4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu-common.h"
21 #ifdef CONFIG_USER_ONLY
33 #include "qemu-char.h"
39 #define MAX_PACKET_LENGTH 4096
42 #include "qemu_socket.h"
50 GDB_SIGNAL_UNKNOWN
= 143
53 #ifdef CONFIG_USER_ONLY
55 /* Map target signal numbers to GDB protocol signal numbers and vice
56 * versa. For user emulation's currently supported systems, we can
57 * assume most signals are defined.
60 static int gdb_signal_table
[] = {
220 /* In system mode we only need SIGINT and SIGTRAP; other signals
221 are not yet supported. */
228 static int gdb_signal_table
[] = {
238 #ifdef CONFIG_USER_ONLY
239 static int target_signal_to_gdb (int sig
)
242 for (i
= 0; i
< ARRAY_SIZE (gdb_signal_table
); i
++)
243 if (gdb_signal_table
[i
] == sig
)
245 return GDB_SIGNAL_UNKNOWN
;
249 static int gdb_signal_to_target (int sig
)
251 if (sig
< ARRAY_SIZE (gdb_signal_table
))
252 return gdb_signal_table
[sig
];
259 typedef struct GDBRegisterState
{
265 struct GDBRegisterState
*next
;
276 typedef struct GDBState
{
277 CPUState
*c_cpu
; /* current CPU for step/continue ops */
278 CPUState
*g_cpu
; /* current CPU for other ops */
279 CPUState
*query_cpu
; /* for q{f|s}ThreadInfo */
280 enum RSState state
; /* parsing state */
281 char line_buf
[MAX_PACKET_LENGTH
];
284 uint8_t last_packet
[MAX_PACKET_LENGTH
+ 4];
287 #ifdef CONFIG_USER_ONLY
291 CharDriverState
*chr
;
292 CharDriverState
*mon_chr
;
296 /* By default use no IRQs and no timers while single stepping so as to
297 * make single stepping like an ICE HW step.
299 static int sstep_flags
= SSTEP_ENABLE
|SSTEP_NOIRQ
|SSTEP_NOTIMER
;
301 static GDBState
*gdbserver_state
;
303 /* This is an ugly hack to cope with both new and old gdb.
304 If gdb sends qXfer:features:read then assume we're talking to a newish
305 gdb that understands target descriptions. */
306 static int gdb_has_xml
;
308 #ifdef CONFIG_USER_ONLY
309 /* XXX: This is not thread safe. Do we care? */
310 static int gdbserver_fd
= -1;
312 static int get_char(GDBState
*s
)
318 ret
= recv(s
->fd
, &ch
, 1, 0);
320 if (errno
== ECONNRESET
)
322 if (errno
!= EINTR
&& errno
!= EAGAIN
)
324 } else if (ret
== 0) {
336 static gdb_syscall_complete_cb gdb_current_syscall_cb
;
344 /* If gdb is connected when the first semihosting syscall occurs then use
345 remote gdb syscalls. Otherwise use native file IO. */
346 int use_gdb_syscalls(void)
348 if (gdb_syscall_mode
== GDB_SYS_UNKNOWN
) {
349 gdb_syscall_mode
= (gdbserver_state
? GDB_SYS_ENABLED
352 return gdb_syscall_mode
== GDB_SYS_ENABLED
;
355 /* Resume execution. */
356 static inline void gdb_continue(GDBState
*s
)
358 #ifdef CONFIG_USER_ONLY
359 s
->running_state
= 1;
365 static void put_buffer(GDBState
*s
, const uint8_t *buf
, int len
)
367 #ifdef CONFIG_USER_ONLY
371 ret
= send(s
->fd
, buf
, len
, 0);
373 if (errno
!= EINTR
&& errno
!= EAGAIN
)
381 qemu_chr_write(s
->chr
, buf
, len
);
385 static inline int fromhex(int v
)
387 if (v
>= '0' && v
<= '9')
389 else if (v
>= 'A' && v
<= 'F')
391 else if (v
>= 'a' && v
<= 'f')
397 static inline int tohex(int v
)
405 static void memtohex(char *buf
, const uint8_t *mem
, int len
)
410 for(i
= 0; i
< len
; i
++) {
412 *q
++ = tohex(c
>> 4);
413 *q
++ = tohex(c
& 0xf);
418 static void hextomem(uint8_t *mem
, const char *buf
, int len
)
422 for(i
= 0; i
< len
; i
++) {
423 mem
[i
] = (fromhex(buf
[0]) << 4) | fromhex(buf
[1]);
428 /* return -1 if error, 0 if OK */
429 static int put_packet_binary(GDBState
*s
, const char *buf
, int len
)
440 for(i
= 0; i
< len
; i
++) {
444 *(p
++) = tohex((csum
>> 4) & 0xf);
445 *(p
++) = tohex((csum
) & 0xf);
447 s
->last_packet_len
= p
- s
->last_packet
;
448 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
450 #ifdef CONFIG_USER_ONLY
463 /* return -1 if error, 0 if OK */
464 static int put_packet(GDBState
*s
, const char *buf
)
467 printf("reply='%s'\n", buf
);
470 return put_packet_binary(s
, buf
, strlen(buf
));
473 /* The GDB remote protocol transfers values in target byte order. This means
474 we can use the raw memory access routines to access the value buffer.
475 Conveniently, these also handle the case where the buffer is mis-aligned.
477 #define GET_REG8(val) do { \
478 stb_p(mem_buf, val); \
481 #define GET_REG16(val) do { \
482 stw_p(mem_buf, val); \
485 #define GET_REG32(val) do { \
486 stl_p(mem_buf, val); \
489 #define GET_REG64(val) do { \
490 stq_p(mem_buf, val); \
494 #if TARGET_LONG_BITS == 64
495 #define GET_REGL(val) GET_REG64(val)
496 #define ldtul_p(addr) ldq_p(addr)
498 #define GET_REGL(val) GET_REG32(val)
499 #define ldtul_p(addr) ldl_p(addr)
502 #if defined(TARGET_I386)
505 static const int gpr_map
[16] = {
506 R_EAX
, R_EBX
, R_ECX
, R_EDX
, R_ESI
, R_EDI
, R_EBP
, R_ESP
,
507 8, 9, 10, 11, 12, 13, 14, 15
510 #define gpr_map gpr_map32
512 static const int gpr_map32
[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
514 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
516 #define IDX_IP_REG CPU_NB_REGS
517 #define IDX_FLAGS_REG (IDX_IP_REG + 1)
518 #define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
519 #define IDX_FP_REGS (IDX_SEG_REGS + 6)
520 #define IDX_XMM_REGS (IDX_FP_REGS + 16)
521 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
523 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
525 if (n
< CPU_NB_REGS
) {
526 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
527 GET_REG64(env
->regs
[gpr_map
[n
]]);
528 } else if (n
< CPU_NB_REGS32
) {
529 GET_REG32(env
->regs
[gpr_map32
[n
]]);
531 } else if (n
>= IDX_FP_REGS
&& n
< IDX_FP_REGS
+ 8) {
532 #ifdef USE_X86LDOUBLE
533 /* FIXME: byteswap float values - after fixing fpregs layout. */
534 memcpy(mem_buf
, &env
->fpregs
[n
- IDX_FP_REGS
], 10);
536 memset(mem_buf
, 0, 10);
539 } else if (n
>= IDX_XMM_REGS
&& n
< IDX_XMM_REGS
+ CPU_NB_REGS
) {
541 if (n
< CPU_NB_REGS32
||
542 (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
)) {
543 stq_p(mem_buf
, env
->xmm_regs
[n
].XMM_Q(0));
544 stq_p(mem_buf
+ 8, env
->xmm_regs
[n
].XMM_Q(1));
550 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
555 case IDX_FLAGS_REG
: GET_REG32(env
->eflags
);
557 case IDX_SEG_REGS
: GET_REG32(env
->segs
[R_CS
].selector
);
558 case IDX_SEG_REGS
+ 1: GET_REG32(env
->segs
[R_SS
].selector
);
559 case IDX_SEG_REGS
+ 2: GET_REG32(env
->segs
[R_DS
].selector
);
560 case IDX_SEG_REGS
+ 3: GET_REG32(env
->segs
[R_ES
].selector
);
561 case IDX_SEG_REGS
+ 4: GET_REG32(env
->segs
[R_FS
].selector
);
562 case IDX_SEG_REGS
+ 5: GET_REG32(env
->segs
[R_GS
].selector
);
564 case IDX_FP_REGS
+ 8: GET_REG32(env
->fpuc
);
565 case IDX_FP_REGS
+ 9: GET_REG32((env
->fpus
& ~0x3800) |
566 (env
->fpstt
& 0x7) << 11);
567 case IDX_FP_REGS
+ 10: GET_REG32(0); /* ftag */
568 case IDX_FP_REGS
+ 11: GET_REG32(0); /* fiseg */
569 case IDX_FP_REGS
+ 12: GET_REG32(0); /* fioff */
570 case IDX_FP_REGS
+ 13: GET_REG32(0); /* foseg */
571 case IDX_FP_REGS
+ 14: GET_REG32(0); /* fooff */
572 case IDX_FP_REGS
+ 15: GET_REG32(0); /* fop */
574 case IDX_MXCSR_REG
: GET_REG32(env
->mxcsr
);
580 static int cpu_x86_gdb_load_seg(CPUState
*env
, int sreg
, uint8_t *mem_buf
)
582 uint16_t selector
= ldl_p(mem_buf
);
584 if (selector
!= env
->segs
[sreg
].selector
) {
585 #if defined(CONFIG_USER_ONLY)
586 cpu_x86_load_seg(env
, sreg
, selector
);
588 unsigned int limit
, flags
;
591 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
592 base
= selector
<< 4;
596 if (!cpu_x86_get_descr_debug(env
, selector
, &base
, &limit
, &flags
))
599 cpu_x86_load_seg_cache(env
, sreg
, selector
, base
, limit
, flags
);
605 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
609 if (n
< CPU_NB_REGS
) {
610 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
611 env
->regs
[gpr_map
[n
]] = ldtul_p(mem_buf
);
612 return sizeof(target_ulong
);
613 } else if (n
< CPU_NB_REGS32
) {
615 env
->regs
[n
] &= ~0xffffffffUL
;
616 env
->regs
[n
] |= (uint32_t)ldl_p(mem_buf
);
619 } else if (n
>= IDX_FP_REGS
&& n
< IDX_FP_REGS
+ 8) {
620 #ifdef USE_X86LDOUBLE
621 /* FIXME: byteswap float values - after fixing fpregs layout. */
622 memcpy(&env
->fpregs
[n
- IDX_FP_REGS
], mem_buf
, 10);
625 } else if (n
>= IDX_XMM_REGS
&& n
< IDX_XMM_REGS
+ CPU_NB_REGS
) {
627 if (n
< CPU_NB_REGS32
||
628 (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
)) {
629 env
->xmm_regs
[n
].XMM_Q(0) = ldq_p(mem_buf
);
630 env
->xmm_regs
[n
].XMM_Q(1) = ldq_p(mem_buf
+ 8);
636 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
637 env
->eip
= ldq_p(mem_buf
);
640 env
->eip
&= ~0xffffffffUL
;
641 env
->eip
|= (uint32_t)ldl_p(mem_buf
);
645 env
->eflags
= ldl_p(mem_buf
);
648 case IDX_SEG_REGS
: return cpu_x86_gdb_load_seg(env
, R_CS
, mem_buf
);
649 case IDX_SEG_REGS
+ 1: return cpu_x86_gdb_load_seg(env
, R_SS
, mem_buf
);
650 case IDX_SEG_REGS
+ 2: return cpu_x86_gdb_load_seg(env
, R_DS
, mem_buf
);
651 case IDX_SEG_REGS
+ 3: return cpu_x86_gdb_load_seg(env
, R_ES
, mem_buf
);
652 case IDX_SEG_REGS
+ 4: return cpu_x86_gdb_load_seg(env
, R_FS
, mem_buf
);
653 case IDX_SEG_REGS
+ 5: return cpu_x86_gdb_load_seg(env
, R_GS
, mem_buf
);
655 case IDX_FP_REGS
+ 8:
656 env
->fpuc
= ldl_p(mem_buf
);
658 case IDX_FP_REGS
+ 9:
659 tmp
= ldl_p(mem_buf
);
660 env
->fpstt
= (tmp
>> 11) & 7;
661 env
->fpus
= tmp
& ~0x3800;
663 case IDX_FP_REGS
+ 10: /* ftag */ return 4;
664 case IDX_FP_REGS
+ 11: /* fiseg */ return 4;
665 case IDX_FP_REGS
+ 12: /* fioff */ return 4;
666 case IDX_FP_REGS
+ 13: /* foseg */ return 4;
667 case IDX_FP_REGS
+ 14: /* fooff */ return 4;
668 case IDX_FP_REGS
+ 15: /* fop */ return 4;
671 env
->mxcsr
= ldl_p(mem_buf
);
675 /* Unrecognised register. */
679 #elif defined (TARGET_PPC)
681 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
682 expects whatever the target description contains. Due to a
683 historical mishap the FP registers appear in between core integer
684 regs and PC, MSR, CR, and so forth. We hack round this by giving the
685 FP regs zero size when talking to a newer gdb. */
686 #define NUM_CORE_REGS 71
687 #if defined (TARGET_PPC64)
688 #define GDB_CORE_XML "power64-core.xml"
690 #define GDB_CORE_XML "power-core.xml"
693 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
697 GET_REGL(env
->gpr
[n
]);
702 stfq_p(mem_buf
, env
->fpr
[n
-32]);
706 case 64: GET_REGL(env
->nip
);
707 case 65: GET_REGL(env
->msr
);
712 for (i
= 0; i
< 8; i
++)
713 cr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
716 case 67: GET_REGL(env
->lr
);
717 case 68: GET_REGL(env
->ctr
);
718 case 69: GET_REGL(env
->xer
);
723 GET_REG32(0); /* fpscr */
730 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
734 env
->gpr
[n
] = ldtul_p(mem_buf
);
735 return sizeof(target_ulong
);
740 env
->fpr
[n
-32] = ldfq_p(mem_buf
);
745 env
->nip
= ldtul_p(mem_buf
);
746 return sizeof(target_ulong
);
748 ppc_store_msr(env
, ldtul_p(mem_buf
));
749 return sizeof(target_ulong
);
752 uint32_t cr
= ldl_p(mem_buf
);
754 for (i
= 0; i
< 8; i
++)
755 env
->crf
[i
] = (cr
>> (32 - ((i
+ 1) * 4))) & 0xF;
759 env
->lr
= ldtul_p(mem_buf
);
760 return sizeof(target_ulong
);
762 env
->ctr
= ldtul_p(mem_buf
);
763 return sizeof(target_ulong
);
765 env
->xer
= ldtul_p(mem_buf
);
766 return sizeof(target_ulong
);
777 #elif defined (TARGET_SPARC)
779 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
780 #define NUM_CORE_REGS 86
782 #define NUM_CORE_REGS 72
786 #define GET_REGA(val) GET_REG32(val)
788 #define GET_REGA(val) GET_REGL(val)
791 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
795 GET_REGA(env
->gregs
[n
]);
798 /* register window */
799 GET_REGA(env
->regwptr
[n
- 8]);
801 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
804 GET_REG32(*((uint32_t *)&env
->fpr
[n
- 32]));
806 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
808 case 64: GET_REGA(env
->y
);
809 case 65: GET_REGA(cpu_get_psr(env
));
810 case 66: GET_REGA(env
->wim
);
811 case 67: GET_REGA(env
->tbr
);
812 case 68: GET_REGA(env
->pc
);
813 case 69: GET_REGA(env
->npc
);
814 case 70: GET_REGA(env
->fsr
);
815 case 71: GET_REGA(0); /* csr */
816 default: GET_REGA(0);
821 GET_REG32(*((uint32_t *)&env
->fpr
[n
- 32]));
824 /* f32-f62 (double width, even numbers only) */
827 val
= (uint64_t)*((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 32]) << 32;
828 val
|= *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 33]);
832 case 80: GET_REGL(env
->pc
);
833 case 81: GET_REGL(env
->npc
);
834 case 82: GET_REGL((cpu_get_ccr(env
) << 32) |
835 ((env
->asi
& 0xff) << 24) |
836 ((env
->pstate
& 0xfff) << 8) |
838 case 83: GET_REGL(env
->fsr
);
839 case 84: GET_REGL(env
->fprs
);
840 case 85: GET_REGL(env
->y
);
846 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
848 #if defined(TARGET_ABI32)
851 tmp
= ldl_p(mem_buf
);
855 tmp
= ldtul_p(mem_buf
);
862 /* register window */
863 env
->regwptr
[n
- 8] = tmp
;
865 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
868 *((uint32_t *)&env
->fpr
[n
- 32]) = tmp
;
870 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
872 case 64: env
->y
= tmp
; break;
873 case 65: cpu_put_psr(env
, tmp
); break;
874 case 66: env
->wim
= tmp
; break;
875 case 67: env
->tbr
= tmp
; break;
876 case 68: env
->pc
= tmp
; break;
877 case 69: env
->npc
= tmp
; break;
878 case 70: env
->fsr
= tmp
; break;
886 env
->fpr
[n
] = ldfl_p(mem_buf
);
889 /* f32-f62 (double width, even numbers only) */
890 *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 32]) = tmp
>> 32;
891 *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 33]) = tmp
;
894 case 80: env
->pc
= tmp
; break;
895 case 81: env
->npc
= tmp
; break;
897 cpu_put_ccr(env
, tmp
>> 32);
898 env
->asi
= (tmp
>> 24) & 0xff;
899 env
->pstate
= (tmp
>> 8) & 0xfff;
900 cpu_put_cwp64(env
, tmp
& 0xff);
902 case 83: env
->fsr
= tmp
; break;
903 case 84: env
->fprs
= tmp
; break;
904 case 85: env
->y
= tmp
; break;
911 #elif defined (TARGET_ARM)
913 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
914 whatever the target description contains. Due to a historical mishap
915 the FPA registers appear in between core integer regs and the CPSR.
916 We hack round this by giving the FPA regs zero size when talking to a
918 #define NUM_CORE_REGS 26
919 #define GDB_CORE_XML "arm-core.xml"
921 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
924 /* Core integer register. */
925 GET_REG32(env
->regs
[n
]);
931 memset(mem_buf
, 0, 12);
936 /* FPA status register. */
942 GET_REG32(cpsr_read(env
));
944 /* Unknown register. */
948 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
952 tmp
= ldl_p(mem_buf
);
954 /* Mask out low bit of PC to workaround gdb bugs. This will probably
955 cause problems if we ever implement the Jazelle DBX extensions. */
960 /* Core integer register. */
964 if (n
< 24) { /* 16-23 */
965 /* FPA registers (ignored). */
972 /* FPA status register (ignored). */
978 cpsr_write (env
, tmp
, 0xffffffff);
981 /* Unknown register. */
985 #elif defined (TARGET_M68K)
987 #define NUM_CORE_REGS 18
989 #define GDB_CORE_XML "cf-core.xml"
991 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
995 GET_REG32(env
->dregs
[n
]);
998 GET_REG32(env
->aregs
[n
- 8]);
1001 case 16: GET_REG32(env
->sr
);
1002 case 17: GET_REG32(env
->pc
);
1005 /* FP registers not included here because they vary between
1006 ColdFire and m68k. Use XML bits for these. */
1010 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1014 tmp
= ldl_p(mem_buf
);
1018 env
->dregs
[n
] = tmp
;
1019 } else if (n
< 16) {
1021 env
->aregs
[n
- 8] = tmp
;
1024 case 16: env
->sr
= tmp
; break;
1025 case 17: env
->pc
= tmp
; break;
1031 #elif defined (TARGET_MIPS)
1033 #define NUM_CORE_REGS 73
1035 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1038 GET_REGL(env
->active_tc
.gpr
[n
]);
1040 if (env
->CP0_Config1
& (1 << CP0C1_FP
)) {
1041 if (n
>= 38 && n
< 70) {
1042 if (env
->CP0_Status
& (1 << CP0St_FR
))
1043 GET_REGL(env
->active_fpu
.fpr
[n
- 38].d
);
1045 GET_REGL(env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
]);
1048 case 70: GET_REGL((int32_t)env
->active_fpu
.fcr31
);
1049 case 71: GET_REGL((int32_t)env
->active_fpu
.fcr0
);
1053 case 32: GET_REGL((int32_t)env
->CP0_Status
);
1054 case 33: GET_REGL(env
->active_tc
.LO
[0]);
1055 case 34: GET_REGL(env
->active_tc
.HI
[0]);
1056 case 35: GET_REGL(env
->CP0_BadVAddr
);
1057 case 36: GET_REGL((int32_t)env
->CP0_Cause
);
1058 case 37: GET_REGL(env
->active_tc
.PC
| !!(env
->hflags
& MIPS_HFLAG_M16
));
1059 case 72: GET_REGL(0); /* fp */
1060 case 89: GET_REGL((int32_t)env
->CP0_PRid
);
1062 if (n
>= 73 && n
<= 88) {
1063 /* 16 embedded regs. */
1070 /* convert MIPS rounding mode in FCR31 to IEEE library */
1071 static unsigned int ieee_rm
[] =
1073 float_round_nearest_even
,
1074 float_round_to_zero
,
1078 #define RESTORE_ROUNDING_MODE \
1079 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1081 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1085 tmp
= ldtul_p(mem_buf
);
1088 env
->active_tc
.gpr
[n
] = tmp
;
1089 return sizeof(target_ulong
);
1091 if (env
->CP0_Config1
& (1 << CP0C1_FP
)
1092 && n
>= 38 && n
< 73) {
1094 if (env
->CP0_Status
& (1 << CP0St_FR
))
1095 env
->active_fpu
.fpr
[n
- 38].d
= tmp
;
1097 env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
] = tmp
;
1101 env
->active_fpu
.fcr31
= tmp
& 0xFF83FFFF;
1102 /* set rounding mode */
1103 RESTORE_ROUNDING_MODE
;
1104 #ifndef CONFIG_SOFTFLOAT
1105 /* no floating point exception for native float */
1106 SET_FP_ENABLE(env
->active_fpu
.fcr31
, 0);
1109 case 71: env
->active_fpu
.fcr0
= tmp
; break;
1111 return sizeof(target_ulong
);
1114 case 32: env
->CP0_Status
= tmp
; break;
1115 case 33: env
->active_tc
.LO
[0] = tmp
; break;
1116 case 34: env
->active_tc
.HI
[0] = tmp
; break;
1117 case 35: env
->CP0_BadVAddr
= tmp
; break;
1118 case 36: env
->CP0_Cause
= tmp
; break;
1120 env
->active_tc
.PC
= tmp
& ~(target_ulong
)1;
1122 env
->hflags
|= MIPS_HFLAG_M16
;
1124 env
->hflags
&= ~(MIPS_HFLAG_M16
);
1127 case 72: /* fp, ignored */ break;
1131 /* Other registers are readonly. Ignore writes. */
1135 return sizeof(target_ulong
);
1137 #elif defined (TARGET_SH4)
1139 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1140 /* FIXME: We should use XML for this. */
1142 #define NUM_CORE_REGS 59
1144 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1147 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1148 GET_REGL(env
->gregs
[n
+ 16]);
1150 GET_REGL(env
->gregs
[n
]);
1152 } else if (n
< 16) {
1153 GET_REGL(env
->gregs
[n
]);
1154 } else if (n
>= 25 && n
< 41) {
1155 GET_REGL(env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)]);
1156 } else if (n
>= 43 && n
< 51) {
1157 GET_REGL(env
->gregs
[n
- 43]);
1158 } else if (n
>= 51 && n
< 59) {
1159 GET_REGL(env
->gregs
[n
- (51 - 16)]);
1162 case 16: GET_REGL(env
->pc
);
1163 case 17: GET_REGL(env
->pr
);
1164 case 18: GET_REGL(env
->gbr
);
1165 case 19: GET_REGL(env
->vbr
);
1166 case 20: GET_REGL(env
->mach
);
1167 case 21: GET_REGL(env
->macl
);
1168 case 22: GET_REGL(env
->sr
);
1169 case 23: GET_REGL(env
->fpul
);
1170 case 24: GET_REGL(env
->fpscr
);
1171 case 41: GET_REGL(env
->ssr
);
1172 case 42: GET_REGL(env
->spc
);
1178 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1182 tmp
= ldl_p(mem_buf
);
1185 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1186 env
->gregs
[n
+ 16] = tmp
;
1188 env
->gregs
[n
] = tmp
;
1191 } else if (n
< 16) {
1192 env
->gregs
[n
] = tmp
;
1194 } else if (n
>= 25 && n
< 41) {
1195 env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)] = tmp
;
1197 } else if (n
>= 43 && n
< 51) {
1198 env
->gregs
[n
- 43] = tmp
;
1200 } else if (n
>= 51 && n
< 59) {
1201 env
->gregs
[n
- (51 - 16)] = tmp
;
1205 case 16: env
->pc
= tmp
; break;
1206 case 17: env
->pr
= tmp
; break;
1207 case 18: env
->gbr
= tmp
; break;
1208 case 19: env
->vbr
= tmp
; break;
1209 case 20: env
->mach
= tmp
; break;
1210 case 21: env
->macl
= tmp
; break;
1211 case 22: env
->sr
= tmp
; break;
1212 case 23: env
->fpul
= tmp
; break;
1213 case 24: env
->fpscr
= tmp
; break;
1214 case 41: env
->ssr
= tmp
; break;
1215 case 42: env
->spc
= tmp
; break;
1221 #elif defined (TARGET_MICROBLAZE)
1223 #define NUM_CORE_REGS (32 + 5)
1225 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1228 GET_REG32(env
->regs
[n
]);
1230 GET_REG32(env
->sregs
[n
- 32]);
1235 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1239 if (n
> NUM_CORE_REGS
)
1242 tmp
= ldl_p(mem_buf
);
1247 env
->sregs
[n
- 32] = tmp
;
1251 #elif defined (TARGET_CRIS)
1253 #define NUM_CORE_REGS 49
1256 read_register_crisv10(CPUState
*env
, uint8_t *mem_buf
, int n
)
1259 GET_REG32(env
->regs
[n
]);
1269 GET_REG8(env
->pregs
[n
- 16]);
1272 GET_REG8(env
->pregs
[n
- 16]);
1276 GET_REG16(env
->pregs
[n
- 16]);
1280 GET_REG32(env
->pregs
[n
- 16]);
1288 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1292 if (env
->pregs
[PR_VR
] < 32)
1293 return read_register_crisv10(env
, mem_buf
, n
);
1295 srs
= env
->pregs
[PR_SRS
];
1297 GET_REG32(env
->regs
[n
]);
1300 if (n
>= 21 && n
< 32) {
1301 GET_REG32(env
->pregs
[n
- 16]);
1303 if (n
>= 33 && n
< 49) {
1304 GET_REG32(env
->sregs
[srs
][n
- 33]);
1307 case 16: GET_REG8(env
->pregs
[0]);
1308 case 17: GET_REG8(env
->pregs
[1]);
1309 case 18: GET_REG32(env
->pregs
[2]);
1310 case 19: GET_REG8(srs
);
1311 case 20: GET_REG16(env
->pregs
[4]);
1312 case 32: GET_REG32(env
->pc
);
1318 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1325 tmp
= ldl_p(mem_buf
);
1331 if (n
>= 21 && n
< 32) {
1332 env
->pregs
[n
- 16] = tmp
;
1335 /* FIXME: Should support function regs be writable? */
1339 case 18: env
->pregs
[PR_PID
] = tmp
; break;
1342 case 32: env
->pc
= tmp
; break;
1347 #elif defined (TARGET_ALPHA)
1349 #define NUM_CORE_REGS 67
1351 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1361 d
.d
= env
->fir
[n
- 32];
1365 val
= cpu_alpha_load_fpcr(env
);
1375 /* 31 really is the zero register; 65 is unassigned in the
1376 gdb protocol, but is still required to occupy 8 bytes. */
1385 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1387 target_ulong tmp
= ldtul_p(mem_buf
);
1396 env
->fir
[n
- 32] = d
.d
;
1399 cpu_alpha_store_fpcr(env
, tmp
);
1409 /* 31 really is the zero register; 65 is unassigned in the
1410 gdb protocol, but is still required to occupy 8 bytes. */
1417 #elif defined (TARGET_S390X)
1419 #define NUM_CORE_REGS S390_NUM_TOTAL_REGS
1421 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1424 case S390_PSWM_REGNUM
: GET_REGL(env
->psw
.mask
); break;
1425 case S390_PSWA_REGNUM
: GET_REGL(env
->psw
.addr
); break;
1426 case S390_R0_REGNUM
... S390_R15_REGNUM
:
1427 GET_REGL(env
->regs
[n
-S390_R0_REGNUM
]); break;
1428 case S390_A0_REGNUM
... S390_A15_REGNUM
:
1429 GET_REG32(env
->aregs
[n
-S390_A0_REGNUM
]); break;
1430 case S390_FPC_REGNUM
: GET_REG32(env
->fpc
); break;
1431 case S390_F0_REGNUM
... S390_F15_REGNUM
:
1434 case S390_PC_REGNUM
: GET_REGL(env
->psw
.addr
); break;
1435 case S390_CC_REGNUM
: GET_REG32(env
->cc
); break;
1441 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1446 tmpl
= ldtul_p(mem_buf
);
1447 tmp32
= ldl_p(mem_buf
);
1450 case S390_PSWM_REGNUM
: env
->psw
.mask
= tmpl
; break;
1451 case S390_PSWA_REGNUM
: env
->psw
.addr
= tmpl
; break;
1452 case S390_R0_REGNUM
... S390_R15_REGNUM
:
1453 env
->regs
[n
-S390_R0_REGNUM
] = tmpl
; break;
1454 case S390_A0_REGNUM
... S390_A15_REGNUM
:
1455 env
->aregs
[n
-S390_A0_REGNUM
] = tmp32
; r
=4; break;
1456 case S390_FPC_REGNUM
: env
->fpc
= tmp32
; r
=4; break;
1457 case S390_F0_REGNUM
... S390_F15_REGNUM
:
1460 case S390_PC_REGNUM
: env
->psw
.addr
= tmpl
; break;
1461 case S390_CC_REGNUM
: env
->cc
= tmp32
; r
=4; break;
1468 #define NUM_CORE_REGS 0
1470 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1475 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1482 static int num_g_regs
= NUM_CORE_REGS
;
1485 /* Encode data using the encoding for 'x' packets. */
1486 static int memtox(char *buf
, const char *mem
, int len
)
1494 case '#': case '$': case '*': case '}':
1506 static const char *get_feature_xml(const char *p
, const char **newp
)
1508 extern const char *const xml_builtin
[][2];
1512 static char target_xml
[1024];
1515 while (p
[len
] && p
[len
] != ':')
1520 if (strncmp(p
, "target.xml", len
) == 0) {
1521 /* Generate the XML description for this CPU. */
1522 if (!target_xml
[0]) {
1523 GDBRegisterState
*r
;
1525 snprintf(target_xml
, sizeof(target_xml
),
1526 "<?xml version=\"1.0\"?>"
1527 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1529 "<xi:include href=\"%s\"/>",
1532 for (r
= first_cpu
->gdb_regs
; r
; r
= r
->next
) {
1533 pstrcat(target_xml
, sizeof(target_xml
), "<xi:include href=\"");
1534 pstrcat(target_xml
, sizeof(target_xml
), r
->xml
);
1535 pstrcat(target_xml
, sizeof(target_xml
), "\"/>");
1537 pstrcat(target_xml
, sizeof(target_xml
), "</target>");
1541 for (i
= 0; ; i
++) {
1542 name
= xml_builtin
[i
][0];
1543 if (!name
|| (strncmp(name
, p
, len
) == 0 && strlen(name
) == len
))
1546 return name
? xml_builtin
[i
][1] : NULL
;
1550 static int gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1552 GDBRegisterState
*r
;
1554 if (reg
< NUM_CORE_REGS
)
1555 return cpu_gdb_read_register(env
, mem_buf
, reg
);
1557 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1558 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1559 return r
->get_reg(env
, mem_buf
, reg
- r
->base_reg
);
1565 static int gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1567 GDBRegisterState
*r
;
1569 if (reg
< NUM_CORE_REGS
)
1570 return cpu_gdb_write_register(env
, mem_buf
, reg
);
1572 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1573 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1574 return r
->set_reg(env
, mem_buf
, reg
- r
->base_reg
);
1580 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1581 specifies the first register number and these registers are included in
1582 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1583 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1586 void gdb_register_coprocessor(CPUState
* env
,
1587 gdb_reg_cb get_reg
, gdb_reg_cb set_reg
,
1588 int num_regs
, const char *xml
, int g_pos
)
1590 GDBRegisterState
*s
;
1591 GDBRegisterState
**p
;
1592 static int last_reg
= NUM_CORE_REGS
;
1594 s
= (GDBRegisterState
*)qemu_mallocz(sizeof(GDBRegisterState
));
1595 s
->base_reg
= last_reg
;
1596 s
->num_regs
= num_regs
;
1597 s
->get_reg
= get_reg
;
1598 s
->set_reg
= set_reg
;
1602 /* Check for duplicates. */
1603 if (strcmp((*p
)->xml
, xml
) == 0)
1607 /* Add to end of list. */
1608 last_reg
+= num_regs
;
1611 if (g_pos
!= s
->base_reg
) {
1612 fprintf(stderr
, "Error: Bad gdb register numbering for '%s'\n"
1613 "Expected %d got %d\n", xml
, g_pos
, s
->base_reg
);
1615 num_g_regs
= last_reg
;
1620 #ifndef CONFIG_USER_ONLY
1621 static const int xlat_gdb_type
[] = {
1622 [GDB_WATCHPOINT_WRITE
] = BP_GDB
| BP_MEM_WRITE
,
1623 [GDB_WATCHPOINT_READ
] = BP_GDB
| BP_MEM_READ
,
1624 [GDB_WATCHPOINT_ACCESS
] = BP_GDB
| BP_MEM_ACCESS
,
1628 static int gdb_breakpoint_insert(target_ulong addr
, target_ulong len
, int type
)
1634 return kvm_insert_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1637 case GDB_BREAKPOINT_SW
:
1638 case GDB_BREAKPOINT_HW
:
1639 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1640 err
= cpu_breakpoint_insert(env
, addr
, BP_GDB
, NULL
);
1645 #ifndef CONFIG_USER_ONLY
1646 case GDB_WATCHPOINT_WRITE
:
1647 case GDB_WATCHPOINT_READ
:
1648 case GDB_WATCHPOINT_ACCESS
:
1649 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1650 err
= cpu_watchpoint_insert(env
, addr
, len
, xlat_gdb_type
[type
],
1662 static int gdb_breakpoint_remove(target_ulong addr
, target_ulong len
, int type
)
1668 return kvm_remove_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1671 case GDB_BREAKPOINT_SW
:
1672 case GDB_BREAKPOINT_HW
:
1673 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1674 err
= cpu_breakpoint_remove(env
, addr
, BP_GDB
);
1679 #ifndef CONFIG_USER_ONLY
1680 case GDB_WATCHPOINT_WRITE
:
1681 case GDB_WATCHPOINT_READ
:
1682 case GDB_WATCHPOINT_ACCESS
:
1683 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1684 err
= cpu_watchpoint_remove(env
, addr
, len
, xlat_gdb_type
[type
]);
1695 static void gdb_breakpoint_remove_all(void)
1699 if (kvm_enabled()) {
1700 kvm_remove_all_breakpoints(gdbserver_state
->c_cpu
);
1704 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1705 cpu_breakpoint_remove_all(env
, BP_GDB
);
1706 #ifndef CONFIG_USER_ONLY
1707 cpu_watchpoint_remove_all(env
, BP_GDB
);
1712 static void gdb_set_cpu_pc(GDBState
*s
, target_ulong pc
)
1714 #if defined(TARGET_I386)
1715 cpu_synchronize_state(s
->c_cpu
);
1717 #elif defined (TARGET_PPC)
1719 #elif defined (TARGET_SPARC)
1721 s
->c_cpu
->npc
= pc
+ 4;
1722 #elif defined (TARGET_ARM)
1723 s
->c_cpu
->regs
[15] = pc
;
1724 #elif defined (TARGET_SH4)
1726 #elif defined (TARGET_MIPS)
1727 s
->c_cpu
->active_tc
.PC
= pc
& ~(target_ulong
)1;
1729 s
->c_cpu
->hflags
|= MIPS_HFLAG_M16
;
1731 s
->c_cpu
->hflags
&= ~(MIPS_HFLAG_M16
);
1733 #elif defined (TARGET_MICROBLAZE)
1734 s
->c_cpu
->sregs
[SR_PC
] = pc
;
1735 #elif defined (TARGET_CRIS)
1737 #elif defined (TARGET_ALPHA)
1739 #elif defined (TARGET_S390X)
1740 cpu_synchronize_state(s
->c_cpu
);
1741 s
->c_cpu
->psw
.addr
= pc
;
1745 static inline int gdb_id(CPUState
*env
)
1747 #if defined(CONFIG_USER_ONLY) && defined(CONFIG_USE_NPTL)
1748 return env
->host_tid
;
1750 return env
->cpu_index
+ 1;
1754 static CPUState
*find_cpu(uint32_t thread_id
)
1758 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1759 if (gdb_id(env
) == thread_id
) {
1767 static int gdb_handle_packet(GDBState
*s
, const char *line_buf
)
1772 int ch
, reg_size
, type
, res
;
1773 char buf
[MAX_PACKET_LENGTH
];
1774 uint8_t mem_buf
[MAX_PACKET_LENGTH
];
1776 target_ulong addr
, len
;
1779 printf("command='%s'\n", line_buf
);
1785 /* TODO: Make this return the correct value for user-mode. */
1786 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", GDB_SIGNAL_TRAP
,
1789 /* Remove all the breakpoints when this query is issued,
1790 * because gdb is doing and initial connect and the state
1791 * should be cleaned up.
1793 gdb_breakpoint_remove_all();
1797 addr
= strtoull(p
, (char **)&p
, 16);
1798 gdb_set_cpu_pc(s
, addr
);
1804 s
->signal
= gdb_signal_to_target (strtoul(p
, (char **)&p
, 16));
1805 if (s
->signal
== -1)
1810 if (strncmp(p
, "Cont", 4) == 0) {
1811 int res_signal
, res_thread
;
1815 put_packet(s
, "vCont;c;C;s;S");
1830 if (action
== 'C' || action
== 'S') {
1831 signal
= strtoul(p
, (char **)&p
, 16);
1832 } else if (action
!= 'c' && action
!= 's') {
1838 thread
= strtoull(p
+1, (char **)&p
, 16);
1840 action
= tolower(action
);
1841 if (res
== 0 || (res
== 'c' && action
== 's')) {
1843 res_signal
= signal
;
1844 res_thread
= thread
;
1848 if (res_thread
!= -1 && res_thread
!= 0) {
1849 env
= find_cpu(res_thread
);
1851 put_packet(s
, "E22");
1857 cpu_single_step(s
->c_cpu
, sstep_flags
);
1859 s
->signal
= res_signal
;
1865 goto unknown_command
;
1868 /* Kill the target */
1869 fprintf(stderr
, "\nQEMU: Terminated via GDBstub\n");
1873 gdb_breakpoint_remove_all();
1874 gdb_syscall_mode
= GDB_SYS_DISABLED
;
1876 put_packet(s
, "OK");
1880 addr
= strtoull(p
, (char **)&p
, 16);
1881 gdb_set_cpu_pc(s
, addr
);
1883 cpu_single_step(s
->c_cpu
, sstep_flags
);
1891 ret
= strtoull(p
, (char **)&p
, 16);
1894 err
= strtoull(p
, (char **)&p
, 16);
1901 if (gdb_current_syscall_cb
)
1902 gdb_current_syscall_cb(s
->c_cpu
, ret
, err
);
1904 put_packet(s
, "T02");
1911 cpu_synchronize_state(s
->g_cpu
);
1913 for (addr
= 0; addr
< num_g_regs
; addr
++) {
1914 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
+ len
, addr
);
1917 memtohex(buf
, mem_buf
, len
);
1921 cpu_synchronize_state(s
->g_cpu
);
1922 registers
= mem_buf
;
1923 len
= strlen(p
) / 2;
1924 hextomem((uint8_t *)registers
, p
, len
);
1925 for (addr
= 0; addr
< num_g_regs
&& len
> 0; addr
++) {
1926 reg_size
= gdb_write_register(s
->g_cpu
, registers
, addr
);
1928 registers
+= reg_size
;
1930 put_packet(s
, "OK");
1933 addr
= strtoull(p
, (char **)&p
, 16);
1936 len
= strtoull(p
, NULL
, 16);
1937 if (cpu_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 0) != 0) {
1938 put_packet (s
, "E14");
1940 memtohex(buf
, mem_buf
, len
);
1945 addr
= strtoull(p
, (char **)&p
, 16);
1948 len
= strtoull(p
, (char **)&p
, 16);
1951 hextomem(mem_buf
, p
, len
);
1952 if (cpu_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 1) != 0)
1953 put_packet(s
, "E14");
1955 put_packet(s
, "OK");
1958 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1959 This works, but can be very slow. Anything new enough to
1960 understand XML also knows how to use this properly. */
1962 goto unknown_command
;
1963 addr
= strtoull(p
, (char **)&p
, 16);
1964 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
, addr
);
1966 memtohex(buf
, mem_buf
, reg_size
);
1969 put_packet(s
, "E14");
1974 goto unknown_command
;
1975 addr
= strtoull(p
, (char **)&p
, 16);
1978 reg_size
= strlen(p
) / 2;
1979 hextomem(mem_buf
, p
, reg_size
);
1980 gdb_write_register(s
->g_cpu
, mem_buf
, addr
);
1981 put_packet(s
, "OK");
1985 type
= strtoul(p
, (char **)&p
, 16);
1988 addr
= strtoull(p
, (char **)&p
, 16);
1991 len
= strtoull(p
, (char **)&p
, 16);
1993 res
= gdb_breakpoint_insert(addr
, len
, type
);
1995 res
= gdb_breakpoint_remove(addr
, len
, type
);
1997 put_packet(s
, "OK");
1998 else if (res
== -ENOSYS
)
2001 put_packet(s
, "E22");
2005 thread
= strtoull(p
, (char **)&p
, 16);
2006 if (thread
== -1 || thread
== 0) {
2007 put_packet(s
, "OK");
2010 env
= find_cpu(thread
);
2012 put_packet(s
, "E22");
2018 put_packet(s
, "OK");
2022 put_packet(s
, "OK");
2025 put_packet(s
, "E22");
2030 thread
= strtoull(p
, (char **)&p
, 16);
2031 env
= find_cpu(thread
);
2034 put_packet(s
, "OK");
2036 put_packet(s
, "E22");
2041 /* parse any 'q' packets here */
2042 if (!strcmp(p
,"qemu.sstepbits")) {
2043 /* Query Breakpoint bit definitions */
2044 snprintf(buf
, sizeof(buf
), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
2050 } else if (strncmp(p
,"qemu.sstep",10) == 0) {
2051 /* Display or change the sstep_flags */
2054 /* Display current setting */
2055 snprintf(buf
, sizeof(buf
), "0x%x", sstep_flags
);
2060 type
= strtoul(p
, (char **)&p
, 16);
2062 put_packet(s
, "OK");
2064 } else if (strcmp(p
,"C") == 0) {
2065 /* "Current thread" remains vague in the spec, so always return
2066 * the first CPU (gdb returns the first thread). */
2067 put_packet(s
, "QC1");
2069 } else if (strcmp(p
,"fThreadInfo") == 0) {
2070 s
->query_cpu
= first_cpu
;
2071 goto report_cpuinfo
;
2072 } else if (strcmp(p
,"sThreadInfo") == 0) {
2075 snprintf(buf
, sizeof(buf
), "m%x", gdb_id(s
->query_cpu
));
2077 s
->query_cpu
= s
->query_cpu
->next_cpu
;
2081 } else if (strncmp(p
,"ThreadExtraInfo,", 16) == 0) {
2082 thread
= strtoull(p
+16, (char **)&p
, 16);
2083 env
= find_cpu(thread
);
2085 cpu_synchronize_state(env
);
2086 len
= snprintf((char *)mem_buf
, sizeof(mem_buf
),
2087 "CPU#%d [%s]", env
->cpu_index
,
2088 env
->halted
? "halted " : "running");
2089 memtohex(buf
, mem_buf
, len
);
2094 #ifdef CONFIG_USER_ONLY
2095 else if (strncmp(p
, "Offsets", 7) == 0) {
2096 TaskState
*ts
= s
->c_cpu
->opaque
;
2098 snprintf(buf
, sizeof(buf
),
2099 "Text=" TARGET_ABI_FMT_lx
";Data=" TARGET_ABI_FMT_lx
2100 ";Bss=" TARGET_ABI_FMT_lx
,
2101 ts
->info
->code_offset
,
2102 ts
->info
->data_offset
,
2103 ts
->info
->data_offset
);
2107 #else /* !CONFIG_USER_ONLY */
2108 else if (strncmp(p
, "Rcmd,", 5) == 0) {
2109 int len
= strlen(p
+ 5);
2111 if ((len
% 2) != 0) {
2112 put_packet(s
, "E01");
2115 hextomem(mem_buf
, p
+ 5, len
);
2118 qemu_chr_read(s
->mon_chr
, mem_buf
, len
);
2119 put_packet(s
, "OK");
2122 #endif /* !CONFIG_USER_ONLY */
2123 if (strncmp(p
, "Supported", 9) == 0) {
2124 snprintf(buf
, sizeof(buf
), "PacketSize=%x", MAX_PACKET_LENGTH
);
2126 pstrcat(buf
, sizeof(buf
), ";qXfer:features:read+");
2132 if (strncmp(p
, "Xfer:features:read:", 19) == 0) {
2134 target_ulong total_len
;
2138 xml
= get_feature_xml(p
, &p
);
2140 snprintf(buf
, sizeof(buf
), "E00");
2147 addr
= strtoul(p
, (char **)&p
, 16);
2150 len
= strtoul(p
, (char **)&p
, 16);
2152 total_len
= strlen(xml
);
2153 if (addr
> total_len
) {
2154 snprintf(buf
, sizeof(buf
), "E00");
2158 if (len
> (MAX_PACKET_LENGTH
- 5) / 2)
2159 len
= (MAX_PACKET_LENGTH
- 5) / 2;
2160 if (len
< total_len
- addr
) {
2162 len
= memtox(buf
+ 1, xml
+ addr
, len
);
2165 len
= memtox(buf
+ 1, xml
+ addr
, total_len
- addr
);
2167 put_packet_binary(s
, buf
, len
+ 1);
2171 /* Unrecognised 'q' command. */
2172 goto unknown_command
;
2176 /* put empty packet */
2184 void gdb_set_stop_cpu(CPUState
*env
)
2186 gdbserver_state
->c_cpu
= env
;
2187 gdbserver_state
->g_cpu
= env
;
2190 #ifndef CONFIG_USER_ONLY
2191 static void gdb_vm_state_change(void *opaque
, int running
, int reason
)
2193 GDBState
*s
= gdbserver_state
;
2194 CPUState
*env
= s
->c_cpu
;
2199 if (running
|| (reason
!= EXCP_DEBUG
&& reason
!= EXCP_INTERRUPT
) ||
2200 s
->state
== RS_INACTIVE
|| s
->state
== RS_SYSCALL
)
2203 /* disable single step if it was enable */
2204 cpu_single_step(env
, 0);
2206 if (reason
== EXCP_DEBUG
) {
2207 if (env
->watchpoint_hit
) {
2208 switch (env
->watchpoint_hit
->flags
& BP_MEM_ACCESS
) {
2219 snprintf(buf
, sizeof(buf
),
2220 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx
";",
2221 GDB_SIGNAL_TRAP
, gdb_id(env
), type
,
2222 env
->watchpoint_hit
->vaddr
);
2224 env
->watchpoint_hit
= NULL
;
2228 ret
= GDB_SIGNAL_TRAP
;
2230 ret
= GDB_SIGNAL_INT
;
2232 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", ret
, gdb_id(env
));
2237 /* Send a gdb syscall request.
2238 This accepts limited printf-style format specifiers, specifically:
2239 %x - target_ulong argument printed in hex.
2240 %lx - 64-bit argument printed in hex.
2241 %s - string pointer (target_ulong) and length (int) pair. */
2242 void gdb_do_syscall(gdb_syscall_complete_cb cb
, const char *fmt
, ...)
2251 s
= gdbserver_state
;
2254 gdb_current_syscall_cb
= cb
;
2255 s
->state
= RS_SYSCALL
;
2256 #ifndef CONFIG_USER_ONLY
2257 vm_stop(EXCP_DEBUG
);
2268 addr
= va_arg(va
, target_ulong
);
2269 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
, addr
);
2272 if (*(fmt
++) != 'x')
2274 i64
= va_arg(va
, uint64_t);
2275 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, "%" PRIx64
, i64
);
2278 addr
= va_arg(va
, target_ulong
);
2279 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
"/%x",
2280 addr
, va_arg(va
, int));
2284 fprintf(stderr
, "gdbstub: Bad syscall format string '%s'\n",
2295 #ifdef CONFIG_USER_ONLY
2296 gdb_handlesig(s
->c_cpu
, 0);
2302 static void gdb_read_byte(GDBState
*s
, int ch
)
2307 #ifndef CONFIG_USER_ONLY
2308 if (s
->last_packet_len
) {
2309 /* Waiting for a response to the last packet. If we see the start
2310 of a new command then abandon the previous response. */
2313 printf("Got NACK, retransmitting\n");
2315 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
2319 printf("Got ACK\n");
2321 printf("Got '%c' when expecting ACK/NACK\n", ch
);
2323 if (ch
== '+' || ch
== '$')
2324 s
->last_packet_len
= 0;
2329 /* when the CPU is running, we cannot do anything except stop
2330 it when receiving a char */
2331 vm_stop(EXCP_INTERRUPT
);
2338 s
->line_buf_index
= 0;
2339 s
->state
= RS_GETLINE
;
2344 s
->state
= RS_CHKSUM1
;
2345 } else if (s
->line_buf_index
>= sizeof(s
->line_buf
) - 1) {
2348 s
->line_buf
[s
->line_buf_index
++] = ch
;
2352 s
->line_buf
[s
->line_buf_index
] = '\0';
2353 s
->line_csum
= fromhex(ch
) << 4;
2354 s
->state
= RS_CHKSUM2
;
2357 s
->line_csum
|= fromhex(ch
);
2359 for(i
= 0; i
< s
->line_buf_index
; i
++) {
2360 csum
+= s
->line_buf
[i
];
2362 if (s
->line_csum
!= (csum
& 0xff)) {
2364 put_buffer(s
, &reply
, 1);
2368 put_buffer(s
, &reply
, 1);
2369 s
->state
= gdb_handle_packet(s
, s
->line_buf
);
2378 /* Tell the remote gdb that the process has exited. */
2379 void gdb_exit(CPUState
*env
, int code
)
2384 s
= gdbserver_state
;
2388 #ifdef CONFIG_USER_ONLY
2389 if (gdbserver_fd
< 0 || s
->fd
< 0) {
2394 snprintf(buf
, sizeof(buf
), "W%02x", (uint8_t)code
);
2398 #ifdef CONFIG_USER_ONLY
2404 s
= gdbserver_state
;
2406 if (gdbserver_fd
< 0 || s
->fd
< 0)
2413 gdb_handlesig (CPUState
*env
, int sig
)
2419 s
= gdbserver_state
;
2420 if (gdbserver_fd
< 0 || s
->fd
< 0)
2423 /* disable single step if it was enabled */
2424 cpu_single_step(env
, 0);
2429 snprintf(buf
, sizeof(buf
), "S%02x", target_signal_to_gdb (sig
));
2432 /* put_packet() might have detected that the peer terminated the
2439 s
->running_state
= 0;
2440 while (s
->running_state
== 0) {
2441 n
= read (s
->fd
, buf
, 256);
2446 for (i
= 0; i
< n
; i
++)
2447 gdb_read_byte (s
, buf
[i
]);
2449 else if (n
== 0 || errno
!= EAGAIN
)
2451 /* XXX: Connection closed. Should probably wait for annother
2452 connection before continuing. */
2461 /* Tell the remote gdb that the process has exited due to SIG. */
2462 void gdb_signalled(CPUState
*env
, int sig
)
2467 s
= gdbserver_state
;
2468 if (gdbserver_fd
< 0 || s
->fd
< 0)
2471 snprintf(buf
, sizeof(buf
), "X%02x", target_signal_to_gdb (sig
));
2475 static void gdb_accept(void)
2478 struct sockaddr_in sockaddr
;
2483 len
= sizeof(sockaddr
);
2484 fd
= accept(gdbserver_fd
, (struct sockaddr
*)&sockaddr
, &len
);
2485 if (fd
< 0 && errno
!= EINTR
) {
2488 } else if (fd
>= 0) {
2490 fcntl(fd
, F_SETFD
, FD_CLOEXEC
);
2496 /* set short latency */
2498 setsockopt(fd
, IPPROTO_TCP
, TCP_NODELAY
, (char *)&val
, sizeof(val
));
2500 s
= qemu_mallocz(sizeof(GDBState
));
2501 s
->c_cpu
= first_cpu
;
2502 s
->g_cpu
= first_cpu
;
2506 gdbserver_state
= s
;
2508 fcntl(fd
, F_SETFL
, O_NONBLOCK
);
2511 static int gdbserver_open(int port
)
2513 struct sockaddr_in sockaddr
;
2516 fd
= socket(PF_INET
, SOCK_STREAM
, 0);
2522 fcntl(fd
, F_SETFD
, FD_CLOEXEC
);
2525 /* allow fast reuse */
2527 setsockopt(fd
, SOL_SOCKET
, SO_REUSEADDR
, (char *)&val
, sizeof(val
));
2529 sockaddr
.sin_family
= AF_INET
;
2530 sockaddr
.sin_port
= htons(port
);
2531 sockaddr
.sin_addr
.s_addr
= 0;
2532 ret
= bind(fd
, (struct sockaddr
*)&sockaddr
, sizeof(sockaddr
));
2537 ret
= listen(fd
, 0);
2545 int gdbserver_start(int port
)
2547 gdbserver_fd
= gdbserver_open(port
);
2548 if (gdbserver_fd
< 0)
2550 /* accept connections */
2555 /* Disable gdb stub for child processes. */
2556 void gdbserver_fork(CPUState
*env
)
2558 GDBState
*s
= gdbserver_state
;
2559 if (gdbserver_fd
< 0 || s
->fd
< 0)
2563 cpu_breakpoint_remove_all(env
, BP_GDB
);
2564 cpu_watchpoint_remove_all(env
, BP_GDB
);
2567 static int gdb_chr_can_receive(void *opaque
)
2569 /* We can handle an arbitrarily large amount of data.
2570 Pick the maximum packet size, which is as good as anything. */
2571 return MAX_PACKET_LENGTH
;
2574 static void gdb_chr_receive(void *opaque
, const uint8_t *buf
, int size
)
2578 for (i
= 0; i
< size
; i
++) {
2579 gdb_read_byte(gdbserver_state
, buf
[i
]);
2583 static void gdb_chr_event(void *opaque
, int event
)
2586 case CHR_EVENT_OPENED
:
2587 vm_stop(EXCP_INTERRUPT
);
2595 static void gdb_monitor_output(GDBState
*s
, const char *msg
, int len
)
2597 char buf
[MAX_PACKET_LENGTH
];
2600 if (len
> (MAX_PACKET_LENGTH
/2) - 1)
2601 len
= (MAX_PACKET_LENGTH
/2) - 1;
2602 memtohex(buf
+ 1, (uint8_t *)msg
, len
);
2606 static int gdb_monitor_write(CharDriverState
*chr
, const uint8_t *buf
, int len
)
2608 const char *p
= (const char *)buf
;
2611 max_sz
= (sizeof(gdbserver_state
->last_packet
) - 2) / 2;
2613 if (len
<= max_sz
) {
2614 gdb_monitor_output(gdbserver_state
, p
, len
);
2617 gdb_monitor_output(gdbserver_state
, p
, max_sz
);
2625 static void gdb_sigterm_handler(int signal
)
2628 vm_stop(EXCP_INTERRUPT
);
2632 int gdbserver_start(const char *device
)
2635 char gdbstub_device_name
[128];
2636 CharDriverState
*chr
= NULL
;
2637 CharDriverState
*mon_chr
;
2641 if (strcmp(device
, "none") != 0) {
2642 if (strstart(device
, "tcp:", NULL
)) {
2643 /* enforce required TCP attributes */
2644 snprintf(gdbstub_device_name
, sizeof(gdbstub_device_name
),
2645 "%s,nowait,nodelay,server", device
);
2646 device
= gdbstub_device_name
;
2649 else if (strcmp(device
, "stdio") == 0) {
2650 struct sigaction act
;
2652 memset(&act
, 0, sizeof(act
));
2653 act
.sa_handler
= gdb_sigterm_handler
;
2654 sigaction(SIGINT
, &act
, NULL
);
2657 chr
= qemu_chr_open("gdb", device
, NULL
);
2661 qemu_chr_add_handlers(chr
, gdb_chr_can_receive
, gdb_chr_receive
,
2662 gdb_chr_event
, NULL
);
2665 s
= gdbserver_state
;
2667 s
= qemu_mallocz(sizeof(GDBState
));
2668 gdbserver_state
= s
;
2670 qemu_add_vm_change_state_handler(gdb_vm_state_change
, NULL
);
2672 /* Initialize a monitor terminal for gdb */
2673 mon_chr
= qemu_mallocz(sizeof(*mon_chr
));
2674 mon_chr
->chr_write
= gdb_monitor_write
;
2675 monitor_init(mon_chr
, 0);
2678 qemu_chr_close(s
->chr
);
2679 mon_chr
= s
->mon_chr
;
2680 memset(s
, 0, sizeof(GDBState
));
2682 s
->c_cpu
= first_cpu
;
2683 s
->g_cpu
= first_cpu
;
2685 s
->state
= chr
? RS_IDLE
: RS_INACTIVE
;
2686 s
->mon_chr
= mon_chr
;