLY */
966 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
967 uint8_t *buf, int len, int is_write);
969 void cpu_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
970 uint64_t mcg_status, uint64_t addr, uint64_t misc);
972 #endif /* CPU_ALL_H */