ETRAX: Add support for the ethernet receivers dest addr filters.
[qemu/qemu-JZ.git] / target-i386 / exec.h
blob8597e7953a7213b8ad26b208e134e1b4a2d8631d
1 /*
2 * i386 execution defines
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "config.h"
21 #include "dyngen-exec.h"
23 /* XXX: factorize this mess */
24 #ifdef TARGET_X86_64
25 #define TARGET_LONG_BITS 64
26 #else
27 #define TARGET_LONG_BITS 32
28 #endif
30 #include "cpu-defs.h"
32 /* at least 4 register variables are defined */
33 register struct CPUX86State *env asm(AREG0);
35 #ifndef CPU_NO_GLOBAL_REGS
37 #if TARGET_LONG_BITS > HOST_LONG_BITS
39 /* no registers can be used */
40 #define T0 (env->t0)
41 #define T1 (env->t1)
42 #define T2 (env->t2)
44 #else
46 /* XXX: use unsigned long instead of target_ulong - better code will
47 be generated for 64 bit CPUs */
48 register target_ulong T0 asm(AREG1);
49 register target_ulong T1 asm(AREG2);
50 register target_ulong T2 asm(AREG3);
52 #endif /* ! (TARGET_LONG_BITS > HOST_LONG_BITS) */
54 #endif /* ! CPU_NO_GLOBAL_REGS */
56 #define A0 T2
58 extern FILE *logfile;
59 extern int loglevel;
61 #ifndef reg_EAX
62 #define EAX (env->regs[R_EAX])
63 #endif
64 #ifndef reg_ECX
65 #define ECX (env->regs[R_ECX])
66 #endif
67 #ifndef reg_EDX
68 #define EDX (env->regs[R_EDX])
69 #endif
70 #ifndef reg_EBX
71 #define EBX (env->regs[R_EBX])
72 #endif
73 #ifndef reg_ESP
74 #define ESP (env->regs[R_ESP])
75 #endif
76 #ifndef reg_EBP
77 #define EBP (env->regs[R_EBP])
78 #endif
79 #ifndef reg_ESI
80 #define ESI (env->regs[R_ESI])
81 #endif
82 #ifndef reg_EDI
83 #define EDI (env->regs[R_EDI])
84 #endif
85 #define EIP (env->eip)
86 #define DF (env->df)
88 #define CC_SRC (env->cc_src)
89 #define CC_DST (env->cc_dst)
90 #define CC_OP (env->cc_op)
92 /* float macros */
93 #define FT0 (env->ft0)
94 #define ST0 (env->fpregs[env->fpstt].d)
95 #define ST(n) (env->fpregs[(env->fpstt + (n)) & 7].d)
96 #define ST1 ST(1)
98 #include "cpu.h"
99 #include "exec-all.h"
101 void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
102 void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
103 void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
104 void cpu_x86_flush_tlb(CPUX86State *env, target_ulong addr);
105 int cpu_x86_handle_mmu_fault(CPUX86State *env, target_ulong addr,
106 int is_write, int mmu_idx, int is_softmmu);
107 void tlb_fill(target_ulong addr, int is_write, int mmu_idx,
108 void *retaddr);
109 void __hidden cpu_lock(void);
110 void __hidden cpu_unlock(void);
111 void do_interrupt(int intno, int is_int, int error_code,
112 target_ulong next_eip, int is_hw);
113 void do_interrupt_user(int intno, int is_int, int error_code,
114 target_ulong next_eip);
115 void raise_interrupt(int intno, int is_int, int error_code,
116 int next_eip_addend);
117 void raise_exception_err(int exception_index, int error_code);
118 void raise_exception(int exception_index);
119 void do_smm_enter(void);
120 void __hidden cpu_loop_exit(void);
122 void OPPROTO op_movl_eflags_T0(void);
123 void OPPROTO op_movl_T0_eflags(void);
125 /* n must be a constant to be efficient */
126 static inline target_long lshift(target_long x, int n)
128 if (n >= 0)
129 return x << n;
130 else
131 return x >> (-n);
134 #include "helper.h"
136 static inline void svm_check_intercept(uint32_t type)
138 helper_svm_check_intercept_param(type, 0);
141 #if !defined(CONFIG_USER_ONLY)
143 #include "softmmu_exec.h"
145 #endif /* !defined(CONFIG_USER_ONLY) */
147 #ifdef USE_X86LDOUBLE
148 /* use long double functions */
149 #define floatx_to_int32 floatx80_to_int32
150 #define floatx_to_int64 floatx80_to_int64
151 #define floatx_to_int32_round_to_zero floatx80_to_int32_round_to_zero
152 #define floatx_to_int64_round_to_zero floatx80_to_int64_round_to_zero
153 #define int32_to_floatx int32_to_floatx80
154 #define int64_to_floatx int64_to_floatx80
155 #define float32_to_floatx float32_to_floatx80
156 #define float64_to_floatx float64_to_floatx80
157 #define floatx_to_float32 floatx80_to_float32
158 #define floatx_to_float64 floatx80_to_float64
159 #define floatx_abs floatx80_abs
160 #define floatx_chs floatx80_chs
161 #define floatx_round_to_int floatx80_round_to_int
162 #define floatx_compare floatx80_compare
163 #define floatx_compare_quiet floatx80_compare_quiet
164 #define sin sinl
165 #define cos cosl
166 #define sqrt sqrtl
167 #define pow powl
168 #define log logl
169 #define tan tanl
170 #define atan2 atan2l
171 #define floor floorl
172 #define ceil ceill
173 #define ldexp ldexpl
174 #else
175 #define floatx_to_int32 float64_to_int32
176 #define floatx_to_int64 float64_to_int64
177 #define floatx_to_int32_round_to_zero float64_to_int32_round_to_zero
178 #define floatx_to_int64_round_to_zero float64_to_int64_round_to_zero
179 #define int32_to_floatx int32_to_float64
180 #define int64_to_floatx int64_to_float64
181 #define float32_to_floatx float32_to_float64
182 #define float64_to_floatx(x, e) (x)
183 #define floatx_to_float32 float64_to_float32
184 #define floatx_to_float64(x, e) (x)
185 #define floatx_abs float64_abs
186 #define floatx_chs float64_chs
187 #define floatx_round_to_int float64_round_to_int
188 #define floatx_compare float64_compare
189 #define floatx_compare_quiet float64_compare_quiet
190 #endif
192 extern CPU86_LDouble sin(CPU86_LDouble x);
193 extern CPU86_LDouble cos(CPU86_LDouble x);
194 extern CPU86_LDouble sqrt(CPU86_LDouble x);
195 extern CPU86_LDouble pow(CPU86_LDouble, CPU86_LDouble);
196 extern CPU86_LDouble log(CPU86_LDouble x);
197 extern CPU86_LDouble tan(CPU86_LDouble x);
198 extern CPU86_LDouble atan2(CPU86_LDouble, CPU86_LDouble);
199 extern CPU86_LDouble floor(CPU86_LDouble x);
200 extern CPU86_LDouble ceil(CPU86_LDouble x);
202 #define RC_MASK 0xc00
203 #define RC_NEAR 0x000
204 #define RC_DOWN 0x400
205 #define RC_UP 0x800
206 #define RC_CHOP 0xc00
208 #define MAXTAN 9223372036854775808.0
210 #ifdef USE_X86LDOUBLE
212 /* only for x86 */
213 typedef union {
214 long double d;
215 struct {
216 unsigned long long lower;
217 unsigned short upper;
218 } l;
219 } CPU86_LDoubleU;
221 /* the following deal with x86 long double-precision numbers */
222 #define MAXEXPD 0x7fff
223 #define EXPBIAS 16383
224 #define EXPD(fp) (fp.l.upper & 0x7fff)
225 #define SIGND(fp) ((fp.l.upper) & 0x8000)
226 #define MANTD(fp) (fp.l.lower)
227 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
229 #else
231 /* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
232 typedef union {
233 double d;
234 #if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
235 struct {
236 uint32_t lower;
237 int32_t upper;
238 } l;
239 #else
240 struct {
241 int32_t upper;
242 uint32_t lower;
243 } l;
244 #endif
245 #ifndef __arm__
246 int64_t ll;
247 #endif
248 } CPU86_LDoubleU;
250 /* the following deal with IEEE double-precision numbers */
251 #define MAXEXPD 0x7ff
252 #define EXPBIAS 1023
253 #define EXPD(fp) (((fp.l.upper) >> 20) & 0x7FF)
254 #define SIGND(fp) ((fp.l.upper) & 0x80000000)
255 #ifdef __arm__
256 #define MANTD(fp) (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
257 #else
258 #define MANTD(fp) (fp.ll & ((1LL << 52) - 1))
259 #endif
260 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
261 #endif
263 static inline void fpush(void)
265 env->fpstt = (env->fpstt - 1) & 7;
266 env->fptags[env->fpstt] = 0; /* validate stack entry */
269 static inline void fpop(void)
271 env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
272 env->fpstt = (env->fpstt + 1) & 7;
275 #ifndef USE_X86LDOUBLE
276 static inline CPU86_LDouble helper_fldt(target_ulong ptr)
278 CPU86_LDoubleU temp;
279 int upper, e;
280 uint64_t ll;
282 /* mantissa */
283 upper = lduw(ptr + 8);
284 /* XXX: handle overflow ? */
285 e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
286 e |= (upper >> 4) & 0x800; /* sign */
287 ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
288 #ifdef __arm__
289 temp.l.upper = (e << 20) | (ll >> 32);
290 temp.l.lower = ll;
291 #else
292 temp.ll = ll | ((uint64_t)e << 52);
293 #endif
294 return temp.d;
297 static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
299 CPU86_LDoubleU temp;
300 int e;
302 temp.d = f;
303 /* mantissa */
304 stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
305 /* exponent + sign */
306 e = EXPD(temp) - EXPBIAS + 16383;
307 e |= SIGND(temp) >> 16;
308 stw(ptr + 8, e);
310 #else
312 /* we use memory access macros */
314 static inline CPU86_LDouble helper_fldt(target_ulong ptr)
316 CPU86_LDoubleU temp;
318 temp.l.lower = ldq(ptr);
319 temp.l.upper = lduw(ptr + 8);
320 return temp.d;
323 static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
325 CPU86_LDoubleU temp;
327 temp.d = f;
328 stq(ptr, temp.l.lower);
329 stw(ptr + 8, temp.l.upper);
332 #endif /* USE_X86LDOUBLE */
334 #define FPUS_IE (1 << 0)
335 #define FPUS_DE (1 << 1)
336 #define FPUS_ZE (1 << 2)
337 #define FPUS_OE (1 << 3)
338 #define FPUS_UE (1 << 4)
339 #define FPUS_PE (1 << 5)
340 #define FPUS_SF (1 << 6)
341 #define FPUS_SE (1 << 7)
342 #define FPUS_B (1 << 15)
344 #define FPUC_EM 0x3f
346 extern const CPU86_LDouble f15rk[7];
348 void fpu_raise_exception(void);
349 void restore_native_fp_state(CPUState *env);
350 void save_native_fp_state(CPUState *env);
352 extern const uint8_t parity_table[256];
353 extern const uint8_t rclw_table[32];
354 extern const uint8_t rclb_table[32];
356 static inline uint32_t compute_eflags(void)
358 return env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
361 /* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
362 static inline void load_eflags(int eflags, int update_mask)
364 CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
365 DF = 1 - (2 * ((eflags >> 10) & 1));
366 env->eflags = (env->eflags & ~update_mask) |
367 (eflags & update_mask);
370 static inline void env_to_regs(void)
372 #ifdef reg_EAX
373 EAX = env->regs[R_EAX];
374 #endif
375 #ifdef reg_ECX
376 ECX = env->regs[R_ECX];
377 #endif
378 #ifdef reg_EDX
379 EDX = env->regs[R_EDX];
380 #endif
381 #ifdef reg_EBX
382 EBX = env->regs[R_EBX];
383 #endif
384 #ifdef reg_ESP
385 ESP = env->regs[R_ESP];
386 #endif
387 #ifdef reg_EBP
388 EBP = env->regs[R_EBP];
389 #endif
390 #ifdef reg_ESI
391 ESI = env->regs[R_ESI];
392 #endif
393 #ifdef reg_EDI
394 EDI = env->regs[R_EDI];
395 #endif
398 static inline void regs_to_env(void)
400 #ifdef reg_EAX
401 env->regs[R_EAX] = EAX;
402 #endif
403 #ifdef reg_ECX
404 env->regs[R_ECX] = ECX;
405 #endif
406 #ifdef reg_EDX
407 env->regs[R_EDX] = EDX;
408 #endif
409 #ifdef reg_EBX
410 env->regs[R_EBX] = EBX;
411 #endif
412 #ifdef reg_ESP
413 env->regs[R_ESP] = ESP;
414 #endif
415 #ifdef reg_EBP
416 env->regs[R_EBP] = EBP;
417 #endif
418 #ifdef reg_ESI
419 env->regs[R_ESI] = ESI;
420 #endif
421 #ifdef reg_EDI
422 env->regs[R_EDI] = EDI;
423 #endif
426 static inline int cpu_halted(CPUState *env) {
427 /* handle exit of HALTED state */
428 if (!(env->hflags & HF_HALTED_MASK))
429 return 0;
430 /* disable halt condition */
431 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
432 (env->eflags & IF_MASK)) ||
433 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
434 env->hflags &= ~HF_HALTED_MASK;
435 return 0;
437 return EXCP_HALTED;