4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 #include "qemu-common.h"
22 #ifdef CONFIG_USER_ONLY
33 #include "qemu-char.h"
38 #define MAX_PACKET_LENGTH 4096
40 #include "qemu_socket.h"
42 /* XXX: these constants may be independent of the host ones even for Unix */
55 typedef struct GDBRegisterState
{
61 struct GDBRegisterState
*next
;
71 typedef struct GDBState
{
72 CPUState
*env
; /* current CPU */
73 enum RSState state
; /* parsing state */
74 char line_buf
[MAX_PACKET_LENGTH
];
77 uint8_t last_packet
[MAX_PACKET_LENGTH
+ 4];
80 #ifdef CONFIG_USER_ONLY
88 /* By default use no IRQs and no timers while single stepping so as to
89 * make single stepping like an ICE HW step.
91 static int sstep_flags
= SSTEP_ENABLE
|SSTEP_NOIRQ
|SSTEP_NOTIMER
;
93 /* This is an ugly hack to cope with both new and old gdb.
94 If gdb sends qXfer:features:read then assume we're talking to a newish
95 gdb that understands target descriptions. */
96 static int gdb_has_xml
;
98 #ifdef CONFIG_USER_ONLY
99 /* XXX: This is not thread safe. Do we care? */
100 static int gdbserver_fd
= -1;
102 /* XXX: remove this hack. */
103 static GDBState gdbserver_state
;
105 static int get_char(GDBState
*s
)
111 ret
= recv(s
->fd
, &ch
, 1, 0);
113 if (errno
== ECONNRESET
)
115 if (errno
!= EINTR
&& errno
!= EAGAIN
)
117 } else if (ret
== 0) {
129 /* GDB stub state for use by semihosting syscalls. */
130 static GDBState
*gdb_syscall_state
;
131 static gdb_syscall_complete_cb gdb_current_syscall_cb
;
139 /* If gdb is connected when the first semihosting syscall occurs then use
140 remote gdb syscalls. Otherwise use native file IO. */
141 int use_gdb_syscalls(void)
143 if (gdb_syscall_mode
== GDB_SYS_UNKNOWN
) {
144 gdb_syscall_mode
= (gdb_syscall_state
? GDB_SYS_ENABLED
147 return gdb_syscall_mode
== GDB_SYS_ENABLED
;
150 /* Resume execution. */
151 static inline void gdb_continue(GDBState
*s
)
153 #ifdef CONFIG_USER_ONLY
154 s
->running_state
= 1;
160 static void put_buffer(GDBState
*s
, const uint8_t *buf
, int len
)
162 #ifdef CONFIG_USER_ONLY
166 ret
= send(s
->fd
, buf
, len
, 0);
168 if (errno
!= EINTR
&& errno
!= EAGAIN
)
176 qemu_chr_write(s
->chr
, buf
, len
);
180 static inline int fromhex(int v
)
182 if (v
>= '0' && v
<= '9')
184 else if (v
>= 'A' && v
<= 'F')
186 else if (v
>= 'a' && v
<= 'f')
192 static inline int tohex(int v
)
200 static void memtohex(char *buf
, const uint8_t *mem
, int len
)
205 for(i
= 0; i
< len
; i
++) {
207 *q
++ = tohex(c
>> 4);
208 *q
++ = tohex(c
& 0xf);
213 static void hextomem(uint8_t *mem
, const char *buf
, int len
)
217 for(i
= 0; i
< len
; i
++) {
218 mem
[i
] = (fromhex(buf
[0]) << 4) | fromhex(buf
[1]);
223 /* return -1 if error, 0 if OK */
224 static int put_packet_binary(GDBState
*s
, const char *buf
, int len
)
235 for(i
= 0; i
< len
; i
++) {
239 *(p
++) = tohex((csum
>> 4) & 0xf);
240 *(p
++) = tohex((csum
) & 0xf);
242 s
->last_packet_len
= p
- s
->last_packet
;
243 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
245 #ifdef CONFIG_USER_ONLY
258 /* return -1 if error, 0 if OK */
259 static int put_packet(GDBState
*s
, const char *buf
)
262 printf("reply='%s'\n", buf
);
265 return put_packet_binary(s
, buf
, strlen(buf
));
268 /* The GDB remote protocol transfers values in target byte order. This means
269 we can use the raw memory access routines to access the value buffer.
270 Conveniently, these also handle the case where the buffer is mis-aligned.
272 #define GET_REG8(val) do { \
273 stb_p(mem_buf, val); \
276 #define GET_REG16(val) do { \
277 stw_p(mem_buf, val); \
280 #define GET_REG32(val) do { \
281 stl_p(mem_buf, val); \
284 #define GET_REG64(val) do { \
285 stq_p(mem_buf, val); \
289 #if TARGET_LONG_BITS == 64
290 #define GET_REGL(val) GET_REG64(val)
291 #define ldtul_p(addr) ldq_p(addr)
293 #define GET_REGL(val) GET_REG32(val)
294 #define ldtul_p(addr) ldl_p(addr)
297 #if defined(TARGET_I386)
300 static const int gpr_map
[16] = {
301 R_EAX
, R_EBX
, R_ECX
, R_EDX
, R_ESI
, R_EDI
, R_EBP
, R_ESP
,
302 8, 9, 10, 11, 12, 13, 14, 15
305 static const int gpr_map
[8] = {0, 1, 2, 3, 4, 5, 6, 7};
308 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
310 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
312 if (n
< CPU_NB_REGS
) {
313 GET_REGL(env
->regs
[gpr_map
[n
]]);
314 } else if (n
>= CPU_NB_REGS
+ 8 && n
< CPU_NB_REGS
+ 16) {
315 /* FIXME: byteswap float values. */
316 #ifdef USE_X86LDOUBLE
317 memcpy(mem_buf
, &env
->fpregs
[n
- (CPU_NB_REGS
+ 8)], 10);
319 memset(mem_buf
, 0, 10);
322 } else if (n
>= CPU_NB_REGS
+ 24) {
323 n
-= CPU_NB_REGS
+ 24;
324 if (n
< CPU_NB_REGS
) {
325 stq_p(mem_buf
, env
->xmm_regs
[n
].XMM_Q(0));
326 stq_p(mem_buf
+ 8, env
->xmm_regs
[n
].XMM_Q(1));
328 } else if (n
== CPU_NB_REGS
) {
329 GET_REG32(env
->mxcsr
);
334 case 0: GET_REGL(env
->eip
);
335 case 1: GET_REG32(env
->eflags
);
336 case 2: GET_REG32(env
->segs
[R_CS
].selector
);
337 case 3: GET_REG32(env
->segs
[R_SS
].selector
);
338 case 4: GET_REG32(env
->segs
[R_DS
].selector
);
339 case 5: GET_REG32(env
->segs
[R_ES
].selector
);
340 case 6: GET_REG32(env
->segs
[R_FS
].selector
);
341 case 7: GET_REG32(env
->segs
[R_GS
].selector
);
342 /* 8...15 x87 regs. */
343 case 16: GET_REG32(env
->fpuc
);
344 case 17: GET_REG32((env
->fpus
& ~0x3800) | (env
->fpstt
& 0x7) << 11);
345 case 18: GET_REG32(0); /* ftag */
346 case 19: GET_REG32(0); /* fiseg */
347 case 20: GET_REG32(0); /* fioff */
348 case 21: GET_REG32(0); /* foseg */
349 case 22: GET_REG32(0); /* fooff */
350 case 23: GET_REG32(0); /* fop */
357 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int i
)
361 if (i
< CPU_NB_REGS
) {
362 env
->regs
[gpr_map
[i
]] = ldtul_p(mem_buf
);
363 return sizeof(target_ulong
);
364 } else if (i
>= CPU_NB_REGS
+ 8 && i
< CPU_NB_REGS
+ 16) {
365 i
-= CPU_NB_REGS
+ 8;
366 #ifdef USE_X86LDOUBLE
367 memcpy(&env
->fpregs
[i
], mem_buf
, 10);
370 } else if (i
>= CPU_NB_REGS
+ 24) {
371 i
-= CPU_NB_REGS
+ 24;
372 if (i
< CPU_NB_REGS
) {
373 env
->xmm_regs
[i
].XMM_Q(0) = ldq_p(mem_buf
);
374 env
->xmm_regs
[i
].XMM_Q(1) = ldq_p(mem_buf
+ 8);
376 } else if (i
== CPU_NB_REGS
) {
377 env
->mxcsr
= ldl_p(mem_buf
);
383 case 0: env
->eip
= ldtul_p(mem_buf
); return sizeof(target_ulong
);
384 case 1: env
->eflags
= ldl_p(mem_buf
); return 4;
385 #if defined(CONFIG_USER_ONLY)
386 #define LOAD_SEG(index, sreg)\
387 tmp = ldl_p(mem_buf);\
388 if (tmp != env->segs[sreg].selector)\
389 cpu_x86_load_seg(env, sreg, tmp);
391 /* FIXME: Honor segment registers. Needs to avoid raising an exception
392 when the selector is invalid. */
393 #define LOAD_SEG(index, sreg) do {} while(0)
395 case 2: LOAD_SEG(10, R_CS
); return 4;
396 case 3: LOAD_SEG(11, R_SS
); return 4;
397 case 4: LOAD_SEG(12, R_DS
); return 4;
398 case 5: LOAD_SEG(13, R_ES
); return 4;
399 case 6: LOAD_SEG(14, R_FS
); return 4;
400 case 7: LOAD_SEG(15, R_GS
); return 4;
401 /* 8...15 x87 regs. */
402 case 16: env
->fpuc
= ldl_p(mem_buf
); return 4;
404 tmp
= ldl_p(mem_buf
);
405 env
->fpstt
= (tmp
>> 11) & 7;
406 env
->fpus
= tmp
& ~0x3800;
408 case 18: /* ftag */ return 4;
409 case 19: /* fiseg */ return 4;
410 case 20: /* fioff */ return 4;
411 case 21: /* foseg */ return 4;
412 case 22: /* fooff */ return 4;
413 case 23: /* fop */ return 4;
417 /* Unrecognised register. */
421 #elif defined (TARGET_PPC)
423 #define NUM_CORE_REGS 71
425 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
429 GET_REGL(env
->gpr
[n
]);
432 stfq_p(mem_buf
, env
->fpr
[n
]);
436 case 64: GET_REGL(env
->nip
);
437 case 65: GET_REGL(env
->msr
);
442 for (i
= 0; i
< 8; i
++)
443 cr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
446 case 67: GET_REGL(env
->lr
);
447 case 68: GET_REGL(env
->ctr
);
448 case 69: GET_REGL(env
->xer
);
449 case 70: GET_REG32(0); /* fpscr */
455 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
459 env
->gpr
[n
] = ldtul_p(mem_buf
);
460 return sizeof(target_ulong
);
463 env
->fpr
[n
] = ldfq_p(mem_buf
);
468 env
->nip
= ldtul_p(mem_buf
);
469 return sizeof(target_ulong
);
471 ppc_store_msr(env
, ldtul_p(mem_buf
));
472 return sizeof(target_ulong
);
475 uint32_t cr
= ldl_p(mem_buf
);
477 for (i
= 0; i
< 8; i
++)
478 env
->crf
[i
] = (cr
>> (32 - ((i
+ 1) * 4))) & 0xF;
482 env
->lr
= ldtul_p(mem_buf
);
483 return sizeof(target_ulong
);
485 env
->ctr
= ldtul_p(mem_buf
);
486 return sizeof(target_ulong
);
488 env
->xer
= ldtul_p(mem_buf
);
489 return sizeof(target_ulong
);
498 #elif defined (TARGET_SPARC)
500 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
501 #define NUM_CORE_REGS 86
503 #define NUM_CORE_REGS 73
507 #define GET_REGA(val) GET_REG32(val)
509 #define GET_REGA(val) GET_REGL(val)
512 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
516 GET_REGA(env
->gregs
[n
]);
519 /* register window */
520 GET_REGA(env
->regwptr
[n
- 8]);
522 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
525 GET_REG32(*((uint32_t *)&env
->fpr
[n
- 32]));
527 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
529 case 64: GET_REGA(env
->y
);
530 case 65: GET_REGA(GET_PSR(env
));
531 case 66: GET_REGA(env
->wim
);
532 case 67: GET_REGA(env
->tbr
);
533 case 68: GET_REGA(env
->pc
);
534 case 69: GET_REGA(env
->npc
);
535 case 70: GET_REGA(env
->fsr
);
536 case 71: GET_REGA(0); /* csr */
537 case 72: GET_REGA(0);
542 GET_REG32(*((uint32_t *)&env
->fpr
[n
- 32]));
545 /* f32-f62 (double width, even numbers only) */
548 val
= (uint64_t)*((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 32]) << 32;
549 val
|= *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 33]);
553 case 80: GET_REGL(env
->pc
);
554 case 81: GET_REGL(env
->npc
);
555 case 82: GET_REGL(((uint64_t)GET_CCR(env
) << 32) |
556 ((env
->asi
& 0xff) << 24) |
557 ((env
->pstate
& 0xfff) << 8) |
559 case 83: GET_REGL(env
->fsr
);
560 case 84: GET_REGL(env
->fprs
);
561 case 85: GET_REGL(env
->y
);
567 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
569 #if defined(TARGET_ABI32)
572 tmp
= ldl_p(mem_buf
);
576 tmp
= ldtul_p(mem_buf
);
583 /* register window */
584 env
->regwptr
[n
- 8] = tmp
;
586 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
589 *((uint32_t *)&env
->fpr
[n
- 32]) = tmp
;
591 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
593 case 64: env
->y
= tmp
; break;
594 case 65: PUT_PSR(env
, tmp
); break;
595 case 66: env
->wim
= tmp
; break;
596 case 67: env
->tbr
= tmp
; break;
597 case 68: env
->pc
= tmp
; break;
598 case 69: env
->npc
= tmp
; break;
599 case 70: env
->fsr
= tmp
; break;
607 env
->fpr
[n
] = ldfl_p(mem_buf
);
610 /* f32-f62 (double width, even numbers only) */
611 *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 32]) = tmp
>> 32;
612 *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 33]) = tmp
;
615 case 80: env
->pc
= tmp
; break;
616 case 81: env
->npc
= tmp
; break;
618 PUT_CCR(env
, tmp
>> 32);
619 env
->asi
= (tmp
>> 24) & 0xff;
620 env
->pstate
= (tmp
>> 8) & 0xfff;
621 PUT_CWP64(env
, tmp
& 0xff);
623 case 83: env
->fsr
= tmp
; break;
624 case 84: env
->fprs
= tmp
; break;
625 case 85: env
->y
= tmp
; break;
632 #elif defined (TARGET_ARM)
634 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
635 whatever the target description contains. Due to a historical mishap
636 the FPA registers appear in between core integer regs and the CPSR.
637 We hack round this by giving the FPA regs zero size when talking to a
639 #define NUM_CORE_REGS 26
640 #define GDB_CORE_XML "arm-core.xml"
642 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
645 /* Core integer register. */
646 GET_REG32(env
->regs
[n
]);
652 memset(mem_buf
, 0, 12);
657 /* FPA status register. */
663 GET_REG32(cpsr_read(env
));
665 /* Unknown register. */
669 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
673 tmp
= ldl_p(mem_buf
);
675 /* Mask out low bit of PC to workaround gdb bugs. This will probably
676 cause problems if we ever implement the Jazelle DBX extensions. */
681 /* Core integer register. */
685 if (n
< 24) { /* 16-23 */
686 /* FPA registers (ignored). */
693 /* FPA status register (ignored). */
699 cpsr_write (env
, tmp
, 0xffffffff);
702 /* Unknown register. */
706 #elif defined (TARGET_M68K)
708 #define NUM_CORE_REGS 18
710 #define GDB_CORE_XML "cf-core.xml"
712 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
716 GET_REG32(env
->dregs
[n
]);
719 GET_REG32(env
->aregs
[n
- 8]);
722 case 16: GET_REG32(env
->sr
);
723 case 17: GET_REG32(env
->pc
);
726 /* FP registers not included here because they vary between
727 ColdFire and m68k. Use XML bits for these. */
731 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
735 tmp
= ldl_p(mem_buf
);
742 env
->aregs
[n
- 8] = tmp
;
745 case 16: env
->sr
= tmp
; break;
746 case 17: env
->pc
= tmp
; break;
752 #elif defined (TARGET_MIPS)
754 #define NUM_CORE_REGS 73
756 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
759 GET_REGL(env
->active_tc
.gpr
[n
]);
761 if (env
->CP0_Config1
& (1 << CP0C1_FP
)) {
762 if (n
>= 38 && n
< 70) {
763 if (env
->CP0_Status
& (1 << CP0St_FR
))
764 GET_REGL(env
->active_fpu
.fpr
[n
- 38].d
);
766 GET_REGL(env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
]);
769 case 70: GET_REGL((int32_t)env
->active_fpu
.fcr31
);
770 case 71: GET_REGL((int32_t)env
->active_fpu
.fcr0
);
774 case 32: GET_REGL((int32_t)env
->CP0_Status
);
775 case 33: GET_REGL(env
->active_tc
.LO
[0]);
776 case 34: GET_REGL(env
->active_tc
.HI
[0]);
777 case 35: GET_REGL(env
->CP0_BadVAddr
);
778 case 36: GET_REGL((int32_t)env
->CP0_Cause
);
779 case 37: GET_REGL(env
->active_tc
.PC
);
780 case 72: GET_REGL(0); /* fp */
781 case 89: GET_REGL((int32_t)env
->CP0_PRid
);
783 if (n
>= 73 && n
<= 88) {
784 /* 16 embedded regs. */
791 /* convert MIPS rounding mode in FCR31 to IEEE library */
792 static unsigned int ieee_rm
[] =
794 float_round_nearest_even
,
799 #define RESTORE_ROUNDING_MODE \
800 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
802 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
806 tmp
= ldtul_p(mem_buf
);
809 env
->active_tc
.gpr
[n
] = tmp
;
810 return sizeof(target_ulong
);
812 if (env
->CP0_Config1
& (1 << CP0C1_FP
)
813 && n
>= 38 && n
< 73) {
815 if (env
->CP0_Status
& (1 << CP0St_FR
))
816 env
->active_fpu
.fpr
[n
- 38].d
= tmp
;
818 env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
] = tmp
;
822 env
->active_fpu
.fcr31
= tmp
& 0xFF83FFFF;
823 /* set rounding mode */
824 RESTORE_ROUNDING_MODE
;
825 #ifndef CONFIG_SOFTFLOAT
826 /* no floating point exception for native float */
827 SET_FP_ENABLE(env
->active_fpu
.fcr31
, 0);
830 case 71: env
->active_fpu
.fcr0
= tmp
; break;
832 return sizeof(target_ulong
);
835 case 32: env
->CP0_Status
= tmp
; break;
836 case 33: env
->active_tc
.LO
[0] = tmp
; break;
837 case 34: env
->active_tc
.HI
[0] = tmp
; break;
838 case 35: env
->CP0_BadVAddr
= tmp
; break;
839 case 36: env
->CP0_Cause
= tmp
; break;
840 case 37: env
->active_tc
.PC
= tmp
; break;
841 case 72: /* fp, ignored */ break;
845 /* Other registers are readonly. Ignore writes. */
849 return sizeof(target_ulong
);
851 #elif defined (TARGET_SH4)
853 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
854 /* FIXME: We should use XML for this. */
856 #define NUM_CORE_REGS 59
858 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
861 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
862 GET_REGL(env
->gregs
[n
+ 16]);
864 GET_REGL(env
->gregs
[n
]);
867 GET_REGL(env
->gregs
[n
- 8]);
868 } else if (n
>= 25 && n
< 41) {
869 GET_REGL(env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)]);
870 } else if (n
>= 43 && n
< 51) {
871 GET_REGL(env
->gregs
[n
- 43]);
872 } else if (n
>= 51 && n
< 59) {
873 GET_REGL(env
->gregs
[n
- (51 - 16)]);
876 case 16: GET_REGL(env
->pc
);
877 case 17: GET_REGL(env
->pr
);
878 case 18: GET_REGL(env
->gbr
);
879 case 19: GET_REGL(env
->vbr
);
880 case 20: GET_REGL(env
->mach
);
881 case 21: GET_REGL(env
->macl
);
882 case 22: GET_REGL(env
->sr
);
883 case 23: GET_REGL(env
->fpul
);
884 case 24: GET_REGL(env
->fpscr
);
885 case 41: GET_REGL(env
->ssr
);
886 case 42: GET_REGL(env
->spc
);
892 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
896 tmp
= ldl_p(mem_buf
);
899 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
900 env
->gregs
[n
+ 16] = tmp
;
906 env
->gregs
[n
- 8] = tmp
;
908 } else if (n
>= 25 && n
< 41) {
909 env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)] = tmp
;
910 } else if (n
>= 43 && n
< 51) {
911 env
->gregs
[n
- 43] = tmp
;
913 } else if (n
>= 51 && n
< 59) {
914 env
->gregs
[n
- (51 - 16)] = tmp
;
918 case 16: env
->pc
= tmp
;
919 case 17: env
->pr
= tmp
;
920 case 18: env
->gbr
= tmp
;
921 case 19: env
->vbr
= tmp
;
922 case 20: env
->mach
= tmp
;
923 case 21: env
->macl
= tmp
;
924 case 22: env
->sr
= tmp
;
925 case 23: env
->fpul
= tmp
;
926 case 24: env
->fpscr
= tmp
;
927 case 41: env
->ssr
= tmp
;
928 case 42: env
->spc
= tmp
;
934 #elif defined (TARGET_CRIS)
936 #define NUM_CORE_REGS 49
938 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
942 srs
= env
->pregs
[PR_SRS
];
944 GET_REG32(env
->regs
[n
]);
947 if (n
>= 21 && n
< 32) {
948 GET_REG32(env
->pregs
[n
- 16]);
950 if (n
>= 33 && n
< 49) {
951 GET_REG32(env
->sregs
[srs
][n
- 33]);
954 case 16: GET_REG8(env
->pregs
[0]);
955 case 17: GET_REG8(env
->pregs
[1]);
956 case 18: GET_REG32(env
->pregs
[2]);
957 case 19: GET_REG8(srs
);
958 case 20: GET_REG16(env
->pregs
[4]);
959 case 32: GET_REG32(env
->pc
);
965 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
972 tmp
= ldl_p(mem_buf
);
978 if (n
>= 21 && n
< 32) {
979 env
->pregs
[n
- 16] = tmp
;
982 /* FIXME: Should support function regs be writable? */
986 case 18: env
->pregs
[PR_PID
] = tmp
; break;
989 case 32: env
->pc
= tmp
; break;
996 #define NUM_CORE_REGS 0
998 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1003 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1010 static int num_g_regs
= NUM_CORE_REGS
;
1013 /* Encode data using the encoding for 'x' packets. */
1014 static int memtox(char *buf
, const char *mem
, int len
)
1022 case '#': case '$': case '*': case '}':
1034 const char *get_feature_xml(CPUState
*env
, const char *p
, const char **newp
)
1036 extern const char *const xml_builtin
[][2];
1040 static char target_xml
[1024];
1043 while (p
[len
] && p
[len
] != ':')
1048 if (strncmp(p
, "target.xml", len
) == 0) {
1049 /* Generate the XML description for this CPU. */
1050 if (!target_xml
[0]) {
1051 GDBRegisterState
*r
;
1053 snprintf(target_xml
, sizeof(target_xml
),
1054 "<?xml version=\"1.0\"?>"
1055 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1057 "<xi:include href=\"%s\"/>",
1060 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1061 strcat(target_xml
, "<xi:include href=\"");
1062 strcat(target_xml
, r
->xml
);
1063 strcat(target_xml
, "\"/>");
1065 strcat(target_xml
, "</target>");
1069 for (i
= 0; ; i
++) {
1070 name
= xml_builtin
[i
][0];
1071 if (!name
|| (strncmp(name
, p
, len
) == 0 && strlen(name
) == len
))
1074 return name
? xml_builtin
[i
][1] : NULL
;
1078 static int gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1080 GDBRegisterState
*r
;
1082 if (reg
< NUM_CORE_REGS
)
1083 return cpu_gdb_read_register(env
, mem_buf
, reg
);
1085 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1086 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1087 return r
->get_reg(env
, mem_buf
, reg
- r
->base_reg
);
1093 static int gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1095 GDBRegisterState
*r
;
1097 if (reg
< NUM_CORE_REGS
)
1098 return cpu_gdb_write_register(env
, mem_buf
, reg
);
1100 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1101 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1102 return r
->set_reg(env
, mem_buf
, reg
- r
->base_reg
);
1108 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1109 specifies the first register number and these registers are included in
1110 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1111 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1114 void gdb_register_coprocessor(CPUState
* env
,
1115 gdb_reg_cb get_reg
, gdb_reg_cb set_reg
,
1116 int num_regs
, const char *xml
, int g_pos
)
1118 GDBRegisterState
*s
;
1119 GDBRegisterState
**p
;
1120 static int last_reg
= NUM_CORE_REGS
;
1122 s
= (GDBRegisterState
*)qemu_mallocz(sizeof(GDBRegisterState
));
1123 s
->base_reg
= last_reg
;
1124 s
->num_regs
= num_regs
;
1125 s
->get_reg
= get_reg
;
1126 s
->set_reg
= set_reg
;
1130 /* Check for duplicates. */
1131 if (strcmp((*p
)->xml
, xml
) == 0)
1135 /* Add to end of list. */
1136 last_reg
+= num_regs
;
1139 if (g_pos
!= s
->base_reg
) {
1140 fprintf(stderr
, "Error: Bad gdb register numbering for '%s'\n"
1141 "Expected %d got %d\n", xml
, g_pos
, s
->base_reg
);
1143 num_g_regs
= last_reg
;
1148 /* GDB breakpoint/watchpoint types */
1149 #define GDB_BREAKPOINT_SW 0
1150 #define GDB_BREAKPOINT_HW 1
1151 #define GDB_WATCHPOINT_WRITE 2
1152 #define GDB_WATCHPOINT_READ 3
1153 #define GDB_WATCHPOINT_ACCESS 4
1155 #ifndef CONFIG_USER_ONLY
1156 static const int xlat_gdb_type
[] = {
1157 [GDB_WATCHPOINT_WRITE
] = BP_GDB
| BP_MEM_WRITE
,
1158 [GDB_WATCHPOINT_READ
] = BP_GDB
| BP_MEM_READ
,
1159 [GDB_WATCHPOINT_ACCESS
] = BP_GDB
| BP_MEM_ACCESS
,
1163 static int gdb_breakpoint_insert(CPUState
*env
, target_ulong addr
,
1164 target_ulong len
, int type
)
1167 case GDB_BREAKPOINT_SW
:
1168 case GDB_BREAKPOINT_HW
:
1169 return cpu_breakpoint_insert(env
, addr
, BP_GDB
, NULL
);
1170 #ifndef CONFIG_USER_ONLY
1171 case GDB_WATCHPOINT_WRITE
:
1172 case GDB_WATCHPOINT_READ
:
1173 case GDB_WATCHPOINT_ACCESS
:
1174 return cpu_watchpoint_insert(env
, addr
, len
, xlat_gdb_type
[type
],
1182 static int gdb_breakpoint_remove(CPUState
*env
, target_ulong addr
,
1183 target_ulong len
, int type
)
1186 case GDB_BREAKPOINT_SW
:
1187 case GDB_BREAKPOINT_HW
:
1188 return cpu_breakpoint_remove(env
, addr
, BP_GDB
);
1189 #ifndef CONFIG_USER_ONLY
1190 case GDB_WATCHPOINT_WRITE
:
1191 case GDB_WATCHPOINT_READ
:
1192 case GDB_WATCHPOINT_ACCESS
:
1193 return cpu_watchpoint_remove(env
, addr
, len
, xlat_gdb_type
[type
]);
1200 static void gdb_breakpoint_remove_all(CPUState
*env
)
1202 cpu_breakpoint_remove_all(env
, BP_GDB
);
1203 #ifndef CONFIG_USER_ONLY
1204 cpu_watchpoint_remove_all(env
, BP_GDB
);
1208 static int gdb_handle_packet(GDBState
*s
, CPUState
*env
, const char *line_buf
)
1211 int ch
, reg_size
, type
, res
;
1212 char buf
[MAX_PACKET_LENGTH
];
1213 uint8_t mem_buf
[MAX_PACKET_LENGTH
];
1215 target_ulong addr
, len
;
1218 printf("command='%s'\n", line_buf
);
1224 /* TODO: Make this return the correct value for user-mode. */
1225 snprintf(buf
, sizeof(buf
), "S%02x", SIGTRAP
);
1227 /* Remove all the breakpoints when this query is issued,
1228 * because gdb is doing and initial connect and the state
1229 * should be cleaned up.
1231 gdb_breakpoint_remove_all(env
);
1235 addr
= strtoull(p
, (char **)&p
, 16);
1236 #if defined(TARGET_I386)
1238 #elif defined (TARGET_PPC)
1240 #elif defined (TARGET_SPARC)
1242 env
->npc
= addr
+ 4;
1243 #elif defined (TARGET_ARM)
1244 env
->regs
[15] = addr
;
1245 #elif defined (TARGET_SH4)
1247 #elif defined (TARGET_MIPS)
1248 env
->active_tc
.PC
= addr
;
1249 #elif defined (TARGET_CRIS)
1256 s
->signal
= strtoul(p
, (char **)&p
, 16);
1260 /* Kill the target */
1261 fprintf(stderr
, "\nQEMU: Terminated via GDBstub\n");
1265 gdb_breakpoint_remove_all(env
);
1267 put_packet(s
, "OK");
1271 addr
= strtoull(p
, (char **)&p
, 16);
1272 #if defined(TARGET_I386)
1274 #elif defined (TARGET_PPC)
1276 #elif defined (TARGET_SPARC)
1278 env
->npc
= addr
+ 4;
1279 #elif defined (TARGET_ARM)
1280 env
->regs
[15] = addr
;
1281 #elif defined (TARGET_SH4)
1283 #elif defined (TARGET_MIPS)
1284 env
->active_tc
.PC
= addr
;
1285 #elif defined (TARGET_CRIS)
1289 cpu_single_step(env
, sstep_flags
);
1297 ret
= strtoull(p
, (char **)&p
, 16);
1300 err
= strtoull(p
, (char **)&p
, 16);
1307 if (gdb_current_syscall_cb
)
1308 gdb_current_syscall_cb(s
->env
, ret
, err
);
1310 put_packet(s
, "T02");
1318 for (addr
= 0; addr
< num_g_regs
; addr
++) {
1319 reg_size
= gdb_read_register(env
, mem_buf
+ len
, addr
);
1322 memtohex(buf
, mem_buf
, len
);
1326 registers
= mem_buf
;
1327 len
= strlen(p
) / 2;
1328 hextomem((uint8_t *)registers
, p
, len
);
1329 for (addr
= 0; addr
< num_g_regs
&& len
> 0; addr
++) {
1330 reg_size
= gdb_write_register(env
, registers
, addr
);
1332 registers
+= reg_size
;
1334 put_packet(s
, "OK");
1337 addr
= strtoull(p
, (char **)&p
, 16);
1340 len
= strtoull(p
, NULL
, 16);
1341 if (cpu_memory_rw_debug(env
, addr
, mem_buf
, len
, 0) != 0) {
1342 put_packet (s
, "E14");
1344 memtohex(buf
, mem_buf
, len
);
1349 addr
= strtoull(p
, (char **)&p
, 16);
1352 len
= strtoull(p
, (char **)&p
, 16);
1355 hextomem(mem_buf
, p
, len
);
1356 if (cpu_memory_rw_debug(env
, addr
, mem_buf
, len
, 1) != 0)
1357 put_packet(s
, "E14");
1359 put_packet(s
, "OK");
1362 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1363 This works, but can be very slow. Anything new enough to
1364 understand XML also knows how to use this properly. */
1366 goto unknown_command
;
1367 addr
= strtoull(p
, (char **)&p
, 16);
1368 reg_size
= gdb_read_register(env
, mem_buf
, addr
);
1370 memtohex(buf
, mem_buf
, reg_size
);
1373 put_packet(s
, "E14");
1378 goto unknown_command
;
1379 addr
= strtoull(p
, (char **)&p
, 16);
1382 reg_size
= strlen(p
) / 2;
1383 hextomem(mem_buf
, p
, reg_size
);
1384 gdb_write_register(env
, mem_buf
, addr
);
1385 put_packet(s
, "OK");
1389 type
= strtoul(p
, (char **)&p
, 16);
1392 addr
= strtoull(p
, (char **)&p
, 16);
1395 len
= strtoull(p
, (char **)&p
, 16);
1397 res
= gdb_breakpoint_insert(env
, addr
, len
, type
);
1399 res
= gdb_breakpoint_remove(env
, addr
, len
, type
);
1401 put_packet(s
, "OK");
1402 else if (res
== -ENOSYS
)
1405 put_packet(s
, "E22");
1409 /* parse any 'q' packets here */
1410 if (!strcmp(p
,"qemu.sstepbits")) {
1411 /* Query Breakpoint bit definitions */
1412 snprintf(buf
, sizeof(buf
), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1418 } else if (strncmp(p
,"qemu.sstep",10) == 0) {
1419 /* Display or change the sstep_flags */
1422 /* Display current setting */
1423 snprintf(buf
, sizeof(buf
), "0x%x", sstep_flags
);
1428 type
= strtoul(p
, (char **)&p
, 16);
1430 put_packet(s
, "OK");
1433 #ifdef CONFIG_LINUX_USER
1434 else if (strncmp(p
, "Offsets", 7) == 0) {
1435 TaskState
*ts
= env
->opaque
;
1437 snprintf(buf
, sizeof(buf
),
1438 "Text=" TARGET_ABI_FMT_lx
";Data=" TARGET_ABI_FMT_lx
1439 ";Bss=" TARGET_ABI_FMT_lx
,
1440 ts
->info
->code_offset
,
1441 ts
->info
->data_offset
,
1442 ts
->info
->data_offset
);
1447 if (strncmp(p
, "Supported", 9) == 0) {
1448 snprintf(buf
, sizeof(buf
), "PacketSize=%x", MAX_PACKET_LENGTH
);
1450 strcat(buf
, ";qXfer:features:read+");
1456 if (strncmp(p
, "Xfer:features:read:", 19) == 0) {
1458 target_ulong total_len
;
1462 xml
= get_feature_xml(env
, p
, &p
);
1464 snprintf(buf
, sizeof(buf
), "E00");
1471 addr
= strtoul(p
, (char **)&p
, 16);
1474 len
= strtoul(p
, (char **)&p
, 16);
1476 total_len
= strlen(xml
);
1477 if (addr
> total_len
) {
1478 snprintf(buf
, sizeof(buf
), "E00");
1482 if (len
> (MAX_PACKET_LENGTH
- 5) / 2)
1483 len
= (MAX_PACKET_LENGTH
- 5) / 2;
1484 if (len
< total_len
- addr
) {
1486 len
= memtox(buf
+ 1, xml
+ addr
, len
);
1489 len
= memtox(buf
+ 1, xml
+ addr
, total_len
- addr
);
1491 put_packet_binary(s
, buf
, len
+ 1);
1495 /* Unrecognised 'q' command. */
1496 goto unknown_command
;
1500 /* put empty packet */
1508 extern void tb_flush(CPUState
*env
);
1510 #ifndef CONFIG_USER_ONLY
1511 static void gdb_vm_stopped(void *opaque
, int reason
)
1513 GDBState
*s
= opaque
;
1518 if (s
->state
== RS_SYSCALL
)
1521 /* disable single step if it was enable */
1522 cpu_single_step(s
->env
, 0);
1524 if (reason
== EXCP_DEBUG
) {
1525 if (s
->env
->watchpoint_hit
) {
1526 switch (s
->env
->watchpoint_hit
->flags
& BP_MEM_ACCESS
) {
1537 snprintf(buf
, sizeof(buf
), "T%02x%swatch:" TARGET_FMT_lx
";",
1538 SIGTRAP
, type
, s
->env
->watchpoint_hit
->vaddr
);
1540 s
->env
->watchpoint_hit
= NULL
;
1545 } else if (reason
== EXCP_INTERRUPT
) {
1550 snprintf(buf
, sizeof(buf
), "S%02x", ret
);
1555 /* Send a gdb syscall request.
1556 This accepts limited printf-style format specifiers, specifically:
1557 %x - target_ulong argument printed in hex.
1558 %lx - 64-bit argument printed in hex.
1559 %s - string pointer (target_ulong) and length (int) pair. */
1560 void gdb_do_syscall(gdb_syscall_complete_cb cb
, const char *fmt
, ...)
1569 s
= gdb_syscall_state
;
1572 gdb_current_syscall_cb
= cb
;
1573 s
->state
= RS_SYSCALL
;
1574 #ifndef CONFIG_USER_ONLY
1575 vm_stop(EXCP_DEBUG
);
1586 addr
= va_arg(va
, target_ulong
);
1587 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
, addr
);
1590 if (*(fmt
++) != 'x')
1592 i64
= va_arg(va
, uint64_t);
1593 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, "%" PRIx64
, i64
);
1596 addr
= va_arg(va
, target_ulong
);
1597 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
"/%x",
1598 addr
, va_arg(va
, int));
1602 fprintf(stderr
, "gdbstub: Bad syscall format string '%s'\n",
1613 #ifdef CONFIG_USER_ONLY
1614 gdb_handlesig(s
->env
, 0);
1616 cpu_interrupt(s
->env
, CPU_INTERRUPT_EXIT
);
1620 static void gdb_read_byte(GDBState
*s
, int ch
)
1622 CPUState
*env
= s
->env
;
1626 #ifndef CONFIG_USER_ONLY
1627 if (s
->last_packet_len
) {
1628 /* Waiting for a response to the last packet. If we see the start
1629 of a new command then abandon the previous response. */
1632 printf("Got NACK, retransmitting\n");
1634 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
1638 printf("Got ACK\n");
1640 printf("Got '%c' when expecting ACK/NACK\n", ch
);
1642 if (ch
== '+' || ch
== '$')
1643 s
->last_packet_len
= 0;
1648 /* when the CPU is running, we cannot do anything except stop
1649 it when receiving a char */
1650 vm_stop(EXCP_INTERRUPT
);
1657 s
->line_buf_index
= 0;
1658 s
->state
= RS_GETLINE
;
1663 s
->state
= RS_CHKSUM1
;
1664 } else if (s
->line_buf_index
>= sizeof(s
->line_buf
) - 1) {
1667 s
->line_buf
[s
->line_buf_index
++] = ch
;
1671 s
->line_buf
[s
->line_buf_index
] = '\0';
1672 s
->line_csum
= fromhex(ch
) << 4;
1673 s
->state
= RS_CHKSUM2
;
1676 s
->line_csum
|= fromhex(ch
);
1678 for(i
= 0; i
< s
->line_buf_index
; i
++) {
1679 csum
+= s
->line_buf
[i
];
1681 if (s
->line_csum
!= (csum
& 0xff)) {
1683 put_buffer(s
, &reply
, 1);
1687 put_buffer(s
, &reply
, 1);
1688 s
->state
= gdb_handle_packet(s
, env
, s
->line_buf
);
1697 #ifdef CONFIG_USER_ONLY
1699 gdb_handlesig (CPUState
*env
, int sig
)
1705 s
= &gdbserver_state
;
1706 if (gdbserver_fd
< 0 || s
->fd
< 0)
1709 /* disable single step if it was enabled */
1710 cpu_single_step(env
, 0);
1715 snprintf(buf
, sizeof(buf
), "S%02x", sig
);
1718 /* put_packet() might have detected that the peer terminated the
1725 s
->running_state
= 0;
1726 while (s
->running_state
== 0) {
1727 n
= read (s
->fd
, buf
, 256);
1732 for (i
= 0; i
< n
; i
++)
1733 gdb_read_byte (s
, buf
[i
]);
1735 else if (n
== 0 || errno
!= EAGAIN
)
1737 /* XXX: Connection closed. Should probably wait for annother
1738 connection before continuing. */
1747 /* Tell the remote gdb that the process has exited. */
1748 void gdb_exit(CPUState
*env
, int code
)
1753 s
= &gdbserver_state
;
1754 if (gdbserver_fd
< 0 || s
->fd
< 0)
1757 snprintf(buf
, sizeof(buf
), "W%02x", code
);
1762 static void gdb_accept(void *opaque
)
1765 struct sockaddr_in sockaddr
;
1770 len
= sizeof(sockaddr
);
1771 fd
= accept(gdbserver_fd
, (struct sockaddr
*)&sockaddr
, &len
);
1772 if (fd
< 0 && errno
!= EINTR
) {
1775 } else if (fd
>= 0) {
1780 /* set short latency */
1782 setsockopt(fd
, IPPROTO_TCP
, TCP_NODELAY
, (char *)&val
, sizeof(val
));
1784 s
= &gdbserver_state
;
1785 memset (s
, 0, sizeof (GDBState
));
1786 s
->env
= first_cpu
; /* XXX: allow to change CPU */
1790 gdb_syscall_state
= s
;
1792 fcntl(fd
, F_SETFL
, O_NONBLOCK
);
1795 static int gdbserver_open(int port
)
1797 struct sockaddr_in sockaddr
;
1800 fd
= socket(PF_INET
, SOCK_STREAM
, 0);
1806 /* allow fast reuse */
1808 setsockopt(fd
, SOL_SOCKET
, SO_REUSEADDR
, (char *)&val
, sizeof(val
));
1810 sockaddr
.sin_family
= AF_INET
;
1811 sockaddr
.sin_port
= htons(port
);
1812 sockaddr
.sin_addr
.s_addr
= 0;
1813 ret
= bind(fd
, (struct sockaddr
*)&sockaddr
, sizeof(sockaddr
));
1818 ret
= listen(fd
, 0);
1826 int gdbserver_start(int port
)
1828 gdbserver_fd
= gdbserver_open(port
);
1829 if (gdbserver_fd
< 0)
1831 /* accept connections */
1836 static int gdb_chr_can_receive(void *opaque
)
1838 /* We can handle an arbitrarily large amount of data.
1839 Pick the maximum packet size, which is as good as anything. */
1840 return MAX_PACKET_LENGTH
;
1843 static void gdb_chr_receive(void *opaque
, const uint8_t *buf
, int size
)
1845 GDBState
*s
= opaque
;
1848 for (i
= 0; i
< size
; i
++) {
1849 gdb_read_byte(s
, buf
[i
]);
1853 static void gdb_chr_event(void *opaque
, int event
)
1856 case CHR_EVENT_RESET
:
1857 vm_stop(EXCP_INTERRUPT
);
1858 gdb_syscall_state
= opaque
;
1866 int gdbserver_start(const char *port
)
1869 char gdbstub_port_name
[128];
1872 CharDriverState
*chr
;
1874 if (!port
|| !*port
)
1877 port_num
= strtol(port
, &p
, 10);
1879 /* A numeric value is interpreted as a port number. */
1880 snprintf(gdbstub_port_name
, sizeof(gdbstub_port_name
),
1881 "tcp::%d,nowait,nodelay,server", port_num
);
1882 port
= gdbstub_port_name
;
1885 chr
= qemu_chr_open("gdb", port
);
1889 s
= qemu_mallocz(sizeof(GDBState
));
1893 s
->env
= first_cpu
; /* XXX: allow to change CPU */
1895 qemu_chr_add_handlers(chr
, gdb_chr_can_receive
, gdb_chr_receive
,
1897 qemu_add_vm_stop_handler(gdb_vm_stopped
, s
);