target-sh4: add SH7785 as CPU option
[qemu/qemu-JZ.git] / hw / usb-musb.c
blob1499b310b7e8358e998299a8c03f1a453c3d34cf
1 /*
2 * "Inventra" High-speed Dual-Role Controller (MUSB-HDRC), Mentor Graphics,
3 * USB2.0 OTG compliant core used in various chips.
5 * Copyright (C) 2008 Nokia Corporation
6 * Written by Andrzej Zaborowski <andrew@openedhand.com>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 or
11 * (at your option) version 3 of the License.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21 * MA 02111-1307 USA
23 * Only host-mode and non-DMA accesses are currently supported.
25 #include "qemu-common.h"
26 #include "qemu-timer.h"
27 #include "usb.h"
28 #include "irq.h"
30 /* Common USB registers */
31 #define MUSB_HDRC_FADDR 0x00 /* 8-bit */
32 #define MUSB_HDRC_POWER 0x01 /* 8-bit */
34 #define MUSB_HDRC_INTRTX 0x02 /* 16-bit */
35 #define MUSB_HDRC_INTRRX 0x04
36 #define MUSB_HDRC_INTRTXE 0x06
37 #define MUSB_HDRC_INTRRXE 0x08
38 #define MUSB_HDRC_INTRUSB 0x0a /* 8 bit */
39 #define MUSB_HDRC_INTRUSBE 0x0b /* 8 bit */
40 #define MUSB_HDRC_FRAME 0x0c /* 16-bit */
41 #define MUSB_HDRC_INDEX 0x0e /* 8 bit */
42 #define MUSB_HDRC_TESTMODE 0x0f /* 8 bit */
44 /* Per-EP registers in indexed mode */
45 #define MUSB_HDRC_EP_IDX 0x10 /* 8-bit */
47 /* EP FIFOs */
48 #define MUSB_HDRC_FIFO 0x20
50 /* Additional Control Registers */
51 #define MUSB_HDRC_DEVCTL 0x60 /* 8 bit */
53 /* These are indexed */
54 #define MUSB_HDRC_TXFIFOSZ 0x62 /* 8 bit (see masks) */
55 #define MUSB_HDRC_RXFIFOSZ 0x63 /* 8 bit (see masks) */
56 #define MUSB_HDRC_TXFIFOADDR 0x64 /* 16 bit offset shifted right 3 */
57 #define MUSB_HDRC_RXFIFOADDR 0x66 /* 16 bit offset shifted right 3 */
59 /* Some more registers */
60 #define MUSB_HDRC_VCTRL 0x68 /* 8 bit */
61 #define MUSB_HDRC_HWVERS 0x6c /* 8 bit */
63 /* Added in HDRC 1.9(?) & MHDRC 1.4 */
64 /* ULPI pass-through */
65 #define MUSB_HDRC_ULPI_VBUSCTL 0x70
66 #define MUSB_HDRC_ULPI_REGDATA 0x74
67 #define MUSB_HDRC_ULPI_REGADDR 0x75
68 #define MUSB_HDRC_ULPI_REGCTL 0x76
70 /* Extended config & PHY control */
71 #define MUSB_HDRC_ENDCOUNT 0x78 /* 8 bit */
72 #define MUSB_HDRC_DMARAMCFG 0x79 /* 8 bit */
73 #define MUSB_HDRC_PHYWAIT 0x7a /* 8 bit */
74 #define MUSB_HDRC_PHYVPLEN 0x7b /* 8 bit */
75 #define MUSB_HDRC_HS_EOF1 0x7c /* 8 bit, units of 546.1 us */
76 #define MUSB_HDRC_FS_EOF1 0x7d /* 8 bit, units of 533.3 ns */
77 #define MUSB_HDRC_LS_EOF1 0x7e /* 8 bit, units of 1.067 us */
79 /* Per-EP BUSCTL registers */
80 #define MUSB_HDRC_BUSCTL 0x80
82 /* Per-EP registers in flat mode */
83 #define MUSB_HDRC_EP 0x100
85 /* offsets to registers in flat model */
86 #define MUSB_HDRC_TXMAXP 0x00 /* 16 bit apparently */
87 #define MUSB_HDRC_TXCSR 0x02 /* 16 bit apparently */
88 #define MUSB_HDRC_CSR0 MUSB_HDRC_TXCSR /* re-used for EP0 */
89 #define MUSB_HDRC_RXMAXP 0x04 /* 16 bit apparently */
90 #define MUSB_HDRC_RXCSR 0x06 /* 16 bit apparently */
91 #define MUSB_HDRC_RXCOUNT 0x08 /* 16 bit apparently */
92 #define MUSB_HDRC_COUNT0 MUSB_HDRC_RXCOUNT /* re-used for EP0 */
93 #define MUSB_HDRC_TXTYPE 0x0a /* 8 bit apparently */
94 #define MUSB_HDRC_TYPE0 MUSB_HDRC_TXTYPE /* re-used for EP0 */
95 #define MUSB_HDRC_TXINTERVAL 0x0b /* 8 bit apparently */
96 #define MUSB_HDRC_NAKLIMIT0 MUSB_HDRC_TXINTERVAL /* re-used for EP0 */
97 #define MUSB_HDRC_RXTYPE 0x0c /* 8 bit apparently */
98 #define MUSB_HDRC_RXINTERVAL 0x0d /* 8 bit apparently */
99 #define MUSB_HDRC_FIFOSIZE 0x0f /* 8 bit apparently */
100 #define MUSB_HDRC_CONFIGDATA MGC_O_HDRC_FIFOSIZE /* re-used for EP0 */
102 /* "Bus control" registers */
103 #define MUSB_HDRC_TXFUNCADDR 0x00
104 #define MUSB_HDRC_TXHUBADDR 0x02
105 #define MUSB_HDRC_TXHUBPORT 0x03
107 #define MUSB_HDRC_RXFUNCADDR 0x04
108 #define MUSB_HDRC_RXHUBADDR 0x06
109 #define MUSB_HDRC_RXHUBPORT 0x07
112 * MUSBHDRC Register bit masks
115 /* POWER */
116 #define MGC_M_POWER_ISOUPDATE 0x80
117 #define MGC_M_POWER_SOFTCONN 0x40
118 #define MGC_M_POWER_HSENAB 0x20
119 #define MGC_M_POWER_HSMODE 0x10
120 #define MGC_M_POWER_RESET 0x08
121 #define MGC_M_POWER_RESUME 0x04
122 #define MGC_M_POWER_SUSPENDM 0x02
123 #define MGC_M_POWER_ENSUSPEND 0x01
125 /* INTRUSB */
126 #define MGC_M_INTR_SUSPEND 0x01
127 #define MGC_M_INTR_RESUME 0x02
128 #define MGC_M_INTR_RESET 0x04
129 #define MGC_M_INTR_BABBLE 0x04
130 #define MGC_M_INTR_SOF 0x08
131 #define MGC_M_INTR_CONNECT 0x10
132 #define MGC_M_INTR_DISCONNECT 0x20
133 #define MGC_M_INTR_SESSREQ 0x40
134 #define MGC_M_INTR_VBUSERROR 0x80 /* FOR SESSION END */
135 #define MGC_M_INTR_EP0 0x01 /* FOR EP0 INTERRUPT */
137 /* DEVCTL */
138 #define MGC_M_DEVCTL_BDEVICE 0x80
139 #define MGC_M_DEVCTL_FSDEV 0x40
140 #define MGC_M_DEVCTL_LSDEV 0x20
141 #define MGC_M_DEVCTL_VBUS 0x18
142 #define MGC_S_DEVCTL_VBUS 3
143 #define MGC_M_DEVCTL_HM 0x04
144 #define MGC_M_DEVCTL_HR 0x02
145 #define MGC_M_DEVCTL_SESSION 0x01
147 /* TESTMODE */
148 #define MGC_M_TEST_FORCE_HOST 0x80
149 #define MGC_M_TEST_FIFO_ACCESS 0x40
150 #define MGC_M_TEST_FORCE_FS 0x20
151 #define MGC_M_TEST_FORCE_HS 0x10
152 #define MGC_M_TEST_PACKET 0x08
153 #define MGC_M_TEST_K 0x04
154 #define MGC_M_TEST_J 0x02
155 #define MGC_M_TEST_SE0_NAK 0x01
157 /* CSR0 */
158 #define MGC_M_CSR0_FLUSHFIFO 0x0100
159 #define MGC_M_CSR0_TXPKTRDY 0x0002
160 #define MGC_M_CSR0_RXPKTRDY 0x0001
162 /* CSR0 in Peripheral mode */
163 #define MGC_M_CSR0_P_SVDSETUPEND 0x0080
164 #define MGC_M_CSR0_P_SVDRXPKTRDY 0x0040
165 #define MGC_M_CSR0_P_SENDSTALL 0x0020
166 #define MGC_M_CSR0_P_SETUPEND 0x0010
167 #define MGC_M_CSR0_P_DATAEND 0x0008
168 #define MGC_M_CSR0_P_SENTSTALL 0x0004
170 /* CSR0 in Host mode */
171 #define MGC_M_CSR0_H_NO_PING 0x0800
172 #define MGC_M_CSR0_H_WR_DATATOGGLE 0x0400 /* set to allow setting: */
173 #define MGC_M_CSR0_H_DATATOGGLE 0x0200 /* data toggle control */
174 #define MGC_M_CSR0_H_NAKTIMEOUT 0x0080
175 #define MGC_M_CSR0_H_STATUSPKT 0x0040
176 #define MGC_M_CSR0_H_REQPKT 0x0020
177 #define MGC_M_CSR0_H_ERROR 0x0010
178 #define MGC_M_CSR0_H_SETUPPKT 0x0008
179 #define MGC_M_CSR0_H_RXSTALL 0x0004
181 /* CONFIGDATA */
182 #define MGC_M_CONFIGDATA_MPRXE 0x80 /* auto bulk pkt combining */
183 #define MGC_M_CONFIGDATA_MPTXE 0x40 /* auto bulk pkt splitting */
184 #define MGC_M_CONFIGDATA_BIGENDIAN 0x20
185 #define MGC_M_CONFIGDATA_HBRXE 0x10 /* HB-ISO for RX */
186 #define MGC_M_CONFIGDATA_HBTXE 0x08 /* HB-ISO for TX */
187 #define MGC_M_CONFIGDATA_DYNFIFO 0x04 /* dynamic FIFO sizing */
188 #define MGC_M_CONFIGDATA_SOFTCONE 0x02 /* SoftConnect */
189 #define MGC_M_CONFIGDATA_UTMIDW 0x01 /* Width, 0 => 8b, 1 => 16b */
191 /* TXCSR in Peripheral and Host mode */
192 #define MGC_M_TXCSR_AUTOSET 0x8000
193 #define MGC_M_TXCSR_ISO 0x4000
194 #define MGC_M_TXCSR_MODE 0x2000
195 #define MGC_M_TXCSR_DMAENAB 0x1000
196 #define MGC_M_TXCSR_FRCDATATOG 0x0800
197 #define MGC_M_TXCSR_DMAMODE 0x0400
198 #define MGC_M_TXCSR_CLRDATATOG 0x0040
199 #define MGC_M_TXCSR_FLUSHFIFO 0x0008
200 #define MGC_M_TXCSR_FIFONOTEMPTY 0x0002
201 #define MGC_M_TXCSR_TXPKTRDY 0x0001
203 /* TXCSR in Peripheral mode */
204 #define MGC_M_TXCSR_P_INCOMPTX 0x0080
205 #define MGC_M_TXCSR_P_SENTSTALL 0x0020
206 #define MGC_M_TXCSR_P_SENDSTALL 0x0010
207 #define MGC_M_TXCSR_P_UNDERRUN 0x0004
209 /* TXCSR in Host mode */
210 #define MGC_M_TXCSR_H_WR_DATATOGGLE 0x0200
211 #define MGC_M_TXCSR_H_DATATOGGLE 0x0100
212 #define MGC_M_TXCSR_H_NAKTIMEOUT 0x0080
213 #define MGC_M_TXCSR_H_RXSTALL 0x0020
214 #define MGC_M_TXCSR_H_ERROR 0x0004
216 /* RXCSR in Peripheral and Host mode */
217 #define MGC_M_RXCSR_AUTOCLEAR 0x8000
218 #define MGC_M_RXCSR_DMAENAB 0x2000
219 #define MGC_M_RXCSR_DISNYET 0x1000
220 #define MGC_M_RXCSR_DMAMODE 0x0800
221 #define MGC_M_RXCSR_INCOMPRX 0x0100
222 #define MGC_M_RXCSR_CLRDATATOG 0x0080
223 #define MGC_M_RXCSR_FLUSHFIFO 0x0010
224 #define MGC_M_RXCSR_DATAERROR 0x0008
225 #define MGC_M_RXCSR_FIFOFULL 0x0002
226 #define MGC_M_RXCSR_RXPKTRDY 0x0001
228 /* RXCSR in Peripheral mode */
229 #define MGC_M_RXCSR_P_ISO 0x4000
230 #define MGC_M_RXCSR_P_SENTSTALL 0x0040
231 #define MGC_M_RXCSR_P_SENDSTALL 0x0020
232 #define MGC_M_RXCSR_P_OVERRUN 0x0004
234 /* RXCSR in Host mode */
235 #define MGC_M_RXCSR_H_AUTOREQ 0x4000
236 #define MGC_M_RXCSR_H_WR_DATATOGGLE 0x0400
237 #define MGC_M_RXCSR_H_DATATOGGLE 0x0200
238 #define MGC_M_RXCSR_H_RXSTALL 0x0040
239 #define MGC_M_RXCSR_H_REQPKT 0x0020
240 #define MGC_M_RXCSR_H_ERROR 0x0004
242 /* HUBADDR */
243 #define MGC_M_HUBADDR_MULTI_TT 0x80
245 /* ULPI: Added in HDRC 1.9(?) & MHDRC 1.4 */
246 #define MGC_M_ULPI_VBCTL_USEEXTVBUSIND 0x02
247 #define MGC_M_ULPI_VBCTL_USEEXTVBUS 0x01
248 #define MGC_M_ULPI_REGCTL_INT_ENABLE 0x08
249 #define MGC_M_ULPI_REGCTL_READNOTWRITE 0x04
250 #define MGC_M_ULPI_REGCTL_COMPLETE 0x02
251 #define MGC_M_ULPI_REGCTL_REG 0x01
253 static void musb_attach(USBPort *port, USBDevice *dev);
255 struct musb_s {
256 qemu_irq *irqs;
257 USBPort port;
259 int idx;
260 uint8_t devctl;
261 uint8_t power;
262 uint8_t faddr;
264 uint8_t intr;
265 uint8_t mask;
266 uint16_t tx_intr;
267 uint16_t tx_mask;
268 uint16_t rx_intr;
269 uint16_t rx_mask;
271 int setup_len;
272 int session;
274 uint32_t buf[0x2000];
276 struct musb_ep_s {
277 uint16_t faddr[2];
278 uint8_t haddr[2];
279 uint8_t hport[2];
280 uint16_t csr[2];
281 uint16_t maxp[2];
282 uint16_t rxcount;
283 uint8_t type[2];
284 uint8_t interval[2];
285 uint8_t config;
286 uint8_t fifosize;
287 int timeout[2]; /* Always in microframes */
289 uint32_t *buf[2];
290 int fifolen[2];
291 int fifostart[2];
292 int fifoaddr[2];
293 USBPacket packey[2];
294 int status[2];
295 int ext_size[2];
297 /* For callbacks' use */
298 int epnum;
299 int interrupt[2];
300 struct musb_s *musb;
301 USBCallback *delayed_cb[2];
302 QEMUTimer *intv_timer[2];
303 /* Duplicating the world since 2008!... probably we should have 32
304 * logical, single endpoints instead. */
305 } ep[16];
306 } *musb_init(qemu_irq *irqs)
308 struct musb_s *s = qemu_mallocz(sizeof(*s));
309 int i;
311 s->irqs = irqs;
313 s->faddr = 0x00;
314 s->power = MGC_M_POWER_HSENAB;
315 s->tx_intr = 0x0000;
316 s->rx_intr = 0x0000;
317 s->tx_mask = 0xffff;
318 s->rx_mask = 0xffff;
319 s->intr = 0x00;
320 s->mask = 0x06;
321 s->idx = 0;
323 /* TODO: _DW */
324 s->ep[0].config = MGC_M_CONFIGDATA_SOFTCONE | MGC_M_CONFIGDATA_DYNFIFO;
325 for (i = 0; i < 16; i ++) {
326 s->ep[i].fifosize = 64;
327 s->ep[i].maxp[0] = 0x40;
328 s->ep[i].maxp[1] = 0x40;
329 s->ep[i].musb = s;
330 s->ep[i].epnum = i;
333 qemu_register_usb_port(&s->port, s, 0, musb_attach);
335 return s;
338 static void musb_vbus_set(struct musb_s *s, int level)
340 if (level)
341 s->devctl |= 3 << MGC_S_DEVCTL_VBUS;
342 else
343 s->devctl &= ~MGC_M_DEVCTL_VBUS;
345 qemu_set_irq(s->irqs[musb_set_vbus], level);
348 static void musb_intr_set(struct musb_s *s, int line, int level)
350 if (!level) {
351 s->intr &= ~(1 << line);
352 qemu_irq_lower(s->irqs[line]);
353 } else if (s->mask & (1 << line)) {
354 s->intr |= 1 << line;
355 qemu_irq_raise(s->irqs[line]);
359 static void musb_tx_intr_set(struct musb_s *s, int line, int level)
361 if (!level) {
362 s->tx_intr &= ~(1 << line);
363 if (!s->tx_intr)
364 qemu_irq_lower(s->irqs[musb_irq_tx]);
365 } else if (s->tx_mask & (1 << line)) {
366 s->tx_intr |= 1 << line;
367 qemu_irq_raise(s->irqs[musb_irq_tx]);
371 static void musb_rx_intr_set(struct musb_s *s, int line, int level)
373 if (line) {
374 if (!level) {
375 s->rx_intr &= ~(1 << line);
376 if (!s->rx_intr)
377 qemu_irq_lower(s->irqs[musb_irq_rx]);
378 } else if (s->rx_mask & (1 << line)) {
379 s->rx_intr |= 1 << line;
380 qemu_irq_raise(s->irqs[musb_irq_rx]);
382 } else
383 musb_tx_intr_set(s, line, level);
386 uint32_t musb_core_intr_get(struct musb_s *s)
388 return (s->rx_intr << 15) | s->tx_intr;
391 void musb_core_intr_clear(struct musb_s *s, uint32_t mask)
393 if (s->rx_intr) {
394 s->rx_intr &= mask >> 15;
395 if (!s->rx_intr)
396 qemu_irq_lower(s->irqs[musb_irq_rx]);
399 if (s->tx_intr) {
400 s->tx_intr &= mask & 0xffff;
401 if (!s->tx_intr)
402 qemu_irq_lower(s->irqs[musb_irq_tx]);
406 void musb_set_size(struct musb_s *s, int epnum, int size, int is_tx)
408 s->ep[epnum].ext_size[!is_tx] = size;
409 s->ep[epnum].fifostart[0] = 0;
410 s->ep[epnum].fifostart[1] = 0;
411 s->ep[epnum].fifolen[0] = 0;
412 s->ep[epnum].fifolen[1] = 0;
415 static void musb_session_update(struct musb_s *s, int prev_dev, int prev_sess)
417 int detect_prev = prev_dev && prev_sess;
418 int detect = !!s->port.dev && s->session;
420 if (detect && !detect_prev) {
421 /* Let's skip the ID pin sense and VBUS sense formalities and
422 * and signal a successful SRP directly. This should work at least
423 * for the Linux driver stack. */
424 musb_intr_set(s, musb_irq_connect, 1);
426 if (s->port.dev->speed == USB_SPEED_LOW) {
427 s->devctl &= ~MGC_M_DEVCTL_FSDEV;
428 s->devctl |= MGC_M_DEVCTL_LSDEV;
429 } else {
430 s->devctl |= MGC_M_DEVCTL_FSDEV;
431 s->devctl &= ~MGC_M_DEVCTL_LSDEV;
434 /* A-mode? */
435 s->devctl &= ~MGC_M_DEVCTL_BDEVICE;
437 /* Host-mode bit? */
438 s->devctl |= MGC_M_DEVCTL_HM;
439 #if 1
440 musb_vbus_set(s, 1);
441 #endif
442 } else if (!detect && detect_prev) {
443 #if 1
444 musb_vbus_set(s, 0);
445 #endif
449 /* Attach or detach a device on our only port. */
450 static void musb_attach(USBPort *port, USBDevice *dev)
452 struct musb_s *s = (struct musb_s *) port->opaque;
453 USBDevice *curr;
455 port = &s->port;
456 curr = port->dev;
458 if (dev) {
459 if (curr) {
460 usb_attach(port, NULL);
461 /* TODO: signal some interrupts */
464 musb_intr_set(s, musb_irq_vbus_request, 1);
466 /* Send the attach message to device */
467 usb_send_msg(dev, USB_MSG_ATTACH);
468 } else if (curr) {
469 /* Send the detach message */
470 usb_send_msg(curr, USB_MSG_DETACH);
472 musb_intr_set(s, musb_irq_disconnect, 1);
475 port->dev = dev;
477 musb_session_update(s, !!curr, s->session);
480 static inline void musb_cb_tick0(void *opaque)
482 struct musb_ep_s *ep = (struct musb_ep_s *) opaque;
484 ep->delayed_cb[0](&ep->packey[0], opaque);
487 static inline void musb_cb_tick1(void *opaque)
489 struct musb_ep_s *ep = (struct musb_ep_s *) opaque;
491 ep->delayed_cb[1](&ep->packey[1], opaque);
494 #define musb_cb_tick (dir ? musb_cb_tick1 : musb_cb_tick0)
496 static inline void musb_schedule_cb(USBPacket *packey, void *opaque, int dir)
498 struct musb_ep_s *ep = (struct musb_ep_s *) opaque;
499 int timeout = 0;
501 if (ep->status[dir] == USB_RET_NAK)
502 timeout = ep->timeout[dir];
503 else if (ep->interrupt[dir])
504 timeout = 8;
505 else
506 return musb_cb_tick(opaque);
508 if (!ep->intv_timer[dir])
509 ep->intv_timer[dir] = qemu_new_timer(vm_clock, musb_cb_tick, opaque);
511 qemu_mod_timer(ep->intv_timer[dir], qemu_get_clock(vm_clock) +
512 muldiv64(timeout, ticks_per_sec, 8000));
515 static void musb_schedule0_cb(USBPacket *packey, void *opaque)
517 return musb_schedule_cb(packey, opaque, 0);
520 static void musb_schedule1_cb(USBPacket *packey, void *opaque)
522 return musb_schedule_cb(packey, opaque, 1);
525 static int musb_timeout(int ttype, int speed, int val)
527 #if 1
528 return val << 3;
529 #endif
531 switch (ttype) {
532 case USB_ENDPOINT_XFER_CONTROL:
533 if (val < 2)
534 return 0;
535 else if (speed == USB_SPEED_HIGH)
536 return 1 << (val - 1);
537 else
538 return 8 << (val - 1);
540 case USB_ENDPOINT_XFER_INT:
541 if (speed == USB_SPEED_HIGH)
542 if (val < 2)
543 return 0;
544 else
545 return 1 << (val - 1);
546 else
547 return val << 3;
549 case USB_ENDPOINT_XFER_BULK:
550 case USB_ENDPOINT_XFER_ISOC:
551 if (val < 2)
552 return 0;
553 else if (speed == USB_SPEED_HIGH)
554 return 1 << (val - 1);
555 else
556 return 8 << (val - 1);
557 /* TODO: what with low-speed Bulk and Isochronous? */
560 cpu_abort(cpu_single_env, "bad interval\n");
563 static inline void musb_packet(struct musb_s *s, struct musb_ep_s *ep,
564 int epnum, int pid, int len, USBCallback cb, int dir)
566 int ret;
567 int idx = epnum && dir;
568 int ttype;
570 /* ep->type[0,1] contains:
571 * in bits 7:6 the speed (0 - invalid, 1 - high, 2 - full, 3 - slow)
572 * in bits 5:4 the transfer type (BULK / INT)
573 * in bits 3:0 the EP num
575 ttype = epnum ? (ep->type[idx] >> 4) & 3 : 0;
577 ep->timeout[dir] = musb_timeout(ttype,
578 ep->type[idx] >> 6, ep->interval[idx]);
579 ep->interrupt[dir] = ttype == USB_ENDPOINT_XFER_INT;
580 ep->delayed_cb[dir] = cb;
581 cb = dir ? musb_schedule1_cb : musb_schedule0_cb;
583 ep->packey[dir].pid = pid;
584 /* A wild guess on the FADDR semantics... */
585 ep->packey[dir].devaddr = ep->faddr[idx];
586 ep->packey[dir].devep = ep->type[idx] & 0xf;
587 ep->packey[dir].data = (void *) ep->buf[idx];
588 ep->packey[dir].len = len;
589 ep->packey[dir].complete_cb = cb;
590 ep->packey[dir].complete_opaque = ep;
592 if (s->port.dev)
593 ret = s->port.dev->handle_packet(s->port.dev, &ep->packey[dir]);
594 else
595 ret = USB_RET_NODEV;
597 if (ret == USB_RET_ASYNC) {
598 ep->status[dir] = len;
599 return;
602 ep->status[dir] = ret;
603 usb_packet_complete(&ep->packey[dir]);
606 static void musb_tx_packet_complete(USBPacket *packey, void *opaque)
608 /* Unfortunately we can't use packey->devep because that's the remote
609 * endpoint number and may be different than our local. */
610 struct musb_ep_s *ep = (struct musb_ep_s *) opaque;
611 int epnum = ep->epnum;
612 struct musb_s *s = ep->musb;
614 ep->fifostart[0] = 0;
615 ep->fifolen[0] = 0;
616 #ifdef CLEAR_NAK
617 if (ep->status[0] != USB_RET_NAK) {
618 #endif
619 if (epnum)
620 ep->csr[0] &= ~(MGC_M_TXCSR_FIFONOTEMPTY | MGC_M_TXCSR_TXPKTRDY);
621 else
622 ep->csr[0] &= ~MGC_M_CSR0_TXPKTRDY;
623 #ifdef CLEAR_NAK
625 #endif
627 /* Clear all of the error bits first */
628 if (epnum)
629 ep->csr[0] &= ~(MGC_M_TXCSR_H_ERROR | MGC_M_TXCSR_H_RXSTALL |
630 MGC_M_TXCSR_H_NAKTIMEOUT);
631 else
632 ep->csr[0] &= ~(MGC_M_CSR0_H_ERROR | MGC_M_CSR0_H_RXSTALL |
633 MGC_M_CSR0_H_NAKTIMEOUT | MGC_M_CSR0_H_NO_PING);
635 if (ep->status[0] == USB_RET_STALL) {
636 /* Command not supported by target! */
637 ep->status[0] = 0;
639 if (epnum)
640 ep->csr[0] |= MGC_M_TXCSR_H_RXSTALL;
641 else
642 ep->csr[0] |= MGC_M_CSR0_H_RXSTALL;
645 if (ep->status[0] == USB_RET_NAK) {
646 ep->status[0] = 0;
648 /* NAK timeouts are only generated in Bulk transfers and
649 * Data-errors in Isochronous. */
650 if (ep->interrupt[0]) {
651 return;
654 if (epnum)
655 ep->csr[0] |= MGC_M_TXCSR_H_NAKTIMEOUT;
656 else
657 ep->csr[0] |= MGC_M_CSR0_H_NAKTIMEOUT;
660 if (ep->status[0] < 0) {
661 if (ep->status[0] == USB_RET_BABBLE)
662 musb_intr_set(s, musb_irq_rst_babble, 1);
664 /* Pretend we've tried three times already and failed (in
665 * case of USB_TOKEN_SETUP). */
666 if (epnum)
667 ep->csr[0] |= MGC_M_TXCSR_H_ERROR;
668 else
669 ep->csr[0] |= MGC_M_CSR0_H_ERROR;
671 musb_tx_intr_set(s, epnum, 1);
672 return;
674 /* TODO: check len for over/underruns of an OUT packet? */
676 #ifdef SETUPLEN_HACK
677 if (!epnum && ep->packey[0].pid == USB_TOKEN_SETUP)
678 s->setup_len = ep->packey[0].data[6];
679 #endif
681 /* In DMA mode: if no error, assert DMA request for this EP,
682 * and skip the interrupt. */
683 musb_tx_intr_set(s, epnum, 1);
686 static void musb_rx_packet_complete(USBPacket *packey, void *opaque)
688 /* Unfortunately we can't use packey->devep because that's the remote
689 * endpoint number and may be different than our local. */
690 struct musb_ep_s *ep = (struct musb_ep_s *) opaque;
691 int epnum = ep->epnum;
692 struct musb_s *s = ep->musb;
694 ep->fifostart[1] = 0;
695 ep->fifolen[1] = 0;
697 #ifdef CLEAR_NAK
698 if (ep->status[1] != USB_RET_NAK) {
699 #endif
700 ep->csr[1] &= ~MGC_M_RXCSR_H_REQPKT;
701 if (!epnum)
702 ep->csr[0] &= ~MGC_M_CSR0_H_REQPKT;
703 #ifdef CLEAR_NAK
705 #endif
707 /* Clear all of the imaginable error bits first */
708 ep->csr[1] &= ~(MGC_M_RXCSR_H_ERROR | MGC_M_RXCSR_H_RXSTALL |
709 MGC_M_RXCSR_DATAERROR);
710 if (!epnum)
711 ep->csr[0] &= ~(MGC_M_CSR0_H_ERROR | MGC_M_CSR0_H_RXSTALL |
712 MGC_M_CSR0_H_NAKTIMEOUT | MGC_M_CSR0_H_NO_PING);
714 if (ep->status[1] == USB_RET_STALL) {
715 ep->status[1] = 0;
716 packey->len = 0;
718 ep->csr[1] |= MGC_M_RXCSR_H_RXSTALL;
719 if (!epnum)
720 ep->csr[0] |= MGC_M_CSR0_H_RXSTALL;
723 if (ep->status[1] == USB_RET_NAK) {
724 ep->status[1] = 0;
726 /* NAK timeouts are only generated in Bulk transfers and
727 * Data-errors in Isochronous. */
728 if (ep->interrupt[1])
729 return musb_packet(s, ep, epnum, USB_TOKEN_IN,
730 packey->len, musb_rx_packet_complete, 1);
732 ep->csr[1] |= MGC_M_RXCSR_DATAERROR;
733 if (!epnum)
734 ep->csr[0] |= MGC_M_CSR0_H_NAKTIMEOUT;
737 if (ep->status[1] < 0) {
738 if (ep->status[1] == USB_RET_BABBLE) {
739 musb_intr_set(s, musb_irq_rst_babble, 1);
740 return;
743 /* Pretend we've tried three times already and failed (in
744 * case of a control transfer). */
745 ep->csr[1] |= MGC_M_RXCSR_H_ERROR;
746 if (!epnum)
747 ep->csr[0] |= MGC_M_CSR0_H_ERROR;
749 musb_rx_intr_set(s, epnum, 1);
750 return;
752 /* TODO: check len for over/underruns of an OUT packet? */
753 /* TODO: perhaps make use of e->ext_size[1] here. */
755 packey->len = ep->status[1];
757 if (!(ep->csr[1] & (MGC_M_RXCSR_H_RXSTALL | MGC_M_RXCSR_DATAERROR))) {
758 ep->csr[1] |= MGC_M_RXCSR_FIFOFULL | MGC_M_RXCSR_RXPKTRDY;
759 if (!epnum)
760 ep->csr[0] |= MGC_M_CSR0_RXPKTRDY;
762 ep->rxcount = packey->len; /* XXX: MIN(packey->len, ep->maxp[1]); */
763 /* In DMA mode: assert DMA request for this EP */
766 /* Only if DMA has not been asserted */
767 musb_rx_intr_set(s, epnum, 1);
770 static void musb_tx_rdy(struct musb_s *s, int epnum)
772 struct musb_ep_s *ep = s->ep + epnum;
773 int pid;
774 int total, valid = 0;
776 ep->fifostart[0] += ep->fifolen[0];
777 ep->fifolen[0] = 0;
779 /* XXX: how's the total size of the packet retrieved exactly in
780 * the generic case? */
781 total = ep->maxp[0] & 0x3ff;
783 if (ep->ext_size[0]) {
784 total = ep->ext_size[0];
785 ep->ext_size[0] = 0;
786 valid = 1;
789 /* If the packet is not fully ready yet, wait for a next segment. */
790 if (epnum && (ep->fifostart[0] << 2) < total)
791 return;
793 if (!valid)
794 total = ep->fifostart[0] << 2;
796 pid = USB_TOKEN_OUT;
797 if (!epnum && (ep->csr[0] & MGC_M_CSR0_H_SETUPPKT)) {
798 pid = USB_TOKEN_SETUP;
799 if (total != 8)
800 printf("%s: illegal SETUPPKT length of %i bytes\n",
801 __FUNCTION__, total);
802 /* Controller should retry SETUP packets three times on errors
803 * but it doesn't make sense for us to do that. */
806 return musb_packet(s, ep, epnum, pid,
807 total, musb_tx_packet_complete, 0);
810 static void musb_rx_req(struct musb_s *s, int epnum)
812 struct musb_ep_s *ep = s->ep + epnum;
813 int total;
815 /* If we already have a packet, which didn't fit into the
816 * 64 bytes of the FIFO, only move the FIFO start and return. (Obsolete) */
817 if (ep->packey[1].pid == USB_TOKEN_IN && ep->status[1] >= 0 &&
818 (ep->fifostart[1] << 2) + ep->rxcount <
819 ep->packey[1].len) {
820 ep->fifostart[1] += ep->rxcount >> 2;
821 ep->fifolen[1] = 0;
823 ep->rxcount = MIN(ep->packey[0].len - (ep->fifostart[1] << 2),
824 ep->maxp[1]);
826 ep->csr[1] &= ~MGC_M_RXCSR_H_REQPKT;
827 if (!epnum)
828 ep->csr[0] &= ~MGC_M_CSR0_H_REQPKT;
830 /* Clear all of the error bits first */
831 ep->csr[1] &= ~(MGC_M_RXCSR_H_ERROR | MGC_M_RXCSR_H_RXSTALL |
832 MGC_M_RXCSR_DATAERROR);
833 if (!epnum)
834 ep->csr[0] &= ~(MGC_M_CSR0_H_ERROR | MGC_M_CSR0_H_RXSTALL |
835 MGC_M_CSR0_H_NAKTIMEOUT | MGC_M_CSR0_H_NO_PING);
837 ep->csr[1] |= MGC_M_RXCSR_FIFOFULL | MGC_M_RXCSR_RXPKTRDY;
838 if (!epnum)
839 ep->csr[0] |= MGC_M_CSR0_RXPKTRDY;
840 musb_rx_intr_set(s, epnum, 1);
841 return;
844 /* The driver sets maxp[1] to 64 or less because it knows the hardware
845 * FIFO is this deep. Bigger packets get split in
846 * usb_generic_handle_packet but we can also do the splitting locally
847 * for performance. It turns out we can also have a bigger FIFO and
848 * ignore the limit set in ep->maxp[1]. The Linux MUSB driver deals
849 * OK with single packets of even 32KB and we avoid splitting, however
850 * usb_msd.c sometimes sends a packet bigger than what Linux expects
851 * (e.g. 8192 bytes instead of 4096) and we get an OVERRUN. Splitting
852 * hides this overrun from Linux. Up to 4096 everything is fine
853 * though. Currently this is disabled.
855 * XXX: mind ep->fifosize. */
856 total = MIN(ep->maxp[1] & 0x3ff, sizeof(s->buf));
858 #ifdef SETUPLEN_HACK
859 /* Why should *we* do that instead of Linux? */
860 if (!epnum) {
861 if (ep->packey[0].devaddr == 2)
862 total = MIN(s->setup_len, 8);
863 else
864 total = MIN(s->setup_len, 64);
865 s->setup_len -= total;
867 #endif
869 return musb_packet(s, ep, epnum, USB_TOKEN_IN,
870 total, musb_rx_packet_complete, 1);
873 static void musb_ep_frame_cancel(struct musb_ep_s *ep, int dir)
875 if (ep->intv_timer[dir])
876 qemu_del_timer(ep->intv_timer[dir]);
879 /* Bus control */
880 static uint8_t musb_busctl_readb(void *opaque, int ep, int addr)
882 struct musb_s *s = (struct musb_s *) opaque;
884 switch (addr) {
885 /* For USB2.0 HS hubs only */
886 case MUSB_HDRC_TXHUBADDR:
887 return s->ep[ep].haddr[0];
888 case MUSB_HDRC_TXHUBPORT:
889 return s->ep[ep].hport[0];
890 case MUSB_HDRC_RXHUBADDR:
891 return s->ep[ep].haddr[1];
892 case MUSB_HDRC_RXHUBPORT:
893 return s->ep[ep].hport[1];
895 default:
896 printf("%s: unknown register at %02x\n", __FUNCTION__, addr);
897 return 0x00;
901 static void musb_busctl_writeb(void *opaque, int ep, int addr, uint8_t value)
903 struct musb_s *s = (struct musb_s *) opaque;
905 switch (addr) {
906 case MUSB_HDRC_TXHUBADDR:
907 s->ep[ep].haddr[0] = value;
908 break;
909 case MUSB_HDRC_TXHUBPORT:
910 s->ep[ep].hport[0] = value;
911 break;
912 case MUSB_HDRC_RXHUBADDR:
913 s->ep[ep].haddr[1] = value;
914 break;
915 case MUSB_HDRC_RXHUBPORT:
916 s->ep[ep].hport[1] = value;
917 break;
919 default:
920 printf("%s: unknown register at %02x\n", __FUNCTION__, addr);
924 static uint16_t musb_busctl_readh(void *opaque, int ep, int addr)
926 struct musb_s *s = (struct musb_s *) opaque;
928 switch (addr) {
929 case MUSB_HDRC_TXFUNCADDR:
930 return s->ep[ep].faddr[0];
931 case MUSB_HDRC_RXFUNCADDR:
932 return s->ep[ep].faddr[1];
934 default:
935 return musb_busctl_readb(s, ep, addr) |
936 (musb_busctl_readb(s, ep, addr | 1) << 8);
940 static void musb_busctl_writeh(void *opaque, int ep, int addr, uint16_t value)
942 struct musb_s *s = (struct musb_s *) opaque;
944 switch (addr) {
945 case MUSB_HDRC_TXFUNCADDR:
946 s->ep[ep].faddr[0] = value;
947 break;
948 case MUSB_HDRC_RXFUNCADDR:
949 s->ep[ep].faddr[1] = value;
950 break;
952 default:
953 musb_busctl_writeb(s, ep, addr, value & 0xff);
954 musb_busctl_writeb(s, ep, addr | 1, value >> 8);
958 /* Endpoint control */
959 static uint8_t musb_ep_readb(void *opaque, int ep, int addr)
961 struct musb_s *s = (struct musb_s *) opaque;
963 switch (addr) {
964 case MUSB_HDRC_TXTYPE:
965 return s->ep[ep].type[0];
966 case MUSB_HDRC_TXINTERVAL:
967 return s->ep[ep].interval[0];
968 case MUSB_HDRC_RXTYPE:
969 return s->ep[ep].type[1];
970 case MUSB_HDRC_RXINTERVAL:
971 return s->ep[ep].interval[1];
972 case (MUSB_HDRC_FIFOSIZE & ~1):
973 return 0x00;
974 case MUSB_HDRC_FIFOSIZE:
975 return ep ? s->ep[ep].fifosize : s->ep[ep].config;
977 default:
978 printf("%s: unknown register at %02x\n", __FUNCTION__, addr);
979 return 0x00;
983 static void musb_ep_writeb(void *opaque, int ep, int addr, uint8_t value)
985 struct musb_s *s = (struct musb_s *) opaque;
987 switch (addr) {
988 case MUSB_HDRC_TXTYPE:
989 s->ep[ep].type[0] = value;
990 break;
991 case MUSB_HDRC_TXINTERVAL:
992 s->ep[ep].interval[0] = value;
993 musb_ep_frame_cancel(&s->ep[ep], 0);
994 break;
995 case MUSB_HDRC_RXTYPE:
996 s->ep[ep].type[1] = value;
997 break;
998 case MUSB_HDRC_RXINTERVAL:
999 s->ep[ep].interval[1] = value;
1000 musb_ep_frame_cancel(&s->ep[ep], 1);
1001 break;
1002 case (MUSB_HDRC_FIFOSIZE & ~1):
1003 break;
1004 case MUSB_HDRC_FIFOSIZE:
1005 printf("%s: somebody messes with fifosize (now %i bytes)\n",
1006 __FUNCTION__, value);
1007 s->ep[ep].fifosize = value;
1008 break;
1010 default:
1011 printf("%s: unknown register at %02x\n", __FUNCTION__, addr);
1015 static uint16_t musb_ep_readh(void *opaque, int ep, int addr)
1017 struct musb_s *s = (struct musb_s *) opaque;
1018 uint16_t ret;
1020 switch (addr) {
1021 case MUSB_HDRC_TXMAXP:
1022 return s->ep[ep].maxp[0];
1023 case MUSB_HDRC_TXCSR:
1024 return s->ep[ep].csr[0];
1025 case MUSB_HDRC_RXMAXP:
1026 return s->ep[ep].maxp[1];
1027 case MUSB_HDRC_RXCSR:
1028 ret = s->ep[ep].csr[1];
1030 /* TODO: This and other bits probably depend on
1031 * ep->csr[1] & MGC_M_RXCSR_AUTOCLEAR. */
1032 if (s->ep[ep].csr[1] & MGC_M_RXCSR_AUTOCLEAR)
1033 s->ep[ep].csr[1] &= ~MGC_M_RXCSR_RXPKTRDY;
1035 return ret;
1036 case MUSB_HDRC_RXCOUNT:
1037 return s->ep[ep].rxcount;
1039 default:
1040 return musb_ep_readb(s, ep, addr) |
1041 (musb_ep_readb(s, ep, addr | 1) << 8);
1045 static void musb_ep_writeh(void *opaque, int ep, int addr, uint16_t value)
1047 struct musb_s *s = (struct musb_s *) opaque;
1049 switch (addr) {
1050 case MUSB_HDRC_TXMAXP:
1051 s->ep[ep].maxp[0] = value;
1052 break;
1053 case MUSB_HDRC_TXCSR:
1054 if (ep) {
1055 s->ep[ep].csr[0] &= value & 0xa6;
1056 s->ep[ep].csr[0] |= value & 0xff59;
1057 } else {
1058 s->ep[ep].csr[0] &= value & 0x85;
1059 s->ep[ep].csr[0] |= value & 0xf7a;
1062 musb_ep_frame_cancel(&s->ep[ep], 0);
1064 if ((ep && (value & MGC_M_TXCSR_FLUSHFIFO)) ||
1065 (!ep && (value & MGC_M_CSR0_FLUSHFIFO))) {
1066 s->ep[ep].fifolen[0] = 0;
1067 s->ep[ep].fifostart[0] = 0;
1068 if (ep)
1069 s->ep[ep].csr[0] &=
1070 ~(MGC_M_TXCSR_FIFONOTEMPTY | MGC_M_TXCSR_TXPKTRDY);
1071 else
1072 s->ep[ep].csr[0] &=
1073 ~(MGC_M_CSR0_TXPKTRDY | MGC_M_CSR0_RXPKTRDY);
1075 if (
1076 (ep &&
1077 #ifdef CLEAR_NAK
1078 (value & MGC_M_TXCSR_TXPKTRDY) &&
1079 !(value & MGC_M_TXCSR_H_NAKTIMEOUT)) ||
1080 #else
1081 (value & MGC_M_TXCSR_TXPKTRDY)) ||
1082 #endif
1083 (!ep &&
1084 #ifdef CLEAR_NAK
1085 (value & MGC_M_CSR0_TXPKTRDY) &&
1086 !(value & MGC_M_CSR0_H_NAKTIMEOUT)))
1087 #else
1088 (value & MGC_M_CSR0_TXPKTRDY)))
1089 #endif
1090 musb_tx_rdy(s, ep);
1091 if (!ep &&
1092 (value & MGC_M_CSR0_H_REQPKT) &&
1093 #ifdef CLEAR_NAK
1094 !(value & (MGC_M_CSR0_H_NAKTIMEOUT |
1095 MGC_M_CSR0_RXPKTRDY)))
1096 #else
1097 !(value & MGC_M_CSR0_RXPKTRDY))
1098 #endif
1099 musb_rx_req(s, ep);
1100 break;
1102 case MUSB_HDRC_RXMAXP:
1103 s->ep[ep].maxp[1] = value;
1104 break;
1105 case MUSB_HDRC_RXCSR:
1106 /* (DMA mode only) */
1107 if (
1108 (value & MGC_M_RXCSR_H_AUTOREQ) &&
1109 !(value & MGC_M_RXCSR_RXPKTRDY) &&
1110 (s->ep[ep].csr[1] & MGC_M_RXCSR_RXPKTRDY))
1111 value |= MGC_M_RXCSR_H_REQPKT;
1113 s->ep[ep].csr[1] &= 0x102 | (value & 0x4d);
1114 s->ep[ep].csr[1] |= value & 0xfeb0;
1116 musb_ep_frame_cancel(&s->ep[ep], 1);
1118 if (value & MGC_M_RXCSR_FLUSHFIFO) {
1119 s->ep[ep].fifolen[1] = 0;
1120 s->ep[ep].fifostart[1] = 0;
1121 s->ep[ep].csr[1] &= ~(MGC_M_RXCSR_FIFOFULL | MGC_M_RXCSR_RXPKTRDY);
1122 /* If double buffering and we have two packets ready, flush
1123 * only the first one and set up the fifo at the second packet. */
1125 #ifdef CLEAR_NAK
1126 if ((value & MGC_M_RXCSR_H_REQPKT) && !(value & MGC_M_RXCSR_DATAERROR))
1127 #else
1128 if (value & MGC_M_RXCSR_H_REQPKT)
1129 #endif
1130 musb_rx_req(s, ep);
1131 break;
1132 case MUSB_HDRC_RXCOUNT:
1133 s->ep[ep].rxcount = value;
1134 break;
1136 default:
1137 musb_ep_writeb(s, ep, addr, value & 0xff);
1138 musb_ep_writeb(s, ep, addr | 1, value >> 8);
1142 /* Generic control */
1143 static uint32_t musb_readb(void *opaque, target_phys_addr_t addr)
1145 struct musb_s *s = (struct musb_s *) opaque;
1146 int ep, i;
1147 uint8_t ret;
1149 switch (addr) {
1150 case MUSB_HDRC_FADDR:
1151 return s->faddr;
1152 case MUSB_HDRC_POWER:
1153 return s->power;
1154 case MUSB_HDRC_INTRUSB:
1155 ret = s->intr;
1156 for (i = 0; i < sizeof(ret) * 8; i ++)
1157 if (ret & (1 << i))
1158 musb_intr_set(s, i, 0);
1159 return ret;
1160 case MUSB_HDRC_INTRUSBE:
1161 return s->mask;
1162 case MUSB_HDRC_INDEX:
1163 return s->idx;
1164 case MUSB_HDRC_TESTMODE:
1165 return 0x00;
1167 case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf):
1168 return musb_ep_readb(s, s->idx, addr & 0xf);
1170 case MUSB_HDRC_DEVCTL:
1171 return s->devctl;
1173 case MUSB_HDRC_TXFIFOSZ:
1174 case MUSB_HDRC_RXFIFOSZ:
1175 case MUSB_HDRC_VCTRL:
1176 /* TODO */
1177 return 0x00;
1179 case MUSB_HDRC_HWVERS:
1180 return (1 << 10) | 400;
1182 case (MUSB_HDRC_VCTRL | 1):
1183 case (MUSB_HDRC_HWVERS | 1):
1184 case (MUSB_HDRC_DEVCTL | 1):
1185 return 0x00;
1187 case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f):
1188 ep = (addr >> 3) & 0xf;
1189 return musb_busctl_readb(s, ep, addr & 0x7);
1191 case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff):
1192 ep = (addr >> 4) & 0xf;
1193 return musb_ep_readb(s, ep, addr & 0xf);
1195 default:
1196 printf("%s: unknown register at %02x\n", __FUNCTION__, (int) addr);
1197 return 0x00;
1201 static void musb_writeb(void *opaque, target_phys_addr_t addr, uint32_t value)
1203 struct musb_s *s = (struct musb_s *) opaque;
1204 int ep;
1206 switch (addr) {
1207 case MUSB_HDRC_FADDR:
1208 s->faddr = value & 0x7f;
1209 break;
1210 case MUSB_HDRC_POWER:
1211 s->power = (value & 0xef) | (s->power & 0x10);
1212 /* MGC_M_POWER_RESET is also read-only in Peripheral Mode */
1213 if ((value & MGC_M_POWER_RESET) && s->port.dev) {
1214 usb_send_msg(s->port.dev, USB_MSG_RESET);
1215 /* Negotiate high-speed operation if MGC_M_POWER_HSENAB is set. */
1216 if ((value & MGC_M_POWER_HSENAB) &&
1217 s->port.dev->speed == USB_SPEED_HIGH)
1218 s->power |= MGC_M_POWER_HSMODE; /* Success */
1219 /* Restart frame counting. */
1221 if (value & MGC_M_POWER_SUSPENDM) {
1222 /* When all transfers finish, suspend and if MGC_M_POWER_ENSUSPEND
1223 * is set, also go into low power mode. Frame counting stops. */
1224 /* XXX: Cleared when the interrupt register is read */
1226 if (value & MGC_M_POWER_RESUME) {
1227 /* Wait 20ms and signal resuming on the bus. Frame counting
1228 * restarts. */
1230 break;
1231 case MUSB_HDRC_INTRUSB:
1232 break;
1233 case MUSB_HDRC_INTRUSBE:
1234 s->mask = value & 0xff;
1235 break;
1236 case MUSB_HDRC_INDEX:
1237 s->idx = value & 0xf;
1238 break;
1239 case MUSB_HDRC_TESTMODE:
1240 break;
1242 case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf):
1243 musb_ep_writeb(s, s->idx, addr & 0xf, value);
1244 break;
1246 case MUSB_HDRC_DEVCTL:
1247 s->session = !!(value & MGC_M_DEVCTL_SESSION);
1248 musb_session_update(s,
1249 !!s->port.dev,
1250 !!(s->devctl & MGC_M_DEVCTL_SESSION));
1252 /* It seems this is the only R/W bit in this register? */
1253 s->devctl &= ~MGC_M_DEVCTL_SESSION;
1254 s->devctl |= value & MGC_M_DEVCTL_SESSION;
1255 break;
1257 case MUSB_HDRC_TXFIFOSZ:
1258 case MUSB_HDRC_RXFIFOSZ:
1259 case MUSB_HDRC_VCTRL:
1260 /* TODO */
1261 break;
1263 case (MUSB_HDRC_VCTRL | 1):
1264 case (MUSB_HDRC_DEVCTL | 1):
1265 break;
1267 case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f):
1268 ep = (addr >> 3) & 0xf;
1269 musb_busctl_writeb(s, ep, addr & 0x7, value);
1270 break;
1272 case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff):
1273 ep = (addr >> 4) & 0xf;
1274 musb_ep_writeb(s, ep, addr & 0xf, value);
1275 break;
1277 default:
1278 printf("%s: unknown register at %02x\n", __FUNCTION__, (int) addr);
1282 static uint32_t musb_readh(void *opaque, target_phys_addr_t addr)
1284 struct musb_s *s = (struct musb_s *) opaque;
1285 int ep, i;
1286 uint16_t ret;
1288 switch (addr) {
1289 case MUSB_HDRC_INTRTX:
1290 ret = s->tx_intr;
1291 /* Auto clear */
1292 for (i = 0; i < sizeof(ret) * 8; i ++)
1293 if (ret & (1 << i))
1294 musb_tx_intr_set(s, i, 0);
1295 return ret;
1296 case MUSB_HDRC_INTRRX:
1297 ret = s->rx_intr;
1298 /* Auto clear */
1299 for (i = 0; i < sizeof(ret) * 8; i ++)
1300 if (ret & (1 << i))
1301 musb_rx_intr_set(s, i, 0);
1302 return ret;
1303 case MUSB_HDRC_INTRTXE:
1304 return s->tx_mask;
1305 case MUSB_HDRC_INTRRXE:
1306 return s->rx_mask;
1308 case MUSB_HDRC_FRAME:
1309 /* TODO */
1310 return 0x0000;
1311 case MUSB_HDRC_TXFIFOADDR:
1312 return s->ep[s->idx].fifoaddr[0];
1313 case MUSB_HDRC_RXFIFOADDR:
1314 return s->ep[s->idx].fifoaddr[1];
1316 case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf):
1317 return musb_ep_readh(s, s->idx, addr & 0xf);
1319 case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f):
1320 ep = (addr >> 3) & 0xf;
1321 return musb_busctl_readh(s, ep, addr & 0x7);
1323 case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff):
1324 ep = (addr >> 4) & 0xf;
1325 return musb_ep_readh(s, ep, addr & 0xf);
1327 default:
1328 return musb_readb(s, addr) | (musb_readb(s, addr | 1) << 8);
1332 static void musb_writeh(void *opaque, target_phys_addr_t addr, uint32_t value)
1334 struct musb_s *s = (struct musb_s *) opaque;
1335 int ep;
1337 switch (addr) {
1338 case MUSB_HDRC_INTRTXE:
1339 s->tx_mask = value;
1340 /* XXX: the masks seem to apply on the raising edge like with
1341 * edge-triggered interrupts, thus no need to update. I may be
1342 * wrong though. */
1343 break;
1344 case MUSB_HDRC_INTRRXE:
1345 s->rx_mask = value;
1346 break;
1348 case MUSB_HDRC_FRAME:
1349 /* TODO */
1350 break;
1351 case MUSB_HDRC_TXFIFOADDR:
1352 s->ep[s->idx].fifoaddr[0] = value;
1353 s->ep[s->idx].buf[0] =
1354 s->buf + ((value << 1) & (sizeof(s->buf) / 4 - 1));
1355 break;
1356 case MUSB_HDRC_RXFIFOADDR:
1357 s->ep[s->idx].fifoaddr[1] = value;
1358 s->ep[s->idx].buf[1] =
1359 s->buf + ((value << 1) & (sizeof(s->buf) / 4 - 1));
1360 break;
1362 case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf):
1363 musb_ep_writeh(s, s->idx, addr & 0xf, value);
1364 break;
1366 case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f):
1367 ep = (addr >> 3) & 0xf;
1368 musb_busctl_writeh(s, ep, addr & 0x7, value);
1369 break;
1371 case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff):
1372 ep = (addr >> 4) & 0xf;
1373 musb_ep_writeh(s, ep, addr & 0xf, value);
1374 break;
1376 default:
1377 musb_writeb(s, addr, value & 0xff);
1378 musb_writeb(s, addr | 1, value >> 8);
1382 static uint32_t musb_readw(void *opaque, target_phys_addr_t addr)
1384 struct musb_s *s = (struct musb_s *) opaque;
1385 struct musb_ep_s *ep;
1386 int epnum;
1388 switch (addr) {
1389 case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f):
1390 epnum = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf;
1391 ep = s->ep + epnum;
1393 if (ep->fifolen[1] >= 16) {
1394 /* We have a FIFO underrun */
1395 printf("%s: EP%i FIFO is now empty, stop reading\n",
1396 __FUNCTION__, epnum);
1397 return 0x00000000;
1399 /* In DMA mode clear RXPKTRDY and set REQPKT automatically
1400 * (if AUTOREQ is set) */
1402 ep->csr[1] &= ~MGC_M_RXCSR_FIFOFULL;
1403 return ep->buf[1][ep->fifostart[1] + ep->fifolen[1] ++];
1405 default:
1406 printf("%s: unknown register at %02x\n", __FUNCTION__, (int) addr);
1407 return 0x00000000;
1411 static void musb_writew(void *opaque, target_phys_addr_t addr, uint32_t value)
1413 struct musb_s *s = (struct musb_s *) opaque;
1414 struct musb_ep_s *ep;
1415 int epnum;
1417 switch (addr) {
1418 case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f):
1419 epnum = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf;
1420 ep = s->ep + epnum;
1422 if (ep->fifolen[0] >= 16) {
1423 /* We have a FIFO overrun */
1424 printf("%s: EP%i FIFO exceeded 64 bytes, stop feeding data\n",
1425 __FUNCTION__, epnum);
1426 break;
1429 ep->buf[0][ep->fifostart[0] + ep->fifolen[0] ++] = value;
1430 if (epnum)
1431 ep->csr[0] |= MGC_M_TXCSR_FIFONOTEMPTY;
1432 break;
1434 default:
1435 printf("%s: unknown register at %02x\n", __FUNCTION__, (int) addr);
1439 CPUReadMemoryFunc *musb_read[] = {
1440 musb_readb,
1441 musb_readh,
1442 musb_readw,
1445 CPUWriteMemoryFunc *musb_write[] = {
1446 musb_writeb,
1447 musb_writeh,
1448 musb_writew,