2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #if !defined(CONFIG_SOFTMMU)
35 #include <sys/ucontext.h>
38 int tb_invalidated_flag
;
41 //#define DEBUG_SIGNAL
43 #define SAVE_GLOBALS()
44 #define RESTORE_GLOBALS()
46 #if defined(__sparc__) && !defined(HOST_SOLARIS)
48 #if defined(__GLIBC__) && ((__GLIBC__ < 2) || \
49 ((__GLIBC__ == 2) && (__GLIBC_MINOR__ <= 90)))
50 // Work around ugly bugs in glibc that mangle global register contents
52 static volatile void *saved_env
;
53 static volatile unsigned long saved_t0
, saved_i7
;
55 #define SAVE_GLOBALS() do { \
58 asm volatile ("st %%i7, [%0]" : : "r" (&saved_i7)); \
61 #undef RESTORE_GLOBALS
62 #define RESTORE_GLOBALS() do { \
63 env = (void *)saved_env; \
65 asm volatile ("ld [%0], %%i7" : : "r" (&saved_i7)); \
68 static int sparc_setjmp(jmp_buf buf
)
78 #define setjmp(jmp_buf) sparc_setjmp(jmp_buf)
80 static void sparc_longjmp(jmp_buf buf
, int val
)
85 #define longjmp(jmp_buf, val) sparc_longjmp(jmp_buf, val)
89 void cpu_loop_exit(void)
91 /* NOTE: the register at this point must be saved by hand because
92 longjmp restore them */
94 longjmp(env
->jmp_env
, 1);
97 #if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
101 /* exit the current TB from a signal handler. The host registers are
102 restored in a state compatible with the CPU emulator
104 void cpu_resume_from_signal(CPUState
*env1
, void *puc
)
106 #if !defined(CONFIG_SOFTMMU)
107 struct ucontext
*uc
= puc
;
112 /* XXX: restore cpu registers saved in host registers */
114 #if !defined(CONFIG_SOFTMMU)
116 /* XXX: use siglongjmp ? */
117 sigprocmask(SIG_SETMASK
, &uc
->uc_sigmask
, NULL
);
120 longjmp(env
->jmp_env
, 1);
123 static TranslationBlock
*tb_find_slow(target_ulong pc
,
124 target_ulong cs_base
,
127 TranslationBlock
*tb
, **ptb1
;
130 target_ulong phys_pc
, phys_page1
, phys_page2
, virt_page2
;
135 tb_invalidated_flag
= 0;
137 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
139 /* find translated block using physical mappings */
140 phys_pc
= get_phys_addr_code(env
, pc
);
141 phys_page1
= phys_pc
& TARGET_PAGE_MASK
;
143 h
= tb_phys_hash_func(phys_pc
);
144 ptb1
= &tb_phys_hash
[h
];
150 tb
->page_addr
[0] == phys_page1
&&
151 tb
->cs_base
== cs_base
&&
152 tb
->flags
== flags
) {
153 /* check next page if needed */
154 if (tb
->page_addr
[1] != -1) {
155 virt_page2
= (pc
& TARGET_PAGE_MASK
) +
157 phys_page2
= get_phys_addr_code(env
, virt_page2
);
158 if (tb
->page_addr
[1] == phys_page2
)
164 ptb1
= &tb
->phys_hash_next
;
167 /* if no translated code available, then translate it now */
170 /* flush must be done */
172 /* cannot fail at this point */
174 /* don't forget to invalidate previous TB info */
175 tb_invalidated_flag
= 1;
177 tc_ptr
= code_gen_ptr
;
179 tb
->cs_base
= cs_base
;
182 cpu_gen_code(env
, tb
, &code_gen_size
);
184 code_gen_ptr
= (void *)(((unsigned long)code_gen_ptr
+ code_gen_size
+ CODE_GEN_ALIGN
- 1) & ~(CODE_GEN_ALIGN
- 1));
186 /* check next page if needed */
187 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
189 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
190 phys_page2
= get_phys_addr_code(env
, virt_page2
);
192 tb_link_phys(tb
, phys_pc
, phys_page2
);
195 /* we add the TB in the virtual pc hash table */
196 env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)] = tb
;
197 spin_unlock(&tb_lock
);
201 static inline TranslationBlock
*tb_find_fast(void)
203 TranslationBlock
*tb
;
204 target_ulong cs_base
, pc
;
207 /* we record a subset of the CPU state. It will
208 always be the same before a given translated block
210 #if defined(TARGET_I386)
212 flags
|= (env
->eflags
& (IOPL_MASK
| TF_MASK
| VM_MASK
));
213 flags
|= env
->intercept
;
214 cs_base
= env
->segs
[R_CS
].base
;
215 pc
= cs_base
+ env
->eip
;
216 #elif defined(TARGET_ARM)
217 flags
= env
->thumb
| (env
->vfp
.vec_len
<< 1)
218 | (env
->vfp
.vec_stride
<< 4);
219 if ((env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
)
221 if (env
->vfp
.xregs
[ARM_VFP_FPEXC
] & (1 << 30))
223 flags
|= (env
->condexec_bits
<< 8);
226 #elif defined(TARGET_SPARC)
227 #ifdef TARGET_SPARC64
228 // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
229 flags
= (((env
->pstate
& PS_PEF
) >> 1) | ((env
->fprs
& FPRS_FEF
) << 2))
230 | (env
->pstate
& PS_PRIV
) | ((env
->lsu
& (DMMU_E
| IMMU_E
)) >> 2);
232 // FPU enable . Supervisor
233 flags
= (env
->psref
<< 4) | env
->psrs
;
237 #elif defined(TARGET_PPC)
241 #elif defined(TARGET_MIPS)
242 flags
= env
->hflags
& (MIPS_HFLAG_TMASK
| MIPS_HFLAG_BMASK
);
244 pc
= env
->PC
[env
->current_tc
];
245 #elif defined(TARGET_M68K)
246 flags
= (env
->fpcr
& M68K_FPCR_PREC
) /* Bit 6 */
247 | (env
->sr
& SR_S
) /* Bit 13 */
248 | ((env
->macsr
>> 4) & 0xf); /* Bits 0-3 */
251 #elif defined(TARGET_SH4)
255 #elif defined(TARGET_ALPHA)
259 #elif defined(TARGET_CRIS)
264 #error unsupported CPU
266 tb
= env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)];
267 if (__builtin_expect(!tb
|| tb
->pc
!= pc
|| tb
->cs_base
!= cs_base
||
268 tb
->flags
!= flags
, 0)) {
269 tb
= tb_find_slow(pc
, cs_base
, flags
);
270 /* Note: we do it here to avoid a gcc bug on Mac OS X when
271 doing it in tb_find_slow */
272 if (tb_invalidated_flag
) {
273 /* as some TB could have been invalidated because
274 of memory exceptions while generating the code, we
275 must recompute the hash index here */
282 #define BREAK_CHAIN T0 = 0
284 /* main execution loop */
286 int cpu_exec(CPUState
*env1
)
288 #define DECLARE_HOST_REGS 1
289 #include "hostregs_helper.h"
290 #if defined(TARGET_SPARC)
291 #if defined(reg_REGWPTR)
292 uint32_t *saved_regwptr
;
295 int ret
, interrupt_request
;
296 long (*gen_func
)(void);
297 TranslationBlock
*tb
;
300 if (cpu_halted(env1
) == EXCP_HALTED
)
303 cpu_single_env
= env1
;
305 /* first we save global registers */
306 #define SAVE_HOST_REGS 1
307 #include "hostregs_helper.h"
312 #if defined(TARGET_I386)
313 /* put eflags in CPU temporary format */
314 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
315 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
316 CC_OP
= CC_OP_EFLAGS
;
317 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
318 #elif defined(TARGET_SPARC)
319 #if defined(reg_REGWPTR)
320 saved_regwptr
= REGWPTR
;
322 #elif defined(TARGET_M68K)
323 env
->cc_op
= CC_OP_FLAGS
;
324 env
->cc_dest
= env
->sr
& 0xf;
325 env
->cc_x
= (env
->sr
>> 4) & 1;
326 #elif defined(TARGET_ALPHA)
327 #elif defined(TARGET_ARM)
328 #elif defined(TARGET_PPC)
329 #elif defined(TARGET_MIPS)
330 #elif defined(TARGET_SH4)
331 #elif defined(TARGET_CRIS)
334 #error unsupported target CPU
336 env
->exception_index
= -1;
338 /* prepare setjmp context for exception handling */
340 if (setjmp(env
->jmp_env
) == 0) {
341 env
->current_tb
= NULL
;
342 /* if an exception is pending, we execute it here */
343 if (env
->exception_index
>= 0) {
344 if (env
->exception_index
>= EXCP_INTERRUPT
) {
345 /* exit request from the cpu execution loop */
346 ret
= env
->exception_index
;
348 } else if (env
->user_mode_only
) {
349 /* if user mode only, we simulate a fake exception
350 which will be handled outside the cpu execution
352 #if defined(TARGET_I386)
353 do_interrupt_user(env
->exception_index
,
354 env
->exception_is_int
,
356 env
->exception_next_eip
);
358 ret
= env
->exception_index
;
361 #if defined(TARGET_I386)
362 /* simulate a real cpu exception. On i386, it can
363 trigger new exceptions, but we do not handle
364 double or triple faults yet. */
365 do_interrupt(env
->exception_index
,
366 env
->exception_is_int
,
368 env
->exception_next_eip
, 0);
369 /* successfully delivered */
370 env
->old_exception
= -1;
371 #elif defined(TARGET_PPC)
373 #elif defined(TARGET_MIPS)
375 #elif defined(TARGET_SPARC)
376 do_interrupt(env
->exception_index
);
377 #elif defined(TARGET_ARM)
379 #elif defined(TARGET_SH4)
381 #elif defined(TARGET_ALPHA)
383 #elif defined(TARGET_CRIS)
385 #elif defined(TARGET_M68K)
389 env
->exception_index
= -1;
392 if (kqemu_is_ok(env
) && env
->interrupt_request
== 0) {
394 env
->eflags
= env
->eflags
| cc_table
[CC_OP
].compute_all() | (DF
& DF_MASK
);
395 ret
= kqemu_cpu_exec(env
);
396 /* put eflags in CPU temporary format */
397 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
398 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
399 CC_OP
= CC_OP_EFLAGS
;
400 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
403 longjmp(env
->jmp_env
, 1);
404 } else if (ret
== 2) {
405 /* softmmu execution needed */
407 if (env
->interrupt_request
!= 0) {
408 /* hardware interrupt will be executed just after */
410 /* otherwise, we restart */
411 longjmp(env
->jmp_env
, 1);
417 T0
= 0; /* force lookup of first TB */
420 interrupt_request
= env
->interrupt_request
;
421 if (__builtin_expect(interrupt_request
, 0)
422 #if defined(TARGET_I386)
423 && env
->hflags
& HF_GIF_MASK
426 if (interrupt_request
& CPU_INTERRUPT_DEBUG
) {
427 env
->interrupt_request
&= ~CPU_INTERRUPT_DEBUG
;
428 env
->exception_index
= EXCP_DEBUG
;
431 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
432 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS)
433 if (interrupt_request
& CPU_INTERRUPT_HALT
) {
434 env
->interrupt_request
&= ~CPU_INTERRUPT_HALT
;
436 env
->exception_index
= EXCP_HLT
;
440 #if defined(TARGET_I386)
441 if ((interrupt_request
& CPU_INTERRUPT_SMI
) &&
442 !(env
->hflags
& HF_SMM_MASK
)) {
443 svm_check_intercept(SVM_EXIT_SMI
);
444 env
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
447 } else if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
448 (env
->eflags
& IF_MASK
|| env
->hflags
& HF_HIF_MASK
) &&
449 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
)) {
451 svm_check_intercept(SVM_EXIT_INTR
);
452 env
->interrupt_request
&= ~(CPU_INTERRUPT_HARD
| CPU_INTERRUPT_VIRQ
);
453 intno
= cpu_get_pic_interrupt(env
);
454 if (loglevel
& CPU_LOG_TB_IN_ASM
) {
455 fprintf(logfile
, "Servicing hardware INT=0x%02x\n", intno
);
457 do_interrupt(intno
, 0, 0, 0, 1);
458 /* ensure that no TB jump will be modified as
459 the program flow was changed */
461 #if !defined(CONFIG_USER_ONLY)
462 } else if ((interrupt_request
& CPU_INTERRUPT_VIRQ
) &&
463 (env
->eflags
& IF_MASK
) && !(env
->hflags
& HF_INHIBIT_IRQ_MASK
)) {
465 /* FIXME: this should respect TPR */
466 env
->interrupt_request
&= ~CPU_INTERRUPT_VIRQ
;
467 svm_check_intercept(SVM_EXIT_VINTR
);
468 intno
= ldl_phys(env
->vm_vmcb
+ offsetof(struct vmcb
, control
.int_vector
));
469 if (loglevel
& CPU_LOG_TB_IN_ASM
)
470 fprintf(logfile
, "Servicing virtual hardware INT=0x%02x\n", intno
);
471 do_interrupt(intno
, 0, 0, -1, 1);
472 stl_phys(env
->vm_vmcb
+ offsetof(struct vmcb
, control
.int_ctl
),
473 ldl_phys(env
->vm_vmcb
+ offsetof(struct vmcb
, control
.int_ctl
)) & ~V_IRQ_MASK
);
477 #elif defined(TARGET_PPC)
479 if ((interrupt_request
& CPU_INTERRUPT_RESET
)) {
483 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
484 ppc_hw_interrupt(env
);
485 if (env
->pending_interrupts
== 0)
486 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
489 #elif defined(TARGET_MIPS)
490 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
491 (env
->CP0_Status
& env
->CP0_Cause
& CP0Ca_IP_mask
) &&
492 (env
->CP0_Status
& (1 << CP0St_IE
)) &&
493 !(env
->CP0_Status
& (1 << CP0St_EXL
)) &&
494 !(env
->CP0_Status
& (1 << CP0St_ERL
)) &&
495 !(env
->hflags
& MIPS_HFLAG_DM
)) {
497 env
->exception_index
= EXCP_EXT_INTERRUPT
;
502 #elif defined(TARGET_SPARC)
503 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
505 int pil
= env
->interrupt_index
& 15;
506 int type
= env
->interrupt_index
& 0xf0;
508 if (((type
== TT_EXTINT
) &&
509 (pil
== 15 || pil
> env
->psrpil
)) ||
511 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
512 do_interrupt(env
->interrupt_index
);
513 env
->interrupt_index
= 0;
514 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
519 } else if (interrupt_request
& CPU_INTERRUPT_TIMER
) {
520 //do_interrupt(0, 0, 0, 0, 0);
521 env
->interrupt_request
&= ~CPU_INTERRUPT_TIMER
;
523 #elif defined(TARGET_ARM)
524 if (interrupt_request
& CPU_INTERRUPT_FIQ
525 && !(env
->uncached_cpsr
& CPSR_F
)) {
526 env
->exception_index
= EXCP_FIQ
;
530 /* ARMv7-M interrupt return works by loading a magic value
531 into the PC. On real hardware the load causes the
532 return to occur. The qemu implementation performs the
533 jump normally, then does the exception return when the
534 CPU tries to execute code at the magic address.
535 This will cause the magic PC value to be pushed to
536 the stack if an interrupt occured at the wrong time.
537 We avoid this by disabling interrupts when
538 pc contains a magic address. */
539 if (interrupt_request
& CPU_INTERRUPT_HARD
540 && ((IS_M(env
) && env
->regs
[15] < 0xfffffff0)
541 || !(env
->uncached_cpsr
& CPSR_I
))) {
542 env
->exception_index
= EXCP_IRQ
;
546 #elif defined(TARGET_SH4)
547 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
551 #elif defined(TARGET_ALPHA)
552 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
556 #elif defined(TARGET_CRIS)
557 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
559 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
562 #elif defined(TARGET_M68K)
563 if (interrupt_request
& CPU_INTERRUPT_HARD
564 && ((env
->sr
& SR_I
) >> SR_I_SHIFT
)
565 < env
->pending_level
) {
566 /* Real hardware gets the interrupt vector via an
567 IACK cycle at this point. Current emulated
568 hardware doesn't rely on this, so we
569 provide/save the vector when the interrupt is
571 env
->exception_index
= env
->pending_vector
;
576 /* Don't use the cached interupt_request value,
577 do_interrupt may have updated the EXITTB flag. */
578 if (env
->interrupt_request
& CPU_INTERRUPT_EXITTB
) {
579 env
->interrupt_request
&= ~CPU_INTERRUPT_EXITTB
;
580 /* ensure that no TB jump will be modified as
581 the program flow was changed */
584 if (interrupt_request
& CPU_INTERRUPT_EXIT
) {
585 env
->interrupt_request
&= ~CPU_INTERRUPT_EXIT
;
586 env
->exception_index
= EXCP_INTERRUPT
;
591 if ((loglevel
& CPU_LOG_TB_CPU
)) {
592 /* restore flags in standard format */
594 #if defined(TARGET_I386)
595 env
->eflags
= env
->eflags
| cc_table
[CC_OP
].compute_all() | (DF
& DF_MASK
);
596 cpu_dump_state(env
, logfile
, fprintf
, X86_DUMP_CCOP
);
597 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
598 #elif defined(TARGET_ARM)
599 cpu_dump_state(env
, logfile
, fprintf
, 0);
600 #elif defined(TARGET_SPARC)
601 REGWPTR
= env
->regbase
+ (env
->cwp
* 16);
602 env
->regwptr
= REGWPTR
;
603 cpu_dump_state(env
, logfile
, fprintf
, 0);
604 #elif defined(TARGET_PPC)
605 cpu_dump_state(env
, logfile
, fprintf
, 0);
606 #elif defined(TARGET_M68K)
607 cpu_m68k_flush_flags(env
, env
->cc_op
);
608 env
->cc_op
= CC_OP_FLAGS
;
609 env
->sr
= (env
->sr
& 0xffe0)
610 | env
->cc_dest
| (env
->cc_x
<< 4);
611 cpu_dump_state(env
, logfile
, fprintf
, 0);
612 #elif defined(TARGET_MIPS)
613 cpu_dump_state(env
, logfile
, fprintf
, 0);
614 #elif defined(TARGET_SH4)
615 cpu_dump_state(env
, logfile
, fprintf
, 0);
616 #elif defined(TARGET_ALPHA)
617 cpu_dump_state(env
, logfile
, fprintf
, 0);
618 #elif defined(TARGET_CRIS)
619 cpu_dump_state(env
, logfile
, fprintf
, 0);
621 #error unsupported target CPU
627 if ((loglevel
& CPU_LOG_EXEC
)) {
628 fprintf(logfile
, "Trace 0x%08lx [" TARGET_FMT_lx
"] %s\n",
629 (long)tb
->tc_ptr
, tb
->pc
,
630 lookup_symbol(tb
->pc
));
634 /* see if we can patch the calling TB. When the TB
635 spans two pages, we cannot safely do a direct
640 (env
->kqemu_enabled
!= 2) &&
642 tb
->page_addr
[1] == -1) {
644 tb_add_jump((TranslationBlock
*)(long)(T0
& ~3), T0
& 3, tb
);
645 spin_unlock(&tb_lock
);
649 env
->current_tb
= tb
;
650 /* execute the generated code */
651 gen_func
= (void *)tc_ptr
;
652 #if defined(__sparc__)
653 __asm__
__volatile__("call %0\n\t"
657 : "i0", "i1", "i2", "i3", "i4", "i5",
658 "o0", "o1", "o2", "o3", "o4", "o5",
659 "l0", "l1", "l2", "l3", "l4", "l5",
661 #elif defined(__arm__)
662 asm volatile ("mov pc, %0\n\t"
663 ".global exec_loop\n\t"
667 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
668 #elif defined(__ia64)
675 fp
.gp
= code_gen_buffer
+ 2 * (1 << 20);
676 (*(void (*)(void)) &fp
)();
680 env
->current_tb
= NULL
;
681 /* reset soft MMU for next block (it can currently
682 only be set by a memory fault) */
683 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
684 if (env
->hflags
& HF_SOFTMMU_MASK
) {
685 env
->hflags
&= ~HF_SOFTMMU_MASK
;
686 /* do not allow linking to another block */
690 #if defined(USE_KQEMU)
691 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
692 if (kqemu_is_ok(env
) &&
693 (cpu_get_time_fast() - env
->last_io_time
) >= MIN_CYCLE_BEFORE_SWITCH
) {
704 #if defined(TARGET_I386)
705 /* restore flags in standard format */
706 env
->eflags
= env
->eflags
| cc_table
[CC_OP
].compute_all() | (DF
& DF_MASK
);
707 #elif defined(TARGET_ARM)
708 /* XXX: Save/restore host fpu exception state?. */
709 #elif defined(TARGET_SPARC)
710 #if defined(reg_REGWPTR)
711 REGWPTR
= saved_regwptr
;
713 #elif defined(TARGET_PPC)
714 #elif defined(TARGET_M68K)
715 cpu_m68k_flush_flags(env
, env
->cc_op
);
716 env
->cc_op
= CC_OP_FLAGS
;
717 env
->sr
= (env
->sr
& 0xffe0)
718 | env
->cc_dest
| (env
->cc_x
<< 4);
719 #elif defined(TARGET_MIPS)
720 #elif defined(TARGET_SH4)
721 #elif defined(TARGET_ALPHA)
722 #elif defined(TARGET_CRIS)
725 #error unsupported target CPU
728 /* restore global registers */
730 #include "hostregs_helper.h"
732 /* fail safe : never use cpu_single_env outside cpu_exec() */
733 cpu_single_env
= NULL
;
737 /* must only be called from the generated code as an exception can be
739 void tb_invalidate_page_range(target_ulong start
, target_ulong end
)
741 /* XXX: cannot enable it yet because it yields to MMU exception
742 where NIP != read address on PowerPC */
744 target_ulong phys_addr
;
745 phys_addr
= get_phys_addr_code(env
, start
);
746 tb_invalidate_phys_page_range(phys_addr
, phys_addr
+ end
- start
, 0);
750 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
752 void cpu_x86_load_seg(CPUX86State
*s
, int seg_reg
, int selector
)
754 CPUX86State
*saved_env
;
758 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
760 cpu_x86_load_seg_cache(env
, seg_reg
, selector
,
761 (selector
<< 4), 0xffff, 0);
763 load_seg(seg_reg
, selector
);
768 void cpu_x86_fsave(CPUX86State
*s
, target_ulong ptr
, int data32
)
770 CPUX86State
*saved_env
;
775 helper_fsave(ptr
, data32
);
780 void cpu_x86_frstor(CPUX86State
*s
, target_ulong ptr
, int data32
)
782 CPUX86State
*saved_env
;
787 helper_frstor(ptr
, data32
);
792 #endif /* TARGET_I386 */
794 #if !defined(CONFIG_SOFTMMU)
796 #if defined(TARGET_I386)
798 /* 'pc' is the host PC at which the exception was raised. 'address' is
799 the effective address of the memory exception. 'is_write' is 1 if a
800 write caused the exception and otherwise 0'. 'old_set' is the
801 signal set which should be restored */
802 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
803 int is_write
, sigset_t
*old_set
,
806 TranslationBlock
*tb
;
810 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
811 #if defined(DEBUG_SIGNAL)
812 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
813 pc
, address
, is_write
, *(unsigned long *)old_set
);
815 /* XXX: locking issue */
816 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
820 /* see if it is an MMU fault */
821 ret
= cpu_x86_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
823 return 0; /* not an MMU fault */
825 return 1; /* the MMU fault was handled without causing real CPU fault */
826 /* now we have a real cpu fault */
829 /* the PC is inside the translated code. It means that we have
830 a virtual CPU fault */
831 cpu_restore_state(tb
, env
, pc
, puc
);
835 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
836 env
->eip
, env
->cr
[2], env
->error_code
);
838 /* we restore the process signal mask as the sigreturn should
839 do it (XXX: use sigsetjmp) */
840 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
841 raise_exception_err(env
->exception_index
, env
->error_code
);
843 /* activate soft MMU for this block */
844 env
->hflags
|= HF_SOFTMMU_MASK
;
845 cpu_resume_from_signal(env
, puc
);
847 /* never comes here */
851 #elif defined(TARGET_ARM)
852 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
853 int is_write
, sigset_t
*old_set
,
856 TranslationBlock
*tb
;
860 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
861 #if defined(DEBUG_SIGNAL)
862 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
863 pc
, address
, is_write
, *(unsigned long *)old_set
);
865 /* XXX: locking issue */
866 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
869 /* see if it is an MMU fault */
870 ret
= cpu_arm_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
872 return 0; /* not an MMU fault */
874 return 1; /* the MMU fault was handled without causing real CPU fault */
875 /* now we have a real cpu fault */
878 /* the PC is inside the translated code. It means that we have
879 a virtual CPU fault */
880 cpu_restore_state(tb
, env
, pc
, puc
);
882 /* we restore the process signal mask as the sigreturn should
883 do it (XXX: use sigsetjmp) */
884 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
887 #elif defined(TARGET_SPARC)
888 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
889 int is_write
, sigset_t
*old_set
,
892 TranslationBlock
*tb
;
896 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
897 #if defined(DEBUG_SIGNAL)
898 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
899 pc
, address
, is_write
, *(unsigned long *)old_set
);
901 /* XXX: locking issue */
902 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
905 /* see if it is an MMU fault */
906 ret
= cpu_sparc_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
908 return 0; /* not an MMU fault */
910 return 1; /* the MMU fault was handled without causing real CPU fault */
911 /* now we have a real cpu fault */
914 /* the PC is inside the translated code. It means that we have
915 a virtual CPU fault */
916 cpu_restore_state(tb
, env
, pc
, puc
);
918 /* we restore the process signal mask as the sigreturn should
919 do it (XXX: use sigsetjmp) */
920 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
923 #elif defined (TARGET_PPC)
924 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
925 int is_write
, sigset_t
*old_set
,
928 TranslationBlock
*tb
;
932 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
933 #if defined(DEBUG_SIGNAL)
934 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
935 pc
, address
, is_write
, *(unsigned long *)old_set
);
937 /* XXX: locking issue */
938 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
942 /* see if it is an MMU fault */
943 ret
= cpu_ppc_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
945 return 0; /* not an MMU fault */
947 return 1; /* the MMU fault was handled without causing real CPU fault */
949 /* now we have a real cpu fault */
952 /* the PC is inside the translated code. It means that we have
953 a virtual CPU fault */
954 cpu_restore_state(tb
, env
, pc
, puc
);
958 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
959 env
->nip
, env
->error_code
, tb
);
961 /* we restore the process signal mask as the sigreturn should
962 do it (XXX: use sigsetjmp) */
963 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
964 do_raise_exception_err(env
->exception_index
, env
->error_code
);
966 /* activate soft MMU for this block */
967 cpu_resume_from_signal(env
, puc
);
969 /* never comes here */
973 #elif defined(TARGET_M68K)
974 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
975 int is_write
, sigset_t
*old_set
,
978 TranslationBlock
*tb
;
982 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
983 #if defined(DEBUG_SIGNAL)
984 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
985 pc
, address
, is_write
, *(unsigned long *)old_set
);
987 /* XXX: locking issue */
988 if (is_write
&& page_unprotect(address
, pc
, puc
)) {
991 /* see if it is an MMU fault */
992 ret
= cpu_m68k_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
994 return 0; /* not an MMU fault */
996 return 1; /* the MMU fault was handled without causing real CPU fault */
997 /* now we have a real cpu fault */
1000 /* the PC is inside the translated code. It means that we have
1001 a virtual CPU fault */
1002 cpu_restore_state(tb
, env
, pc
, puc
);
1004 /* we restore the process signal mask as the sigreturn should
1005 do it (XXX: use sigsetjmp) */
1006 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1008 /* never comes here */
1012 #elif defined (TARGET_MIPS)
1013 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1014 int is_write
, sigset_t
*old_set
,
1017 TranslationBlock
*tb
;
1021 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1022 #if defined(DEBUG_SIGNAL)
1023 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1024 pc
, address
, is_write
, *(unsigned long *)old_set
);
1026 /* XXX: locking issue */
1027 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1031 /* see if it is an MMU fault */
1032 ret
= cpu_mips_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1034 return 0; /* not an MMU fault */
1036 return 1; /* the MMU fault was handled without causing real CPU fault */
1038 /* now we have a real cpu fault */
1039 tb
= tb_find_pc(pc
);
1041 /* the PC is inside the translated code. It means that we have
1042 a virtual CPU fault */
1043 cpu_restore_state(tb
, env
, pc
, puc
);
1047 printf("PF exception: PC=0x" TARGET_FMT_lx
" error=0x%x %p\n",
1048 env
->PC
, env
->error_code
, tb
);
1050 /* we restore the process signal mask as the sigreturn should
1051 do it (XXX: use sigsetjmp) */
1052 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1053 do_raise_exception_err(env
->exception_index
, env
->error_code
);
1055 /* activate soft MMU for this block */
1056 cpu_resume_from_signal(env
, puc
);
1058 /* never comes here */
1062 #elif defined (TARGET_SH4)
1063 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1064 int is_write
, sigset_t
*old_set
,
1067 TranslationBlock
*tb
;
1071 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1072 #if defined(DEBUG_SIGNAL)
1073 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1074 pc
, address
, is_write
, *(unsigned long *)old_set
);
1076 /* XXX: locking issue */
1077 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1081 /* see if it is an MMU fault */
1082 ret
= cpu_sh4_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1084 return 0; /* not an MMU fault */
1086 return 1; /* the MMU fault was handled without causing real CPU fault */
1088 /* now we have a real cpu fault */
1089 tb
= tb_find_pc(pc
);
1091 /* the PC is inside the translated code. It means that we have
1092 a virtual CPU fault */
1093 cpu_restore_state(tb
, env
, pc
, puc
);
1096 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1097 env
->nip
, env
->error_code
, tb
);
1099 /* we restore the process signal mask as the sigreturn should
1100 do it (XXX: use sigsetjmp) */
1101 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1103 /* never comes here */
1107 #elif defined (TARGET_ALPHA)
1108 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1109 int is_write
, sigset_t
*old_set
,
1112 TranslationBlock
*tb
;
1116 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1117 #if defined(DEBUG_SIGNAL)
1118 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1119 pc
, address
, is_write
, *(unsigned long *)old_set
);
1121 /* XXX: locking issue */
1122 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1126 /* see if it is an MMU fault */
1127 ret
= cpu_alpha_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1129 return 0; /* not an MMU fault */
1131 return 1; /* the MMU fault was handled without causing real CPU fault */
1133 /* now we have a real cpu fault */
1134 tb
= tb_find_pc(pc
);
1136 /* the PC is inside the translated code. It means that we have
1137 a virtual CPU fault */
1138 cpu_restore_state(tb
, env
, pc
, puc
);
1141 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1142 env
->nip
, env
->error_code
, tb
);
1144 /* we restore the process signal mask as the sigreturn should
1145 do it (XXX: use sigsetjmp) */
1146 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1148 /* never comes here */
1151 #elif defined (TARGET_CRIS)
1152 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1153 int is_write
, sigset_t
*old_set
,
1156 TranslationBlock
*tb
;
1160 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1161 #if defined(DEBUG_SIGNAL)
1162 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1163 pc
, address
, is_write
, *(unsigned long *)old_set
);
1165 /* XXX: locking issue */
1166 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1170 /* see if it is an MMU fault */
1171 ret
= cpu_cris_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1173 return 0; /* not an MMU fault */
1175 return 1; /* the MMU fault was handled without causing real CPU fault */
1177 /* now we have a real cpu fault */
1178 tb
= tb_find_pc(pc
);
1180 /* the PC is inside the translated code. It means that we have
1181 a virtual CPU fault */
1182 cpu_restore_state(tb
, env
, pc
, puc
);
1185 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1186 env
->nip
, env
->error_code
, tb
);
1188 /* we restore the process signal mask as the sigreturn should
1189 do it (XXX: use sigsetjmp) */
1190 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1192 /* never comes here */
1197 #error unsupported target CPU
1200 #if defined(__i386__)
1202 #if defined(__APPLE__)
1203 # include <sys/ucontext.h>
1205 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1206 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1207 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1209 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1210 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1211 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1214 int cpu_signal_handler(int host_signum
, void *pinfo
,
1217 siginfo_t
*info
= pinfo
;
1218 struct ucontext
*uc
= puc
;
1226 #define REG_TRAPNO TRAPNO
1229 trapno
= TRAP_sig(uc
);
1230 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1232 (ERROR_sig(uc
) >> 1) & 1 : 0,
1233 &uc
->uc_sigmask
, puc
);
1236 #elif defined(__x86_64__)
1238 int cpu_signal_handler(int host_signum
, void *pinfo
,
1241 siginfo_t
*info
= pinfo
;
1242 struct ucontext
*uc
= puc
;
1245 pc
= uc
->uc_mcontext
.gregs
[REG_RIP
];
1246 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1247 uc
->uc_mcontext
.gregs
[REG_TRAPNO
] == 0xe ?
1248 (uc
->uc_mcontext
.gregs
[REG_ERR
] >> 1) & 1 : 0,
1249 &uc
->uc_sigmask
, puc
);
1252 #elif defined(__powerpc__)
1254 /***********************************************************************
1255 * signal context platform-specific definitions
1259 /* All Registers access - only for local access */
1260 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1261 /* Gpr Registers access */
1262 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1263 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1264 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1265 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1266 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1267 # define LR_sig(context) REG_sig(link, context) /* Link register */
1268 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1269 /* Float Registers access */
1270 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1271 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1272 /* Exception Registers access */
1273 # define DAR_sig(context) REG_sig(dar, context)
1274 # define DSISR_sig(context) REG_sig(dsisr, context)
1275 # define TRAP_sig(context) REG_sig(trap, context)
1279 # include <sys/ucontext.h>
1280 typedef struct ucontext SIGCONTEXT
;
1281 /* All Registers access - only for local access */
1282 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1283 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1284 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1285 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1286 /* Gpr Registers access */
1287 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1288 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1289 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1290 # define CTR_sig(context) REG_sig(ctr, context)
1291 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1292 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1293 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1294 /* Float Registers access */
1295 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1296 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1297 /* Exception Registers access */
1298 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1299 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1300 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1301 #endif /* __APPLE__ */
1303 int cpu_signal_handler(int host_signum
, void *pinfo
,
1306 siginfo_t
*info
= pinfo
;
1307 struct ucontext
*uc
= puc
;
1315 if (DSISR_sig(uc
) & 0x00800000)
1318 if (TRAP_sig(uc
) != 0x400 && (DSISR_sig(uc
) & 0x02000000))
1321 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1322 is_write
, &uc
->uc_sigmask
, puc
);
1325 #elif defined(__alpha__)
1327 int cpu_signal_handler(int host_signum
, void *pinfo
,
1330 siginfo_t
*info
= pinfo
;
1331 struct ucontext
*uc
= puc
;
1332 uint32_t *pc
= uc
->uc_mcontext
.sc_pc
;
1333 uint32_t insn
= *pc
;
1336 /* XXX: need kernel patch to get write flag faster */
1337 switch (insn
>> 26) {
1352 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1353 is_write
, &uc
->uc_sigmask
, puc
);
1355 #elif defined(__sparc__)
1357 int cpu_signal_handler(int host_signum
, void *pinfo
,
1360 siginfo_t
*info
= pinfo
;
1361 uint32_t *regs
= (uint32_t *)(info
+ 1);
1362 void *sigmask
= (regs
+ 20);
1367 /* XXX: is there a standard glibc define ? */
1369 /* XXX: need kernel patch to get write flag faster */
1371 insn
= *(uint32_t *)pc
;
1372 if ((insn
>> 30) == 3) {
1373 switch((insn
>> 19) & 0x3f) {
1385 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1386 is_write
, sigmask
, NULL
);
1389 #elif defined(__arm__)
1391 int cpu_signal_handler(int host_signum
, void *pinfo
,
1394 siginfo_t
*info
= pinfo
;
1395 struct ucontext
*uc
= puc
;
1399 pc
= uc
->uc_mcontext
.gregs
[R15
];
1400 /* XXX: compute is_write */
1402 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1404 &uc
->uc_sigmask
, puc
);
1407 #elif defined(__mc68000)
1409 int cpu_signal_handler(int host_signum
, void *pinfo
,
1412 siginfo_t
*info
= pinfo
;
1413 struct ucontext
*uc
= puc
;
1417 pc
= uc
->uc_mcontext
.gregs
[16];
1418 /* XXX: compute is_write */
1420 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1422 &uc
->uc_sigmask
, puc
);
1425 #elif defined(__ia64)
1428 /* This ought to be in <bits/siginfo.h>... */
1429 # define __ISR_VALID 1
1432 int cpu_signal_handler(int host_signum
, void *pinfo
, void *puc
)
1434 siginfo_t
*info
= pinfo
;
1435 struct ucontext
*uc
= puc
;
1439 ip
= uc
->uc_mcontext
.sc_ip
;
1440 switch (host_signum
) {
1446 if (info
->si_code
&& (info
->si_segvflags
& __ISR_VALID
))
1447 /* ISR.W (write-access) is bit 33: */
1448 is_write
= (info
->si_isr
>> 33) & 1;
1454 return handle_cpu_signal(ip
, (unsigned long)info
->si_addr
,
1456 &uc
->uc_sigmask
, puc
);
1459 #elif defined(__s390__)
1461 int cpu_signal_handler(int host_signum
, void *pinfo
,
1464 siginfo_t
*info
= pinfo
;
1465 struct ucontext
*uc
= puc
;
1469 pc
= uc
->uc_mcontext
.psw
.addr
;
1470 /* XXX: compute is_write */
1472 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1473 is_write
, &uc
->uc_sigmask
, puc
);
1476 #elif defined(__mips__)
1478 int cpu_signal_handler(int host_signum
, void *pinfo
,
1481 siginfo_t
*info
= pinfo
;
1482 struct ucontext
*uc
= puc
;
1483 greg_t pc
= uc
->uc_mcontext
.pc
;
1486 /* XXX: compute is_write */
1488 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1489 is_write
, &uc
->uc_sigmask
, puc
);
1494 #error host CPU specific signal handler needed
1498 #endif /* !defined(CONFIG_SOFTMMU) */