vhost-net: fix reversed logic in mask notifiers
[qemu/qemu-dev-zwu.git] / target-i386 / kvm.c
blob87c11333d6d027ec09731918e182319d5002805a
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "sysemu.h"
23 #include "kvm.h"
24 #include "cpu.h"
25 #include "gdbstub.h"
26 #include "host-utils.h"
27 #include "hw/pc.h"
28 #include "ioport.h"
30 #ifdef CONFIG_KVM_PARA
31 #include <linux/kvm_para.h>
32 #endif
34 //#define DEBUG_KVM
36 #ifdef DEBUG_KVM
37 #define DPRINTF(fmt, ...) \
38 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
39 #else
40 #define DPRINTF(fmt, ...) \
41 do { } while (0)
42 #endif
44 #define MSR_KVM_WALL_CLOCK 0x11
45 #define MSR_KVM_SYSTEM_TIME 0x12
47 #ifdef KVM_CAP_EXT_CPUID
49 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
51 struct kvm_cpuid2 *cpuid;
52 int r, size;
54 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
55 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
56 cpuid->nent = max;
57 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
58 if (r == 0 && cpuid->nent >= max) {
59 r = -E2BIG;
61 if (r < 0) {
62 if (r == -E2BIG) {
63 qemu_free(cpuid);
64 return NULL;
65 } else {
66 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
67 strerror(-r));
68 exit(1);
71 return cpuid;
74 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
76 struct kvm_cpuid2 *cpuid;
77 int i, max;
78 uint32_t ret = 0;
79 uint32_t cpuid_1_edx;
81 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
82 return -1U;
85 max = 1;
86 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
87 max *= 2;
90 for (i = 0; i < cpuid->nent; ++i) {
91 if (cpuid->entries[i].function == function) {
92 switch (reg) {
93 case R_EAX:
94 ret = cpuid->entries[i].eax;
95 break;
96 case R_EBX:
97 ret = cpuid->entries[i].ebx;
98 break;
99 case R_ECX:
100 ret = cpuid->entries[i].ecx;
101 break;
102 case R_EDX:
103 ret = cpuid->entries[i].edx;
104 switch (function) {
105 case 1:
106 /* KVM before 2.6.30 misreports the following features */
107 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
108 break;
109 case 0x80000001:
110 /* On Intel, kvm returns cpuid according to the Intel spec,
111 * so add missing bits according to the AMD spec:
113 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX);
114 ret |= cpuid_1_edx & 0x183f7ff;
115 break;
117 break;
122 qemu_free(cpuid);
124 return ret;
127 #else
129 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
131 return -1U;
134 #endif
136 #ifdef KVM_UPSTREAM
138 #ifdef CONFIG_KVM_PARA
139 struct kvm_para_features {
140 int cap;
141 int feature;
142 } para_features[] = {
143 #ifdef KVM_CAP_CLOCKSOURCE
144 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
145 #endif
146 #ifdef KVM_CAP_NOP_IO_DELAY
147 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
148 #endif
149 #ifdef KVM_CAP_PV_MMU
150 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
151 #endif
152 { -1, -1 }
155 static int get_para_features(CPUState *env)
157 int i, features = 0;
159 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
160 if (kvm_check_extension(env->kvm_state, para_features[i].cap))
161 features |= (1 << para_features[i].feature);
164 return features;
166 #endif
168 int kvm_arch_init_vcpu(CPUState *env)
170 struct {
171 struct kvm_cpuid2 cpuid;
172 struct kvm_cpuid_entry2 entries[100];
173 } __attribute__((packed)) cpuid_data;
174 uint32_t limit, i, j, cpuid_i;
175 uint32_t unused;
176 struct kvm_cpuid_entry2 *c;
177 #ifdef KVM_CPUID_SIGNATURE
178 uint32_t signature[3];
179 #endif
181 env->mp_state = KVM_MP_STATE_RUNNABLE;
183 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, R_EDX);
185 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
186 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, R_ECX);
187 env->cpuid_ext_features |= i;
189 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
190 R_EDX);
191 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
192 R_ECX);
194 cpuid_i = 0;
196 #ifdef CONFIG_KVM_PARA
197 /* Paravirtualization CPUIDs */
198 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
199 c = &cpuid_data.entries[cpuid_i++];
200 memset(c, 0, sizeof(*c));
201 c->function = KVM_CPUID_SIGNATURE;
202 c->eax = 0;
203 c->ebx = signature[0];
204 c->ecx = signature[1];
205 c->edx = signature[2];
207 c = &cpuid_data.entries[cpuid_i++];
208 memset(c, 0, sizeof(*c));
209 c->function = KVM_CPUID_FEATURES;
210 c->eax = env->cpuid_kvm_features & get_para_features(env);
211 #endif
213 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
215 for (i = 0; i <= limit; i++) {
216 c = &cpuid_data.entries[cpuid_i++];
218 switch (i) {
219 case 2: {
220 /* Keep reading function 2 till all the input is received */
221 int times;
223 c->function = i;
224 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
225 KVM_CPUID_FLAG_STATE_READ_NEXT;
226 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
227 times = c->eax & 0xff;
229 for (j = 1; j < times; ++j) {
230 c = &cpuid_data.entries[cpuid_i++];
231 c->function = i;
232 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
233 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
235 break;
237 case 4:
238 case 0xb:
239 case 0xd:
240 for (j = 0; ; j++) {
241 c->function = i;
242 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
243 c->index = j;
244 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
246 if (i == 4 && c->eax == 0)
247 break;
248 if (i == 0xb && !(c->ecx & 0xff00))
249 break;
250 if (i == 0xd && c->eax == 0)
251 break;
253 c = &cpuid_data.entries[cpuid_i++];
255 break;
256 default:
257 c->function = i;
258 c->flags = 0;
259 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
260 break;
263 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
265 for (i = 0x80000000; i <= limit; i++) {
266 c = &cpuid_data.entries[cpuid_i++];
268 c->function = i;
269 c->flags = 0;
270 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
273 cpuid_data.cpuid.nent = cpuid_i;
275 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
278 #endif
279 void kvm_arch_reset_vcpu(CPUState *env)
281 env->exception_injected = -1;
282 env->interrupt_injected = -1;
283 env->nmi_injected = 0;
284 env->nmi_pending = 0;
286 #ifdef KVM_UPSTREAM
288 static int kvm_has_msr_star(CPUState *env)
290 static int has_msr_star;
291 int ret;
293 /* first time */
294 if (has_msr_star == 0) {
295 struct kvm_msr_list msr_list, *kvm_msr_list;
297 has_msr_star = -1;
299 /* Obtain MSR list from KVM. These are the MSRs that we must
300 * save/restore */
301 msr_list.nmsrs = 0;
302 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
303 if (ret < 0 && ret != -E2BIG) {
304 return 0;
306 /* Old kernel modules had a bug and could write beyond the provided
307 memory. Allocate at least a safe amount of 1K. */
308 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
309 msr_list.nmsrs *
310 sizeof(msr_list.indices[0])));
312 kvm_msr_list->nmsrs = msr_list.nmsrs;
313 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
314 if (ret >= 0) {
315 int i;
317 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
318 if (kvm_msr_list->indices[i] == MSR_STAR) {
319 has_msr_star = 1;
320 break;
325 free(kvm_msr_list);
328 if (has_msr_star == 1)
329 return 1;
330 return 0;
333 static int kvm_init_identity_map_page(KVMState *s)
335 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
336 int ret;
337 uint64_t addr = 0xfffbc000;
339 if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
340 return 0;
343 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
344 if (ret < 0) {
345 fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
346 return ret;
348 #endif
349 return 0;
352 int kvm_arch_init(KVMState *s, int smp_cpus)
354 int ret;
356 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
357 * directly. In order to use vm86 mode, a TSS is needed. Since this
358 * must be part of guest physical memory, we need to allocate it. Older
359 * versions of KVM just assumed that it would be at the end of physical
360 * memory but that doesn't work with more than 4GB of memory. We simply
361 * refuse to work with those older versions of KVM. */
362 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
363 if (ret <= 0) {
364 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
365 return ret;
368 /* this address is 3 pages before the bios, and the bios should present
369 * as unavaible memory. FIXME, need to ensure the e820 map deals with
370 * this?
373 * Tell fw_cfg to notify the BIOS to reserve the range.
375 if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
376 perror("e820_add_entry() table is full");
377 exit(1);
379 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
380 if (ret < 0) {
381 return ret;
384 return kvm_init_identity_map_page(s);
387 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
389 lhs->selector = rhs->selector;
390 lhs->base = rhs->base;
391 lhs->limit = rhs->limit;
392 lhs->type = 3;
393 lhs->present = 1;
394 lhs->dpl = 3;
395 lhs->db = 0;
396 lhs->s = 1;
397 lhs->l = 0;
398 lhs->g = 0;
399 lhs->avl = 0;
400 lhs->unusable = 0;
403 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
405 unsigned flags = rhs->flags;
406 lhs->selector = rhs->selector;
407 lhs->base = rhs->base;
408 lhs->limit = rhs->limit;
409 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
410 lhs->present = (flags & DESC_P_MASK) != 0;
411 lhs->dpl = rhs->selector & 3;
412 lhs->db = (flags >> DESC_B_SHIFT) & 1;
413 lhs->s = (flags & DESC_S_MASK) != 0;
414 lhs->l = (flags >> DESC_L_SHIFT) & 1;
415 lhs->g = (flags & DESC_G_MASK) != 0;
416 lhs->avl = (flags & DESC_AVL_MASK) != 0;
417 lhs->unusable = 0;
420 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
422 lhs->selector = rhs->selector;
423 lhs->base = rhs->base;
424 lhs->limit = rhs->limit;
425 lhs->flags =
426 (rhs->type << DESC_TYPE_SHIFT)
427 | (rhs->present * DESC_P_MASK)
428 | (rhs->dpl << DESC_DPL_SHIFT)
429 | (rhs->db << DESC_B_SHIFT)
430 | (rhs->s * DESC_S_MASK)
431 | (rhs->l << DESC_L_SHIFT)
432 | (rhs->g * DESC_G_MASK)
433 | (rhs->avl * DESC_AVL_MASK);
436 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
438 if (set)
439 *kvm_reg = *qemu_reg;
440 else
441 *qemu_reg = *kvm_reg;
444 static int kvm_getput_regs(CPUState *env, int set)
446 struct kvm_regs regs;
447 int ret = 0;
449 if (!set) {
450 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
451 if (ret < 0)
452 return ret;
455 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
456 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
457 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
458 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
459 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
460 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
461 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
462 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
463 #ifdef TARGET_X86_64
464 kvm_getput_reg(&regs.r8, &env->regs[8], set);
465 kvm_getput_reg(&regs.r9, &env->regs[9], set);
466 kvm_getput_reg(&regs.r10, &env->regs[10], set);
467 kvm_getput_reg(&regs.r11, &env->regs[11], set);
468 kvm_getput_reg(&regs.r12, &env->regs[12], set);
469 kvm_getput_reg(&regs.r13, &env->regs[13], set);
470 kvm_getput_reg(&regs.r14, &env->regs[14], set);
471 kvm_getput_reg(&regs.r15, &env->regs[15], set);
472 #endif
474 kvm_getput_reg(&regs.rflags, &env->eflags, set);
475 kvm_getput_reg(&regs.rip, &env->eip, set);
477 if (set)
478 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
480 return ret;
483 static int kvm_put_fpu(CPUState *env)
485 struct kvm_fpu fpu;
486 int i;
488 memset(&fpu, 0, sizeof fpu);
489 fpu.fsw = env->fpus & ~(7 << 11);
490 fpu.fsw |= (env->fpstt & 7) << 11;
491 fpu.fcw = env->fpuc;
492 for (i = 0; i < 8; ++i)
493 fpu.ftwx |= (!env->fptags[i]) << i;
494 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
495 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
496 fpu.mxcsr = env->mxcsr;
498 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
501 static int kvm_put_sregs(CPUState *env)
503 struct kvm_sregs sregs;
505 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
506 if (env->interrupt_injected >= 0) {
507 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
508 (uint64_t)1 << (env->interrupt_injected % 64);
511 if ((env->eflags & VM_MASK)) {
512 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
513 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
514 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
515 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
516 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
517 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
518 } else {
519 set_seg(&sregs.cs, &env->segs[R_CS]);
520 set_seg(&sregs.ds, &env->segs[R_DS]);
521 set_seg(&sregs.es, &env->segs[R_ES]);
522 set_seg(&sregs.fs, &env->segs[R_FS]);
523 set_seg(&sregs.gs, &env->segs[R_GS]);
524 set_seg(&sregs.ss, &env->segs[R_SS]);
526 if (env->cr[0] & CR0_PE_MASK) {
527 /* force ss cpl to cs cpl */
528 sregs.ss.selector = (sregs.ss.selector & ~3) |
529 (sregs.cs.selector & 3);
530 sregs.ss.dpl = sregs.ss.selector & 3;
534 set_seg(&sregs.tr, &env->tr);
535 set_seg(&sregs.ldt, &env->ldt);
537 sregs.idt.limit = env->idt.limit;
538 sregs.idt.base = env->idt.base;
539 sregs.gdt.limit = env->gdt.limit;
540 sregs.gdt.base = env->gdt.base;
542 sregs.cr0 = env->cr[0];
543 sregs.cr2 = env->cr[2];
544 sregs.cr3 = env->cr[3];
545 sregs.cr4 = env->cr[4];
547 sregs.cr8 = cpu_get_apic_tpr(env);
548 sregs.apic_base = cpu_get_apic_base(env);
550 sregs.efer = env->efer;
552 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
555 #endif
557 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
558 uint32_t index, uint64_t value)
560 entry->index = index;
561 entry->data = value;
564 #ifdef KVM_UPSTREAM
565 static int kvm_put_msrs(CPUState *env, int level)
567 struct {
568 struct kvm_msrs info;
569 struct kvm_msr_entry entries[100];
570 } msr_data;
571 struct kvm_msr_entry *msrs = msr_data.entries;
572 int n = 0;
574 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
575 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
576 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
577 if (kvm_has_msr_star(env))
578 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
579 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
580 #ifdef TARGET_X86_64
581 /* FIXME if lm capable */
582 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
583 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
584 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
585 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
586 #endif
587 if (level == KVM_PUT_FULL_STATE) {
588 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
589 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
590 env->system_time_msr);
591 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
594 msr_data.info.nmsrs = n;
596 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
601 static int kvm_get_fpu(CPUState *env)
603 struct kvm_fpu fpu;
604 int i, ret;
606 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
607 if (ret < 0)
608 return ret;
610 env->fpstt = (fpu.fsw >> 11) & 7;
611 env->fpus = fpu.fsw;
612 env->fpuc = fpu.fcw;
613 for (i = 0; i < 8; ++i)
614 env->fptags[i] = !((fpu.ftwx >> i) & 1);
615 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
616 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
617 env->mxcsr = fpu.mxcsr;
619 return 0;
622 static int kvm_get_sregs(CPUState *env)
624 struct kvm_sregs sregs;
625 uint32_t hflags;
626 int bit, i, ret;
628 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
629 if (ret < 0)
630 return ret;
632 /* There can only be one pending IRQ set in the bitmap at a time, so try
633 to find it and save its number instead (-1 for none). */
634 env->interrupt_injected = -1;
635 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
636 if (sregs.interrupt_bitmap[i]) {
637 bit = ctz64(sregs.interrupt_bitmap[i]);
638 env->interrupt_injected = i * 64 + bit;
639 break;
643 get_seg(&env->segs[R_CS], &sregs.cs);
644 get_seg(&env->segs[R_DS], &sregs.ds);
645 get_seg(&env->segs[R_ES], &sregs.es);
646 get_seg(&env->segs[R_FS], &sregs.fs);
647 get_seg(&env->segs[R_GS], &sregs.gs);
648 get_seg(&env->segs[R_SS], &sregs.ss);
650 get_seg(&env->tr, &sregs.tr);
651 get_seg(&env->ldt, &sregs.ldt);
653 env->idt.limit = sregs.idt.limit;
654 env->idt.base = sregs.idt.base;
655 env->gdt.limit = sregs.gdt.limit;
656 env->gdt.base = sregs.gdt.base;
658 env->cr[0] = sregs.cr0;
659 env->cr[2] = sregs.cr2;
660 env->cr[3] = sregs.cr3;
661 env->cr[4] = sregs.cr4;
663 cpu_set_apic_base(env, sregs.apic_base);
665 env->efer = sregs.efer;
666 //cpu_set_apic_tpr(env, sregs.cr8);
668 #define HFLAG_COPY_MASK ~( \
669 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
670 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
671 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
672 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
676 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
677 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
678 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
679 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
680 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
681 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
682 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
684 if (env->efer & MSR_EFER_LMA) {
685 hflags |= HF_LMA_MASK;
688 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
689 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
690 } else {
691 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
692 (DESC_B_SHIFT - HF_CS32_SHIFT);
693 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
694 (DESC_B_SHIFT - HF_SS32_SHIFT);
695 if (!(env->cr[0] & CR0_PE_MASK) ||
696 (env->eflags & VM_MASK) ||
697 !(hflags & HF_CS32_MASK)) {
698 hflags |= HF_ADDSEG_MASK;
699 } else {
700 hflags |= ((env->segs[R_DS].base |
701 env->segs[R_ES].base |
702 env->segs[R_SS].base) != 0) <<
703 HF_ADDSEG_SHIFT;
706 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
708 return 0;
711 static int kvm_get_msrs(CPUState *env)
713 struct {
714 struct kvm_msrs info;
715 struct kvm_msr_entry entries[100];
716 } msr_data;
717 struct kvm_msr_entry *msrs = msr_data.entries;
718 int ret, i, n;
720 n = 0;
721 msrs[n++].index = MSR_IA32_SYSENTER_CS;
722 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
723 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
724 if (kvm_has_msr_star(env))
725 msrs[n++].index = MSR_STAR;
726 msrs[n++].index = MSR_IA32_TSC;
727 msrs[n++].index = MSR_VM_HSAVE_PA;
728 #ifdef TARGET_X86_64
729 /* FIXME lm_capable_kernel */
730 msrs[n++].index = MSR_CSTAR;
731 msrs[n++].index = MSR_KERNELGSBASE;
732 msrs[n++].index = MSR_FMASK;
733 msrs[n++].index = MSR_LSTAR;
734 #endif
735 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
736 msrs[n++].index = MSR_KVM_WALL_CLOCK;
738 msr_data.info.nmsrs = n;
739 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
740 if (ret < 0)
741 return ret;
743 for (i = 0; i < ret; i++) {
744 switch (msrs[i].index) {
745 case MSR_IA32_SYSENTER_CS:
746 env->sysenter_cs = msrs[i].data;
747 break;
748 case MSR_IA32_SYSENTER_ESP:
749 env->sysenter_esp = msrs[i].data;
750 break;
751 case MSR_IA32_SYSENTER_EIP:
752 env->sysenter_eip = msrs[i].data;
753 break;
754 case MSR_STAR:
755 env->star = msrs[i].data;
756 break;
757 #ifdef TARGET_X86_64
758 case MSR_CSTAR:
759 env->cstar = msrs[i].data;
760 break;
761 case MSR_KERNELGSBASE:
762 env->kernelgsbase = msrs[i].data;
763 break;
764 case MSR_FMASK:
765 env->fmask = msrs[i].data;
766 break;
767 case MSR_LSTAR:
768 env->lstar = msrs[i].data;
769 break;
770 #endif
771 case MSR_IA32_TSC:
772 env->tsc = msrs[i].data;
773 break;
774 case MSR_KVM_SYSTEM_TIME:
775 env->system_time_msr = msrs[i].data;
776 break;
777 case MSR_KVM_WALL_CLOCK:
778 env->wall_clock_msr = msrs[i].data;
779 break;
780 case MSR_VM_HSAVE_PA:
781 env->vm_hsave = msrs[i].data;
782 break;
786 return 0;
789 static int kvm_put_mp_state(CPUState *env)
791 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
793 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
796 static int kvm_get_mp_state(CPUState *env)
798 struct kvm_mp_state mp_state;
799 int ret;
801 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
802 if (ret < 0) {
803 return ret;
805 env->mp_state = mp_state.mp_state;
806 return 0;
808 #endif
810 static int kvm_put_vcpu_events(CPUState *env, int level)
812 #ifdef KVM_CAP_VCPU_EVENTS
813 struct kvm_vcpu_events events;
815 if (!kvm_has_vcpu_events()) {
816 return 0;
819 events.exception.injected = (env->exception_injected >= 0);
820 events.exception.nr = env->exception_injected;
821 events.exception.has_error_code = env->has_error_code;
822 events.exception.error_code = env->error_code;
824 events.interrupt.injected = (env->interrupt_injected >= 0);
825 events.interrupt.nr = env->interrupt_injected;
826 events.interrupt.soft = env->soft_interrupt;
828 events.nmi.injected = env->nmi_injected;
829 events.nmi.pending = env->nmi_pending;
830 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
832 events.sipi_vector = env->sipi_vector;
834 events.flags = 0;
835 if (level >= KVM_PUT_RESET_STATE) {
836 events.flags |=
837 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
840 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
841 #else
842 return 0;
843 #endif
846 static int kvm_get_vcpu_events(CPUState *env)
848 #ifdef KVM_CAP_VCPU_EVENTS
849 struct kvm_vcpu_events events;
850 int ret;
852 if (!kvm_has_vcpu_events()) {
853 return 0;
856 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
857 if (ret < 0) {
858 return ret;
860 env->exception_injected =
861 events.exception.injected ? events.exception.nr : -1;
862 env->has_error_code = events.exception.has_error_code;
863 env->error_code = events.exception.error_code;
865 env->interrupt_injected =
866 events.interrupt.injected ? events.interrupt.nr : -1;
867 env->soft_interrupt = events.interrupt.soft;
869 env->nmi_injected = events.nmi.injected;
870 env->nmi_pending = events.nmi.pending;
871 if (events.nmi.masked) {
872 env->hflags2 |= HF2_NMI_MASK;
873 } else {
874 env->hflags2 &= ~HF2_NMI_MASK;
877 env->sipi_vector = events.sipi_vector;
878 #endif
880 return 0;
883 static int kvm_guest_debug_workarounds(CPUState *env)
885 int ret = 0;
886 #ifdef KVM_CAP_SET_GUEST_DEBUG
887 unsigned long reinject_trap = 0;
889 if (!kvm_has_vcpu_events()) {
890 if (env->exception_injected == 1) {
891 reinject_trap = KVM_GUESTDBG_INJECT_DB;
892 } else if (env->exception_injected == 3) {
893 reinject_trap = KVM_GUESTDBG_INJECT_BP;
895 env->exception_injected = -1;
899 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
900 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
901 * by updating the debug state once again if single-stepping is on.
902 * Another reason to call kvm_update_guest_debug here is a pending debug
903 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
904 * reinject them via SET_GUEST_DEBUG.
906 if (reinject_trap ||
907 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
908 ret = kvm_update_guest_debug(env, reinject_trap);
910 #endif /* KVM_CAP_SET_GUEST_DEBUG */
911 return ret;
914 static int kvm_put_debugregs(CPUState *env)
916 #ifdef KVM_CAP_DEBUGREGS
917 struct kvm_debugregs dbgregs;
918 int i;
920 if (!kvm_has_debugregs()) {
921 return 0;
924 for (i = 0; i < 4; i++) {
925 dbgregs.db[i] = env->dr[i];
927 dbgregs.dr6 = env->dr[6];
928 dbgregs.dr7 = env->dr[7];
929 dbgregs.flags = 0;
931 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
932 #else
933 return 0;
934 #endif
937 static int kvm_get_debugregs(CPUState *env)
939 #ifdef KVM_CAP_DEBUGREGS
940 struct kvm_debugregs dbgregs;
941 int i, ret;
943 if (!kvm_has_debugregs()) {
944 return 0;
947 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
948 if (ret < 0) {
949 return ret;
951 for (i = 0; i < 4; i++) {
952 env->dr[i] = dbgregs.db[i];
954 env->dr[4] = env->dr[6] = dbgregs.dr6;
955 env->dr[5] = env->dr[7] = dbgregs.dr7;
956 #endif
958 return 0;
961 #ifdef KVM_UPSTREAM
962 int kvm_arch_put_registers(CPUState *env, int level)
964 int ret;
966 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
968 ret = kvm_getput_regs(env, 1);
969 if (ret < 0)
970 return ret;
972 ret = kvm_put_fpu(env);
973 if (ret < 0)
974 return ret;
976 ret = kvm_put_sregs(env);
977 if (ret < 0)
978 return ret;
980 ret = kvm_put_msrs(env, level);
981 if (ret < 0)
982 return ret;
984 if (level >= KVM_PUT_RESET_STATE) {
985 ret = kvm_put_mp_state(env);
986 if (ret < 0)
987 return ret;
990 ret = kvm_put_vcpu_events(env, level);
991 if (ret < 0)
992 return ret;
994 /* must be last */
995 ret = kvm_guest_debug_workarounds(env);
996 if (ret < 0)
997 return ret;
999 ret = kvm_put_debugregs(env);
1000 if (ret < 0)
1001 return ret;
1003 return 0;
1006 int kvm_arch_get_registers(CPUState *env)
1008 int ret;
1010 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1012 ret = kvm_getput_regs(env, 0);
1013 if (ret < 0)
1014 return ret;
1016 ret = kvm_get_fpu(env);
1017 if (ret < 0)
1018 return ret;
1020 ret = kvm_get_sregs(env);
1021 if (ret < 0)
1022 return ret;
1024 ret = kvm_get_msrs(env);
1025 if (ret < 0)
1026 return ret;
1028 ret = kvm_get_mp_state(env);
1029 if (ret < 0)
1030 return ret;
1032 ret = kvm_get_vcpu_events(env);
1033 if (ret < 0)
1034 return ret;
1036 ret = kvm_get_debugregs(env);
1037 if (ret < 0)
1038 return ret;
1040 return 0;
1043 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1045 /* Try to inject an interrupt if the guest can accept it */
1046 if (run->ready_for_interrupt_injection &&
1047 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1048 (env->eflags & IF_MASK)) {
1049 int irq;
1051 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1052 irq = cpu_get_pic_interrupt(env);
1053 if (irq >= 0) {
1054 struct kvm_interrupt intr;
1055 intr.irq = irq;
1056 /* FIXME: errors */
1057 DPRINTF("injected interrupt %d\n", irq);
1058 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1062 /* If we have an interrupt but the guest is not ready to receive an
1063 * interrupt, request an interrupt window exit. This will
1064 * cause a return to userspace as soon as the guest is ready to
1065 * receive interrupts. */
1066 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
1067 run->request_interrupt_window = 1;
1068 else
1069 run->request_interrupt_window = 0;
1071 DPRINTF("setting tpr\n");
1072 run->cr8 = cpu_get_apic_tpr(env);
1074 return 0;
1076 #endif
1078 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1080 if (run->if_flag)
1081 env->eflags |= IF_MASK;
1082 else
1083 env->eflags &= ~IF_MASK;
1085 cpu_set_apic_tpr(env, run->cr8);
1086 cpu_set_apic_base(env, run->apic_base);
1088 return 0;
1091 #ifdef KVM_UPSTREAM
1093 int kvm_arch_process_irqchip_events(CPUState *env)
1095 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1096 kvm_cpu_synchronize_state(env);
1097 do_cpu_init(env);
1098 env->exception_index = EXCP_HALTED;
1101 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1102 kvm_cpu_synchronize_state(env);
1103 do_cpu_sipi(env);
1106 return env->halted;
1109 static int kvm_handle_halt(CPUState *env)
1111 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1112 (env->eflags & IF_MASK)) &&
1113 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1114 env->halted = 1;
1115 env->exception_index = EXCP_HLT;
1116 return 0;
1119 return 1;
1122 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1124 int ret = 0;
1126 switch (run->exit_reason) {
1127 case KVM_EXIT_HLT:
1128 DPRINTF("handle_hlt\n");
1129 ret = kvm_handle_halt(env);
1130 break;
1133 return ret;
1135 #endif
1137 #ifdef KVM_CAP_SET_GUEST_DEBUG
1138 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1140 static const uint8_t int3 = 0xcc;
1142 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1143 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1144 return -EINVAL;
1145 return 0;
1148 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1150 uint8_t int3;
1152 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1153 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1154 return -EINVAL;
1155 return 0;
1158 static struct {
1159 target_ulong addr;
1160 int len;
1161 int type;
1162 } hw_breakpoint[4];
1164 static int nb_hw_breakpoint;
1166 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1168 int n;
1170 for (n = 0; n < nb_hw_breakpoint; n++)
1171 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1172 (hw_breakpoint[n].len == len || len == -1))
1173 return n;
1174 return -1;
1177 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1178 target_ulong len, int type)
1180 switch (type) {
1181 case GDB_BREAKPOINT_HW:
1182 len = 1;
1183 break;
1184 case GDB_WATCHPOINT_WRITE:
1185 case GDB_WATCHPOINT_ACCESS:
1186 switch (len) {
1187 case 1:
1188 break;
1189 case 2:
1190 case 4:
1191 case 8:
1192 if (addr & (len - 1))
1193 return -EINVAL;
1194 break;
1195 default:
1196 return -EINVAL;
1198 break;
1199 default:
1200 return -ENOSYS;
1203 if (nb_hw_breakpoint == 4)
1204 return -ENOBUFS;
1206 if (find_hw_breakpoint(addr, len, type) >= 0)
1207 return -EEXIST;
1209 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1210 hw_breakpoint[nb_hw_breakpoint].len = len;
1211 hw_breakpoint[nb_hw_breakpoint].type = type;
1212 nb_hw_breakpoint++;
1214 return 0;
1217 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1218 target_ulong len, int type)
1220 int n;
1222 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1223 if (n < 0)
1224 return -ENOENT;
1226 nb_hw_breakpoint--;
1227 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1229 return 0;
1232 void kvm_arch_remove_all_hw_breakpoints(void)
1234 nb_hw_breakpoint = 0;
1237 static CPUWatchpoint hw_watchpoint;
1239 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1241 int handle = 0;
1242 int n;
1244 if (arch_info->exception == 1) {
1245 if (arch_info->dr6 & (1 << 14)) {
1246 if (cpu_single_env->singlestep_enabled)
1247 handle = 1;
1248 } else {
1249 for (n = 0; n < 4; n++)
1250 if (arch_info->dr6 & (1 << n))
1251 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1252 case 0x0:
1253 handle = 1;
1254 break;
1255 case 0x1:
1256 handle = 1;
1257 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1258 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1259 hw_watchpoint.flags = BP_MEM_WRITE;
1260 break;
1261 case 0x3:
1262 handle = 1;
1263 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1264 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1265 hw_watchpoint.flags = BP_MEM_ACCESS;
1266 break;
1269 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1270 handle = 1;
1272 if (!handle) {
1273 cpu_synchronize_state(cpu_single_env);
1274 assert(cpu_single_env->exception_injected == -1);
1276 cpu_single_env->exception_injected = arch_info->exception;
1277 cpu_single_env->has_error_code = 0;
1280 return handle;
1283 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1285 const uint8_t type_code[] = {
1286 [GDB_BREAKPOINT_HW] = 0x0,
1287 [GDB_WATCHPOINT_WRITE] = 0x1,
1288 [GDB_WATCHPOINT_ACCESS] = 0x3
1290 const uint8_t len_code[] = {
1291 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1293 int n;
1295 if (kvm_sw_breakpoints_active(env))
1296 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1298 if (nb_hw_breakpoint > 0) {
1299 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1300 dbg->arch.debugreg[7] = 0x0600;
1301 for (n = 0; n < nb_hw_breakpoint; n++) {
1302 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1303 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1304 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1305 (len_code[hw_breakpoint[n].len] << (18 + n*4));
1309 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1311 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1313 return !(env->cr[0] & CR0_PE_MASK) ||
1314 ((env->segs[R_CS].selector & 3) != 3);
1317 #include "qemu-kvm-x86.c"