qemu-kvm: Synchronize states before reset
[qemu/qemu-dev-zwu.git] / kvm-all.c
blob7e407f0ddb72552d42c7696081b1926e7141811a
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
31 /* This check must be after config-host.h is included */
32 #ifdef CONFIG_EVENTFD
33 #include <sys/eventfd.h>
34 #endif
36 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
37 #define PAGE_SIZE TARGET_PAGE_SIZE
39 //#define DEBUG_KVM
41 #ifdef DEBUG_KVM
42 #define DPRINTF(fmt, ...) \
43 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
44 #else
45 #define DPRINTF(fmt, ...) \
46 do { } while (0)
47 #endif
49 #ifdef OBSOLETE_KVM_IMPL
51 typedef struct KVMSlot
53 target_phys_addr_t start_addr;
54 ram_addr_t memory_size;
55 ram_addr_t phys_offset;
56 int slot;
57 int flags;
58 } KVMSlot;
60 typedef struct kvm_dirty_log KVMDirtyLog;
62 struct KVMState
64 KVMSlot slots[32];
65 int fd;
66 int vmfd;
67 int coalesced_mmio;
68 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
69 int broken_set_mem_region;
70 int migration_log;
71 int vcpu_events;
72 int robust_singlestep;
73 int debugregs;
74 #ifdef KVM_CAP_SET_GUEST_DEBUG
75 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
76 #endif
77 int irqchip_in_kernel;
78 int pit_in_kernel;
79 int xsave, xcrs;
80 int many_ioeventfds;
83 KVMState *kvm_state;
86 static const KVMCapabilityInfo kvm_required_capabilites[] = {
87 KVM_CAP_INFO(USER_MEMORY),
88 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
89 KVM_CAP_LAST_INFO
92 #endif
94 static KVMSlot *kvm_alloc_slot(KVMState *s)
96 int i;
98 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
99 if (s->slots[i].memory_size == 0) {
100 return &s->slots[i];
104 fprintf(stderr, "%s: no free slot available\n", __func__);
105 abort();
108 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
109 target_phys_addr_t start_addr,
110 target_phys_addr_t end_addr)
112 int i;
114 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
115 KVMSlot *mem = &s->slots[i];
117 if (start_addr == mem->start_addr &&
118 end_addr == mem->start_addr + mem->memory_size) {
119 return mem;
123 return NULL;
127 * Find overlapping slot with lowest start address
129 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
130 target_phys_addr_t start_addr,
131 target_phys_addr_t end_addr)
133 KVMSlot *found = NULL;
134 int i;
136 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
137 KVMSlot *mem = &s->slots[i];
139 if (mem->memory_size == 0 ||
140 (found && found->start_addr < mem->start_addr)) {
141 continue;
144 if (end_addr > mem->start_addr &&
145 start_addr < mem->start_addr + mem->memory_size) {
146 found = mem;
150 return found;
153 int kvm_physical_memory_addr_from_ram(KVMState *s, ram_addr_t ram_addr,
154 target_phys_addr_t *phys_addr)
156 int i;
158 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
159 KVMSlot *mem = &s->slots[i];
161 if (ram_addr >= mem->phys_offset &&
162 ram_addr < mem->phys_offset + mem->memory_size) {
163 *phys_addr = mem->start_addr + (ram_addr - mem->phys_offset);
164 return 1;
168 return 0;
171 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
173 struct kvm_userspace_memory_region mem;
175 mem.slot = slot->slot;
176 mem.guest_phys_addr = slot->start_addr;
177 mem.memory_size = slot->memory_size;
178 mem.userspace_addr = (unsigned long)qemu_safe_ram_ptr(slot->phys_offset);
179 mem.flags = slot->flags;
180 if (s->migration_log) {
181 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
183 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
186 #ifdef OBSOLETE_KVM_IMPL
187 static void kvm_reset_vcpu(void *opaque)
189 CPUState *env = opaque;
191 kvm_arch_reset_vcpu(env);
193 #endif
195 int kvm_irqchip_in_kernel(void)
197 return kvm_state->irqchip_in_kernel;
200 int kvm_pit_in_kernel(void)
202 return kvm_state->pit_in_kernel;
205 #ifdef OBSOLETE_KVM_IMPL
206 int kvm_init_vcpu(CPUState *env)
208 KVMState *s = kvm_state;
209 long mmap_size;
210 int ret;
212 DPRINTF("kvm_init_vcpu\n");
214 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
215 if (ret < 0) {
216 DPRINTF("kvm_create_vcpu failed\n");
217 goto err;
220 env->kvm_fd = ret;
221 env->kvm_state = s;
222 env->kvm_vcpu_dirty = 1;
224 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
225 if (mmap_size < 0) {
226 ret = mmap_size;
227 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
228 goto err;
231 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
232 env->kvm_fd, 0);
233 if (env->kvm_run == MAP_FAILED) {
234 ret = -errno;
235 DPRINTF("mmap'ing vcpu state failed\n");
236 goto err;
239 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
240 s->coalesced_mmio_ring =
241 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
244 ret = kvm_arch_init_vcpu(env);
245 if (ret == 0) {
246 qemu_register_reset(kvm_reset_vcpu, env);
247 kvm_arch_reset_vcpu(env);
249 err:
250 return ret;
252 #endif
255 * dirty pages logging control
257 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
258 ram_addr_t size, int flags, int mask)
260 KVMState *s = kvm_state;
261 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
262 int old_flags;
264 if (mem == NULL) {
265 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
266 TARGET_FMT_plx "\n", __func__, phys_addr,
267 (target_phys_addr_t)(phys_addr + size - 1));
268 return -EINVAL;
271 old_flags = mem->flags;
273 flags = (mem->flags & ~mask) | flags;
274 mem->flags = flags;
276 /* If nothing changed effectively, no need to issue ioctl */
277 if (s->migration_log) {
278 flags |= KVM_MEM_LOG_DIRTY_PAGES;
280 if (flags == old_flags) {
281 return 0;
284 return kvm_set_user_memory_region(s, mem);
287 static int kvm_log_start(CPUPhysMemoryClient *client,
288 target_phys_addr_t phys_addr, ram_addr_t size)
290 return kvm_dirty_pages_log_change(phys_addr, size, KVM_MEM_LOG_DIRTY_PAGES,
291 KVM_MEM_LOG_DIRTY_PAGES);
294 static int kvm_log_stop(CPUPhysMemoryClient *client,
295 target_phys_addr_t phys_addr, ram_addr_t size)
297 return kvm_dirty_pages_log_change(phys_addr, size, 0,
298 KVM_MEM_LOG_DIRTY_PAGES);
301 static int kvm_set_migration_log(int enable)
303 KVMState *s = kvm_state;
304 KVMSlot *mem;
305 int i, err;
307 s->migration_log = enable;
309 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
310 mem = &s->slots[i];
312 if (!mem->memory_size) {
313 continue;
315 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
316 continue;
318 err = kvm_set_user_memory_region(s, mem);
319 if (err) {
320 return err;
323 return 0;
326 /* get kvm's dirty pages bitmap and update qemu's */
327 static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
328 unsigned long *bitmap,
329 unsigned long offset,
330 unsigned long mem_size)
332 unsigned int i, j;
333 unsigned long page_number, addr, addr1, c;
334 ram_addr_t ram_addr;
335 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
336 HOST_LONG_BITS;
339 * bitmap-traveling is faster than memory-traveling (for addr...)
340 * especially when most of the memory is not dirty.
342 for (i = 0; i < len; i++) {
343 if (bitmap[i] != 0) {
344 c = leul_to_cpu(bitmap[i]);
345 do {
346 j = ffsl(c) - 1;
347 c &= ~(1ul << j);
348 page_number = i * HOST_LONG_BITS + j;
349 addr1 = page_number * TARGET_PAGE_SIZE;
350 addr = offset + addr1;
351 ram_addr = cpu_get_physical_page_desc(addr);
352 cpu_physical_memory_set_dirty(ram_addr);
353 } while (c != 0);
356 return 0;
359 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
362 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
363 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
364 * This means all bits are set to dirty.
366 * @start_add: start of logged region.
367 * @end_addr: end of logged region.
369 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
370 target_phys_addr_t end_addr)
372 KVMState *s = kvm_state;
373 unsigned long size, allocated_size = 0;
374 KVMDirtyLog d;
375 KVMSlot *mem;
376 int ret = 0;
378 d.dirty_bitmap = NULL;
379 while (start_addr < end_addr) {
380 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
381 if (mem == NULL) {
382 break;
385 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), HOST_LONG_BITS) / 8;
386 if (!d.dirty_bitmap) {
387 d.dirty_bitmap = qemu_malloc(size);
388 } else if (size > allocated_size) {
389 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
391 allocated_size = size;
392 memset(d.dirty_bitmap, 0, allocated_size);
394 d.slot = mem->slot;
396 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
397 DPRINTF("ioctl failed %d\n", errno);
398 ret = -1;
399 break;
402 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
403 mem->start_addr, mem->memory_size);
404 start_addr = mem->start_addr + mem->memory_size;
406 qemu_free(d.dirty_bitmap);
408 return ret;
411 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
413 int ret = -ENOSYS;
414 KVMState *s = kvm_state;
416 if (s->coalesced_mmio) {
417 struct kvm_coalesced_mmio_zone zone;
419 zone.addr = start;
420 zone.size = size;
422 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
425 return ret;
428 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
430 int ret = -ENOSYS;
431 KVMState *s = kvm_state;
433 if (s->coalesced_mmio) {
434 struct kvm_coalesced_mmio_zone zone;
436 zone.addr = start;
437 zone.size = size;
439 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
442 return ret;
445 int kvm_check_extension(KVMState *s, unsigned int extension)
447 int ret;
449 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
450 if (ret < 0) {
451 ret = 0;
454 return ret;
457 static int kvm_check_many_ioeventfds(void)
459 /* Userspace can use ioeventfd for io notification. This requires a host
460 * that supports eventfd(2) and an I/O thread; since eventfd does not
461 * support SIGIO it cannot interrupt the vcpu.
463 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
464 * can avoid creating too many ioeventfds.
466 #if defined(CONFIG_EVENTFD) /* && defined(CONFIG_IOTHREAD) */
467 int ioeventfds[7];
468 int i, ret = 0;
469 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
470 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
471 if (ioeventfds[i] < 0) {
472 break;
474 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
475 if (ret < 0) {
476 close(ioeventfds[i]);
477 break;
481 /* Decide whether many devices are supported or not */
482 ret = i == ARRAY_SIZE(ioeventfds);
484 while (i-- > 0) {
485 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
486 close(ioeventfds[i]);
488 return ret;
489 #else
490 return 0;
491 #endif
494 #ifdef OBSOLETE_KVM_IMPL
495 static const KVMCapabilityInfo *
496 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
498 while (list->name) {
499 if (!kvm_check_extension(s, list->value)) {
500 return list;
502 list++;
504 return NULL;
506 #endif
508 static void kvm_set_phys_mem(target_phys_addr_t start_addr, ram_addr_t size,
509 ram_addr_t phys_offset)
511 KVMState *s = kvm_state;
512 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
513 KVMSlot *mem, old;
514 int err;
516 /* kvm works in page size chunks, but the function may be called
517 with sub-page size and unaligned start address. */
518 size = TARGET_PAGE_ALIGN(size);
519 start_addr = TARGET_PAGE_ALIGN(start_addr);
521 /* KVM does not support read-only slots */
522 phys_offset &= ~IO_MEM_ROM;
524 while (1) {
525 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
526 if (!mem) {
527 break;
530 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
531 (start_addr + size <= mem->start_addr + mem->memory_size) &&
532 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
533 /* The new slot fits into the existing one and comes with
534 * identical parameters - nothing to be done. */
535 return;
538 old = *mem;
540 /* unregister the overlapping slot */
541 mem->memory_size = 0;
542 err = kvm_set_user_memory_region(s, mem);
543 if (err) {
544 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
545 __func__, strerror(-err));
546 abort();
549 /* Workaround for older KVM versions: we can't join slots, even not by
550 * unregistering the previous ones and then registering the larger
551 * slot. We have to maintain the existing fragmentation. Sigh.
553 * This workaround assumes that the new slot starts at the same
554 * address as the first existing one. If not or if some overlapping
555 * slot comes around later, we will fail (not seen in practice so far)
556 * - and actually require a recent KVM version. */
557 if (s->broken_set_mem_region &&
558 old.start_addr == start_addr && old.memory_size < size &&
559 flags < IO_MEM_UNASSIGNED) {
560 mem = kvm_alloc_slot(s);
561 mem->memory_size = old.memory_size;
562 mem->start_addr = old.start_addr;
563 mem->phys_offset = old.phys_offset;
564 mem->flags = 0;
566 err = kvm_set_user_memory_region(s, mem);
567 if (err) {
568 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
569 strerror(-err));
570 abort();
573 start_addr += old.memory_size;
574 phys_offset += old.memory_size;
575 size -= old.memory_size;
576 continue;
579 /* register prefix slot */
580 if (old.start_addr < start_addr) {
581 mem = kvm_alloc_slot(s);
582 mem->memory_size = start_addr - old.start_addr;
583 mem->start_addr = old.start_addr;
584 mem->phys_offset = old.phys_offset;
585 mem->flags = 0;
587 err = kvm_set_user_memory_region(s, mem);
588 if (err) {
589 fprintf(stderr, "%s: error registering prefix slot: %s\n",
590 __func__, strerror(-err));
591 abort();
595 /* register suffix slot */
596 if (old.start_addr + old.memory_size > start_addr + size) {
597 ram_addr_t size_delta;
599 mem = kvm_alloc_slot(s);
600 mem->start_addr = start_addr + size;
601 size_delta = mem->start_addr - old.start_addr;
602 mem->memory_size = old.memory_size - size_delta;
603 mem->phys_offset = old.phys_offset + size_delta;
604 mem->flags = 0;
606 err = kvm_set_user_memory_region(s, mem);
607 if (err) {
608 fprintf(stderr, "%s: error registering suffix slot: %s\n",
609 __func__, strerror(-err));
610 abort();
615 /* in case the KVM bug workaround already "consumed" the new slot */
616 if (!size) {
617 return;
619 /* KVM does not need to know about this memory */
620 if (flags >= IO_MEM_UNASSIGNED) {
621 return;
623 mem = kvm_alloc_slot(s);
624 mem->memory_size = size;
625 mem->start_addr = start_addr;
626 mem->phys_offset = phys_offset;
627 mem->flags = 0;
629 err = kvm_set_user_memory_region(s, mem);
630 if (err) {
631 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
632 strerror(-err));
633 abort();
637 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
638 target_phys_addr_t start_addr,
639 ram_addr_t size, ram_addr_t phys_offset)
641 kvm_set_phys_mem(start_addr, size, phys_offset);
644 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
645 target_phys_addr_t start_addr,
646 target_phys_addr_t end_addr)
648 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
651 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
652 int enable)
654 return kvm_set_migration_log(enable);
657 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
658 .set_memory = kvm_client_set_memory,
659 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
660 .migration_log = kvm_client_migration_log,
661 .log_start = kvm_log_start,
662 .log_stop = kvm_log_stop,
665 void kvm_cpu_register_phys_memory_client(void)
667 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
670 #ifdef OBSOLETE_KVM_IMPL
672 int kvm_init(void)
674 static const char upgrade_note[] =
675 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
676 "(see http://sourceforge.net/projects/kvm).\n";
677 KVMState *s;
678 const KVMCapabilityInfo *missing_cap;
679 int ret;
680 int i;
682 s = qemu_mallocz(sizeof(KVMState));
684 #ifdef KVM_CAP_SET_GUEST_DEBUG
685 QTAILQ_INIT(&s->kvm_sw_breakpoints);
686 #endif
687 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
688 s->slots[i].slot = i;
690 s->vmfd = -1;
691 s->fd = qemu_open("/dev/kvm", O_RDWR);
692 if (s->fd == -1) {
693 fprintf(stderr, "Could not access KVM kernel module: %m\n");
694 ret = -errno;
695 goto err;
698 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
699 if (ret < KVM_API_VERSION) {
700 if (ret > 0) {
701 ret = -EINVAL;
703 fprintf(stderr, "kvm version too old\n");
704 goto err;
707 if (ret > KVM_API_VERSION) {
708 ret = -EINVAL;
709 fprintf(stderr, "kvm version not supported\n");
710 goto err;
713 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
714 if (s->vmfd < 0) {
715 #ifdef TARGET_S390X
716 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
717 "your host kernel command line\n");
718 #endif
719 goto err;
722 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
723 if (!missing_cap) {
724 missing_cap =
725 kvm_check_extension_list(s, kvm_arch_required_capabilities);
727 if (missing_cap) {
728 ret = -EINVAL;
729 fprintf(stderr, "kvm does not support %s\n%s",
730 missing_cap->name, upgrade_note);
731 goto err;
734 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
736 s->broken_set_mem_region = 1;
737 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
738 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
739 if (ret > 0) {
740 s->broken_set_mem_region = 0;
742 #endif
744 s->vcpu_events = 0;
745 #ifdef KVM_CAP_VCPU_EVENTS
746 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
747 #endif
749 s->robust_singlestep = 0;
750 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
751 s->robust_singlestep =
752 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
753 #endif
755 s->debugregs = 0;
756 #ifdef KVM_CAP_DEBUGREGS
757 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
758 #endif
760 s->xsave = 0;
761 #ifdef KVM_CAP_XSAVE
762 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
763 #endif
765 s->xcrs = 0;
766 #ifdef KVM_CAP_XCRS
767 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
768 #endif
770 ret = kvm_arch_init(s);
771 if (ret < 0) {
772 goto err;
775 kvm_state = s;
776 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
778 s->many_ioeventfds = kvm_check_many_ioeventfds();
780 return 0;
782 err:
783 if (s) {
784 if (s->vmfd != -1) {
785 close(s->vmfd);
787 if (s->fd != -1) {
788 close(s->fd);
791 qemu_free(s);
793 return ret;
795 #endif
797 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
798 uint32_t count)
800 int i;
801 uint8_t *ptr = data;
803 for (i = 0; i < count; i++) {
804 if (direction == KVM_EXIT_IO_IN) {
805 switch (size) {
806 case 1:
807 stb_p(ptr, cpu_inb(port));
808 break;
809 case 2:
810 stw_p(ptr, cpu_inw(port));
811 break;
812 case 4:
813 stl_p(ptr, cpu_inl(port));
814 break;
816 } else {
817 switch (size) {
818 case 1:
819 cpu_outb(port, ldub_p(ptr));
820 break;
821 case 2:
822 cpu_outw(port, lduw_p(ptr));
823 break;
824 case 4:
825 cpu_outl(port, ldl_p(ptr));
826 break;
830 ptr += size;
834 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
835 static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
837 fprintf(stderr, "KVM internal error.");
838 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
839 int i;
841 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
842 for (i = 0; i < run->internal.ndata; ++i) {
843 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
844 i, (uint64_t)run->internal.data[i]);
846 } else {
847 fprintf(stderr, "\n");
849 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
850 fprintf(stderr, "emulation failure\n");
851 if (!kvm_arch_stop_on_emulation_error(env)) {
852 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
853 return EXCP_INTERRUPT;
856 /* FIXME: Should trigger a qmp message to let management know
857 * something went wrong.
859 return -1;
861 #endif
863 void kvm_flush_coalesced_mmio_buffer(void)
865 KVMState *s = kvm_state;
866 if (s->coalesced_mmio_ring) {
867 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
868 while (ring->first != ring->last) {
869 struct kvm_coalesced_mmio *ent;
871 ent = &ring->coalesced_mmio[ring->first];
873 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
874 smp_wmb();
875 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
880 #ifdef OBSOLETE_KVM_IMPL
882 static void do_kvm_cpu_synchronize_state(void *_env)
884 CPUState *env = _env;
886 if (!env->kvm_vcpu_dirty) {
887 kvm_arch_get_registers(env);
888 env->kvm_vcpu_dirty = 1;
892 void kvm_cpu_synchronize_state(CPUState *env)
894 if (!env->kvm_vcpu_dirty) {
895 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
899 void kvm_cpu_synchronize_post_reset(CPUState *env)
901 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
902 env->kvm_vcpu_dirty = 0;
905 void kvm_cpu_synchronize_post_init(CPUState *env)
907 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
908 env->kvm_vcpu_dirty = 0;
911 int kvm_cpu_exec(CPUState *env)
913 struct kvm_run *run = env->kvm_run;
914 int ret, run_ret;
916 DPRINTF("kvm_cpu_exec()\n");
918 if (kvm_arch_process_async_events(env)) {
919 env->exit_request = 0;
920 return EXCP_HLT;
923 cpu_single_env = env;
925 do {
926 if (env->kvm_vcpu_dirty) {
927 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
928 env->kvm_vcpu_dirty = 0;
931 kvm_arch_pre_run(env, run);
932 if (env->exit_request) {
933 DPRINTF("interrupt exit requested\n");
935 * KVM requires us to reenter the kernel after IO exits to complete
936 * instruction emulation. This self-signal will ensure that we
937 * leave ASAP again.
939 qemu_cpu_kick_self();
941 cpu_single_env = NULL;
942 qemu_mutex_unlock_iothread();
944 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
946 qemu_mutex_lock_iothread();
947 cpu_single_env = env;
948 kvm_arch_post_run(env, run);
950 kvm_flush_coalesced_mmio_buffer();
952 if (run_ret < 0) {
953 if (run_ret == -EINTR || run_ret == -EAGAIN) {
954 DPRINTF("io window exit\n");
955 ret = EXCP_INTERRUPT;
956 break;
958 DPRINTF("kvm run failed %s\n", strerror(-run_ret));
959 abort();
962 switch (run->exit_reason) {
963 case KVM_EXIT_IO:
964 DPRINTF("handle_io\n");
965 kvm_handle_io(run->io.port,
966 (uint8_t *)run + run->io.data_offset,
967 run->io.direction,
968 run->io.size,
969 run->io.count);
970 ret = 0;
971 break;
972 case KVM_EXIT_MMIO:
973 DPRINTF("handle_mmio\n");
974 cpu_physical_memory_rw(run->mmio.phys_addr,
975 run->mmio.data,
976 run->mmio.len,
977 run->mmio.is_write);
978 ret = 0;
979 break;
980 case KVM_EXIT_IRQ_WINDOW_OPEN:
981 DPRINTF("irq_window_open\n");
982 ret = EXCP_INTERRUPT;
983 break;
984 case KVM_EXIT_SHUTDOWN:
985 DPRINTF("shutdown\n");
986 qemu_system_reset_request();
987 ret = EXCP_INTERRUPT;
988 break;
989 case KVM_EXIT_UNKNOWN:
990 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
991 (uint64_t)run->hw.hardware_exit_reason);
992 ret = -1;
993 break;
994 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
995 case KVM_EXIT_INTERNAL_ERROR:
996 ret = kvm_handle_internal_error(env, run);
997 break;
998 #endif
999 default:
1000 DPRINTF("kvm_arch_handle_exit\n");
1001 ret = kvm_arch_handle_exit(env, run);
1002 break;
1004 } while (ret == 0);
1006 if (ret < 0) {
1007 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1008 vm_stop(VMSTOP_PANIC);
1011 env->exit_request = 0;
1012 cpu_single_env = NULL;
1013 return ret;
1016 #endif
1017 int kvm_ioctl(KVMState *s, int type, ...)
1019 int ret;
1020 void *arg;
1021 va_list ap;
1023 va_start(ap, type);
1024 arg = va_arg(ap, void *);
1025 va_end(ap);
1027 ret = ioctl(s->fd, type, arg);
1028 if (ret == -1) {
1029 ret = -errno;
1031 return ret;
1034 int kvm_vm_ioctl(KVMState *s, int type, ...)
1036 int ret;
1037 void *arg;
1038 va_list ap;
1040 va_start(ap, type);
1041 arg = va_arg(ap, void *);
1042 va_end(ap);
1044 ret = ioctl(s->vmfd, type, arg);
1045 if (ret == -1) {
1046 ret = -errno;
1048 return ret;
1051 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1053 int ret;
1054 void *arg;
1055 va_list ap;
1057 va_start(ap, type);
1058 arg = va_arg(ap, void *);
1059 va_end(ap);
1061 ret = ioctl(env->kvm_fd, type, arg);
1062 if (ret == -1) {
1063 ret = -errno;
1065 return ret;
1068 int kvm_has_sync_mmu(void)
1070 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1073 int kvm_has_vcpu_events(void)
1075 return kvm_state->vcpu_events;
1078 int kvm_has_robust_singlestep(void)
1080 return kvm_state->robust_singlestep;
1083 int kvm_has_debugregs(void)
1085 return kvm_state->debugregs;
1088 int kvm_has_xsave(void)
1090 return kvm_state->xsave;
1093 int kvm_has_xcrs(void)
1095 return kvm_state->xcrs;
1098 int kvm_has_many_ioeventfds(void)
1100 if (!kvm_enabled()) {
1101 return 0;
1103 return kvm_state->many_ioeventfds;
1106 void kvm_setup_guest_memory(void *start, size_t size)
1108 if (!kvm_has_sync_mmu()) {
1109 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1111 if (ret) {
1112 perror("qemu_madvise");
1113 fprintf(stderr,
1114 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1115 exit(1);
1120 #ifdef KVM_CAP_SET_GUEST_DEBUG
1121 #ifndef OBSOLETE_KVM_IMPL
1122 #define run_on_cpu on_vcpu
1123 #endif /* !OBSOLETE_KVM_IMPL */
1125 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1126 target_ulong pc)
1128 struct kvm_sw_breakpoint *bp;
1130 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1131 if (bp->pc == pc) {
1132 return bp;
1135 return NULL;
1138 int kvm_sw_breakpoints_active(CPUState *env)
1140 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1143 struct kvm_set_guest_debug_data {
1144 struct kvm_guest_debug dbg;
1145 CPUState *env;
1146 int err;
1149 static void kvm_invoke_set_guest_debug(void *data)
1151 struct kvm_set_guest_debug_data *dbg_data = data;
1152 CPUState *env = dbg_data->env;
1154 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1157 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1159 struct kvm_set_guest_debug_data data;
1161 data.dbg.control = reinject_trap;
1163 if (env->singlestep_enabled) {
1164 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1166 kvm_arch_update_guest_debug(env, &data.dbg);
1167 data.env = env;
1169 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1170 return data.err;
1173 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1174 target_ulong len, int type)
1176 struct kvm_sw_breakpoint *bp;
1177 CPUState *env;
1178 int err;
1180 if (type == GDB_BREAKPOINT_SW) {
1181 bp = kvm_find_sw_breakpoint(current_env, addr);
1182 if (bp) {
1183 bp->use_count++;
1184 return 0;
1187 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1188 if (!bp) {
1189 return -ENOMEM;
1192 bp->pc = addr;
1193 bp->use_count = 1;
1194 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1195 if (err) {
1196 free(bp);
1197 return err;
1200 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1201 bp, entry);
1202 } else {
1203 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1204 if (err) {
1205 return err;
1209 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1210 err = kvm_update_guest_debug(env, 0);
1211 if (err) {
1212 return err;
1215 return 0;
1218 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1219 target_ulong len, int type)
1221 struct kvm_sw_breakpoint *bp;
1222 CPUState *env;
1223 int err;
1225 if (type == GDB_BREAKPOINT_SW) {
1226 bp = kvm_find_sw_breakpoint(current_env, addr);
1227 if (!bp) {
1228 return -ENOENT;
1231 if (bp->use_count > 1) {
1232 bp->use_count--;
1233 return 0;
1236 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1237 if (err) {
1238 return err;
1241 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1242 qemu_free(bp);
1243 } else {
1244 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1245 if (err) {
1246 return err;
1250 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1251 err = kvm_update_guest_debug(env, 0);
1252 if (err) {
1253 return err;
1256 return 0;
1259 void kvm_remove_all_breakpoints(CPUState *current_env)
1261 struct kvm_sw_breakpoint *bp, *next;
1262 KVMState *s = current_env->kvm_state;
1263 CPUState *env;
1265 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1266 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1267 /* Try harder to find a CPU that currently sees the breakpoint. */
1268 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1269 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1270 break;
1275 kvm_arch_remove_all_hw_breakpoints();
1277 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1278 kvm_update_guest_debug(env, 0);
1282 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1284 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1286 return -EINVAL;
1289 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1290 target_ulong len, int type)
1292 return -EINVAL;
1295 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1296 target_ulong len, int type)
1298 return -EINVAL;
1301 void kvm_remove_all_breakpoints(CPUState *current_env)
1304 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1306 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1308 struct kvm_signal_mask *sigmask;
1309 int r;
1311 if (!sigset) {
1312 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1315 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1317 sigmask->len = 8;
1318 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1319 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1320 free(sigmask);
1322 return r;
1325 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1327 #ifdef KVM_IOEVENTFD
1328 int ret;
1329 struct kvm_ioeventfd iofd;
1331 iofd.datamatch = val;
1332 iofd.addr = addr;
1333 iofd.len = 4;
1334 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1335 iofd.fd = fd;
1337 if (!kvm_enabled()) {
1338 return -ENOSYS;
1341 if (!assign) {
1342 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1345 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1347 if (ret < 0) {
1348 return -errno;
1351 return 0;
1352 #else
1353 return -ENOSYS;
1354 #endif
1357 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1359 #ifdef KVM_IOEVENTFD
1360 struct kvm_ioeventfd kick = {
1361 .datamatch = val,
1362 .addr = addr,
1363 .len = 2,
1364 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1365 .fd = fd,
1367 int r;
1368 if (!kvm_enabled()) {
1369 return -ENOSYS;
1371 if (!assign) {
1372 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1374 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1375 if (r < 0) {
1376 return r;
1378 return 0;
1379 #else
1380 return -ENOSYS;
1381 #endif
1384 #if defined(KVM_IRQFD)
1385 int kvm_set_irqfd(int gsi, int fd, bool assigned)
1387 struct kvm_irqfd irqfd = {
1388 .fd = fd,
1389 .gsi = gsi,
1390 .flags = assigned ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1392 int r;
1393 if (!kvm_enabled() || !kvm_irqchip_in_kernel())
1394 return -ENOSYS;
1396 r = kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd);
1397 if (r < 0)
1398 return r;
1399 return 0;
1401 #endif
1403 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1405 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1408 int kvm_on_sigbus(int code, void *addr)
1410 return kvm_arch_on_sigbus(code, addr);
1413 #undef PAGE_SIZE
1414 #include "qemu-kvm.c"