Merge commit '64e07be544ee9c5fb5b741175262fd34726ec431' into upstream-merge
[qemu/qemu-dev-zwu.git] / kvm-all.c
blobef74729d91d8caeadfaf363225903055682b6232
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
31 /* This check must be after config-host.h is included */
32 #ifdef CONFIG_EVENTFD
33 #include <sys/eventfd.h>
34 #endif
36 #ifndef OBSOLETE_KVM_IMPL
37 #define run_on_cpu on_vcpu
38 #endif /* !OBSOLETE_KVM_IMPL */
40 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
41 #define PAGE_SIZE TARGET_PAGE_SIZE
43 //#define DEBUG_KVM
45 #ifdef DEBUG_KVM
46 #define DPRINTF(fmt, ...) \
47 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
48 #else
49 #define DPRINTF(fmt, ...) \
50 do { } while (0)
51 #endif
53 #ifdef OBSOLETE_KVM_IMPL
55 typedef struct KVMSlot
57 target_phys_addr_t start_addr;
58 ram_addr_t memory_size;
59 ram_addr_t phys_offset;
60 int slot;
61 int flags;
62 } KVMSlot;
64 typedef struct kvm_dirty_log KVMDirtyLog;
66 struct KVMState
68 KVMSlot slots[32];
69 int fd;
70 int vmfd;
71 int coalesced_mmio;
72 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
73 int broken_set_mem_region;
74 int migration_log;
75 int vcpu_events;
76 int robust_singlestep;
77 int debugregs;
78 #ifdef KVM_CAP_SET_GUEST_DEBUG
79 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
80 #endif
81 int irqchip_in_kernel;
82 int pit_in_kernel;
83 int xsave, xcrs;
84 int many_ioeventfds;
87 KVMState *kvm_state;
90 static const KVMCapabilityInfo kvm_required_capabilites[] = {
91 KVM_CAP_INFO(USER_MEMORY),
92 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
93 KVM_CAP_LAST_INFO
96 #endif
98 static KVMSlot *kvm_alloc_slot(KVMState *s)
100 int i;
102 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
103 if (s->slots[i].memory_size == 0) {
104 return &s->slots[i];
108 fprintf(stderr, "%s: no free slot available\n", __func__);
109 abort();
112 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
113 target_phys_addr_t start_addr,
114 target_phys_addr_t end_addr)
116 int i;
118 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
119 KVMSlot *mem = &s->slots[i];
121 if (start_addr == mem->start_addr &&
122 end_addr == mem->start_addr + mem->memory_size) {
123 return mem;
127 return NULL;
131 * Find overlapping slot with lowest start address
133 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
134 target_phys_addr_t start_addr,
135 target_phys_addr_t end_addr)
137 KVMSlot *found = NULL;
138 int i;
140 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
141 KVMSlot *mem = &s->slots[i];
143 if (mem->memory_size == 0 ||
144 (found && found->start_addr < mem->start_addr)) {
145 continue;
148 if (end_addr > mem->start_addr &&
149 start_addr < mem->start_addr + mem->memory_size) {
150 found = mem;
154 return found;
157 int kvm_physical_memory_addr_from_ram(KVMState *s, ram_addr_t ram_addr,
158 target_phys_addr_t *phys_addr)
160 int i;
162 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
163 KVMSlot *mem = &s->slots[i];
165 if (ram_addr >= mem->phys_offset &&
166 ram_addr < mem->phys_offset + mem->memory_size) {
167 *phys_addr = mem->start_addr + (ram_addr - mem->phys_offset);
168 return 1;
172 return 0;
175 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
177 struct kvm_userspace_memory_region mem;
179 mem.slot = slot->slot;
180 mem.guest_phys_addr = slot->start_addr;
181 mem.memory_size = slot->memory_size;
182 mem.userspace_addr = (unsigned long)qemu_safe_ram_ptr(slot->phys_offset);
183 mem.flags = slot->flags;
184 if (s->migration_log) {
185 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
187 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
190 static void kvm_reset_vcpu(void *opaque)
192 CPUState *env = opaque;
194 kvm_arch_reset_vcpu(env);
197 int kvm_irqchip_in_kernel(void)
199 return kvm_state->irqchip_in_kernel;
202 int kvm_pit_in_kernel(void)
204 return kvm_state->pit_in_kernel;
207 static int kvm_create_vcpu(CPUState *env)
209 KVMState *s = kvm_state;
210 long mmap_size;
211 int ret;
213 DPRINTF("kvm_init_vcpu\n");
215 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
216 if (ret < 0) {
217 DPRINTF("kvm_create_vcpu failed\n");
218 goto err;
221 env->kvm_fd = ret;
222 env->kvm_state = s;
223 env->kvm_vcpu_dirty = 1;
225 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
226 if (mmap_size < 0) {
227 ret = mmap_size;
228 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
229 goto err;
232 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
233 env->kvm_fd, 0);
234 if (env->kvm_run == MAP_FAILED) {
235 ret = -errno;
236 DPRINTF("mmap'ing vcpu state failed\n");
237 goto err;
240 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
241 s->coalesced_mmio_ring =
242 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
245 ret = kvm_arch_init_vcpu(env);
246 if (ret == 0) {
247 qemu_register_reset(kvm_reset_vcpu, env);
248 kvm_arch_reset_vcpu(env);
250 err:
251 return ret;
255 * dirty pages logging control
258 static int kvm_mem_flags(KVMState *s, bool log_dirty)
260 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
263 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
265 KVMState *s = kvm_state;
266 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
267 int old_flags;
269 old_flags = mem->flags;
271 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
272 mem->flags = flags;
274 /* If nothing changed effectively, no need to issue ioctl */
275 if (s->migration_log) {
276 flags |= KVM_MEM_LOG_DIRTY_PAGES;
279 if (flags == old_flags) {
280 return 0;
283 return kvm_set_user_memory_region(s, mem);
286 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
287 ram_addr_t size, bool log_dirty)
289 KVMState *s = kvm_state;
290 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
292 if (mem == NULL) {
293 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
294 TARGET_FMT_plx "\n", __func__, phys_addr,
295 (target_phys_addr_t)(phys_addr + size - 1));
296 return -EINVAL;
298 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
301 static int kvm_log_start(CPUPhysMemoryClient *client,
302 target_phys_addr_t phys_addr, ram_addr_t size)
304 return kvm_dirty_pages_log_change(phys_addr, size, true);
307 static int kvm_log_stop(CPUPhysMemoryClient *client,
308 target_phys_addr_t phys_addr, ram_addr_t size)
310 return kvm_dirty_pages_log_change(phys_addr, size, false);
313 static int kvm_set_migration_log(int enable)
315 KVMState *s = kvm_state;
316 KVMSlot *mem;
317 int i, err;
319 s->migration_log = enable;
321 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
322 mem = &s->slots[i];
324 if (!mem->memory_size) {
325 continue;
327 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
328 continue;
330 err = kvm_set_user_memory_region(s, mem);
331 if (err) {
332 return err;
335 return 0;
338 /* get kvm's dirty pages bitmap and update qemu's */
339 static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
340 unsigned long *bitmap,
341 unsigned long offset,
342 unsigned long mem_size)
344 unsigned int i, j;
345 unsigned long page_number, addr, addr1, c;
346 ram_addr_t ram_addr;
347 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
348 HOST_LONG_BITS;
351 * bitmap-traveling is faster than memory-traveling (for addr...)
352 * especially when most of the memory is not dirty.
354 for (i = 0; i < len; i++) {
355 if (bitmap[i] != 0) {
356 c = leul_to_cpu(bitmap[i]);
357 do {
358 j = ffsl(c) - 1;
359 c &= ~(1ul << j);
360 page_number = i * HOST_LONG_BITS + j;
361 addr1 = page_number * TARGET_PAGE_SIZE;
362 addr = offset + addr1;
363 ram_addr = cpu_get_physical_page_desc(addr);
364 cpu_physical_memory_set_dirty(ram_addr);
365 } while (c != 0);
368 return 0;
371 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
374 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
375 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
376 * This means all bits are set to dirty.
378 * @start_add: start of logged region.
379 * @end_addr: end of logged region.
381 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
382 target_phys_addr_t end_addr)
384 KVMState *s = kvm_state;
385 unsigned long size, allocated_size = 0;
386 KVMDirtyLog d;
387 KVMSlot *mem;
388 int ret = 0;
390 d.dirty_bitmap = NULL;
391 while (start_addr < end_addr) {
392 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
393 if (mem == NULL) {
394 break;
397 /* XXX bad kernel interface alert
398 * For dirty bitmap, kernel allocates array of size aligned to
399 * bits-per-long. But for case when the kernel is 64bits and
400 * the userspace is 32bits, userspace can't align to the same
401 * bits-per-long, since sizeof(long) is different between kernel
402 * and user space. This way, userspace will provide buffer which
403 * may be 4 bytes less than the kernel will use, resulting in
404 * userspace memory corruption (which is not detectable by valgrind
405 * too, in most cases).
406 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
407 * a hope that sizeof(long) wont become >8 any time soon.
409 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
410 /*HOST_LONG_BITS*/ 64) / 8;
411 if (!d.dirty_bitmap) {
412 d.dirty_bitmap = qemu_malloc(size);
413 } else if (size > allocated_size) {
414 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
416 allocated_size = size;
417 memset(d.dirty_bitmap, 0, allocated_size);
419 d.slot = mem->slot;
421 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
422 DPRINTF("ioctl failed %d\n", errno);
423 ret = -1;
424 break;
427 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
428 mem->start_addr, mem->memory_size);
429 start_addr = mem->start_addr + mem->memory_size;
431 qemu_free(d.dirty_bitmap);
433 return ret;
436 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
438 int ret = -ENOSYS;
439 KVMState *s = kvm_state;
441 if (s->coalesced_mmio) {
442 struct kvm_coalesced_mmio_zone zone;
444 zone.addr = start;
445 zone.size = size;
447 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
450 return ret;
453 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
455 int ret = -ENOSYS;
456 KVMState *s = kvm_state;
458 if (s->coalesced_mmio) {
459 struct kvm_coalesced_mmio_zone zone;
461 zone.addr = start;
462 zone.size = size;
464 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
467 return ret;
470 int kvm_check_extension(KVMState *s, unsigned int extension)
472 int ret;
474 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
475 if (ret < 0) {
476 ret = 0;
479 return ret;
482 static int kvm_check_many_ioeventfds(void)
484 /* Userspace can use ioeventfd for io notification. This requires a host
485 * that supports eventfd(2) and an I/O thread; since eventfd does not
486 * support SIGIO it cannot interrupt the vcpu.
488 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
489 * can avoid creating too many ioeventfds.
491 #if defined(CONFIG_EVENTFD) /* && defined(CONFIG_IOTHREAD) */
492 int ioeventfds[7];
493 int i, ret = 0;
494 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
495 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
496 if (ioeventfds[i] < 0) {
497 break;
499 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
500 if (ret < 0) {
501 close(ioeventfds[i]);
502 break;
506 /* Decide whether many devices are supported or not */
507 ret = i == ARRAY_SIZE(ioeventfds);
509 while (i-- > 0) {
510 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
511 close(ioeventfds[i]);
513 return ret;
514 #else
515 return 0;
516 #endif
519 #ifdef OBSOLETE_KVM_IMPL
520 static const KVMCapabilityInfo *
521 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
523 while (list->name) {
524 if (!kvm_check_extension(s, list->value)) {
525 return list;
527 list++;
529 return NULL;
531 #endif
533 static void kvm_set_phys_mem(target_phys_addr_t start_addr, ram_addr_t size,
534 ram_addr_t phys_offset, bool log_dirty)
536 KVMState *s = kvm_state;
537 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
538 KVMSlot *mem, old;
539 int err;
541 /* kvm works in page size chunks, but the function may be called
542 with sub-page size and unaligned start address. */
543 size = TARGET_PAGE_ALIGN(size);
544 start_addr = TARGET_PAGE_ALIGN(start_addr);
546 /* KVM does not support read-only slots */
547 phys_offset &= ~IO_MEM_ROM;
549 while (1) {
550 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
551 if (!mem) {
552 break;
555 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
556 (start_addr + size <= mem->start_addr + mem->memory_size) &&
557 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
558 /* The new slot fits into the existing one and comes with
559 * identical parameters - update flags and done. */
560 kvm_slot_dirty_pages_log_change(mem, log_dirty);
561 return;
564 old = *mem;
566 /* unregister the overlapping slot */
567 mem->memory_size = 0;
568 err = kvm_set_user_memory_region(s, mem);
569 if (err) {
570 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
571 __func__, strerror(-err));
572 abort();
575 /* Workaround for older KVM versions: we can't join slots, even not by
576 * unregistering the previous ones and then registering the larger
577 * slot. We have to maintain the existing fragmentation. Sigh.
579 * This workaround assumes that the new slot starts at the same
580 * address as the first existing one. If not or if some overlapping
581 * slot comes around later, we will fail (not seen in practice so far)
582 * - and actually require a recent KVM version. */
583 if (s->broken_set_mem_region &&
584 old.start_addr == start_addr && old.memory_size < size &&
585 flags < IO_MEM_UNASSIGNED) {
586 mem = kvm_alloc_slot(s);
587 mem->memory_size = old.memory_size;
588 mem->start_addr = old.start_addr;
589 mem->phys_offset = old.phys_offset;
590 mem->flags = kvm_mem_flags(s, log_dirty);
592 err = kvm_set_user_memory_region(s, mem);
593 if (err) {
594 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
595 strerror(-err));
596 abort();
599 start_addr += old.memory_size;
600 phys_offset += old.memory_size;
601 size -= old.memory_size;
602 continue;
605 /* register prefix slot */
606 if (old.start_addr < start_addr) {
607 mem = kvm_alloc_slot(s);
608 mem->memory_size = start_addr - old.start_addr;
609 mem->start_addr = old.start_addr;
610 mem->phys_offset = old.phys_offset;
611 mem->flags = kvm_mem_flags(s, log_dirty);
613 err = kvm_set_user_memory_region(s, mem);
614 if (err) {
615 fprintf(stderr, "%s: error registering prefix slot: %s\n",
616 __func__, strerror(-err));
617 abort();
621 /* register suffix slot */
622 if (old.start_addr + old.memory_size > start_addr + size) {
623 ram_addr_t size_delta;
625 mem = kvm_alloc_slot(s);
626 mem->start_addr = start_addr + size;
627 size_delta = mem->start_addr - old.start_addr;
628 mem->memory_size = old.memory_size - size_delta;
629 mem->phys_offset = old.phys_offset + size_delta;
630 mem->flags = kvm_mem_flags(s, log_dirty);
632 err = kvm_set_user_memory_region(s, mem);
633 if (err) {
634 fprintf(stderr, "%s: error registering suffix slot: %s\n",
635 __func__, strerror(-err));
636 abort();
641 /* in case the KVM bug workaround already "consumed" the new slot */
642 if (!size) {
643 return;
645 /* KVM does not need to know about this memory */
646 if (flags >= IO_MEM_UNASSIGNED) {
647 return;
649 mem = kvm_alloc_slot(s);
650 mem->memory_size = size;
651 mem->start_addr = start_addr;
652 mem->phys_offset = phys_offset;
653 mem->flags = kvm_mem_flags(s, log_dirty);
655 err = kvm_set_user_memory_region(s, mem);
656 if (err) {
657 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
658 strerror(-err));
659 abort();
663 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
664 target_phys_addr_t start_addr,
665 ram_addr_t size, ram_addr_t phys_offset,
666 bool log_dirty)
668 kvm_set_phys_mem(start_addr, size, phys_offset, log_dirty);
671 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
672 target_phys_addr_t start_addr,
673 target_phys_addr_t end_addr)
675 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
678 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
679 int enable)
681 return kvm_set_migration_log(enable);
684 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
685 .set_memory = kvm_client_set_memory,
686 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
687 .migration_log = kvm_client_migration_log,
688 .log_start = kvm_log_start,
689 .log_stop = kvm_log_stop,
692 void kvm_cpu_register_phys_memory_client(void)
694 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
697 #ifdef OBSOLETE_KVM_IMPL
698 static void kvm_handle_interrupt(CPUState *env, int mask)
700 env->interrupt_request |= mask;
702 if (!qemu_cpu_is_self(env)) {
703 qemu_cpu_kick(env);
707 int kvm_init(void)
709 static const char upgrade_note[] =
710 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
711 "(see http://sourceforge.net/projects/kvm).\n";
712 KVMState *s;
713 const KVMCapabilityInfo *missing_cap;
714 int ret;
715 int i;
717 s = qemu_mallocz(sizeof(KVMState));
719 #ifdef KVM_CAP_SET_GUEST_DEBUG
720 QTAILQ_INIT(&s->kvm_sw_breakpoints);
721 #endif
722 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
723 s->slots[i].slot = i;
725 s->vmfd = -1;
726 s->fd = qemu_open("/dev/kvm", O_RDWR);
727 if (s->fd == -1) {
728 fprintf(stderr, "Could not access KVM kernel module: %m\n");
729 ret = -errno;
730 goto err;
733 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
734 if (ret < KVM_API_VERSION) {
735 if (ret > 0) {
736 ret = -EINVAL;
738 fprintf(stderr, "kvm version too old\n");
739 goto err;
742 if (ret > KVM_API_VERSION) {
743 ret = -EINVAL;
744 fprintf(stderr, "kvm version not supported\n");
745 goto err;
748 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
749 if (s->vmfd < 0) {
750 #ifdef TARGET_S390X
751 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
752 "your host kernel command line\n");
753 #endif
754 goto err;
757 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
758 if (!missing_cap) {
759 missing_cap =
760 kvm_check_extension_list(s, kvm_arch_required_capabilities);
762 if (missing_cap) {
763 ret = -EINVAL;
764 fprintf(stderr, "kvm does not support %s\n%s",
765 missing_cap->name, upgrade_note);
766 goto err;
769 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
771 s->broken_set_mem_region = 1;
772 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
773 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
774 if (ret > 0) {
775 s->broken_set_mem_region = 0;
777 #endif
779 s->vcpu_events = 0;
780 #ifdef KVM_CAP_VCPU_EVENTS
781 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
782 #endif
784 s->robust_singlestep = 0;
785 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
786 s->robust_singlestep =
787 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
788 #endif
790 s->debugregs = 0;
791 #ifdef KVM_CAP_DEBUGREGS
792 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
793 #endif
795 s->xsave = 0;
796 #ifdef KVM_CAP_XSAVE
797 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
798 #endif
800 s->xcrs = 0;
801 #ifdef KVM_CAP_XCRS
802 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
803 #endif
805 ret = kvm_arch_init(s);
806 if (ret < 0) {
807 goto err;
810 kvm_state = s;
811 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
813 s->many_ioeventfds = kvm_check_many_ioeventfds();
815 cpu_interrupt_handler = kvm_handle_interrupt;
817 return 0;
819 err:
820 if (s) {
821 if (s->vmfd != -1) {
822 close(s->vmfd);
824 if (s->fd != -1) {
825 close(s->fd);
828 qemu_free(s);
830 return ret;
832 #endif
834 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
835 uint32_t count)
837 int i;
838 uint8_t *ptr = data;
840 for (i = 0; i < count; i++) {
841 if (direction == KVM_EXIT_IO_IN) {
842 switch (size) {
843 case 1:
844 stb_p(ptr, cpu_inb(port));
845 break;
846 case 2:
847 stw_p(ptr, cpu_inw(port));
848 break;
849 case 4:
850 stl_p(ptr, cpu_inl(port));
851 break;
853 } else {
854 switch (size) {
855 case 1:
856 cpu_outb(port, ldub_p(ptr));
857 break;
858 case 2:
859 cpu_outw(port, lduw_p(ptr));
860 break;
861 case 4:
862 cpu_outl(port, ldl_p(ptr));
863 break;
867 ptr += size;
871 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
872 static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
874 fprintf(stderr, "KVM internal error.");
875 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
876 int i;
878 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
879 for (i = 0; i < run->internal.ndata; ++i) {
880 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
881 i, (uint64_t)run->internal.data[i]);
883 } else {
884 fprintf(stderr, "\n");
886 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
887 fprintf(stderr, "emulation failure\n");
888 if (!kvm_arch_stop_on_emulation_error(env)) {
889 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
890 return EXCP_INTERRUPT;
893 /* FIXME: Should trigger a qmp message to let management know
894 * something went wrong.
896 return -1;
898 #endif
900 void kvm_flush_coalesced_mmio_buffer(void)
902 KVMState *s = kvm_state;
903 if (s->coalesced_mmio_ring) {
904 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
905 while (ring->first != ring->last) {
906 struct kvm_coalesced_mmio *ent;
908 ent = &ring->coalesced_mmio[ring->first];
910 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
911 smp_wmb();
912 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
917 static void do_kvm_cpu_synchronize_state(void *_env)
919 CPUState *env = _env;
921 if (!env->kvm_vcpu_dirty) {
922 kvm_arch_get_registers(env);
923 env->kvm_vcpu_dirty = 1;
927 void kvm_cpu_synchronize_state(CPUState *env)
929 if (!env->kvm_vcpu_dirty) {
930 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
934 void kvm_cpu_synchronize_post_reset(CPUState *env)
936 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
937 env->kvm_vcpu_dirty = 0;
940 void kvm_cpu_synchronize_post_init(CPUState *env)
942 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
943 env->kvm_vcpu_dirty = 0;
946 #ifdef OBSOLETE_KVM_IMPL
948 int kvm_cpu_exec(CPUState *env)
950 struct kvm_run *run = env->kvm_run;
951 int ret, run_ret;
953 DPRINTF("kvm_cpu_exec()\n");
955 if (kvm_arch_process_async_events(env)) {
956 env->exit_request = 0;
957 return EXCP_HLT;
960 cpu_single_env = env;
962 do {
963 if (env->kvm_vcpu_dirty) {
964 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
965 env->kvm_vcpu_dirty = 0;
968 kvm_arch_pre_run(env, run);
969 if (env->exit_request) {
970 DPRINTF("interrupt exit requested\n");
972 * KVM requires us to reenter the kernel after IO exits to complete
973 * instruction emulation. This self-signal will ensure that we
974 * leave ASAP again.
976 qemu_cpu_kick_self();
978 cpu_single_env = NULL;
979 qemu_mutex_unlock_iothread();
981 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
983 qemu_mutex_lock_iothread();
984 cpu_single_env = env;
985 kvm_arch_post_run(env, run);
987 kvm_flush_coalesced_mmio_buffer();
989 if (run_ret < 0) {
990 if (run_ret == -EINTR || run_ret == -EAGAIN) {
991 DPRINTF("io window exit\n");
992 ret = EXCP_INTERRUPT;
993 break;
995 DPRINTF("kvm run failed %s\n", strerror(-run_ret));
996 abort();
999 switch (run->exit_reason) {
1000 case KVM_EXIT_IO:
1001 DPRINTF("handle_io\n");
1002 kvm_handle_io(run->io.port,
1003 (uint8_t *)run + run->io.data_offset,
1004 run->io.direction,
1005 run->io.size,
1006 run->io.count);
1007 ret = 0;
1008 break;
1009 case KVM_EXIT_MMIO:
1010 DPRINTF("handle_mmio\n");
1011 cpu_physical_memory_rw(run->mmio.phys_addr,
1012 run->mmio.data,
1013 run->mmio.len,
1014 run->mmio.is_write);
1015 ret = 0;
1016 break;
1017 case KVM_EXIT_IRQ_WINDOW_OPEN:
1018 DPRINTF("irq_window_open\n");
1019 ret = EXCP_INTERRUPT;
1020 break;
1021 case KVM_EXIT_SHUTDOWN:
1022 DPRINTF("shutdown\n");
1023 qemu_system_reset_request();
1024 ret = EXCP_INTERRUPT;
1025 break;
1026 case KVM_EXIT_UNKNOWN:
1027 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1028 (uint64_t)run->hw.hardware_exit_reason);
1029 ret = -1;
1030 break;
1031 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
1032 case KVM_EXIT_INTERNAL_ERROR:
1033 ret = kvm_handle_internal_error(env, run);
1034 break;
1035 #endif
1036 default:
1037 DPRINTF("kvm_arch_handle_exit\n");
1038 ret = kvm_arch_handle_exit(env, run);
1039 break;
1041 } while (ret == 0);
1043 if (ret < 0) {
1044 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1045 vm_stop(VMSTOP_PANIC);
1048 env->exit_request = 0;
1049 cpu_single_env = NULL;
1050 return ret;
1053 #endif
1054 int kvm_ioctl(KVMState *s, int type, ...)
1056 int ret;
1057 void *arg;
1058 va_list ap;
1060 va_start(ap, type);
1061 arg = va_arg(ap, void *);
1062 va_end(ap);
1064 ret = ioctl(s->fd, type, arg);
1065 if (ret == -1) {
1066 ret = -errno;
1068 return ret;
1071 int kvm_vm_ioctl(KVMState *s, int type, ...)
1073 int ret;
1074 void *arg;
1075 va_list ap;
1077 va_start(ap, type);
1078 arg = va_arg(ap, void *);
1079 va_end(ap);
1081 ret = ioctl(s->vmfd, type, arg);
1082 if (ret == -1) {
1083 ret = -errno;
1085 return ret;
1088 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1090 int ret;
1091 void *arg;
1092 va_list ap;
1094 va_start(ap, type);
1095 arg = va_arg(ap, void *);
1096 va_end(ap);
1098 ret = ioctl(env->kvm_fd, type, arg);
1099 if (ret == -1) {
1100 ret = -errno;
1102 return ret;
1105 int kvm_has_sync_mmu(void)
1107 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1110 int kvm_has_vcpu_events(void)
1112 return kvm_state->vcpu_events;
1115 int kvm_has_robust_singlestep(void)
1117 return kvm_state->robust_singlestep;
1120 int kvm_has_debugregs(void)
1122 return kvm_state->debugregs;
1125 int kvm_has_xsave(void)
1127 return kvm_state->xsave;
1130 int kvm_has_xcrs(void)
1132 return kvm_state->xcrs;
1135 int kvm_has_many_ioeventfds(void)
1137 if (!kvm_enabled()) {
1138 return 0;
1140 return kvm_state->many_ioeventfds;
1143 void kvm_setup_guest_memory(void *start, size_t size)
1145 if (!kvm_has_sync_mmu()) {
1146 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1148 if (ret) {
1149 perror("qemu_madvise");
1150 fprintf(stderr,
1151 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1152 exit(1);
1157 #ifdef KVM_CAP_SET_GUEST_DEBUG
1158 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1159 target_ulong pc)
1161 struct kvm_sw_breakpoint *bp;
1163 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1164 if (bp->pc == pc) {
1165 return bp;
1168 return NULL;
1171 int kvm_sw_breakpoints_active(CPUState *env)
1173 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1176 struct kvm_set_guest_debug_data {
1177 struct kvm_guest_debug dbg;
1178 CPUState *env;
1179 int err;
1182 static void kvm_invoke_set_guest_debug(void *data)
1184 struct kvm_set_guest_debug_data *dbg_data = data;
1185 CPUState *env = dbg_data->env;
1187 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1190 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1192 struct kvm_set_guest_debug_data data;
1194 data.dbg.control = reinject_trap;
1196 if (env->singlestep_enabled) {
1197 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1199 kvm_arch_update_guest_debug(env, &data.dbg);
1200 data.env = env;
1202 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1203 return data.err;
1206 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1207 target_ulong len, int type)
1209 struct kvm_sw_breakpoint *bp;
1210 CPUState *env;
1211 int err;
1213 if (type == GDB_BREAKPOINT_SW) {
1214 bp = kvm_find_sw_breakpoint(current_env, addr);
1215 if (bp) {
1216 bp->use_count++;
1217 return 0;
1220 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1221 if (!bp) {
1222 return -ENOMEM;
1225 bp->pc = addr;
1226 bp->use_count = 1;
1227 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1228 if (err) {
1229 qemu_free(bp);
1230 return err;
1233 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1234 bp, entry);
1235 } else {
1236 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1237 if (err) {
1238 return err;
1242 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1243 err = kvm_update_guest_debug(env, 0);
1244 if (err) {
1245 return err;
1248 return 0;
1251 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1252 target_ulong len, int type)
1254 struct kvm_sw_breakpoint *bp;
1255 CPUState *env;
1256 int err;
1258 if (type == GDB_BREAKPOINT_SW) {
1259 bp = kvm_find_sw_breakpoint(current_env, addr);
1260 if (!bp) {
1261 return -ENOENT;
1264 if (bp->use_count > 1) {
1265 bp->use_count--;
1266 return 0;
1269 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1270 if (err) {
1271 return err;
1274 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1275 qemu_free(bp);
1276 } else {
1277 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1278 if (err) {
1279 return err;
1283 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1284 err = kvm_update_guest_debug(env, 0);
1285 if (err) {
1286 return err;
1289 return 0;
1292 void kvm_remove_all_breakpoints(CPUState *current_env)
1294 struct kvm_sw_breakpoint *bp, *next;
1295 KVMState *s = current_env->kvm_state;
1296 CPUState *env;
1298 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1299 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1300 /* Try harder to find a CPU that currently sees the breakpoint. */
1301 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1302 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1303 break;
1308 kvm_arch_remove_all_hw_breakpoints();
1310 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1311 kvm_update_guest_debug(env, 0);
1315 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1317 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1319 return -EINVAL;
1322 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1323 target_ulong len, int type)
1325 return -EINVAL;
1328 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1329 target_ulong len, int type)
1331 return -EINVAL;
1334 void kvm_remove_all_breakpoints(CPUState *current_env)
1337 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1339 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1341 struct kvm_signal_mask *sigmask;
1342 int r;
1344 if (!sigset) {
1345 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1348 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1350 sigmask->len = 8;
1351 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1352 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1353 qemu_free(sigmask);
1355 return r;
1358 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1360 #ifdef KVM_IOEVENTFD
1361 int ret;
1362 struct kvm_ioeventfd iofd;
1364 iofd.datamatch = val;
1365 iofd.addr = addr;
1366 iofd.len = 4;
1367 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1368 iofd.fd = fd;
1370 if (!kvm_enabled()) {
1371 return -ENOSYS;
1374 if (!assign) {
1375 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1378 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1380 if (ret < 0) {
1381 return -errno;
1384 return 0;
1385 #else
1386 return -ENOSYS;
1387 #endif
1390 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1392 #ifdef KVM_IOEVENTFD
1393 struct kvm_ioeventfd kick = {
1394 .datamatch = val,
1395 .addr = addr,
1396 .len = 2,
1397 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1398 .fd = fd,
1400 int r;
1401 if (!kvm_enabled()) {
1402 return -ENOSYS;
1404 if (!assign) {
1405 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1407 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1408 if (r < 0) {
1409 return r;
1411 return 0;
1412 #else
1413 return -ENOSYS;
1414 #endif
1417 #if defined(KVM_IRQFD)
1418 int kvm_set_irqfd(int gsi, int fd, bool assigned)
1420 struct kvm_irqfd irqfd = {
1421 .fd = fd,
1422 .gsi = gsi,
1423 .flags = assigned ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1425 int r;
1426 if (!kvm_enabled() || !kvm_irqchip_in_kernel())
1427 return -ENOSYS;
1429 r = kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd);
1430 if (r < 0)
1431 return r;
1432 return 0;
1434 #endif
1436 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1438 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1441 int kvm_on_sigbus(int code, void *addr)
1443 return kvm_arch_on_sigbus(code, addr);
1446 #undef PAGE_SIZE
1447 #include "qemu-kvm.c"