4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
31 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
32 #define PAGE_SIZE TARGET_PAGE_SIZE
37 #define DPRINTF(fmt, ...) \
38 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
40 #define DPRINTF(fmt, ...) \
46 typedef struct KVMSlot
48 target_phys_addr_t start_addr
;
49 ram_addr_t memory_size
;
50 ram_addr_t phys_offset
;
55 typedef struct kvm_dirty_log KVMDirtyLog
;
63 #ifdef KVM_CAP_COALESCED_MMIO
64 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
66 int broken_set_mem_region
;
69 int robust_singlestep
;
71 #ifdef KVM_CAP_SET_GUEST_DEBUG
72 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
74 int irqchip_in_kernel
;
78 static KVMState
*kvm_state
;
82 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
86 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
87 /* KVM private memory slots */
90 if (s
->slots
[i
].memory_size
== 0)
94 fprintf(stderr
, "%s: no free slot available\n", __func__
);
98 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
99 target_phys_addr_t start_addr
,
100 target_phys_addr_t end_addr
)
104 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
105 KVMSlot
*mem
= &s
->slots
[i
];
107 if (start_addr
== mem
->start_addr
&&
108 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
117 * Find overlapping slot with lowest start address
119 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
120 target_phys_addr_t start_addr
,
121 target_phys_addr_t end_addr
)
123 KVMSlot
*found
= NULL
;
126 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
127 KVMSlot
*mem
= &s
->slots
[i
];
129 if (mem
->memory_size
== 0 ||
130 (found
&& found
->start_addr
< mem
->start_addr
)) {
134 if (end_addr
> mem
->start_addr
&&
135 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
143 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
145 struct kvm_userspace_memory_region mem
;
147 mem
.slot
= slot
->slot
;
148 mem
.guest_phys_addr
= slot
->start_addr
;
149 mem
.memory_size
= slot
->memory_size
;
150 mem
.userspace_addr
= (unsigned long)qemu_get_ram_ptr(slot
->phys_offset
);
151 mem
.flags
= slot
->flags
;
152 if (s
->migration_log
) {
153 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
155 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
159 static void kvm_reset_vcpu(void *opaque
)
161 CPUState
*env
= opaque
;
163 kvm_arch_reset_vcpu(env
);
167 int kvm_irqchip_in_kernel(void)
169 return kvm_state
->irqchip_in_kernel
;
172 int kvm_pit_in_kernel(void)
174 return kvm_state
->pit_in_kernel
;
179 int kvm_init_vcpu(CPUState
*env
)
181 KVMState
*s
= kvm_state
;
185 DPRINTF("kvm_init_vcpu\n");
187 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, env
->cpu_index
);
189 DPRINTF("kvm_create_vcpu failed\n");
196 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
198 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
202 env
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
204 if (env
->kvm_run
== MAP_FAILED
) {
206 DPRINTF("mmap'ing vcpu state failed\n");
210 #ifdef KVM_CAP_COALESCED_MMIO
211 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
)
212 s
->coalesced_mmio_ring
= (void *) env
->kvm_run
+
213 s
->coalesced_mmio
* PAGE_SIZE
;
216 ret
= kvm_arch_init_vcpu(env
);
218 qemu_register_reset(kvm_reset_vcpu
, env
);
219 kvm_arch_reset_vcpu(env
);
227 * dirty pages logging control
229 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr
,
230 ram_addr_t size
, int flags
, int mask
)
232 KVMState
*s
= kvm_state
;
233 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
237 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
238 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
239 (target_phys_addr_t
)(phys_addr
+ size
- 1));
243 old_flags
= mem
->flags
;
245 flags
= (mem
->flags
& ~mask
) | flags
;
248 /* If nothing changed effectively, no need to issue ioctl */
249 if (s
->migration_log
) {
250 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
252 if (flags
== old_flags
) {
256 return kvm_set_user_memory_region(s
, mem
);
259 int kvm_log_start(target_phys_addr_t phys_addr
, ram_addr_t size
)
261 return kvm_dirty_pages_log_change(phys_addr
, size
,
262 KVM_MEM_LOG_DIRTY_PAGES
,
263 KVM_MEM_LOG_DIRTY_PAGES
);
266 int kvm_log_stop(target_phys_addr_t phys_addr
, ram_addr_t size
)
268 return kvm_dirty_pages_log_change(phys_addr
, size
,
270 KVM_MEM_LOG_DIRTY_PAGES
);
273 static int kvm_set_migration_log(int enable
)
275 KVMState
*s
= kvm_state
;
279 s
->migration_log
= enable
;
281 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
284 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
287 err
= kvm_set_user_memory_region(s
, mem
);
295 /* get kvm's dirty pages bitmap and update qemu's */
296 static int kvm_get_dirty_pages_log_range(unsigned long start_addr
,
297 unsigned long *bitmap
,
298 unsigned long offset
,
299 unsigned long mem_size
)
302 unsigned long page_number
, addr
, addr1
, c
;
304 unsigned int len
= ((mem_size
/ TARGET_PAGE_SIZE
) + HOST_LONG_BITS
- 1) /
308 * bitmap-traveling is faster than memory-traveling (for addr...)
309 * especially when most of the memory is not dirty.
311 for (i
= 0; i
< len
; i
++) {
312 if (bitmap
[i
] != 0) {
313 c
= leul_to_cpu(bitmap
[i
]);
317 page_number
= i
* HOST_LONG_BITS
+ j
;
318 addr1
= page_number
* TARGET_PAGE_SIZE
;
319 addr
= offset
+ addr1
;
320 ram_addr
= cpu_get_physical_page_desc(addr
);
321 cpu_physical_memory_set_dirty(ram_addr
);
328 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
331 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
332 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
333 * This means all bits are set to dirty.
335 * @start_add: start of logged region.
336 * @end_addr: end of logged region.
338 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
,
339 target_phys_addr_t end_addr
)
341 KVMState
*s
= kvm_state
;
342 unsigned long size
, allocated_size
= 0;
347 d
.dirty_bitmap
= NULL
;
348 while (start_addr
< end_addr
) {
349 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
354 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
), HOST_LONG_BITS
) / 8;
355 if (!d
.dirty_bitmap
) {
356 d
.dirty_bitmap
= qemu_malloc(size
);
357 } else if (size
> allocated_size
) {
358 d
.dirty_bitmap
= qemu_realloc(d
.dirty_bitmap
, size
);
360 allocated_size
= size
;
361 memset(d
.dirty_bitmap
, 0, allocated_size
);
365 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
366 DPRINTF("ioctl failed %d\n", errno
);
371 kvm_get_dirty_pages_log_range(mem
->start_addr
, d
.dirty_bitmap
,
372 mem
->start_addr
, mem
->memory_size
);
373 start_addr
= mem
->start_addr
+ mem
->memory_size
;
375 qemu_free(d
.dirty_bitmap
);
380 int kvm_coalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
383 #ifdef KVM_CAP_COALESCED_MMIO
384 KVMState
*s
= kvm_state
;
386 if (s
->coalesced_mmio
) {
387 struct kvm_coalesced_mmio_zone zone
;
392 ret
= kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
399 int kvm_uncoalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
402 #ifdef KVM_CAP_COALESCED_MMIO
403 KVMState
*s
= kvm_state
;
405 if (s
->coalesced_mmio
) {
406 struct kvm_coalesced_mmio_zone zone
;
411 ret
= kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
418 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
422 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
430 static void kvm_set_phys_mem(target_phys_addr_t start_addr
,
432 ram_addr_t phys_offset
)
434 KVMState
*s
= kvm_state
;
435 ram_addr_t flags
= phys_offset
& ~TARGET_PAGE_MASK
;
439 if (start_addr
& ~TARGET_PAGE_MASK
) {
440 if (flags
>= IO_MEM_UNASSIGNED
) {
441 if (!kvm_lookup_overlapping_slot(s
, start_addr
,
442 start_addr
+ size
)) {
445 fprintf(stderr
, "Unaligned split of a KVM memory slot\n");
447 fprintf(stderr
, "Only page-aligned memory slots supported\n");
452 /* KVM does not support read-only slots */
453 phys_offset
&= ~IO_MEM_ROM
;
456 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
461 if (flags
< IO_MEM_UNASSIGNED
&& start_addr
>= mem
->start_addr
&&
462 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
463 (phys_offset
- start_addr
== mem
->phys_offset
- mem
->start_addr
)) {
464 /* The new slot fits into the existing one and comes with
465 * identical parameters - nothing to be done. */
471 /* unregister the overlapping slot */
472 mem
->memory_size
= 0;
473 err
= kvm_set_user_memory_region(s
, mem
);
475 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
476 __func__
, strerror(-err
));
480 /* Workaround for older KVM versions: we can't join slots, even not by
481 * unregistering the previous ones and then registering the larger
482 * slot. We have to maintain the existing fragmentation. Sigh.
484 * This workaround assumes that the new slot starts at the same
485 * address as the first existing one. If not or if some overlapping
486 * slot comes around later, we will fail (not seen in practice so far)
487 * - and actually require a recent KVM version. */
488 if (s
->broken_set_mem_region
&&
489 old
.start_addr
== start_addr
&& old
.memory_size
< size
&&
490 flags
< IO_MEM_UNASSIGNED
) {
491 mem
= kvm_alloc_slot(s
);
492 mem
->memory_size
= old
.memory_size
;
493 mem
->start_addr
= old
.start_addr
;
494 mem
->phys_offset
= old
.phys_offset
;
497 err
= kvm_set_user_memory_region(s
, mem
);
499 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
504 start_addr
+= old
.memory_size
;
505 phys_offset
+= old
.memory_size
;
506 size
-= old
.memory_size
;
510 /* register prefix slot */
511 if (old
.start_addr
< start_addr
) {
512 mem
= kvm_alloc_slot(s
);
513 mem
->memory_size
= start_addr
- old
.start_addr
;
514 mem
->start_addr
= old
.start_addr
;
515 mem
->phys_offset
= old
.phys_offset
;
518 err
= kvm_set_user_memory_region(s
, mem
);
520 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
521 __func__
, strerror(-err
));
526 /* register suffix slot */
527 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
528 ram_addr_t size_delta
;
530 mem
= kvm_alloc_slot(s
);
531 mem
->start_addr
= start_addr
+ size
;
532 size_delta
= mem
->start_addr
- old
.start_addr
;
533 mem
->memory_size
= old
.memory_size
- size_delta
;
534 mem
->phys_offset
= old
.phys_offset
+ size_delta
;
537 err
= kvm_set_user_memory_region(s
, mem
);
539 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
540 __func__
, strerror(-err
));
546 /* in case the KVM bug workaround already "consumed" the new slot */
550 /* KVM does not need to know about this memory */
551 if (flags
>= IO_MEM_UNASSIGNED
)
554 mem
= kvm_alloc_slot(s
);
555 mem
->memory_size
= size
;
556 mem
->start_addr
= start_addr
;
557 mem
->phys_offset
= phys_offset
;
560 err
= kvm_set_user_memory_region(s
, mem
);
562 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
568 static void kvm_client_set_memory(struct CPUPhysMemoryClient
*client
,
569 target_phys_addr_t start_addr
,
571 ram_addr_t phys_offset
)
573 kvm_set_phys_mem(start_addr
, size
, phys_offset
);
576 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient
*client
,
577 target_phys_addr_t start_addr
,
578 target_phys_addr_t end_addr
)
580 return kvm_physical_sync_dirty_bitmap(start_addr
, end_addr
);
583 static int kvm_client_migration_log(struct CPUPhysMemoryClient
*client
,
586 return kvm_set_migration_log(enable
);
589 static CPUPhysMemoryClient kvm_cpu_phys_memory_client
= {
590 .set_memory
= kvm_client_set_memory
,
591 .sync_dirty_bitmap
= kvm_client_sync_dirty_bitmap
,
592 .migration_log
= kvm_client_migration_log
,
596 void kvm_cpu_register_phys_memory_client(void)
598 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client
);
603 int kvm_init(int smp_cpus
)
605 static const char upgrade_note
[] =
606 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
607 "(see http://sourceforge.net/projects/kvm).\n";
612 s
= qemu_mallocz(sizeof(KVMState
));
614 #ifdef KVM_CAP_SET_GUEST_DEBUG
615 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
617 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++)
618 s
->slots
[i
].slot
= i
;
621 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
623 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
628 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
629 if (ret
< KVM_API_VERSION
) {
632 fprintf(stderr
, "kvm version too old\n");
636 if (ret
> KVM_API_VERSION
) {
638 fprintf(stderr
, "kvm version not supported\n");
642 s
->vmfd
= kvm_ioctl(s
, KVM_CREATE_VM
, 0);
645 fprintf(stderr
, "Please add the 'switch_amode' kernel parameter to "
646 "your host kernel command line\n");
651 /* initially, KVM allocated its own memory and we had to jump through
652 * hooks to make phys_ram_base point to this. Modern versions of KVM
653 * just use a user allocated buffer so we can use regular pages
654 * unmodified. Make sure we have a sufficiently modern version of KVM.
656 if (!kvm_check_extension(s
, KVM_CAP_USER_MEMORY
)) {
658 fprintf(stderr
, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
663 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
664 * destroyed properly. Since we rely on this capability, refuse to work
665 * with any kernel without this capability. */
666 if (!kvm_check_extension(s
, KVM_CAP_DESTROY_MEMORY_REGION_WORKS
)) {
670 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
675 s
->coalesced_mmio
= 0;
676 #ifdef KVM_CAP_COALESCED_MMIO
677 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
678 s
->coalesced_mmio_ring
= NULL
;
681 s
->broken_set_mem_region
= 1;
682 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
683 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
685 s
->broken_set_mem_region
= 0;
690 #ifdef KVM_CAP_VCPU_EVENTS
691 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
694 s
->robust_singlestep
= 0;
695 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
696 s
->robust_singlestep
=
697 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
701 #ifdef KVM_CAP_DEBUGREGS
702 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
705 ret
= kvm_arch_init(s
, smp_cpus
);
710 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client
);
727 static int kvm_handle_io(uint16_t port
, void *data
, int direction
, int size
,
733 for (i
= 0; i
< count
; i
++) {
734 if (direction
== KVM_EXIT_IO_IN
) {
737 stb_p(ptr
, cpu_inb(port
));
740 stw_p(ptr
, cpu_inw(port
));
743 stl_p(ptr
, cpu_inl(port
));
749 cpu_outb(port
, ldub_p(ptr
));
752 cpu_outw(port
, lduw_p(ptr
));
755 cpu_outl(port
, ldl_p(ptr
));
766 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
767 static void kvm_handle_internal_error(CPUState
*env
, struct kvm_run
*run
)
770 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
773 fprintf(stderr
, "KVM internal error. Suberror: %d\n",
774 run
->internal
.suberror
);
776 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
777 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
778 i
, (uint64_t)run
->internal
.data
[i
]);
781 cpu_dump_state(env
, stderr
, fprintf
, 0);
782 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
783 fprintf(stderr
, "emulation failure\n");
784 if (!kvm_arch_stop_on_emulation_error(env
))
787 /* FIXME: Should trigger a qmp message to let management know
788 * something went wrong.
794 void kvm_flush_coalesced_mmio_buffer(void)
796 #ifdef KVM_CAP_COALESCED_MMIO
797 KVMState
*s
= kvm_state
;
798 if (s
->coalesced_mmio_ring
) {
799 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
800 while (ring
->first
!= ring
->last
) {
801 struct kvm_coalesced_mmio
*ent
;
803 ent
= &ring
->coalesced_mmio
[ring
->first
];
805 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
807 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
815 static void do_kvm_cpu_synchronize_state(void *_env
)
817 CPUState
*env
= _env
;
819 if (!env
->kvm_vcpu_dirty
) {
820 kvm_arch_get_registers(env
);
821 env
->kvm_vcpu_dirty
= 1;
825 void kvm_cpu_synchronize_state(CPUState
*env
)
827 if (!env
->kvm_vcpu_dirty
)
828 run_on_cpu(env
, do_kvm_cpu_synchronize_state
, env
);
831 void kvm_cpu_synchronize_post_reset(CPUState
*env
)
833 kvm_arch_put_registers(env
, KVM_PUT_RESET_STATE
);
834 env
->kvm_vcpu_dirty
= 0;
837 void kvm_cpu_synchronize_post_init(CPUState
*env
)
839 kvm_arch_put_registers(env
, KVM_PUT_FULL_STATE
);
840 env
->kvm_vcpu_dirty
= 0;
843 int kvm_cpu_exec(CPUState
*env
)
845 struct kvm_run
*run
= env
->kvm_run
;
848 DPRINTF("kvm_cpu_exec()\n");
851 #ifndef CONFIG_IOTHREAD
852 if (env
->exit_request
) {
853 DPRINTF("interrupt exit requested\n");
859 if (kvm_arch_process_irqchip_events(env
)) {
864 if (env
->kvm_vcpu_dirty
) {
865 kvm_arch_put_registers(env
, KVM_PUT_RUNTIME_STATE
);
866 env
->kvm_vcpu_dirty
= 0;
869 kvm_arch_pre_run(env
, run
);
870 cpu_single_env
= NULL
;
871 qemu_mutex_unlock_iothread();
872 ret
= kvm_vcpu_ioctl(env
, KVM_RUN
, 0);
873 qemu_mutex_lock_iothread();
874 cpu_single_env
= env
;
875 kvm_arch_post_run(env
, run
);
877 if (ret
== -EINTR
|| ret
== -EAGAIN
) {
879 DPRINTF("io window exit\n");
885 DPRINTF("kvm run failed %s\n", strerror(-ret
));
889 kvm_flush_coalesced_mmio_buffer();
891 ret
= 0; /* exit loop */
892 switch (run
->exit_reason
) {
894 DPRINTF("handle_io\n");
895 ret
= kvm_handle_io(run
->io
.port
,
896 (uint8_t *)run
+ run
->io
.data_offset
,
902 DPRINTF("handle_mmio\n");
903 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
909 case KVM_EXIT_IRQ_WINDOW_OPEN
:
910 DPRINTF("irq_window_open\n");
912 case KVM_EXIT_SHUTDOWN
:
913 DPRINTF("shutdown\n");
914 qemu_system_reset_request();
917 case KVM_EXIT_UNKNOWN
:
918 DPRINTF("kvm_exit_unknown\n");
920 case KVM_EXIT_FAIL_ENTRY
:
921 DPRINTF("kvm_exit_fail_entry\n");
923 case KVM_EXIT_EXCEPTION
:
924 DPRINTF("kvm_exit_exception\n");
926 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
927 case KVM_EXIT_INTERNAL_ERROR
:
928 kvm_handle_internal_error(env
, run
);
932 DPRINTF("kvm_exit_debug\n");
933 #ifdef KVM_CAP_SET_GUEST_DEBUG
934 if (kvm_arch_debug(&run
->debug
.arch
)) {
935 gdb_set_stop_cpu(env
);
937 env
->exception_index
= EXCP_DEBUG
;
940 /* re-enter, this exception was guest-internal */
942 #endif /* KVM_CAP_SET_GUEST_DEBUG */
945 DPRINTF("kvm_arch_handle_exit\n");
946 ret
= kvm_arch_handle_exit(env
, run
);
951 if (env
->exit_request
) {
952 env
->exit_request
= 0;
953 env
->exception_index
= EXCP_INTERRUPT
;
960 int kvm_ioctl(KVMState
*s
, int type
, ...)
967 arg
= va_arg(ap
, void *);
970 ret
= ioctl(s
->fd
, type
, arg
);
977 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
984 arg
= va_arg(ap
, void *);
987 ret
= ioctl(s
->vmfd
, type
, arg
);
994 int kvm_vcpu_ioctl(CPUState
*env
, int type
, ...)
1001 arg
= va_arg(ap
, void *);
1004 ret
= ioctl(env
->kvm_fd
, type
, arg
);
1011 int kvm_has_sync_mmu(void)
1013 #ifdef KVM_CAP_SYNC_MMU
1014 KVMState
*s
= kvm_state
;
1016 return kvm_check_extension(s
, KVM_CAP_SYNC_MMU
);
1022 int kvm_has_vcpu_events(void)
1024 return kvm_state
->vcpu_events
;
1027 int kvm_has_robust_singlestep(void)
1029 return kvm_state
->robust_singlestep
;
1032 int kvm_has_debugregs(void)
1034 return kvm_state
->debugregs
;
1037 void kvm_setup_guest_memory(void *start
, size_t size
)
1039 if (!kvm_has_sync_mmu()) {
1040 #ifdef MADV_DONTFORK
1041 int ret
= madvise(start
, size
, MADV_DONTFORK
);
1049 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1055 #ifdef KVM_CAP_SET_GUEST_DEBUG
1058 static void on_vcpu(CPUState
*env
, void (*func
)(void *data
), void *data
)
1060 #ifdef CONFIG_IOTHREAD
1061 if (env
!= cpu_single_env
) {
1067 #else /* !KVM_UPSTREAM */
1068 static void on_vcpu(CPUState
*env
, void (*func
)(void *data
), void *data
);
1069 #endif /* !KVM_UPSTREAM */
1071 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*env
,
1074 struct kvm_sw_breakpoint
*bp
;
1076 QTAILQ_FOREACH(bp
, &env
->kvm_state
->kvm_sw_breakpoints
, entry
) {
1083 int kvm_sw_breakpoints_active(CPUState
*env
)
1085 return !QTAILQ_EMPTY(&env
->kvm_state
->kvm_sw_breakpoints
);
1088 struct kvm_set_guest_debug_data
{
1089 struct kvm_guest_debug dbg
;
1094 static void kvm_invoke_set_guest_debug(void *data
)
1096 struct kvm_set_guest_debug_data
*dbg_data
= data
;
1097 CPUState
*env
= dbg_data
->env
;
1099 dbg_data
->err
= kvm_vcpu_ioctl(env
, KVM_SET_GUEST_DEBUG
, &dbg_data
->dbg
);
1102 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
1104 struct kvm_set_guest_debug_data data
;
1106 data
.dbg
.control
= reinject_trap
;
1108 if (env
->singlestep_enabled
) {
1109 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
1111 kvm_arch_update_guest_debug(env
, &data
.dbg
);
1114 on_vcpu(env
, kvm_invoke_set_guest_debug
, &data
);
1118 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
1119 target_ulong len
, int type
)
1121 struct kvm_sw_breakpoint
*bp
;
1125 if (type
== GDB_BREAKPOINT_SW
) {
1126 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
1132 bp
= qemu_malloc(sizeof(struct kvm_sw_breakpoint
));
1138 err
= kvm_arch_insert_sw_breakpoint(current_env
, bp
);
1144 QTAILQ_INSERT_HEAD(¤t_env
->kvm_state
->kvm_sw_breakpoints
,
1147 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
1152 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1153 err
= kvm_update_guest_debug(env
, 0);
1160 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1161 target_ulong len
, int type
)
1163 struct kvm_sw_breakpoint
*bp
;
1167 if (type
== GDB_BREAKPOINT_SW
) {
1168 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
1172 if (bp
->use_count
> 1) {
1177 err
= kvm_arch_remove_sw_breakpoint(current_env
, bp
);
1181 QTAILQ_REMOVE(¤t_env
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
1184 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
1189 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1190 err
= kvm_update_guest_debug(env
, 0);
1197 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1199 struct kvm_sw_breakpoint
*bp
, *next
;
1200 KVMState
*s
= current_env
->kvm_state
;
1203 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
1204 if (kvm_arch_remove_sw_breakpoint(current_env
, bp
) != 0) {
1205 /* Try harder to find a CPU that currently sees the breakpoint. */
1206 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1207 if (kvm_arch_remove_sw_breakpoint(env
, bp
) == 0)
1212 kvm_arch_remove_all_hw_breakpoints();
1214 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
1215 kvm_update_guest_debug(env
, 0);
1218 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1220 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
1225 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
1226 target_ulong len
, int type
)
1231 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1232 target_ulong len
, int type
)
1237 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1240 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1242 int kvm_set_signal_mask(CPUState
*env
, const sigset_t
*sigset
)
1244 struct kvm_signal_mask
*sigmask
;
1248 return kvm_vcpu_ioctl(env
, KVM_SET_SIGNAL_MASK
, NULL
);
1250 sigmask
= qemu_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
1253 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
1254 r
= kvm_vcpu_ioctl(env
, KVM_SET_SIGNAL_MASK
, sigmask
);
1260 int kvm_set_ioeventfd_pio_word(int fd
, uint16_t addr
, uint16_t val
, bool assign
)
1262 #ifdef KVM_IOEVENTFD
1263 struct kvm_ioeventfd kick
= {
1267 .flags
= KVM_IOEVENTFD_FLAG_DATAMATCH
| KVM_IOEVENTFD_FLAG_PIO
,
1274 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
1275 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
1284 #if defined(KVM_IRQFD)
1285 int kvm_set_irqfd(int gsi
, int fd
, bool assigned
)
1287 struct kvm_irqfd irqfd
= {
1290 .flags
= assigned
? 0 : KVM_IRQFD_FLAG_DEASSIGN
,
1293 if (!kvm_enabled() || !kvm_irqchip_in_kernel())
1296 r
= kvm_vm_ioctl(kvm_state
, KVM_IRQFD
, &irqfd
);
1304 #include "qemu-kvm.c"