CRIS MMU Updates
[qemu/qemu-JZ.git] / exec-all.h
blobd98b91d3f3573caf17a45e1e6b1fd4de3e09d614
1 /*
2 * internal execution defines for qemu
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 /* allow to see translation results - the slowdown should be negligible, so we leave it */
22 #define DEBUG_DISAS
24 /* is_jmp field values */
25 #define DISAS_NEXT 0 /* next instruction can be analyzed */
26 #define DISAS_JUMP 1 /* only pc was modified dynamically */
27 #define DISAS_UPDATE 2 /* cpu state was modified dynamically */
28 #define DISAS_TB_JUMP 3 /* only pc was modified statically */
30 struct TranslationBlock;
32 /* XXX: make safe guess about sizes */
33 #define MAX_OP_PER_INSTR 32
34 /* A Call op needs up to 6 + 2N parameters (N = number of arguments). */
35 #define MAX_OPC_PARAM 10
36 #define OPC_BUF_SIZE 512
37 #define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
39 /* Maximum size a TCG op can expand to. This is complicated because a
40 single op may require several host instructions and regirster reloads.
41 For now take a wild guess at 128 bytes, which should allow at least
42 a couple of fixup instructions per argument. */
43 #define TCG_MAX_OP_SIZE 128
45 #define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * MAX_OPC_PARAM)
47 extern target_ulong gen_opc_pc[OPC_BUF_SIZE];
48 extern target_ulong gen_opc_npc[OPC_BUF_SIZE];
49 extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE];
50 extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE];
51 extern target_ulong gen_opc_jump_pc[2];
52 extern uint32_t gen_opc_hflags[OPC_BUF_SIZE];
54 typedef void (GenOpFunc)(void);
55 typedef void (GenOpFunc1)(long);
56 typedef void (GenOpFunc2)(long, long);
57 typedef void (GenOpFunc3)(long, long, long);
59 #if defined(TARGET_I386)
61 void optimize_flags_init(void);
63 #endif
65 extern FILE *logfile;
66 extern int loglevel;
68 int gen_intermediate_code(CPUState *env, struct TranslationBlock *tb);
69 int gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb);
70 void gen_pc_load(CPUState *env, struct TranslationBlock *tb,
71 unsigned long searched_pc, int pc_pos, void *puc);
73 unsigned long code_gen_max_block_size(void);
74 void cpu_gen_init(void);
75 int cpu_gen_code(CPUState *env, struct TranslationBlock *tb,
76 int *gen_code_size_ptr);
77 int cpu_restore_state(struct TranslationBlock *tb,
78 CPUState *env, unsigned long searched_pc,
79 void *puc);
80 int cpu_gen_code_copy(CPUState *env, struct TranslationBlock *tb,
81 int max_code_size, int *gen_code_size_ptr);
82 int cpu_restore_state_copy(struct TranslationBlock *tb,
83 CPUState *env, unsigned long searched_pc,
84 void *puc);
85 void cpu_resume_from_signal(CPUState *env1, void *puc);
86 void cpu_exec_init(CPUState *env);
87 int page_unprotect(target_ulong address, unsigned long pc, void *puc);
88 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
89 int is_cpu_write_access);
90 void tb_invalidate_page_range(target_ulong start, target_ulong end);
91 void tlb_flush_page(CPUState *env, target_ulong addr);
92 void tlb_flush(CPUState *env, int flush_global);
93 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
94 target_phys_addr_t paddr, int prot,
95 int mmu_idx, int is_softmmu);
96 static inline int tlb_set_page(CPUState *env, target_ulong vaddr,
97 target_phys_addr_t paddr, int prot,
98 int mmu_idx, int is_softmmu)
100 if (prot & PAGE_READ)
101 prot |= PAGE_EXEC;
102 return tlb_set_page_exec(env, vaddr, paddr, prot, mmu_idx, is_softmmu);
105 #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */
107 #define CODE_GEN_PHYS_HASH_BITS 15
108 #define CODE_GEN_PHYS_HASH_SIZE (1 << CODE_GEN_PHYS_HASH_BITS)
110 /* maximum total translate dcode allocated */
112 /* NOTE: the translated code area cannot be too big because on some
113 archs the range of "fast" function calls is limited. Here is a
114 summary of the ranges:
116 i386 : signed 32 bits
117 arm : signed 26 bits
118 ppc : signed 24 bits
119 sparc : signed 32 bits
120 alpha : signed 23 bits
123 #if defined(__alpha__)
124 #define CODE_GEN_BUFFER_SIZE (2 * 1024 * 1024)
125 #elif defined(__ia64)
126 #define CODE_GEN_BUFFER_SIZE (4 * 1024 * 1024) /* range of addl */
127 #elif defined(__powerpc__)
128 #define CODE_GEN_BUFFER_SIZE (6 * 1024 * 1024)
129 #else
130 /* XXX: make it dynamic on x86 */
131 #define CODE_GEN_BUFFER_SIZE (16 * 1024 * 1024)
132 #endif
134 //#define CODE_GEN_BUFFER_SIZE (128 * 1024)
136 /* estimated block size for TB allocation */
137 /* XXX: use a per code average code fragment size and modulate it
138 according to the host CPU */
139 #if defined(CONFIG_SOFTMMU)
140 #define CODE_GEN_AVG_BLOCK_SIZE 128
141 #else
142 #define CODE_GEN_AVG_BLOCK_SIZE 64
143 #endif
145 #define CODE_GEN_MAX_BLOCKS (CODE_GEN_BUFFER_SIZE / CODE_GEN_AVG_BLOCK_SIZE)
147 #if defined(__powerpc__) || defined(__x86_64__)
148 #define USE_DIRECT_JUMP
149 #endif
150 #if defined(__i386__) && !defined(_WIN32)
151 #define USE_DIRECT_JUMP
152 #endif
154 typedef struct TranslationBlock {
155 target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */
156 target_ulong cs_base; /* CS base for this block */
157 uint64_t flags; /* flags defining in which context the code was generated */
158 uint16_t size; /* size of target code for this block (1 <=
159 size <= TARGET_PAGE_SIZE) */
160 uint16_t cflags; /* compile flags */
161 #define CF_CODE_COPY 0x0001 /* block was generated in code copy mode */
162 #define CF_TB_FP_USED 0x0002 /* fp ops are used in the TB */
163 #define CF_FP_USED 0x0004 /* fp ops are used in the TB or in a chained TB */
164 #define CF_SINGLE_INSN 0x0008 /* compile only a single instruction */
166 uint8_t *tc_ptr; /* pointer to the translated code */
167 /* next matching tb for physical address. */
168 struct TranslationBlock *phys_hash_next;
169 /* first and second physical page containing code. The lower bit
170 of the pointer tells the index in page_next[] */
171 struct TranslationBlock *page_next[2];
172 target_ulong page_addr[2];
174 /* the following data are used to directly call another TB from
175 the code of this one. */
176 uint16_t tb_next_offset[2]; /* offset of original jump target */
177 #ifdef USE_DIRECT_JUMP
178 uint16_t tb_jmp_offset[4]; /* offset of jump instruction */
179 #else
180 unsigned long tb_next[2]; /* address of jump generated code */
181 #endif
182 /* list of TBs jumping to this one. This is a circular list using
183 the two least significant bits of the pointers to tell what is
184 the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
185 jmp_first */
186 struct TranslationBlock *jmp_next[2];
187 struct TranslationBlock *jmp_first;
188 } TranslationBlock;
190 static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc)
192 target_ulong tmp;
193 tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
194 return (tmp >> TB_JMP_PAGE_BITS) & TB_JMP_PAGE_MASK;
197 static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc)
199 target_ulong tmp;
200 tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
201 return (((tmp >> TB_JMP_PAGE_BITS) & TB_JMP_PAGE_MASK) |
202 (tmp & TB_JMP_ADDR_MASK));
205 static inline unsigned int tb_phys_hash_func(unsigned long pc)
207 return pc & (CODE_GEN_PHYS_HASH_SIZE - 1);
210 TranslationBlock *tb_alloc(target_ulong pc);
211 void tb_flush(CPUState *env);
212 void tb_link_phys(TranslationBlock *tb,
213 target_ulong phys_pc, target_ulong phys_page2);
215 extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
217 extern uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE];
218 extern uint8_t *code_gen_ptr;
220 #if defined(USE_DIRECT_JUMP)
222 #if defined(__powerpc__)
223 static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
225 uint32_t val, *ptr;
227 /* patch the branch destination */
228 ptr = (uint32_t *)jmp_addr;
229 val = *ptr;
230 val = (val & ~0x03fffffc) | ((addr - jmp_addr) & 0x03fffffc);
231 *ptr = val;
232 /* flush icache */
233 asm volatile ("dcbst 0,%0" : : "r"(ptr) : "memory");
234 asm volatile ("sync" : : : "memory");
235 asm volatile ("icbi 0,%0" : : "r"(ptr) : "memory");
236 asm volatile ("sync" : : : "memory");
237 asm volatile ("isync" : : : "memory");
239 #elif defined(__i386__) || defined(__x86_64__)
240 static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
242 /* patch the branch destination */
243 *(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
244 /* no need to flush icache explicitely */
246 #endif
248 static inline void tb_set_jmp_target(TranslationBlock *tb,
249 int n, unsigned long addr)
251 unsigned long offset;
253 offset = tb->tb_jmp_offset[n];
254 tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
255 offset = tb->tb_jmp_offset[n + 2];
256 if (offset != 0xffff)
257 tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
260 #else
262 /* set the jump target */
263 static inline void tb_set_jmp_target(TranslationBlock *tb,
264 int n, unsigned long addr)
266 tb->tb_next[n] = addr;
269 #endif
271 static inline void tb_add_jump(TranslationBlock *tb, int n,
272 TranslationBlock *tb_next)
274 /* NOTE: this test is only needed for thread safety */
275 if (!tb->jmp_next[n]) {
276 /* patch the native jump address */
277 tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr);
279 /* add in TB jmp circular list */
280 tb->jmp_next[n] = tb_next->jmp_first;
281 tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n));
285 TranslationBlock *tb_find_pc(unsigned long pc_ptr);
287 #ifndef offsetof
288 #define offsetof(type, field) ((size_t) &((type *)0)->field)
289 #endif
291 #if defined(_WIN32)
292 #define ASM_DATA_SECTION ".section \".data\"\n"
293 #define ASM_PREVIOUS_SECTION ".section .text\n"
294 #elif defined(__APPLE__)
295 #define ASM_DATA_SECTION ".data\n"
296 #define ASM_PREVIOUS_SECTION ".text\n"
297 #else
298 #define ASM_DATA_SECTION ".section \".data\"\n"
299 #define ASM_PREVIOUS_SECTION ".previous\n"
300 #endif
302 #define ASM_OP_LABEL_NAME(n, opname) \
303 ASM_NAME(__op_label) #n "." ASM_NAME(opname)
305 extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
306 extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
307 extern void *io_mem_opaque[IO_MEM_NB_ENTRIES];
309 #if defined(__hppa__)
311 typedef int spinlock_t[4];
313 #define SPIN_LOCK_UNLOCKED { 1, 1, 1, 1 }
315 static inline void resetlock (spinlock_t *p)
317 (*p)[0] = (*p)[1] = (*p)[2] = (*p)[3] = 1;
320 #else
322 typedef int spinlock_t;
324 #define SPIN_LOCK_UNLOCKED 0
326 static inline void resetlock (spinlock_t *p)
328 *p = SPIN_LOCK_UNLOCKED;
331 #endif
333 #if defined(__powerpc__)
334 static inline int testandset (int *p)
336 int ret;
337 __asm__ __volatile__ (
338 "0: lwarx %0,0,%1\n"
339 " xor. %0,%3,%0\n"
340 " bne 1f\n"
341 " stwcx. %2,0,%1\n"
342 " bne- 0b\n"
343 "1: "
344 : "=&r" (ret)
345 : "r" (p), "r" (1), "r" (0)
346 : "cr0", "memory");
347 return ret;
349 #elif defined(__i386__)
350 static inline int testandset (int *p)
352 long int readval = 0;
354 __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
355 : "+m" (*p), "+a" (readval)
356 : "r" (1)
357 : "cc");
358 return readval;
360 #elif defined(__x86_64__)
361 static inline int testandset (int *p)
363 long int readval = 0;
365 __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
366 : "+m" (*p), "+a" (readval)
367 : "r" (1)
368 : "cc");
369 return readval;
371 #elif defined(__s390__)
372 static inline int testandset (int *p)
374 int ret;
376 __asm__ __volatile__ ("0: cs %0,%1,0(%2)\n"
377 " jl 0b"
378 : "=&d" (ret)
379 : "r" (1), "a" (p), "0" (*p)
380 : "cc", "memory" );
381 return ret;
383 #elif defined(__alpha__)
384 static inline int testandset (int *p)
386 int ret;
387 unsigned long one;
389 __asm__ __volatile__ ("0: mov 1,%2\n"
390 " ldl_l %0,%1\n"
391 " stl_c %2,%1\n"
392 " beq %2,1f\n"
393 ".subsection 2\n"
394 "1: br 0b\n"
395 ".previous"
396 : "=r" (ret), "=m" (*p), "=r" (one)
397 : "m" (*p));
398 return ret;
400 #elif defined(__sparc__)
401 static inline int testandset (int *p)
403 int ret;
405 __asm__ __volatile__("ldstub [%1], %0"
406 : "=r" (ret)
407 : "r" (p)
408 : "memory");
410 return (ret ? 1 : 0);
412 #elif defined(__arm__)
413 static inline int testandset (int *spinlock)
415 register unsigned int ret;
416 __asm__ __volatile__("swp %0, %1, [%2]"
417 : "=r"(ret)
418 : "0"(1), "r"(spinlock));
420 return ret;
422 #elif defined(__mc68000)
423 static inline int testandset (int *p)
425 char ret;
426 __asm__ __volatile__("tas %1; sne %0"
427 : "=r" (ret)
428 : "m" (p)
429 : "cc","memory");
430 return ret;
432 #elif defined(__hppa__)
434 /* Because malloc only guarantees 8-byte alignment for malloc'd data,
435 and GCC only guarantees 8-byte alignment for stack locals, we can't
436 be assured of 16-byte alignment for atomic lock data even if we
437 specify "__attribute ((aligned(16)))" in the type declaration. So,
438 we use a struct containing an array of four ints for the atomic lock
439 type and dynamically select the 16-byte aligned int from the array
440 for the semaphore. */
441 #define __PA_LDCW_ALIGNMENT 16
442 static inline void *ldcw_align (void *p) {
443 unsigned long a = (unsigned long)p;
444 a = (a + __PA_LDCW_ALIGNMENT - 1) & ~(__PA_LDCW_ALIGNMENT - 1);
445 return (void *)a;
448 static inline int testandset (spinlock_t *p)
450 unsigned int ret;
451 p = ldcw_align(p);
452 __asm__ __volatile__("ldcw 0(%1),%0"
453 : "=r" (ret)
454 : "r" (p)
455 : "memory" );
456 return !ret;
459 #elif defined(__ia64)
461 #include <ia64intrin.h>
463 static inline int testandset (int *p)
465 return __sync_lock_test_and_set (p, 1);
467 #elif defined(__mips__)
468 static inline int testandset (int *p)
470 int ret;
472 __asm__ __volatile__ (
473 " .set push \n"
474 " .set noat \n"
475 " .set mips2 \n"
476 "1: li $1, 1 \n"
477 " ll %0, %1 \n"
478 " sc $1, %1 \n"
479 " beqz $1, 1b \n"
480 " .set pop "
481 : "=r" (ret), "+R" (*p)
483 : "memory");
485 return ret;
487 #else
488 #error unimplemented CPU support
489 #endif
491 #if defined(CONFIG_USER_ONLY)
492 static inline void spin_lock(spinlock_t *lock)
494 while (testandset(lock));
497 static inline void spin_unlock(spinlock_t *lock)
499 resetlock(lock);
502 static inline int spin_trylock(spinlock_t *lock)
504 return !testandset(lock);
506 #else
507 static inline void spin_lock(spinlock_t *lock)
511 static inline void spin_unlock(spinlock_t *lock)
515 static inline int spin_trylock(spinlock_t *lock)
517 return 1;
519 #endif
521 extern spinlock_t tb_lock;
523 extern int tb_invalidated_flag;
525 #if !defined(CONFIG_USER_ONLY)
527 void tlb_fill(target_ulong addr, int is_write, int mmu_idx,
528 void *retaddr);
530 #define ACCESS_TYPE (NB_MMU_MODES + 1)
531 #define MEMSUFFIX _code
532 #define env cpu_single_env
534 #define DATA_SIZE 1
535 #include "softmmu_header.h"
537 #define DATA_SIZE 2
538 #include "softmmu_header.h"
540 #define DATA_SIZE 4
541 #include "softmmu_header.h"
543 #define DATA_SIZE 8
544 #include "softmmu_header.h"
546 #undef ACCESS_TYPE
547 #undef MEMSUFFIX
548 #undef env
550 #endif
552 #if defined(CONFIG_USER_ONLY)
553 static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
555 return addr;
557 #else
558 /* NOTE: this function can trigger an exception */
559 /* NOTE2: the returned address is not exactly the physical address: it
560 is the offset relative to phys_ram_base */
561 static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
563 int mmu_idx, index, pd;
565 index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
566 mmu_idx = cpu_mmu_index(env);
567 if (__builtin_expect(env->tlb_table[mmu_idx][index].addr_code !=
568 (addr & TARGET_PAGE_MASK), 0)) {
569 ldub_code(addr);
571 pd = env->tlb_table[mmu_idx][index].addr_code & ~TARGET_PAGE_MASK;
572 if (pd > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
573 #if defined(TARGET_SPARC) || defined(TARGET_MIPS)
574 do_unassigned_access(addr, 0, 1, 0);
575 #else
576 cpu_abort(env, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
577 #endif
579 return addr + env->tlb_table[mmu_idx][index].addend - (unsigned long)phys_ram_base;
581 #endif
583 #ifdef USE_KQEMU
584 #define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG))
586 int kqemu_init(CPUState *env);
587 int kqemu_cpu_exec(CPUState *env);
588 void kqemu_flush_page(CPUState *env, target_ulong addr);
589 void kqemu_flush(CPUState *env, int global);
590 void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr);
591 void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr);
592 void kqemu_cpu_interrupt(CPUState *env);
593 void kqemu_record_dump(void);
595 static inline int kqemu_is_ok(CPUState *env)
597 return(env->kqemu_enabled &&
598 (env->cr[0] & CR0_PE_MASK) &&
599 !(env->hflags & HF_INHIBIT_IRQ_MASK) &&
600 (env->eflags & IF_MASK) &&
601 !(env->eflags & VM_MASK) &&
602 (env->kqemu_enabled == 2 ||
603 ((env->hflags & HF_CPL_MASK) == 3 &&
604 (env->eflags & IOPL_MASK) != IOPL_MASK)));
607 #endif