kvm_stat: scale delta column to make it a rate
[qemu/qemu-dev-zwu.git] / kvm-all.c
blob4ff75c41e0b19a7f2fdd9505108ce04aebc82a08
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
31 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
32 #define PAGE_SIZE TARGET_PAGE_SIZE
34 //#define DEBUG_KVM
36 #ifdef DEBUG_KVM
37 #define DPRINTF(fmt, ...) \
38 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
39 #else
40 #define DPRINTF(fmt, ...) \
41 do { } while (0)
42 #endif
44 #ifdef KVM_UPSTREAM
46 typedef struct KVMSlot
48 target_phys_addr_t start_addr;
49 ram_addr_t memory_size;
50 ram_addr_t phys_offset;
51 int slot;
52 int flags;
53 } KVMSlot;
55 typedef struct kvm_dirty_log KVMDirtyLog;
57 struct KVMState
59 KVMSlot slots[32];
60 int fd;
61 int vmfd;
62 int coalesced_mmio;
63 #ifdef KVM_CAP_COALESCED_MMIO
64 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
65 #endif
66 int broken_set_mem_region;
67 int migration_log;
68 int vcpu_events;
69 int robust_singlestep;
70 int debugregs;
71 #ifdef KVM_CAP_SET_GUEST_DEBUG
72 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
73 #endif
74 int irqchip_in_kernel;
75 int pit_in_kernel;
76 int xsave, xcrs;
79 static KVMState *kvm_state;
81 #endif
83 static KVMSlot *kvm_alloc_slot(KVMState *s)
85 int i;
87 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
88 /* KVM private memory slots */
89 if (i >= 8 && i < 12)
90 continue;
91 if (s->slots[i].memory_size == 0)
92 return &s->slots[i];
95 fprintf(stderr, "%s: no free slot available\n", __func__);
96 abort();
99 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
100 target_phys_addr_t start_addr,
101 target_phys_addr_t end_addr)
103 int i;
105 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
106 KVMSlot *mem = &s->slots[i];
108 if (start_addr == mem->start_addr &&
109 end_addr == mem->start_addr + mem->memory_size) {
110 return mem;
114 return NULL;
118 * Find overlapping slot with lowest start address
120 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
121 target_phys_addr_t start_addr,
122 target_phys_addr_t end_addr)
124 KVMSlot *found = NULL;
125 int i;
127 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
128 KVMSlot *mem = &s->slots[i];
130 if (mem->memory_size == 0 ||
131 (found && found->start_addr < mem->start_addr)) {
132 continue;
135 if (end_addr > mem->start_addr &&
136 start_addr < mem->start_addr + mem->memory_size) {
137 found = mem;
141 return found;
144 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
146 struct kvm_userspace_memory_region mem;
148 mem.slot = slot->slot;
149 mem.guest_phys_addr = slot->start_addr;
150 mem.memory_size = slot->memory_size;
151 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
152 mem.flags = slot->flags;
153 if (s->migration_log) {
154 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
156 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
159 #ifdef KVM_UPSTREAM
160 static void kvm_reset_vcpu(void *opaque)
162 CPUState *env = opaque;
164 kvm_arch_reset_vcpu(env);
166 #endif
168 int kvm_irqchip_in_kernel(void)
170 return kvm_state->irqchip_in_kernel;
173 int kvm_pit_in_kernel(void)
175 return kvm_state->pit_in_kernel;
179 #ifdef KVM_UPSTREAM
180 int kvm_init_vcpu(CPUState *env)
182 KVMState *s = kvm_state;
183 long mmap_size;
184 int ret;
186 DPRINTF("kvm_init_vcpu\n");
188 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
189 if (ret < 0) {
190 DPRINTF("kvm_create_vcpu failed\n");
191 goto err;
194 env->kvm_fd = ret;
195 env->kvm_state = s;
197 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
198 if (mmap_size < 0) {
199 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
200 goto err;
203 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
204 env->kvm_fd, 0);
205 if (env->kvm_run == MAP_FAILED) {
206 ret = -errno;
207 DPRINTF("mmap'ing vcpu state failed\n");
208 goto err;
211 #ifdef KVM_CAP_COALESCED_MMIO
212 if (s->coalesced_mmio && !s->coalesced_mmio_ring)
213 s->coalesced_mmio_ring = (void *) env->kvm_run +
214 s->coalesced_mmio * PAGE_SIZE;
215 #endif
217 ret = kvm_arch_init_vcpu(env);
218 if (ret == 0) {
219 qemu_register_reset(kvm_reset_vcpu, env);
220 kvm_arch_reset_vcpu(env);
222 err:
223 return ret;
225 #endif
228 * dirty pages logging control
230 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
231 ram_addr_t size, int flags, int mask)
233 KVMState *s = kvm_state;
234 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
235 int old_flags;
237 if (mem == NULL) {
238 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
239 TARGET_FMT_plx "\n", __func__, phys_addr,
240 (target_phys_addr_t)(phys_addr + size - 1));
241 return -EINVAL;
244 old_flags = mem->flags;
246 flags = (mem->flags & ~mask) | flags;
247 mem->flags = flags;
249 /* If nothing changed effectively, no need to issue ioctl */
250 if (s->migration_log) {
251 flags |= KVM_MEM_LOG_DIRTY_PAGES;
253 if (flags == old_flags) {
254 return 0;
257 return kvm_set_user_memory_region(s, mem);
260 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
262 return kvm_dirty_pages_log_change(phys_addr, size,
263 KVM_MEM_LOG_DIRTY_PAGES,
264 KVM_MEM_LOG_DIRTY_PAGES);
267 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
269 return kvm_dirty_pages_log_change(phys_addr, size,
271 KVM_MEM_LOG_DIRTY_PAGES);
274 static int kvm_set_migration_log(int enable)
276 KVMState *s = kvm_state;
277 KVMSlot *mem;
278 int i, err;
280 s->migration_log = enable;
282 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
283 mem = &s->slots[i];
285 if (!mem->memory_size) {
286 continue;
288 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
289 continue;
291 err = kvm_set_user_memory_region(s, mem);
292 if (err) {
293 return err;
296 return 0;
299 /* get kvm's dirty pages bitmap and update qemu's */
300 static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
301 unsigned long *bitmap,
302 unsigned long offset,
303 unsigned long mem_size)
305 unsigned int i, j;
306 unsigned long page_number, addr, addr1, c;
307 ram_addr_t ram_addr;
308 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
309 HOST_LONG_BITS;
312 * bitmap-traveling is faster than memory-traveling (for addr...)
313 * especially when most of the memory is not dirty.
315 for (i = 0; i < len; i++) {
316 if (bitmap[i] != 0) {
317 c = leul_to_cpu(bitmap[i]);
318 do {
319 j = ffsl(c) - 1;
320 c &= ~(1ul << j);
321 page_number = i * HOST_LONG_BITS + j;
322 addr1 = page_number * TARGET_PAGE_SIZE;
323 addr = offset + addr1;
324 ram_addr = cpu_get_physical_page_desc(addr);
325 cpu_physical_memory_set_dirty(ram_addr);
326 } while (c != 0);
329 return 0;
332 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
335 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
336 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
337 * This means all bits are set to dirty.
339 * @start_add: start of logged region.
340 * @end_addr: end of logged region.
342 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
343 target_phys_addr_t end_addr)
345 KVMState *s = kvm_state;
346 unsigned long size, allocated_size = 0;
347 KVMDirtyLog d;
348 KVMSlot *mem;
349 int ret = 0;
351 d.dirty_bitmap = NULL;
352 while (start_addr < end_addr) {
353 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
354 if (mem == NULL) {
355 break;
358 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), HOST_LONG_BITS) / 8;
359 if (!d.dirty_bitmap) {
360 d.dirty_bitmap = qemu_malloc(size);
361 } else if (size > allocated_size) {
362 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
364 allocated_size = size;
365 memset(d.dirty_bitmap, 0, allocated_size);
367 d.slot = mem->slot;
369 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
370 DPRINTF("ioctl failed %d\n", errno);
371 ret = -1;
372 break;
375 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
376 mem->start_addr, mem->memory_size);
377 start_addr = mem->start_addr + mem->memory_size;
379 qemu_free(d.dirty_bitmap);
381 return ret;
384 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
386 int ret = -ENOSYS;
387 #ifdef KVM_CAP_COALESCED_MMIO
388 KVMState *s = kvm_state;
390 if (s->coalesced_mmio) {
391 struct kvm_coalesced_mmio_zone zone;
393 zone.addr = start;
394 zone.size = size;
396 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
398 #endif
400 return ret;
403 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
405 int ret = -ENOSYS;
406 #ifdef KVM_CAP_COALESCED_MMIO
407 KVMState *s = kvm_state;
409 if (s->coalesced_mmio) {
410 struct kvm_coalesced_mmio_zone zone;
412 zone.addr = start;
413 zone.size = size;
415 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
417 #endif
419 return ret;
422 int kvm_check_extension(KVMState *s, unsigned int extension)
424 int ret;
426 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
427 if (ret < 0) {
428 ret = 0;
431 return ret;
434 static void kvm_set_phys_mem(target_phys_addr_t start_addr,
435 ram_addr_t size,
436 ram_addr_t phys_offset)
438 KVMState *s = kvm_state;
439 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
440 KVMSlot *mem, old;
441 int err;
443 /* kvm works in page size chunks, but the function may be called
444 with sub-page size and unaligned start address. */
445 size = TARGET_PAGE_ALIGN(size);
446 start_addr = TARGET_PAGE_ALIGN(start_addr);
448 /* KVM does not support read-only slots */
449 phys_offset &= ~IO_MEM_ROM;
451 while (1) {
452 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
453 if (!mem) {
454 break;
457 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
458 (start_addr + size <= mem->start_addr + mem->memory_size) &&
459 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
460 /* The new slot fits into the existing one and comes with
461 * identical parameters - nothing to be done. */
462 return;
465 old = *mem;
467 /* unregister the overlapping slot */
468 mem->memory_size = 0;
469 err = kvm_set_user_memory_region(s, mem);
470 if (err) {
471 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
472 __func__, strerror(-err));
473 abort();
476 /* Workaround for older KVM versions: we can't join slots, even not by
477 * unregistering the previous ones and then registering the larger
478 * slot. We have to maintain the existing fragmentation. Sigh.
480 * This workaround assumes that the new slot starts at the same
481 * address as the first existing one. If not or if some overlapping
482 * slot comes around later, we will fail (not seen in practice so far)
483 * - and actually require a recent KVM version. */
484 if (s->broken_set_mem_region &&
485 old.start_addr == start_addr && old.memory_size < size &&
486 flags < IO_MEM_UNASSIGNED) {
487 mem = kvm_alloc_slot(s);
488 mem->memory_size = old.memory_size;
489 mem->start_addr = old.start_addr;
490 mem->phys_offset = old.phys_offset;
491 mem->flags = 0;
493 err = kvm_set_user_memory_region(s, mem);
494 if (err) {
495 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
496 strerror(-err));
497 abort();
500 start_addr += old.memory_size;
501 phys_offset += old.memory_size;
502 size -= old.memory_size;
503 continue;
506 /* register prefix slot */
507 if (old.start_addr < start_addr) {
508 mem = kvm_alloc_slot(s);
509 mem->memory_size = start_addr - old.start_addr;
510 mem->start_addr = old.start_addr;
511 mem->phys_offset = old.phys_offset;
512 mem->flags = 0;
514 err = kvm_set_user_memory_region(s, mem);
515 if (err) {
516 fprintf(stderr, "%s: error registering prefix slot: %s\n",
517 __func__, strerror(-err));
518 abort();
522 /* register suffix slot */
523 if (old.start_addr + old.memory_size > start_addr + size) {
524 ram_addr_t size_delta;
526 mem = kvm_alloc_slot(s);
527 mem->start_addr = start_addr + size;
528 size_delta = mem->start_addr - old.start_addr;
529 mem->memory_size = old.memory_size - size_delta;
530 mem->phys_offset = old.phys_offset + size_delta;
531 mem->flags = 0;
533 err = kvm_set_user_memory_region(s, mem);
534 if (err) {
535 fprintf(stderr, "%s: error registering suffix slot: %s\n",
536 __func__, strerror(-err));
537 abort();
542 /* in case the KVM bug workaround already "consumed" the new slot */
543 if (!size)
544 return;
546 /* KVM does not need to know about this memory */
547 if (flags >= IO_MEM_UNASSIGNED)
548 return;
550 mem = kvm_alloc_slot(s);
551 mem->memory_size = size;
552 mem->start_addr = start_addr;
553 mem->phys_offset = phys_offset;
554 mem->flags = 0;
556 err = kvm_set_user_memory_region(s, mem);
557 if (err) {
558 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
559 strerror(-err));
560 abort();
564 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
565 target_phys_addr_t start_addr,
566 ram_addr_t size,
567 ram_addr_t phys_offset)
569 kvm_set_phys_mem(start_addr, size, phys_offset);
572 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
573 target_phys_addr_t start_addr,
574 target_phys_addr_t end_addr)
576 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
579 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
580 int enable)
582 return kvm_set_migration_log(enable);
585 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
586 .set_memory = kvm_client_set_memory,
587 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
588 .migration_log = kvm_client_migration_log,
592 void kvm_cpu_register_phys_memory_client(void)
594 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
597 #ifdef KVM_UPSTREAM
599 int kvm_init(int smp_cpus)
601 static const char upgrade_note[] =
602 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
603 "(see http://sourceforge.net/projects/kvm).\n";
604 KVMState *s;
605 int ret;
606 int i;
608 s = qemu_mallocz(sizeof(KVMState));
610 #ifdef KVM_CAP_SET_GUEST_DEBUG
611 QTAILQ_INIT(&s->kvm_sw_breakpoints);
612 #endif
613 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
614 s->slots[i].slot = i;
616 s->vmfd = -1;
617 s->fd = qemu_open("/dev/kvm", O_RDWR);
618 if (s->fd == -1) {
619 fprintf(stderr, "Could not access KVM kernel module: %m\n");
620 ret = -errno;
621 goto err;
624 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
625 if (ret < KVM_API_VERSION) {
626 if (ret > 0)
627 ret = -EINVAL;
628 fprintf(stderr, "kvm version too old\n");
629 goto err;
632 if (ret > KVM_API_VERSION) {
633 ret = -EINVAL;
634 fprintf(stderr, "kvm version not supported\n");
635 goto err;
638 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
639 if (s->vmfd < 0) {
640 #ifdef TARGET_S390X
641 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
642 "your host kernel command line\n");
643 #endif
644 goto err;
647 /* initially, KVM allocated its own memory and we had to jump through
648 * hooks to make phys_ram_base point to this. Modern versions of KVM
649 * just use a user allocated buffer so we can use regular pages
650 * unmodified. Make sure we have a sufficiently modern version of KVM.
652 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
653 ret = -EINVAL;
654 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
655 upgrade_note);
656 goto err;
659 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
660 * destroyed properly. Since we rely on this capability, refuse to work
661 * with any kernel without this capability. */
662 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
663 ret = -EINVAL;
665 fprintf(stderr,
666 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
667 upgrade_note);
668 goto err;
671 s->coalesced_mmio = 0;
672 #ifdef KVM_CAP_COALESCED_MMIO
673 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
674 s->coalesced_mmio_ring = NULL;
675 #endif
677 s->broken_set_mem_region = 1;
678 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
679 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
680 if (ret > 0) {
681 s->broken_set_mem_region = 0;
683 #endif
685 s->vcpu_events = 0;
686 #ifdef KVM_CAP_VCPU_EVENTS
687 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
688 #endif
690 s->robust_singlestep = 0;
691 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
692 s->robust_singlestep =
693 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
694 #endif
696 s->debugregs = 0;
697 #ifdef KVM_CAP_DEBUGREGS
698 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
699 #endif
701 s->xsave = 0;
702 #ifdef KVM_CAP_XSAVE
703 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
704 #endif
706 s->xcrs = 0;
707 #ifdef KVM_CAP_XCRS
708 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
709 #endif
711 ret = kvm_arch_init(s, smp_cpus);
712 if (ret < 0)
713 goto err;
715 kvm_state = s;
716 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
718 return 0;
720 err:
721 if (s) {
722 if (s->vmfd != -1)
723 close(s->vmfd);
724 if (s->fd != -1)
725 close(s->fd);
727 qemu_free(s);
729 return ret;
731 #endif
733 static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
734 uint32_t count)
736 int i;
737 uint8_t *ptr = data;
739 for (i = 0; i < count; i++) {
740 if (direction == KVM_EXIT_IO_IN) {
741 switch (size) {
742 case 1:
743 stb_p(ptr, cpu_inb(port));
744 break;
745 case 2:
746 stw_p(ptr, cpu_inw(port));
747 break;
748 case 4:
749 stl_p(ptr, cpu_inl(port));
750 break;
752 } else {
753 switch (size) {
754 case 1:
755 cpu_outb(port, ldub_p(ptr));
756 break;
757 case 2:
758 cpu_outw(port, lduw_p(ptr));
759 break;
760 case 4:
761 cpu_outl(port, ldl_p(ptr));
762 break;
766 ptr += size;
769 return 1;
772 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
773 static void kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
776 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
777 int i;
779 fprintf(stderr, "KVM internal error. Suberror: %d\n",
780 run->internal.suberror);
782 for (i = 0; i < run->internal.ndata; ++i) {
783 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
784 i, (uint64_t)run->internal.data[i]);
787 cpu_dump_state(env, stderr, fprintf, 0);
788 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
789 fprintf(stderr, "emulation failure\n");
790 if (!kvm_arch_stop_on_emulation_error(env))
791 return;
793 /* FIXME: Should trigger a qmp message to let management know
794 * something went wrong.
796 vm_stop(0);
798 #endif
800 void kvm_flush_coalesced_mmio_buffer(void)
802 #ifdef KVM_CAP_COALESCED_MMIO
803 KVMState *s = kvm_state;
804 if (s->coalesced_mmio_ring) {
805 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
806 while (ring->first != ring->last) {
807 struct kvm_coalesced_mmio *ent;
809 ent = &ring->coalesced_mmio[ring->first];
811 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
812 smp_wmb();
813 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
816 #endif
819 #ifdef KVM_UPSTREAM
821 static void do_kvm_cpu_synchronize_state(void *_env)
823 CPUState *env = _env;
825 if (!env->kvm_vcpu_dirty) {
826 kvm_arch_get_registers(env);
827 env->kvm_vcpu_dirty = 1;
831 void kvm_cpu_synchronize_state(CPUState *env)
833 if (!env->kvm_vcpu_dirty)
834 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
837 void kvm_cpu_synchronize_post_reset(CPUState *env)
839 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
840 env->kvm_vcpu_dirty = 0;
843 void kvm_cpu_synchronize_post_init(CPUState *env)
845 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
846 env->kvm_vcpu_dirty = 0;
849 int kvm_cpu_exec(CPUState *env)
851 struct kvm_run *run = env->kvm_run;
852 int ret;
854 DPRINTF("kvm_cpu_exec()\n");
856 do {
857 #ifndef CONFIG_IOTHREAD
858 if (env->exit_request) {
859 DPRINTF("interrupt exit requested\n");
860 ret = 0;
861 break;
863 #endif
865 if (kvm_arch_process_irqchip_events(env)) {
866 ret = 0;
867 break;
870 if (env->kvm_vcpu_dirty) {
871 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
872 env->kvm_vcpu_dirty = 0;
875 kvm_arch_pre_run(env, run);
876 cpu_single_env = NULL;
877 qemu_mutex_unlock_iothread();
878 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
879 qemu_mutex_lock_iothread();
880 cpu_single_env = env;
881 kvm_arch_post_run(env, run);
883 if (ret == -EINTR || ret == -EAGAIN) {
884 cpu_exit(env);
885 DPRINTF("io window exit\n");
886 ret = 0;
887 break;
890 if (ret < 0) {
891 DPRINTF("kvm run failed %s\n", strerror(-ret));
892 abort();
895 kvm_flush_coalesced_mmio_buffer();
897 ret = 0; /* exit loop */
898 switch (run->exit_reason) {
899 case KVM_EXIT_IO:
900 DPRINTF("handle_io\n");
901 ret = kvm_handle_io(run->io.port,
902 (uint8_t *)run + run->io.data_offset,
903 run->io.direction,
904 run->io.size,
905 run->io.count);
906 break;
907 case KVM_EXIT_MMIO:
908 DPRINTF("handle_mmio\n");
909 cpu_physical_memory_rw(run->mmio.phys_addr,
910 run->mmio.data,
911 run->mmio.len,
912 run->mmio.is_write);
913 ret = 1;
914 break;
915 case KVM_EXIT_IRQ_WINDOW_OPEN:
916 DPRINTF("irq_window_open\n");
917 break;
918 case KVM_EXIT_SHUTDOWN:
919 DPRINTF("shutdown\n");
920 qemu_system_reset_request();
921 ret = 1;
922 break;
923 case KVM_EXIT_UNKNOWN:
924 DPRINTF("kvm_exit_unknown\n");
925 break;
926 case KVM_EXIT_FAIL_ENTRY:
927 DPRINTF("kvm_exit_fail_entry\n");
928 break;
929 case KVM_EXIT_EXCEPTION:
930 DPRINTF("kvm_exit_exception\n");
931 break;
932 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
933 case KVM_EXIT_INTERNAL_ERROR:
934 kvm_handle_internal_error(env, run);
935 break;
936 #endif
937 case KVM_EXIT_DEBUG:
938 DPRINTF("kvm_exit_debug\n");
939 #ifdef KVM_CAP_SET_GUEST_DEBUG
940 if (kvm_arch_debug(&run->debug.arch)) {
941 env->exception_index = EXCP_DEBUG;
942 return 0;
944 /* re-enter, this exception was guest-internal */
945 ret = 1;
946 #endif /* KVM_CAP_SET_GUEST_DEBUG */
947 break;
948 default:
949 DPRINTF("kvm_arch_handle_exit\n");
950 ret = kvm_arch_handle_exit(env, run);
951 break;
953 } while (ret > 0);
955 if (env->exit_request) {
956 env->exit_request = 0;
957 env->exception_index = EXCP_INTERRUPT;
960 return ret;
963 #endif
964 int kvm_ioctl(KVMState *s, int type, ...)
966 int ret;
967 void *arg;
968 va_list ap;
970 va_start(ap, type);
971 arg = va_arg(ap, void *);
972 va_end(ap);
974 ret = ioctl(s->fd, type, arg);
975 if (ret == -1)
976 ret = -errno;
978 return ret;
981 int kvm_vm_ioctl(KVMState *s, int type, ...)
983 int ret;
984 void *arg;
985 va_list ap;
987 va_start(ap, type);
988 arg = va_arg(ap, void *);
989 va_end(ap);
991 ret = ioctl(s->vmfd, type, arg);
992 if (ret == -1)
993 ret = -errno;
995 return ret;
998 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1000 int ret;
1001 void *arg;
1002 va_list ap;
1004 va_start(ap, type);
1005 arg = va_arg(ap, void *);
1006 va_end(ap);
1008 ret = ioctl(env->kvm_fd, type, arg);
1009 if (ret == -1)
1010 ret = -errno;
1012 return ret;
1015 int kvm_has_sync_mmu(void)
1017 #ifdef KVM_CAP_SYNC_MMU
1018 KVMState *s = kvm_state;
1020 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
1021 #else
1022 return 0;
1023 #endif
1026 int kvm_has_vcpu_events(void)
1028 return kvm_state->vcpu_events;
1031 int kvm_has_robust_singlestep(void)
1033 return kvm_state->robust_singlestep;
1036 int kvm_has_debugregs(void)
1038 return kvm_state->debugregs;
1041 #ifdef KVM_UPSTREAM
1042 int kvm_has_xsave(void)
1044 return kvm_state->xsave;
1047 int kvm_has_xcrs(void)
1049 return kvm_state->xcrs;
1051 #endif
1053 void kvm_setup_guest_memory(void *start, size_t size)
1055 if (!kvm_has_sync_mmu()) {
1056 #ifdef MADV_DONTFORK
1057 int ret = madvise(start, size, MADV_DONTFORK);
1059 if (ret) {
1060 perror("madvice");
1061 exit(1);
1063 #else
1064 fprintf(stderr,
1065 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1066 exit(1);
1067 #endif
1071 #ifdef KVM_CAP_SET_GUEST_DEBUG
1072 #ifndef KVM_UPSTREAM
1073 #define run_on_cpu on_vcpu
1074 static void on_vcpu(CPUState *env, void (*func)(void *data), void *data);
1075 #endif /* !KVM_UPSTREAM */
1077 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1078 target_ulong pc)
1080 struct kvm_sw_breakpoint *bp;
1082 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1083 if (bp->pc == pc)
1084 return bp;
1086 return NULL;
1089 int kvm_sw_breakpoints_active(CPUState *env)
1091 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1094 struct kvm_set_guest_debug_data {
1095 struct kvm_guest_debug dbg;
1096 CPUState *env;
1097 int err;
1100 static void kvm_invoke_set_guest_debug(void *data)
1102 struct kvm_set_guest_debug_data *dbg_data = data;
1103 CPUState *env = dbg_data->env;
1105 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1108 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1110 struct kvm_set_guest_debug_data data;
1112 data.dbg.control = reinject_trap;
1114 if (env->singlestep_enabled) {
1115 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1117 kvm_arch_update_guest_debug(env, &data.dbg);
1118 data.env = env;
1120 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1121 return data.err;
1124 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1125 target_ulong len, int type)
1127 struct kvm_sw_breakpoint *bp;
1128 CPUState *env;
1129 int err;
1131 if (type == GDB_BREAKPOINT_SW) {
1132 bp = kvm_find_sw_breakpoint(current_env, addr);
1133 if (bp) {
1134 bp->use_count++;
1135 return 0;
1138 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1139 if (!bp)
1140 return -ENOMEM;
1142 bp->pc = addr;
1143 bp->use_count = 1;
1144 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1145 if (err) {
1146 free(bp);
1147 return err;
1150 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1151 bp, entry);
1152 } else {
1153 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1154 if (err)
1155 return err;
1158 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1159 err = kvm_update_guest_debug(env, 0);
1160 if (err)
1161 return err;
1163 return 0;
1166 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1167 target_ulong len, int type)
1169 struct kvm_sw_breakpoint *bp;
1170 CPUState *env;
1171 int err;
1173 if (type == GDB_BREAKPOINT_SW) {
1174 bp = kvm_find_sw_breakpoint(current_env, addr);
1175 if (!bp)
1176 return -ENOENT;
1178 if (bp->use_count > 1) {
1179 bp->use_count--;
1180 return 0;
1183 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1184 if (err)
1185 return err;
1187 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1188 qemu_free(bp);
1189 } else {
1190 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1191 if (err)
1192 return err;
1195 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1196 err = kvm_update_guest_debug(env, 0);
1197 if (err)
1198 return err;
1200 return 0;
1203 void kvm_remove_all_breakpoints(CPUState *current_env)
1205 struct kvm_sw_breakpoint *bp, *next;
1206 KVMState *s = current_env->kvm_state;
1207 CPUState *env;
1209 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1210 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1211 /* Try harder to find a CPU that currently sees the breakpoint. */
1212 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1213 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1214 break;
1218 kvm_arch_remove_all_hw_breakpoints();
1220 for (env = first_cpu; env != NULL; env = env->next_cpu)
1221 kvm_update_guest_debug(env, 0);
1224 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1226 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1228 return -EINVAL;
1231 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1232 target_ulong len, int type)
1234 return -EINVAL;
1237 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1238 target_ulong len, int type)
1240 return -EINVAL;
1243 void kvm_remove_all_breakpoints(CPUState *current_env)
1246 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1248 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1250 struct kvm_signal_mask *sigmask;
1251 int r;
1253 if (!sigset)
1254 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1256 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1258 sigmask->len = 8;
1259 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1260 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1261 free(sigmask);
1263 return r;
1266 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1268 #ifdef KVM_IOEVENTFD
1269 int ret;
1270 struct kvm_ioeventfd iofd;
1272 iofd.datamatch = val;
1273 iofd.addr = addr;
1274 iofd.len = 4;
1275 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1276 iofd.fd = fd;
1278 if (!kvm_enabled()) {
1279 return -ENOSYS;
1282 if (!assign) {
1283 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1286 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1288 if (ret < 0) {
1289 return -errno;
1292 return 0;
1293 #else
1294 return -ENOSYS;
1295 #endif
1298 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1300 #ifdef KVM_IOEVENTFD
1301 struct kvm_ioeventfd kick = {
1302 .datamatch = val,
1303 .addr = addr,
1304 .len = 2,
1305 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1306 .fd = fd,
1308 int r;
1309 if (!kvm_enabled())
1310 return -ENOSYS;
1311 if (!assign)
1312 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1313 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1314 if (r < 0)
1315 return r;
1316 return 0;
1317 #else
1318 return -ENOSYS;
1319 #endif
1322 #if defined(KVM_IRQFD)
1323 int kvm_set_irqfd(int gsi, int fd, bool assigned)
1325 struct kvm_irqfd irqfd = {
1326 .fd = fd,
1327 .gsi = gsi,
1328 .flags = assigned ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1330 int r;
1331 if (!kvm_enabled() || !kvm_irqchip_in_kernel())
1332 return -ENOSYS;
1334 r = kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd);
1335 if (r < 0)
1336 return r;
1337 return 0;
1339 #endif
1341 #undef PAGE_SIZE
1342 #include "qemu-kvm.c"