Merge commit '3a3fb96d0d9e3331e3beb672108ec18a6d3d8c1c' into upstream-merge
[qemu/qemu-dev-zwu.git] / kvm-all.c
blob8de370a58e04b2190c1b490878ee0c74c8ec7da0
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "hw/hw.h"
26 #include "gdbstub.h"
27 #include "kvm.h"
29 #ifdef KVM_UPSTREAM
30 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
31 #define PAGE_SIZE TARGET_PAGE_SIZE
33 //#define DEBUG_KVM
35 #ifdef DEBUG_KVM
36 #define dprintf(fmt, ...) \
37 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
38 #else
39 #define dprintf(fmt, ...) \
40 do { } while (0)
41 #endif
43 typedef struct KVMSlot
45 target_phys_addr_t start_addr;
46 ram_addr_t memory_size;
47 ram_addr_t phys_offset;
48 int slot;
49 int flags;
50 } KVMSlot;
52 typedef struct kvm_dirty_log KVMDirtyLog;
54 int kvm_allowed = 0;
56 struct KVMState
58 KVMSlot slots[32];
59 int fd;
60 int vmfd;
61 int coalesced_mmio;
62 int broken_set_mem_region;
63 int migration_log;
64 #ifdef KVM_CAP_SET_GUEST_DEBUG
65 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
66 #endif
67 int irqchip_in_kernel;
68 int pit_in_kernel;
71 static KVMState *kvm_state;
73 static KVMSlot *kvm_alloc_slot(KVMState *s)
75 int i;
77 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
78 /* KVM private memory slots */
79 if (i >= 8 && i < 12)
80 continue;
81 if (s->slots[i].memory_size == 0)
82 return &s->slots[i];
85 fprintf(stderr, "%s: no free slot available\n", __func__);
86 abort();
89 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
90 target_phys_addr_t start_addr,
91 target_phys_addr_t end_addr)
93 int i;
95 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
96 KVMSlot *mem = &s->slots[i];
98 if (start_addr == mem->start_addr &&
99 end_addr == mem->start_addr + mem->memory_size) {
100 return mem;
104 return NULL;
108 * Find overlapping slot with lowest start address
110 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
111 target_phys_addr_t start_addr,
112 target_phys_addr_t end_addr)
114 KVMSlot *found = NULL;
115 int i;
117 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
118 KVMSlot *mem = &s->slots[i];
120 if (mem->memory_size == 0 ||
121 (found && found->start_addr < mem->start_addr)) {
122 continue;
125 if (end_addr > mem->start_addr &&
126 start_addr < mem->start_addr + mem->memory_size) {
127 found = mem;
131 return found;
134 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
136 struct kvm_userspace_memory_region mem;
138 mem.slot = slot->slot;
139 mem.guest_phys_addr = slot->start_addr;
140 mem.memory_size = slot->memory_size;
141 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
142 mem.flags = slot->flags;
143 if (s->migration_log) {
144 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
146 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
149 static void kvm_reset_vcpu(void *opaque)
151 CPUState *env = opaque;
153 kvm_arch_reset_vcpu(env);
154 if (kvm_arch_put_registers(env)) {
155 fprintf(stderr, "Fatal: kvm vcpu reset failed\n");
156 abort();
159 #endif
161 int kvm_irqchip_in_kernel(void)
163 return kvm_state->irqchip_in_kernel;
166 #ifdef KVM_UPSTREAM
167 int kvm_pit_in_kernel(void)
169 return kvm_state->pit_in_kernel;
173 int kvm_init_vcpu(CPUState *env)
175 KVMState *s = kvm_state;
176 long mmap_size;
177 int ret;
179 dprintf("kvm_init_vcpu\n");
181 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
182 if (ret < 0) {
183 dprintf("kvm_create_vcpu failed\n");
184 goto err;
187 env->kvm_fd = ret;
188 env->kvm_state = s;
190 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
191 if (mmap_size < 0) {
192 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
193 goto err;
196 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
197 env->kvm_fd, 0);
198 if (env->kvm_run == MAP_FAILED) {
199 ret = -errno;
200 dprintf("mmap'ing vcpu state failed\n");
201 goto err;
204 ret = kvm_arch_init_vcpu(env);
205 if (ret == 0) {
206 qemu_register_reset(kvm_reset_vcpu, env);
207 kvm_arch_reset_vcpu(env);
208 ret = kvm_arch_put_registers(env);
210 err:
211 return ret;
215 * dirty pages logging control
217 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
218 ram_addr_t size, int flags, int mask)
220 KVMState *s = kvm_state;
221 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
222 int old_flags;
224 if (mem == NULL) {
225 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
226 TARGET_FMT_plx "\n", __func__, phys_addr,
227 (target_phys_addr_t)(phys_addr + size - 1));
228 return -EINVAL;
231 old_flags = mem->flags;
233 flags = (mem->flags & ~mask) | flags;
234 mem->flags = flags;
236 /* If nothing changed effectively, no need to issue ioctl */
237 if (s->migration_log) {
238 flags |= KVM_MEM_LOG_DIRTY_PAGES;
240 if (flags == old_flags) {
241 return 0;
244 return kvm_set_user_memory_region(s, mem);
247 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
249 return kvm_dirty_pages_log_change(phys_addr, size,
250 KVM_MEM_LOG_DIRTY_PAGES,
251 KVM_MEM_LOG_DIRTY_PAGES);
254 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
256 return kvm_dirty_pages_log_change(phys_addr, size,
258 KVM_MEM_LOG_DIRTY_PAGES);
261 int kvm_set_migration_log(int enable)
263 KVMState *s = kvm_state;
264 KVMSlot *mem;
265 int i, err;
267 s->migration_log = enable;
269 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
270 mem = &s->slots[i];
272 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
273 continue;
275 err = kvm_set_user_memory_region(s, mem);
276 if (err) {
277 return err;
280 return 0;
283 static int test_le_bit(unsigned long nr, unsigned char *addr)
285 return (addr[nr >> 3] >> (nr & 7)) & 1;
289 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
290 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
291 * This means all bits are set to dirty.
293 * @start_add: start of logged region.
294 * @end_addr: end of logged region.
296 int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
297 target_phys_addr_t end_addr)
299 KVMState *s = kvm_state;
300 unsigned long size, allocated_size = 0;
301 target_phys_addr_t phys_addr;
302 ram_addr_t addr;
303 KVMDirtyLog d;
304 KVMSlot *mem;
305 int ret = 0;
307 d.dirty_bitmap = NULL;
308 while (start_addr < end_addr) {
309 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
310 if (mem == NULL) {
311 break;
314 size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
315 if (!d.dirty_bitmap) {
316 d.dirty_bitmap = qemu_malloc(size);
317 } else if (size > allocated_size) {
318 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
320 allocated_size = size;
321 memset(d.dirty_bitmap, 0, allocated_size);
323 d.slot = mem->slot;
325 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
326 dprintf("ioctl failed %d\n", errno);
327 ret = -1;
328 break;
331 for (phys_addr = mem->start_addr, addr = mem->phys_offset;
332 phys_addr < mem->start_addr + mem->memory_size;
333 phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
334 unsigned char *bitmap = (unsigned char *)d.dirty_bitmap;
335 unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
337 if (test_le_bit(nr, bitmap)) {
338 cpu_physical_memory_set_dirty(addr);
341 start_addr = phys_addr;
343 qemu_free(d.dirty_bitmap);
345 return ret;
347 #endif
349 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
351 int ret = -ENOSYS;
352 #ifdef KVM_CAP_COALESCED_MMIO
353 KVMState *s = kvm_state;
355 if (s->coalesced_mmio) {
356 struct kvm_coalesced_mmio_zone zone;
358 zone.addr = start;
359 zone.size = size;
361 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
363 #endif
365 return ret;
368 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
370 int ret = -ENOSYS;
371 #ifdef KVM_CAP_COALESCED_MMIO
372 KVMState *s = kvm_state;
374 if (s->coalesced_mmio) {
375 struct kvm_coalesced_mmio_zone zone;
377 zone.addr = start;
378 zone.size = size;
380 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
382 #endif
384 return ret;
387 int kvm_check_extension(KVMState *s, unsigned int extension)
389 int ret;
391 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
392 if (ret < 0) {
393 ret = 0;
396 return ret;
398 #ifdef KVM_UPSTREAM
400 int kvm_init(int smp_cpus)
402 static const char upgrade_note[] =
403 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
404 "(see http://sourceforge.net/projects/kvm).\n";
405 KVMState *s;
406 int ret;
407 int i;
409 if (smp_cpus > 1) {
410 fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
411 return -EINVAL;
414 s = qemu_mallocz(sizeof(KVMState));
416 #ifdef KVM_CAP_SET_GUEST_DEBUG
417 QTAILQ_INIT(&s->kvm_sw_breakpoints);
418 #endif
419 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
420 s->slots[i].slot = i;
422 s->vmfd = -1;
423 s->fd = open("/dev/kvm", O_RDWR);
424 if (s->fd == -1) {
425 fprintf(stderr, "Could not access KVM kernel module: %m\n");
426 ret = -errno;
427 goto err;
430 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
431 if (ret < KVM_API_VERSION) {
432 if (ret > 0)
433 ret = -EINVAL;
434 fprintf(stderr, "kvm version too old\n");
435 goto err;
438 if (ret > KVM_API_VERSION) {
439 ret = -EINVAL;
440 fprintf(stderr, "kvm version not supported\n");
441 goto err;
444 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
445 if (s->vmfd < 0)
446 goto err;
448 /* initially, KVM allocated its own memory and we had to jump through
449 * hooks to make phys_ram_base point to this. Modern versions of KVM
450 * just use a user allocated buffer so we can use regular pages
451 * unmodified. Make sure we have a sufficiently modern version of KVM.
453 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
454 ret = -EINVAL;
455 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
456 upgrade_note);
457 goto err;
460 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
461 * destroyed properly. Since we rely on this capability, refuse to work
462 * with any kernel without this capability. */
463 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
464 ret = -EINVAL;
466 fprintf(stderr,
467 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
468 upgrade_note);
469 goto err;
472 #ifdef KVM_CAP_COALESCED_MMIO
473 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
474 #else
475 s->coalesced_mmio = 0;
476 #endif
478 s->broken_set_mem_region = 1;
479 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
480 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
481 if (ret > 0) {
482 s->broken_set_mem_region = 0;
484 #endif
486 ret = kvm_arch_init(s, smp_cpus);
487 if (ret < 0)
488 goto err;
490 kvm_state = s;
492 return 0;
494 err:
495 if (s) {
496 if (s->vmfd != -1)
497 close(s->vmfd);
498 if (s->fd != -1)
499 close(s->fd);
501 qemu_free(s);
503 return ret;
505 #endif
507 static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
508 uint32_t count)
510 int i;
511 uint8_t *ptr = data;
513 for (i = 0; i < count; i++) {
514 if (direction == KVM_EXIT_IO_IN) {
515 switch (size) {
516 case 1:
517 stb_p(ptr, cpu_inb(port));
518 break;
519 case 2:
520 stw_p(ptr, cpu_inw(port));
521 break;
522 case 4:
523 stl_p(ptr, cpu_inl(port));
524 break;
526 } else {
527 switch (size) {
528 case 1:
529 cpu_outb(port, ldub_p(ptr));
530 break;
531 case 2:
532 cpu_outw(port, lduw_p(ptr));
533 break;
534 case 4:
535 cpu_outl(port, ldl_p(ptr));
536 break;
540 ptr += size;
543 return 1;
546 #ifdef KVM_UPSTREAM
547 static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
549 #ifdef KVM_CAP_COALESCED_MMIO
550 KVMState *s = kvm_state;
551 if (s->coalesced_mmio) {
552 struct kvm_coalesced_mmio_ring *ring;
554 ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
555 while (ring->first != ring->last) {
556 struct kvm_coalesced_mmio *ent;
558 ent = &ring->coalesced_mmio[ring->first];
560 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
561 /* FIXME smp_wmb() */
562 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
565 #endif
568 void kvm_cpu_synchronize_state(CPUState *env)
570 if (!env->kvm_state->regs_modified) {
571 kvm_arch_get_registers(env);
572 env->kvm_state->regs_modified = 1;
576 int kvm_cpu_exec(CPUState *env)
578 struct kvm_run *run = env->kvm_run;
579 int ret;
581 dprintf("kvm_cpu_exec()\n");
583 do {
584 if (env->exit_request) {
585 dprintf("interrupt exit requested\n");
586 ret = 0;
587 break;
590 if (env->kvm_state->regs_modified) {
591 kvm_arch_put_registers(env);
592 env->kvm_state->regs_modified = 0;
595 kvm_arch_pre_run(env, run);
596 qemu_mutex_unlock_iothread();
597 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
598 qemu_mutex_lock_iothread();
599 kvm_arch_post_run(env, run);
601 if (ret == -EINTR || ret == -EAGAIN) {
602 dprintf("io window exit\n");
603 ret = 0;
604 break;
607 if (ret < 0) {
608 dprintf("kvm run failed %s\n", strerror(-ret));
609 abort();
612 kvm_run_coalesced_mmio(env, run);
614 ret = 0; /* exit loop */
615 switch (run->exit_reason) {
616 case KVM_EXIT_IO:
617 dprintf("handle_io\n");
618 ret = kvm_handle_io(run->io.port,
619 (uint8_t *)run + run->io.data_offset,
620 run->io.direction,
621 run->io.size,
622 run->io.count);
623 break;
624 case KVM_EXIT_MMIO:
625 dprintf("handle_mmio\n");
626 cpu_physical_memory_rw(run->mmio.phys_addr,
627 run->mmio.data,
628 run->mmio.len,
629 run->mmio.is_write);
630 ret = 1;
631 break;
632 case KVM_EXIT_IRQ_WINDOW_OPEN:
633 dprintf("irq_window_open\n");
634 break;
635 case KVM_EXIT_SHUTDOWN:
636 dprintf("shutdown\n");
637 qemu_system_reset_request();
638 ret = 1;
639 break;
640 case KVM_EXIT_UNKNOWN:
641 dprintf("kvm_exit_unknown\n");
642 break;
643 case KVM_EXIT_FAIL_ENTRY:
644 dprintf("kvm_exit_fail_entry\n");
645 break;
646 case KVM_EXIT_EXCEPTION:
647 dprintf("kvm_exit_exception\n");
648 break;
649 case KVM_EXIT_DEBUG:
650 dprintf("kvm_exit_debug\n");
651 #ifdef KVM_CAP_SET_GUEST_DEBUG
652 if (kvm_arch_debug(&run->debug.arch)) {
653 gdb_set_stop_cpu(env);
654 vm_stop(EXCP_DEBUG);
655 env->exception_index = EXCP_DEBUG;
656 return 0;
658 /* re-enter, this exception was guest-internal */
659 ret = 1;
660 #endif /* KVM_CAP_SET_GUEST_DEBUG */
661 break;
662 default:
663 dprintf("kvm_arch_handle_exit\n");
664 ret = kvm_arch_handle_exit(env, run);
665 break;
667 } while (ret > 0);
669 if (env->exit_request) {
670 env->exit_request = 0;
671 env->exception_index = EXCP_INTERRUPT;
674 return ret;
677 void kvm_set_phys_mem(target_phys_addr_t start_addr,
678 ram_addr_t size,
679 ram_addr_t phys_offset)
681 KVMState *s = kvm_state;
682 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
683 KVMSlot *mem, old;
684 int err;
686 if (start_addr & ~TARGET_PAGE_MASK) {
687 if (flags >= IO_MEM_UNASSIGNED) {
688 if (!kvm_lookup_overlapping_slot(s, start_addr,
689 start_addr + size)) {
690 return;
692 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
693 } else {
694 fprintf(stderr, "Only page-aligned memory slots supported\n");
696 abort();
699 /* KVM does not support read-only slots */
700 phys_offset &= ~IO_MEM_ROM;
702 while (1) {
703 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
704 if (!mem) {
705 break;
708 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
709 (start_addr + size <= mem->start_addr + mem->memory_size) &&
710 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
711 /* The new slot fits into the existing one and comes with
712 * identical parameters - nothing to be done. */
713 return;
716 old = *mem;
718 /* unregister the overlapping slot */
719 mem->memory_size = 0;
720 err = kvm_set_user_memory_region(s, mem);
721 if (err) {
722 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
723 __func__, strerror(-err));
724 abort();
727 /* Workaround for older KVM versions: we can't join slots, even not by
728 * unregistering the previous ones and then registering the larger
729 * slot. We have to maintain the existing fragmentation. Sigh.
731 * This workaround assumes that the new slot starts at the same
732 * address as the first existing one. If not or if some overlapping
733 * slot comes around later, we will fail (not seen in practice so far)
734 * - and actually require a recent KVM version. */
735 if (s->broken_set_mem_region &&
736 old.start_addr == start_addr && old.memory_size < size &&
737 flags < IO_MEM_UNASSIGNED) {
738 mem = kvm_alloc_slot(s);
739 mem->memory_size = old.memory_size;
740 mem->start_addr = old.start_addr;
741 mem->phys_offset = old.phys_offset;
742 mem->flags = 0;
744 err = kvm_set_user_memory_region(s, mem);
745 if (err) {
746 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
747 strerror(-err));
748 abort();
751 start_addr += old.memory_size;
752 phys_offset += old.memory_size;
753 size -= old.memory_size;
754 continue;
757 /* register prefix slot */
758 if (old.start_addr < start_addr) {
759 mem = kvm_alloc_slot(s);
760 mem->memory_size = start_addr - old.start_addr;
761 mem->start_addr = old.start_addr;
762 mem->phys_offset = old.phys_offset;
763 mem->flags = 0;
765 err = kvm_set_user_memory_region(s, mem);
766 if (err) {
767 fprintf(stderr, "%s: error registering prefix slot: %s\n",
768 __func__, strerror(-err));
769 abort();
773 /* register suffix slot */
774 if (old.start_addr + old.memory_size > start_addr + size) {
775 ram_addr_t size_delta;
777 mem = kvm_alloc_slot(s);
778 mem->start_addr = start_addr + size;
779 size_delta = mem->start_addr - old.start_addr;
780 mem->memory_size = old.memory_size - size_delta;
781 mem->phys_offset = old.phys_offset + size_delta;
782 mem->flags = 0;
784 err = kvm_set_user_memory_region(s, mem);
785 if (err) {
786 fprintf(stderr, "%s: error registering suffix slot: %s\n",
787 __func__, strerror(-err));
788 abort();
793 /* in case the KVM bug workaround already "consumed" the new slot */
794 if (!size)
795 return;
797 /* KVM does not need to know about this memory */
798 if (flags >= IO_MEM_UNASSIGNED)
799 return;
801 mem = kvm_alloc_slot(s);
802 mem->memory_size = size;
803 mem->start_addr = start_addr;
804 mem->phys_offset = phys_offset;
805 mem->flags = 0;
807 err = kvm_set_user_memory_region(s, mem);
808 if (err) {
809 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
810 strerror(-err));
811 abort();
815 #endif
816 int kvm_ioctl(KVMState *s, int type, ...)
818 int ret;
819 void *arg;
820 va_list ap;
822 va_start(ap, type);
823 arg = va_arg(ap, void *);
824 va_end(ap);
826 ret = ioctl(s->fd, type, arg);
827 if (ret == -1)
828 ret = -errno;
830 return ret;
833 int kvm_vm_ioctl(KVMState *s, int type, ...)
835 int ret;
836 void *arg;
837 va_list ap;
839 va_start(ap, type);
840 arg = va_arg(ap, void *);
841 va_end(ap);
843 ret = ioctl(s->vmfd, type, arg);
844 if (ret == -1)
845 ret = -errno;
847 return ret;
850 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
852 int ret;
853 void *arg;
854 va_list ap;
856 va_start(ap, type);
857 arg = va_arg(ap, void *);
858 va_end(ap);
860 ret = ioctl(env->kvm_fd, type, arg);
861 if (ret == -1)
862 ret = -errno;
864 return ret;
867 int kvm_has_sync_mmu(void)
869 #ifdef KVM_CAP_SYNC_MMU
870 KVMState *s = kvm_state;
872 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
873 #else
874 return 0;
875 #endif
878 #ifdef KVM_UPSTREAM
879 void kvm_setup_guest_memory(void *start, size_t size)
881 if (!kvm_has_sync_mmu()) {
882 #ifdef MADV_DONTFORK
883 int ret = madvise(start, size, MADV_DONTFORK);
885 if (ret) {
886 perror("madvice");
887 exit(1);
889 #else
890 fprintf(stderr,
891 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
892 exit(1);
893 #endif
897 #endif /* KVM_UPSTREAM */
899 #ifdef KVM_CAP_SET_GUEST_DEBUG
901 #ifdef KVM_UPSTREAM
902 static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
904 #ifdef CONFIG_IOTHREAD
905 if (env == cpu_single_env) {
906 func(data);
907 return;
909 abort();
910 #else
911 func(data);
912 #endif
914 #endif /* KVM_UPSTREAM */
916 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
917 target_ulong pc)
919 struct kvm_sw_breakpoint *bp;
921 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
922 if (bp->pc == pc)
923 return bp;
925 return NULL;
928 int kvm_sw_breakpoints_active(CPUState *env)
930 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
933 #ifdef KVM_UPSTREAM
935 struct kvm_set_guest_debug_data {
936 struct kvm_guest_debug dbg;
937 CPUState *env;
938 int err;
941 static void kvm_invoke_set_guest_debug(void *data)
943 struct kvm_set_guest_debug_data *dbg_data = data;
944 CPUState *env = dbg_data->env;
946 if (env->kvm_state->regs_modified) {
947 kvm_arch_put_registers(env);
948 env->kvm_state->regs_modified = 0;
950 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
953 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
955 struct kvm_set_guest_debug_data data;
957 data.dbg.control = 0;
958 if (env->singlestep_enabled)
959 data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
961 kvm_arch_update_guest_debug(env, &data.dbg);
962 data.dbg.control |= reinject_trap;
963 data.env = env;
965 on_vcpu(env, kvm_invoke_set_guest_debug, &data);
966 return data.err;
968 #endif
970 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
971 target_ulong len, int type)
973 struct kvm_sw_breakpoint *bp;
974 CPUState *env;
975 int err;
977 if (type == GDB_BREAKPOINT_SW) {
978 bp = kvm_find_sw_breakpoint(current_env, addr);
979 if (bp) {
980 bp->use_count++;
981 return 0;
984 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
985 if (!bp)
986 return -ENOMEM;
988 bp->pc = addr;
989 bp->use_count = 1;
990 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
991 if (err) {
992 free(bp);
993 return err;
996 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
997 bp, entry);
998 } else {
999 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1000 if (err)
1001 return err;
1004 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1005 err = kvm_update_guest_debug(env, 0);
1006 if (err)
1007 return err;
1009 return 0;
1012 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1013 target_ulong len, int type)
1015 struct kvm_sw_breakpoint *bp;
1016 CPUState *env;
1017 int err;
1019 if (type == GDB_BREAKPOINT_SW) {
1020 bp = kvm_find_sw_breakpoint(current_env, addr);
1021 if (!bp)
1022 return -ENOENT;
1024 if (bp->use_count > 1) {
1025 bp->use_count--;
1026 return 0;
1029 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1030 if (err)
1031 return err;
1033 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1034 qemu_free(bp);
1035 } else {
1036 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1037 if (err)
1038 return err;
1041 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1042 err = kvm_update_guest_debug(env, 0);
1043 if (err)
1044 return err;
1046 return 0;
1049 void kvm_remove_all_breakpoints(CPUState *current_env)
1051 struct kvm_sw_breakpoint *bp, *next;
1052 KVMState *s = current_env->kvm_state;
1053 CPUState *env;
1055 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1056 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1057 /* Try harder to find a CPU that currently sees the breakpoint. */
1058 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1059 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1060 break;
1064 kvm_arch_remove_all_hw_breakpoints();
1066 for (env = first_cpu; env != NULL; env = env->next_cpu)
1067 kvm_update_guest_debug(env, 0);
1070 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1072 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1074 return -EINVAL;
1077 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1078 target_ulong len, int type)
1080 return -EINVAL;
1083 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1084 target_ulong len, int type)
1086 return -EINVAL;
1089 void kvm_remove_all_breakpoints(CPUState *current_env)
1092 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1094 #include "qemu-kvm.c"