qemu-kvm-x86.c: remove extraneous line continuation
[qemu/qemu-dev-zwu.git] / qemu-kvm-x86.c
blobc5d44e0a8b8fe092797a6d68d46d75b8eb3def8f
1 /*
2 * qemu/kvm integration, x86 specific code
4 * Copyright (C) 2006-2008 Qumranet Technologies
6 * Licensed under the terms of the GNU GPL version 2 or higher.
7 */
9 #include "config.h"
10 #include "config-host.h"
12 #include <string.h>
13 #include "hw/hw.h"
14 #include "gdbstub.h"
15 #include <sys/io.h>
17 #include "qemu-kvm.h"
18 #include "libkvm.h"
19 #include <pthread.h>
20 #include <sys/utsname.h>
21 #include <linux/kvm_para.h>
22 #include <sys/ioctl.h>
24 #include "kvm.h"
25 #include "hw/apic.h"
27 #define MSR_IA32_TSC 0x10
29 static struct kvm_msr_list *kvm_msr_list;
30 extern unsigned int kvm_shadow_memory;
31 static int kvm_has_msr_star;
32 static int kvm_has_vm_hsave_pa;
34 static int lm_capable_kernel;
36 int kvm_set_tss_addr(kvm_context_t kvm, unsigned long addr)
38 int r;
40 * Tell fw_cfg to notify the BIOS to reserve the range.
42 if (e820_add_entry(addr, 0x4000, E820_RESERVED) < 0) {
43 perror("e820_add_entry() table is full");
44 exit(1);
47 r = kvm_vm_ioctl(kvm_state, KVM_SET_TSS_ADDR, addr);
48 if (r < 0) {
49 fprintf(stderr, "kvm_set_tss_addr: %m\n");
50 return r;
52 return 0;
55 static int kvm_init_tss(kvm_context_t kvm)
57 int r;
59 r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
60 if (r > 0) {
62 * this address is 3 pages before the bios, and the bios should present
63 * as unavaible memory
65 r = kvm_set_tss_addr(kvm, 0xfeffd000);
66 if (r < 0) {
67 fprintf(stderr, "kvm_init_tss: unable to set tss addr\n");
68 return r;
70 } else {
71 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
73 return 0;
76 static int kvm_set_identity_map_addr(kvm_context_t kvm, uint64_t addr)
78 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
79 int r;
81 r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_SET_IDENTITY_MAP_ADDR);
82 if (r > 0) {
83 r = kvm_vm_ioctl(kvm_state, KVM_SET_IDENTITY_MAP_ADDR, &addr);
84 if (r == -1) {
85 fprintf(stderr, "kvm_set_identity_map_addr: %m\n");
86 return -errno;
88 return 0;
90 #endif
91 return -ENOSYS;
94 static int kvm_init_identity_map_page(kvm_context_t kvm)
96 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
97 int r;
99 r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_SET_IDENTITY_MAP_ADDR);
100 if (r > 0) {
102 * this address is 4 pages before the bios, and the bios should present
103 * as unavaible memory
105 r = kvm_set_identity_map_addr(kvm, 0xfeffc000);
106 if (r < 0) {
107 fprintf(stderr, "kvm_init_identity_map_page: "
108 "unable to set identity mapping addr\n");
109 return r;
112 #endif
113 return 0;
116 static int kvm_create_pit(kvm_context_t kvm)
118 #ifdef KVM_CAP_PIT
119 int r;
121 kvm_state->pit_in_kernel = 0;
122 if (!kvm->no_pit_creation) {
123 r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_PIT);
124 if (r > 0) {
125 r = kvm_vm_ioctl(kvm_state, KVM_CREATE_PIT);
126 if (r >= 0)
127 kvm_state->pit_in_kernel = 1;
128 else {
129 fprintf(stderr, "Create kernel PIC irqchip failed\n");
130 return r;
134 #endif
135 return 0;
138 int kvm_arch_create(kvm_context_t kvm, unsigned long phys_mem_bytes,
139 void **vm_mem)
141 int r = 0;
143 r = kvm_init_tss(kvm);
144 if (r < 0)
145 return r;
147 r = kvm_init_identity_map_page(kvm);
148 if (r < 0)
149 return r;
151 r = kvm_create_pit(kvm);
152 if (r < 0)
153 return r;
155 r = kvm_init_coalesced_mmio(kvm);
156 if (r < 0)
157 return r;
159 return 0;
162 #ifdef KVM_EXIT_TPR_ACCESS
164 static int kvm_handle_tpr_access(CPUState *env)
166 struct kvm_run *run = env->kvm_run;
167 kvm_tpr_access_report(env,
168 run->tpr_access.rip,
169 run->tpr_access.is_write);
170 return 0;
174 int kvm_enable_vapic(CPUState *env, uint64_t vapic)
176 struct kvm_vapic_addr va = {
177 .vapic_addr = vapic,
180 return kvm_vcpu_ioctl(env, KVM_SET_VAPIC_ADDR, &va);
183 #endif
185 int kvm_arch_run(CPUState *env)
187 int r = 0;
188 struct kvm_run *run = env->kvm_run;
190 switch (run->exit_reason) {
191 #ifdef KVM_EXIT_SET_TPR
192 case KVM_EXIT_SET_TPR:
193 break;
194 #endif
195 #ifdef KVM_EXIT_TPR_ACCESS
196 case KVM_EXIT_TPR_ACCESS:
197 r = kvm_handle_tpr_access(env);
198 break;
199 #endif
200 default:
201 r = 1;
202 break;
205 return r;
208 #ifdef KVM_CAP_IRQCHIP
210 int kvm_get_lapic(CPUState *env, struct kvm_lapic_state *s)
212 int r = 0;
214 if (!kvm_irqchip_in_kernel())
215 return r;
217 r = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, s);
218 if (r < 0)
219 fprintf(stderr, "KVM_GET_LAPIC failed\n");
220 return r;
223 int kvm_set_lapic(CPUState *env, struct kvm_lapic_state *s)
225 int r = 0;
227 if (!kvm_irqchip_in_kernel())
228 return 0;
230 r = kvm_vcpu_ioctl(env, KVM_SET_LAPIC, s);
232 if (r < 0)
233 fprintf(stderr, "KVM_SET_LAPIC failed\n");
234 return r;
237 #endif
239 #ifdef KVM_CAP_PIT
241 int kvm_get_pit(kvm_context_t kvm, struct kvm_pit_state *s)
243 if (!kvm_pit_in_kernel())
244 return 0;
245 return kvm_vm_ioctl(kvm_state, KVM_GET_PIT, s);
248 int kvm_set_pit(kvm_context_t kvm, struct kvm_pit_state *s)
250 if (!kvm_pit_in_kernel())
251 return 0;
252 return kvm_vm_ioctl(kvm_state, KVM_SET_PIT, s);
255 #ifdef KVM_CAP_PIT_STATE2
256 int kvm_get_pit2(kvm_context_t kvm, struct kvm_pit_state2 *ps2)
258 if (!kvm_pit_in_kernel())
259 return 0;
260 return kvm_vm_ioctl(kvm_state, KVM_GET_PIT2, ps2);
263 int kvm_set_pit2(kvm_context_t kvm, struct kvm_pit_state2 *ps2)
265 if (!kvm_pit_in_kernel())
266 return 0;
267 return kvm_vm_ioctl(kvm_state, KVM_SET_PIT2, ps2);
270 #endif
271 #endif
273 int kvm_has_pit_state2(kvm_context_t kvm)
275 int r = 0;
277 #ifdef KVM_CAP_PIT_STATE2
278 r = kvm_check_extension(kvm_state, KVM_CAP_PIT_STATE2);
279 #endif
280 return r;
283 void kvm_show_code(CPUState *env)
285 #define SHOW_CODE_LEN 50
286 struct kvm_regs regs;
287 struct kvm_sregs sregs;
288 int r, n;
289 int back_offset;
290 unsigned char code;
291 char code_str[SHOW_CODE_LEN * 3 + 1];
292 unsigned long rip;
294 r = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
295 if (r < 0 ) {
296 perror("KVM_GET_SREGS");
297 return;
299 r = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
300 if (r < 0) {
301 perror("KVM_GET_REGS");
302 return;
304 rip = sregs.cs.base + regs.rip;
305 back_offset = regs.rip;
306 if (back_offset > 20)
307 back_offset = 20;
308 *code_str = 0;
309 for (n = -back_offset; n < SHOW_CODE_LEN-back_offset; ++n) {
310 if (n == 0)
311 strcat(code_str, " -->");
312 cpu_physical_memory_rw(rip + n, &code, 1, 1);
313 sprintf(code_str + strlen(code_str), " %02x", code);
315 fprintf(stderr, "code:%s\n", code_str);
320 * Returns available msr list. User must free.
322 static struct kvm_msr_list *kvm_get_msr_list(void)
324 struct kvm_msr_list sizer, *msrs;
325 int r;
327 sizer.nmsrs = 0;
328 r = kvm_ioctl(kvm_state, KVM_GET_MSR_INDEX_LIST, &sizer);
329 if (r < 0 && r != -E2BIG)
330 return NULL;
331 /* Old kernel modules had a bug and could write beyond the provided
332 memory. Allocate at least a safe amount of 1K. */
333 msrs = qemu_malloc(MAX(1024, sizeof(*msrs) +
334 sizer.nmsrs * sizeof(*msrs->indices)));
336 msrs->nmsrs = sizer.nmsrs;
337 r = kvm_ioctl(kvm_state, KVM_GET_MSR_INDEX_LIST, msrs);
338 if (r < 0) {
339 free(msrs);
340 errno = r;
341 return NULL;
343 return msrs;
346 int kvm_get_msrs(CPUState *env, struct kvm_msr_entry *msrs, int n)
348 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
349 int r;
351 kmsrs->nmsrs = n;
352 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
353 r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
354 memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
355 free(kmsrs);
356 return r;
359 int kvm_set_msrs(CPUState *env, struct kvm_msr_entry *msrs, int n)
361 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
362 int r;
364 kmsrs->nmsrs = n;
365 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
366 r = kvm_vcpu_ioctl(env, KVM_SET_MSRS, kmsrs);
367 free(kmsrs);
368 return r;
371 int kvm_get_mce_cap_supported(kvm_context_t kvm, uint64_t *mce_cap,
372 int *max_banks)
374 #ifdef KVM_CAP_MCE
375 int r;
377 r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_MCE);
378 if (r > 0) {
379 *max_banks = r;
380 return kvm_ioctl(kvm_state, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
382 #endif
383 return -ENOSYS;
386 int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
388 #ifdef KVM_CAP_MCE
389 return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
390 #else
391 return -ENOSYS;
392 #endif
395 int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
397 #ifdef KVM_CAP_MCE
398 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
399 #else
400 return -ENOSYS;
401 #endif
404 static void print_seg(FILE *file, const char *name, struct kvm_segment *seg)
406 fprintf(stderr,
407 "%s %04x (%08llx/%08x p %d dpl %d db %d s %d type %x l %d"
408 " g %d avl %d)\n",
409 name, seg->selector, seg->base, seg->limit, seg->present,
410 seg->dpl, seg->db, seg->s, seg->type, seg->l, seg->g,
411 seg->avl);
414 static void print_dt(FILE *file, const char *name, struct kvm_dtable *dt)
416 fprintf(stderr, "%s %llx/%x\n", name, dt->base, dt->limit);
419 void kvm_show_regs(CPUState *env)
421 struct kvm_regs regs;
422 struct kvm_sregs sregs;
423 int r;
425 r = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
426 if (r < 0) {
427 perror("KVM_GET_REGS");
428 return;
430 fprintf(stderr,
431 "rax %016llx rbx %016llx rcx %016llx rdx %016llx\n"
432 "rsi %016llx rdi %016llx rsp %016llx rbp %016llx\n"
433 "r8 %016llx r9 %016llx r10 %016llx r11 %016llx\n"
434 "r12 %016llx r13 %016llx r14 %016llx r15 %016llx\n"
435 "rip %016llx rflags %08llx\n",
436 regs.rax, regs.rbx, regs.rcx, regs.rdx,
437 regs.rsi, regs.rdi, regs.rsp, regs.rbp,
438 regs.r8, regs.r9, regs.r10, regs.r11,
439 regs.r12, regs.r13, regs.r14, regs.r15,
440 regs.rip, regs.rflags);
441 r = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
442 if (r < 0) {
443 perror("KVM_GET_SREGS");
444 return;
446 print_seg(stderr, "cs", &sregs.cs);
447 print_seg(stderr, "ds", &sregs.ds);
448 print_seg(stderr, "es", &sregs.es);
449 print_seg(stderr, "ss", &sregs.ss);
450 print_seg(stderr, "fs", &sregs.fs);
451 print_seg(stderr, "gs", &sregs.gs);
452 print_seg(stderr, "tr", &sregs.tr);
453 print_seg(stderr, "ldt", &sregs.ldt);
454 print_dt(stderr, "gdt", &sregs.gdt);
455 print_dt(stderr, "idt", &sregs.idt);
456 fprintf(stderr, "cr0 %llx cr2 %llx cr3 %llx cr4 %llx cr8 %llx"
457 " efer %llx\n",
458 sregs.cr0, sregs.cr2, sregs.cr3, sregs.cr4, sregs.cr8,
459 sregs.efer);
462 static void kvm_set_cr8(CPUState *env, uint64_t cr8)
464 env->kvm_run->cr8 = cr8;
467 int kvm_setup_cpuid(CPUState *env, int nent,
468 struct kvm_cpuid_entry *entries)
470 struct kvm_cpuid *cpuid;
471 int r;
473 cpuid = qemu_malloc(sizeof(*cpuid) + nent * sizeof(*entries));
475 cpuid->nent = nent;
476 memcpy(cpuid->entries, entries, nent * sizeof(*entries));
477 r = kvm_vcpu_ioctl(env, KVM_SET_CPUID, cpuid);
479 free(cpuid);
480 return r;
483 int kvm_setup_cpuid2(CPUState *env, int nent,
484 struct kvm_cpuid_entry2 *entries)
486 struct kvm_cpuid2 *cpuid;
487 int r;
489 cpuid = qemu_malloc(sizeof(*cpuid) + nent * sizeof(*entries));
491 cpuid->nent = nent;
492 memcpy(cpuid->entries, entries, nent * sizeof(*entries));
493 r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, cpuid);
494 free(cpuid);
495 return r;
498 int kvm_set_shadow_pages(kvm_context_t kvm, unsigned int nrshadow_pages)
500 #ifdef KVM_CAP_MMU_SHADOW_CACHE_CONTROL
501 int r;
503 r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION,
504 KVM_CAP_MMU_SHADOW_CACHE_CONTROL);
505 if (r > 0) {
506 r = kvm_vm_ioctl(kvm_state, KVM_SET_NR_MMU_PAGES, nrshadow_pages);
507 if (r < 0) {
508 fprintf(stderr, "kvm_set_shadow_pages: %m\n");
509 return r;
511 return 0;
513 #endif
514 return -1;
517 int kvm_get_shadow_pages(kvm_context_t kvm, unsigned int *nrshadow_pages)
519 #ifdef KVM_CAP_MMU_SHADOW_CACHE_CONTROL
520 int r;
522 r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION,
523 KVM_CAP_MMU_SHADOW_CACHE_CONTROL);
524 if (r > 0) {
525 *nrshadow_pages = kvm_vm_ioctl(kvm_state, KVM_GET_NR_MMU_PAGES);
526 return 0;
528 #endif
529 return -1;
532 #ifdef KVM_CAP_VAPIC
533 static int kvm_enable_tpr_access_reporting(CPUState *env)
535 int r;
536 struct kvm_tpr_access_ctl tac = { .enabled = 1 };
538 r = kvm_ioctl(env->kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_VAPIC);
539 if (r <= 0)
540 return -ENOSYS;
541 return kvm_vcpu_ioctl(env, KVM_TPR_ACCESS_REPORTING, &tac);
543 #endif
545 #ifdef KVM_CAP_ADJUST_CLOCK
546 static struct kvm_clock_data kvmclock_data;
548 static void kvmclock_pre_save(void *opaque)
550 struct kvm_clock_data *cl = opaque;
552 kvm_vm_ioctl(kvm_state, KVM_GET_CLOCK, cl);
555 static int kvmclock_post_load(void *opaque, int version_id)
557 struct kvm_clock_data *cl = opaque;
559 return kvm_vm_ioctl(kvm_state, KVM_SET_CLOCK, cl);
562 static const VMStateDescription vmstate_kvmclock= {
563 .name = "kvmclock",
564 .version_id = 1,
565 .minimum_version_id = 1,
566 .minimum_version_id_old = 1,
567 .pre_save = kvmclock_pre_save,
568 .post_load = kvmclock_post_load,
569 .fields = (VMStateField []) {
570 VMSTATE_U64(clock, struct kvm_clock_data),
571 VMSTATE_END_OF_LIST()
574 #endif
576 int kvm_arch_qemu_create_context(void)
578 int i, r;
579 struct utsname utsname;
581 uname(&utsname);
582 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
584 if (kvm_shadow_memory)
585 kvm_set_shadow_pages(kvm_context, kvm_shadow_memory);
587 kvm_msr_list = kvm_get_msr_list();
588 if (!kvm_msr_list)
589 return -1;
590 for (i = 0; i < kvm_msr_list->nmsrs; ++i) {
591 if (kvm_msr_list->indices[i] == MSR_STAR)
592 kvm_has_msr_star = 1;
593 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA)
594 kvm_has_vm_hsave_pa = 1;
597 #ifdef KVM_CAP_ADJUST_CLOCK
598 if (kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK))
599 vmstate_register(NULL, 0, &vmstate_kvmclock, &kvmclock_data);
600 #endif
602 r = kvm_set_boot_cpu_id(0);
603 if (r < 0 && r != -ENOSYS) {
604 return r;
607 return 0;
610 /* returns 0 on success, non-0 on failure */
611 static int get_msr_entry(struct kvm_msr_entry *entry, CPUState *env)
613 switch (entry->index) {
614 case MSR_IA32_SYSENTER_CS:
615 env->sysenter_cs = entry->data;
616 break;
617 case MSR_IA32_SYSENTER_ESP:
618 env->sysenter_esp = entry->data;
619 break;
620 case MSR_IA32_SYSENTER_EIP:
621 env->sysenter_eip = entry->data;
622 break;
623 case MSR_STAR:
624 env->star = entry->data;
625 break;
626 #ifdef TARGET_X86_64
627 case MSR_CSTAR:
628 env->cstar = entry->data;
629 break;
630 case MSR_KERNELGSBASE:
631 env->kernelgsbase = entry->data;
632 break;
633 case MSR_FMASK:
634 env->fmask = entry->data;
635 break;
636 case MSR_LSTAR:
637 env->lstar = entry->data;
638 break;
639 #endif
640 case MSR_IA32_TSC:
641 env->tsc = entry->data;
642 break;
643 case MSR_VM_HSAVE_PA:
644 env->vm_hsave = entry->data;
645 break;
646 case MSR_KVM_SYSTEM_TIME:
647 env->system_time_msr = entry->data;
648 break;
649 case MSR_KVM_WALL_CLOCK:
650 env->wall_clock_msr = entry->data;
651 break;
652 #ifdef KVM_CAP_MCE
653 case MSR_MCG_STATUS:
654 env->mcg_status = entry->data;
655 break;
656 case MSR_MCG_CTL:
657 env->mcg_ctl = entry->data;
658 break;
659 #endif
660 default:
661 #ifdef KVM_CAP_MCE
662 if (entry->index >= MSR_MC0_CTL &&
663 entry->index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
664 env->mce_banks[entry->index - MSR_MC0_CTL] = entry->data;
665 break;
667 #endif
668 printf("Warning unknown msr index 0x%x\n", entry->index);
669 return 1;
671 return 0;
674 static void kvm_arch_save_mpstate(CPUState *env)
676 #ifdef KVM_CAP_MP_STATE
677 int r;
678 struct kvm_mp_state mp_state;
680 r = kvm_get_mpstate(env, &mp_state);
681 if (r < 0) {
682 env->mp_state = -1;
683 } else {
684 env->mp_state = mp_state.mp_state;
685 if (kvm_irqchip_in_kernel()) {
686 env->halted = (env->mp_state == KVM_MP_STATE_HALTED);
689 #else
690 env->mp_state = -1;
691 #endif
694 static void kvm_arch_load_mpstate(CPUState *env)
696 #ifdef KVM_CAP_MP_STATE
697 struct kvm_mp_state mp_state;
700 * -1 indicates that the host did not support GET_MP_STATE ioctl,
701 * so don't touch it.
703 if (env->mp_state != -1) {
704 mp_state.mp_state = env->mp_state;
705 kvm_set_mpstate(env, &mp_state);
707 #endif
710 static void kvm_reset_mpstate(CPUState *env)
712 #ifdef KVM_CAP_MP_STATE
713 if (kvm_check_extension(kvm_state, KVM_CAP_MP_STATE)) {
714 if (kvm_irqchip_in_kernel()) {
715 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
716 KVM_MP_STATE_UNINITIALIZED;
717 } else {
718 env->mp_state = KVM_MP_STATE_RUNNABLE;
721 #endif
724 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
726 lhs->selector = rhs->selector;
727 lhs->base = rhs->base;
728 lhs->limit = rhs->limit;
729 lhs->type = 3;
730 lhs->present = 1;
731 lhs->dpl = 3;
732 lhs->db = 0;
733 lhs->s = 1;
734 lhs->l = 0;
735 lhs->g = 0;
736 lhs->avl = 0;
737 lhs->unusable = 0;
740 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
742 unsigned flags = rhs->flags;
743 lhs->selector = rhs->selector;
744 lhs->base = rhs->base;
745 lhs->limit = rhs->limit;
746 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
747 lhs->present = (flags & DESC_P_MASK) != 0;
748 lhs->dpl = rhs->selector & 3;
749 lhs->db = (flags >> DESC_B_SHIFT) & 1;
750 lhs->s = (flags & DESC_S_MASK) != 0;
751 lhs->l = (flags >> DESC_L_SHIFT) & 1;
752 lhs->g = (flags & DESC_G_MASK) != 0;
753 lhs->avl = (flags & DESC_AVL_MASK) != 0;
754 lhs->unusable = 0;
757 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
759 lhs->selector = rhs->selector;
760 lhs->base = rhs->base;
761 lhs->limit = rhs->limit;
762 lhs->flags =
763 (rhs->type << DESC_TYPE_SHIFT)
764 | (rhs->present * DESC_P_MASK)
765 | (rhs->dpl << DESC_DPL_SHIFT)
766 | (rhs->db << DESC_B_SHIFT)
767 | (rhs->s * DESC_S_MASK)
768 | (rhs->l << DESC_L_SHIFT)
769 | (rhs->g * DESC_G_MASK)
770 | (rhs->avl * DESC_AVL_MASK);
773 #define XSAVE_CWD_RIP 2
774 #define XSAVE_CWD_RDP 4
775 #define XSAVE_MXCSR 6
776 #define XSAVE_ST_SPACE 8
777 #define XSAVE_XMM_SPACE 40
778 #define XSAVE_XSTATE_BV 128
779 #define XSAVE_YMMH_SPACE 144
781 void kvm_arch_load_regs(CPUState *env, int level)
783 struct kvm_regs regs;
784 struct kvm_fpu fpu;
785 struct kvm_sregs sregs;
786 struct kvm_msr_entry msrs[100];
787 int rc, n, i;
789 assert(kvm_cpu_is_stopped(env) || env->thread_id == kvm_get_thread_id());
791 regs.rax = env->regs[R_EAX];
792 regs.rbx = env->regs[R_EBX];
793 regs.rcx = env->regs[R_ECX];
794 regs.rdx = env->regs[R_EDX];
795 regs.rsi = env->regs[R_ESI];
796 regs.rdi = env->regs[R_EDI];
797 regs.rsp = env->regs[R_ESP];
798 regs.rbp = env->regs[R_EBP];
799 #ifdef TARGET_X86_64
800 regs.r8 = env->regs[8];
801 regs.r9 = env->regs[9];
802 regs.r10 = env->regs[10];
803 regs.r11 = env->regs[11];
804 regs.r12 = env->regs[12];
805 regs.r13 = env->regs[13];
806 regs.r14 = env->regs[14];
807 regs.r15 = env->regs[15];
808 #endif
810 regs.rflags = env->eflags;
811 regs.rip = env->eip;
813 kvm_set_regs(env, &regs);
815 #ifdef KVM_CAP_XSAVE
816 if (kvm_check_extension(kvm_state, KVM_CAP_XSAVE)) {
817 struct kvm_xsave* xsave;
819 uint16_t cwd, swd, twd, fop;
821 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
822 memset(xsave, 0, sizeof(struct kvm_xsave));
823 cwd = swd = twd = fop = 0;
824 swd = env->fpus & ~(7 << 11);
825 swd |= (env->fpstt & 7) << 11;
826 cwd = env->fpuc;
827 for (i = 0; i < 8; ++i)
828 twd |= (!env->fptags[i]) << i;
829 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
830 xsave->region[1] = (uint32_t)(fop << 16) + twd;
831 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
832 sizeof env->fpregs);
833 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
834 sizeof env->xmm_regs);
835 xsave->region[XSAVE_MXCSR] = env->mxcsr;
836 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
837 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
838 sizeof env->ymmh_regs);
839 kvm_set_xsave(env, xsave);
840 if (kvm_check_extension(kvm_state, KVM_CAP_XCRS)) {
841 struct kvm_xcrs xcrs;
843 xcrs.nr_xcrs = 1;
844 xcrs.flags = 0;
845 xcrs.xcrs[0].xcr = 0;
846 xcrs.xcrs[0].value = env->xcr0;
847 kvm_set_xcrs(env, &xcrs);
849 qemu_free(xsave);
850 } else {
851 #endif
852 memset(&fpu, 0, sizeof fpu);
853 fpu.fsw = env->fpus & ~(7 << 11);
854 fpu.fsw |= (env->fpstt & 7) << 11;
855 fpu.fcw = env->fpuc;
856 for (i = 0; i < 8; ++i)
857 fpu.ftwx |= (!env->fptags[i]) << i;
858 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
859 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
860 fpu.mxcsr = env->mxcsr;
861 kvm_set_fpu(env, &fpu);
862 #ifdef KVM_CAP_XSAVE
864 #endif
866 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
867 if (env->interrupt_injected >= 0) {
868 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
869 (uint64_t)1 << (env->interrupt_injected % 64);
872 if ((env->eflags & VM_MASK)) {
873 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
874 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
875 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
876 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
877 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
878 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
879 } else {
880 set_seg(&sregs.cs, &env->segs[R_CS]);
881 set_seg(&sregs.ds, &env->segs[R_DS]);
882 set_seg(&sregs.es, &env->segs[R_ES]);
883 set_seg(&sregs.fs, &env->segs[R_FS]);
884 set_seg(&sregs.gs, &env->segs[R_GS]);
885 set_seg(&sregs.ss, &env->segs[R_SS]);
887 if (env->cr[0] & CR0_PE_MASK) {
888 /* force ss cpl to cs cpl */
889 sregs.ss.selector = (sregs.ss.selector & ~3) |
890 (sregs.cs.selector & 3);
891 sregs.ss.dpl = sregs.ss.selector & 3;
895 set_seg(&sregs.tr, &env->tr);
896 set_seg(&sregs.ldt, &env->ldt);
898 sregs.idt.limit = env->idt.limit;
899 sregs.idt.base = env->idt.base;
900 sregs.gdt.limit = env->gdt.limit;
901 sregs.gdt.base = env->gdt.base;
903 sregs.cr0 = env->cr[0];
904 sregs.cr2 = env->cr[2];
905 sregs.cr3 = env->cr[3];
906 sregs.cr4 = env->cr[4];
908 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
909 sregs.apic_base = cpu_get_apic_base(env->apic_state);
911 sregs.efer = env->efer;
913 kvm_set_sregs(env, &sregs);
915 /* msrs */
916 n = 0;
917 /* Remember to increase msrs size if you add new registers below */
918 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
919 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
920 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
921 if (kvm_has_msr_star)
922 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
923 if (kvm_has_vm_hsave_pa)
924 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
925 #ifdef TARGET_X86_64
926 if (lm_capable_kernel) {
927 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
928 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
929 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
930 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR , env->lstar);
932 #endif
933 if (level == KVM_PUT_FULL_STATE) {
935 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
936 * writeback. Until this is fixed, we only write the offset to SMP
937 * guests after migration, desynchronizing the VCPUs, but avoiding
938 * huge jump-backs that would occur without any writeback at all.
940 if (smp_cpus == 1 || env->tsc != 0) {
941 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
943 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME, env->system_time_msr);
944 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
946 #ifdef KVM_CAP_MCE
947 if (env->mcg_cap) {
948 if (level == KVM_PUT_RESET_STATE)
949 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
950 else if (level == KVM_PUT_FULL_STATE) {
951 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
952 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
953 for (i = 0; i < (env->mcg_cap & 0xff); i++)
954 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
957 #endif
959 rc = kvm_set_msrs(env, msrs, n);
960 if (rc == -1)
961 perror("kvm_set_msrs FAILED");
963 if (level >= KVM_PUT_RESET_STATE) {
964 kvm_arch_load_mpstate(env);
965 kvm_load_lapic(env);
967 if (level == KVM_PUT_FULL_STATE) {
968 if (env->kvm_vcpu_update_vapic)
969 kvm_tpr_enable_vapic(env);
972 kvm_put_vcpu_events(env, level);
973 kvm_put_debugregs(env);
975 /* must be last */
976 kvm_guest_debug_workarounds(env);
979 void kvm_arch_save_regs(CPUState *env)
981 struct kvm_regs regs;
982 struct kvm_fpu fpu;
983 struct kvm_sregs sregs;
984 struct kvm_msr_entry msrs[100];
985 uint32_t hflags;
986 uint32_t i, n, rc, bit;
988 assert(kvm_cpu_is_stopped(env) || env->thread_id == kvm_get_thread_id());
990 kvm_get_regs(env, &regs);
992 env->regs[R_EAX] = regs.rax;
993 env->regs[R_EBX] = regs.rbx;
994 env->regs[R_ECX] = regs.rcx;
995 env->regs[R_EDX] = regs.rdx;
996 env->regs[R_ESI] = regs.rsi;
997 env->regs[R_EDI] = regs.rdi;
998 env->regs[R_ESP] = regs.rsp;
999 env->regs[R_EBP] = regs.rbp;
1000 #ifdef TARGET_X86_64
1001 env->regs[8] = regs.r8;
1002 env->regs[9] = regs.r9;
1003 env->regs[10] = regs.r10;
1004 env->regs[11] = regs.r11;
1005 env->regs[12] = regs.r12;
1006 env->regs[13] = regs.r13;
1007 env->regs[14] = regs.r14;
1008 env->regs[15] = regs.r15;
1009 #endif
1011 env->eflags = regs.rflags;
1012 env->eip = regs.rip;
1014 #ifdef KVM_CAP_XSAVE
1015 if (kvm_check_extension(kvm_state, KVM_CAP_XSAVE)) {
1016 struct kvm_xsave* xsave;
1017 uint16_t cwd, swd, twd, fop;
1018 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
1019 kvm_get_xsave(env, xsave);
1020 cwd = (uint16_t)xsave->region[0];
1021 swd = (uint16_t)(xsave->region[0] >> 16);
1022 twd = (uint16_t)xsave->region[1];
1023 fop = (uint16_t)(xsave->region[1] >> 16);
1024 env->fpstt = (swd >> 11) & 7;
1025 env->fpus = swd;
1026 env->fpuc = cwd;
1027 for (i = 0; i < 8; ++i)
1028 env->fptags[i] = !((twd >> i) & 1);
1029 env->mxcsr = xsave->region[XSAVE_MXCSR];
1030 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1031 sizeof env->fpregs);
1032 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1033 sizeof env->xmm_regs);
1034 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1035 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1036 sizeof env->ymmh_regs);
1037 if (kvm_check_extension(kvm_state, KVM_CAP_XCRS)) {
1038 struct kvm_xcrs xcrs;
1040 kvm_get_xcrs(env, &xcrs);
1041 if (xcrs.xcrs[0].xcr == 0)
1042 env->xcr0 = xcrs.xcrs[0].value;
1044 qemu_free(xsave);
1045 } else {
1046 #endif
1047 kvm_get_fpu(env, &fpu);
1048 env->fpstt = (fpu.fsw >> 11) & 7;
1049 env->fpus = fpu.fsw;
1050 env->fpuc = fpu.fcw;
1051 for (i = 0; i < 8; ++i)
1052 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1053 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1054 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1055 env->mxcsr = fpu.mxcsr;
1056 #ifdef KVM_CAP_XSAVE
1058 #endif
1060 kvm_get_sregs(env, &sregs);
1062 /* There can only be one pending IRQ set in the bitmap at a time, so try
1063 to find it and save its number instead (-1 for none). */
1064 env->interrupt_injected = -1;
1065 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1066 if (sregs.interrupt_bitmap[i]) {
1067 bit = ctz64(sregs.interrupt_bitmap[i]);
1068 env->interrupt_injected = i * 64 + bit;
1069 break;
1073 get_seg(&env->segs[R_CS], &sregs.cs);
1074 get_seg(&env->segs[R_DS], &sregs.ds);
1075 get_seg(&env->segs[R_ES], &sregs.es);
1076 get_seg(&env->segs[R_FS], &sregs.fs);
1077 get_seg(&env->segs[R_GS], &sregs.gs);
1078 get_seg(&env->segs[R_SS], &sregs.ss);
1080 get_seg(&env->tr, &sregs.tr);
1081 get_seg(&env->ldt, &sregs.ldt);
1083 env->idt.limit = sregs.idt.limit;
1084 env->idt.base = sregs.idt.base;
1085 env->gdt.limit = sregs.gdt.limit;
1086 env->gdt.base = sregs.gdt.base;
1088 env->cr[0] = sregs.cr0;
1089 env->cr[2] = sregs.cr2;
1090 env->cr[3] = sregs.cr3;
1091 env->cr[4] = sregs.cr4;
1093 cpu_set_apic_base(env->apic_state, sregs.apic_base);
1095 env->efer = sregs.efer;
1096 //cpu_set_apic_tpr(env, sregs.cr8);
1098 #define HFLAG_COPY_MASK ~( \
1099 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1100 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1101 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1102 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1104 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1105 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1106 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1107 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1108 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1109 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1110 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1112 if (env->efer & MSR_EFER_LMA) {
1113 hflags |= HF_LMA_MASK;
1116 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1117 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1118 } else {
1119 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1120 (DESC_B_SHIFT - HF_CS32_SHIFT);
1121 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1122 (DESC_B_SHIFT - HF_SS32_SHIFT);
1123 if (!(env->cr[0] & CR0_PE_MASK) ||
1124 (env->eflags & VM_MASK) ||
1125 !(hflags & HF_CS32_MASK)) {
1126 hflags |= HF_ADDSEG_MASK;
1127 } else {
1128 hflags |= ((env->segs[R_DS].base |
1129 env->segs[R_ES].base |
1130 env->segs[R_SS].base) != 0) <<
1131 HF_ADDSEG_SHIFT;
1134 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1136 /* msrs */
1137 n = 0;
1138 /* Remember to increase msrs size if you add new registers below */
1139 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1140 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1141 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1142 if (kvm_has_msr_star)
1143 msrs[n++].index = MSR_STAR;
1144 msrs[n++].index = MSR_IA32_TSC;
1145 if (kvm_has_vm_hsave_pa)
1146 msrs[n++].index = MSR_VM_HSAVE_PA;
1147 #ifdef TARGET_X86_64
1148 if (lm_capable_kernel) {
1149 msrs[n++].index = MSR_CSTAR;
1150 msrs[n++].index = MSR_KERNELGSBASE;
1151 msrs[n++].index = MSR_FMASK;
1152 msrs[n++].index = MSR_LSTAR;
1154 #endif
1155 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1156 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1158 #ifdef KVM_CAP_MCE
1159 if (env->mcg_cap) {
1160 msrs[n++].index = MSR_MCG_STATUS;
1161 msrs[n++].index = MSR_MCG_CTL;
1162 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
1163 msrs[n++].index = MSR_MC0_CTL + i;
1165 #endif
1167 rc = kvm_get_msrs(env, msrs, n);
1168 if (rc == -1) {
1169 perror("kvm_get_msrs FAILED");
1171 else {
1172 n = rc; /* actual number of MSRs */
1173 for (i=0 ; i<n; i++) {
1174 if (get_msr_entry(&msrs[i], env))
1175 return;
1178 kvm_arch_save_mpstate(env);
1179 kvm_save_lapic(env);
1180 kvm_get_vcpu_events(env);
1181 kvm_get_debugregs(env);
1184 static int _kvm_arch_init_vcpu(CPUState *env)
1186 kvm_arch_reset_vcpu(env);
1188 #ifdef KVM_CAP_MCE
1189 if (((env->cpuid_version >> 8)&0xF) >= 6
1190 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
1191 && kvm_check_extension(kvm_state, KVM_CAP_MCE) > 0) {
1192 uint64_t mcg_cap;
1193 int banks;
1195 if (kvm_get_mce_cap_supported(kvm_context, &mcg_cap, &banks))
1196 perror("kvm_get_mce_cap_supported FAILED");
1197 else {
1198 if (banks > MCE_BANKS_DEF)
1199 banks = MCE_BANKS_DEF;
1200 mcg_cap &= MCE_CAP_DEF;
1201 mcg_cap |= banks;
1202 if (kvm_setup_mce(env, &mcg_cap))
1203 perror("kvm_setup_mce FAILED");
1204 else
1205 env->mcg_cap = mcg_cap;
1208 #endif
1210 #ifdef KVM_EXIT_TPR_ACCESS
1211 kvm_enable_tpr_access_reporting(env);
1212 #endif
1213 kvm_reset_mpstate(env);
1214 return 0;
1217 int kvm_arch_halt(CPUState *env)
1220 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1221 (env->eflags & IF_MASK)) &&
1222 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1223 env->halted = 1;
1225 return 1;
1228 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1230 if (!kvm_irqchip_in_kernel())
1231 kvm_set_cr8(env, cpu_get_apic_tpr(env->apic_state));
1232 return 0;
1235 int kvm_arch_has_work(CPUState *env)
1237 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1238 (env->eflags & IF_MASK)) ||
1239 (env->interrupt_request & CPU_INTERRUPT_NMI))
1240 return 1;
1241 return 0;
1244 int kvm_arch_try_push_interrupts(void *opaque)
1246 CPUState *env = cpu_single_env;
1247 int r, irq;
1249 if (kvm_is_ready_for_interrupt_injection(env) &&
1250 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1251 (env->eflags & IF_MASK)) {
1252 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1253 irq = cpu_get_pic_interrupt(env);
1254 if (irq >= 0) {
1255 r = kvm_inject_irq(env, irq);
1256 if (r < 0)
1257 printf("cpu %d fail inject %x\n", env->cpu_index, irq);
1261 return (env->interrupt_request & CPU_INTERRUPT_HARD) != 0;
1264 #ifdef KVM_CAP_USER_NMI
1265 void kvm_arch_push_nmi(void *opaque)
1267 CPUState *env = cpu_single_env;
1268 int r;
1270 if (likely(!(env->interrupt_request & CPU_INTERRUPT_NMI)))
1271 return;
1273 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1274 r = kvm_inject_nmi(env);
1275 if (r < 0)
1276 printf("cpu %d fail inject NMI\n", env->cpu_index);
1278 #endif /* KVM_CAP_USER_NMI */
1280 static int kvm_reset_msrs(CPUState *env)
1282 struct {
1283 struct kvm_msrs info;
1284 struct kvm_msr_entry entries[100];
1285 } msr_data;
1286 int n;
1287 struct kvm_msr_entry *msrs = msr_data.entries;
1289 if (!kvm_msr_list)
1290 return -1;
1292 for (n = 0; n < kvm_msr_list->nmsrs; n++) {
1293 kvm_msr_entry_set(&msrs[n], kvm_msr_list->indices[n], 0);
1296 msr_data.info.nmsrs = n;
1298 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
1302 void kvm_arch_cpu_reset(CPUState *env)
1304 kvm_reset_msrs(env);
1305 kvm_arch_reset_vcpu(env);
1306 kvm_reset_mpstate(env);
1309 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
1310 void kvm_arch_do_ioperm(void *_data)
1312 struct ioperm_data *data = _data;
1313 ioperm(data->start_port, data->num, data->turn_on);
1315 #endif
1318 * Setup x86 specific IRQ routing
1320 int kvm_arch_init_irq_routing(void)
1322 int i, r;
1324 if (kvm_irqchip && kvm_has_gsi_routing(kvm_context)) {
1325 kvm_clear_gsi_routes(kvm_context);
1326 for (i = 0; i < 8; ++i) {
1327 if (i == 2)
1328 continue;
1329 r = kvm_add_irq_route(kvm_context, i, KVM_IRQCHIP_PIC_MASTER, i);
1330 if (r < 0)
1331 return r;
1333 for (i = 8; i < 16; ++i) {
1334 r = kvm_add_irq_route(kvm_context, i, KVM_IRQCHIP_PIC_SLAVE, i - 8);
1335 if (r < 0)
1336 return r;
1338 for (i = 0; i < 24; ++i) {
1339 if (i == 0) {
1340 r = kvm_add_irq_route(kvm_context, i, KVM_IRQCHIP_IOAPIC, 2);
1341 } else if (i != 2) {
1342 r = kvm_add_irq_route(kvm_context, i, KVM_IRQCHIP_IOAPIC, i);
1344 if (r < 0)
1345 return r;
1347 kvm_commit_irq_routes(kvm_context);
1349 return 0;
1352 void kvm_arch_process_irqchip_events(CPUState *env)
1354 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1355 kvm_cpu_synchronize_state(env);
1356 do_cpu_init(env);
1358 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1359 kvm_cpu_synchronize_state(env);
1360 do_cpu_sipi(env);