2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu-timer.h"
33 #define RTC_SECONDS_ALARM 1
35 #define RTC_MINUTES_ALARM 3
37 #define RTC_HOURS_ALARM 5
38 #define RTC_ALARM_DONT_CARE 0xC0
40 #define RTC_DAY_OF_WEEK 6
41 #define RTC_DAY_OF_MONTH 7
50 #define REG_A_UIP 0x80
52 #define REG_B_SET 0x80
53 #define REG_B_PIE 0x40
54 #define REG_B_AIE 0x20
55 #define REG_B_UIE 0x10
58 uint8_t cmos_data
[128];
64 QEMUTimer
*periodic_timer
;
65 int64_t next_periodic_time
;
67 int64_t next_second_time
;
68 QEMUTimer
*second_timer
;
69 QEMUTimer
*second_timer2
;
72 static void rtc_set_time(RTCState
*s
);
73 static void rtc_copy_date(RTCState
*s
);
75 static void rtc_timer_update(RTCState
*s
, int64_t current_time
)
77 int period_code
, period
;
78 int64_t cur_clock
, next_irq_clock
;
80 period_code
= s
->cmos_data
[RTC_REG_A
] & 0x0f;
81 if (period_code
!= 0 &&
82 (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
)) {
85 /* period in 32 Khz cycles */
86 period
= 1 << (period_code
- 1);
87 /* compute 32 khz clock */
88 cur_clock
= muldiv64(current_time
, 32768, ticks_per_sec
);
89 next_irq_clock
= (cur_clock
& ~(period
- 1)) + period
;
90 s
->next_periodic_time
= muldiv64(next_irq_clock
, ticks_per_sec
, 32768) + 1;
91 qemu_mod_timer(s
->periodic_timer
, s
->next_periodic_time
);
93 qemu_del_timer(s
->periodic_timer
);
97 static void rtc_periodic_timer(void *opaque
)
101 rtc_timer_update(s
, s
->next_periodic_time
);
102 s
->cmos_data
[RTC_REG_C
] |= 0xc0;
103 qemu_irq_raise(s
->irq
);
106 static void cmos_ioport_write(void *opaque
, uint32_t addr
, uint32_t data
)
108 RTCState
*s
= opaque
;
110 if ((addr
& 1) == 0) {
111 s
->cmos_index
= data
& 0x7f;
114 printf("cmos: write index=0x%02x val=0x%02x\n",
115 s
->cmos_index
, data
);
117 switch(s
->cmos_index
) {
118 case RTC_SECONDS_ALARM
:
119 case RTC_MINUTES_ALARM
:
120 case RTC_HOURS_ALARM
:
121 /* XXX: not supported */
122 s
->cmos_data
[s
->cmos_index
] = data
;
127 case RTC_DAY_OF_WEEK
:
128 case RTC_DAY_OF_MONTH
:
131 s
->cmos_data
[s
->cmos_index
] = data
;
132 /* if in set mode, do not update the time */
133 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
138 /* UIP bit is read only */
139 s
->cmos_data
[RTC_REG_A
] = (data
& ~REG_A_UIP
) |
140 (s
->cmos_data
[RTC_REG_A
] & REG_A_UIP
);
141 rtc_timer_update(s
, qemu_get_clock(vm_clock
));
144 if (data
& REG_B_SET
) {
145 /* set mode: reset UIP mode */
146 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
149 /* if disabling set mode, update the time */
150 if (s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) {
154 s
->cmos_data
[RTC_REG_B
] = data
;
155 rtc_timer_update(s
, qemu_get_clock(vm_clock
));
159 /* cannot write to them */
162 s
->cmos_data
[s
->cmos_index
] = data
;
168 static inline int to_bcd(RTCState
*s
, int a
)
170 if (s
->cmos_data
[RTC_REG_B
] & 0x04) {
173 return ((a
/ 10) << 4) | (a
% 10);
177 static inline int from_bcd(RTCState
*s
, int a
)
179 if (s
->cmos_data
[RTC_REG_B
] & 0x04) {
182 return ((a
>> 4) * 10) + (a
& 0x0f);
186 static void rtc_set_time(RTCState
*s
)
188 struct tm
*tm
= &s
->current_tm
;
190 tm
->tm_sec
= from_bcd(s
, s
->cmos_data
[RTC_SECONDS
]);
191 tm
->tm_min
= from_bcd(s
, s
->cmos_data
[RTC_MINUTES
]);
192 tm
->tm_hour
= from_bcd(s
, s
->cmos_data
[RTC_HOURS
] & 0x7f);
193 if (!(s
->cmos_data
[RTC_REG_B
] & 0x02) &&
194 (s
->cmos_data
[RTC_HOURS
] & 0x80)) {
197 tm
->tm_wday
= from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_WEEK
]);
198 tm
->tm_mday
= from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_MONTH
]);
199 tm
->tm_mon
= from_bcd(s
, s
->cmos_data
[RTC_MONTH
]) - 1;
200 tm
->tm_year
= from_bcd(s
, s
->cmos_data
[RTC_YEAR
]) + 100;
203 static void rtc_copy_date(RTCState
*s
)
205 const struct tm
*tm
= &s
->current_tm
;
207 s
->cmos_data
[RTC_SECONDS
] = to_bcd(s
, tm
->tm_sec
);
208 s
->cmos_data
[RTC_MINUTES
] = to_bcd(s
, tm
->tm_min
);
209 if (s
->cmos_data
[RTC_REG_B
] & 0x02) {
211 s
->cmos_data
[RTC_HOURS
] = to_bcd(s
, tm
->tm_hour
);
214 s
->cmos_data
[RTC_HOURS
] = to_bcd(s
, tm
->tm_hour
% 12);
215 if (tm
->tm_hour
>= 12)
216 s
->cmos_data
[RTC_HOURS
] |= 0x80;
218 s
->cmos_data
[RTC_DAY_OF_WEEK
] = to_bcd(s
, tm
->tm_wday
);
219 s
->cmos_data
[RTC_DAY_OF_MONTH
] = to_bcd(s
, tm
->tm_mday
);
220 s
->cmos_data
[RTC_MONTH
] = to_bcd(s
, tm
->tm_mon
+ 1);
221 s
->cmos_data
[RTC_YEAR
] = to_bcd(s
, tm
->tm_year
% 100);
224 /* month is between 0 and 11. */
225 static int get_days_in_month(int month
, int year
)
227 static const int days_tab
[12] = {
228 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
231 if ((unsigned )month
>= 12)
235 if ((year
% 4) == 0 && ((year
% 100) != 0 || (year
% 400) == 0))
241 /* update 'tm' to the next second */
242 static void rtc_next_second(struct tm
*tm
)
247 if ((unsigned)tm
->tm_sec
>= 60) {
250 if ((unsigned)tm
->tm_min
>= 60) {
253 if ((unsigned)tm
->tm_hour
>= 24) {
257 if ((unsigned)tm
->tm_wday
>= 7)
259 days_in_month
= get_days_in_month(tm
->tm_mon
,
262 if (tm
->tm_mday
< 1) {
264 } else if (tm
->tm_mday
> days_in_month
) {
267 if (tm
->tm_mon
>= 12) {
278 static void rtc_update_second(void *opaque
)
280 RTCState
*s
= opaque
;
283 /* if the oscillator is not in normal operation, we do not update */
284 if ((s
->cmos_data
[RTC_REG_A
] & 0x70) != 0x20) {
285 s
->next_second_time
+= ticks_per_sec
;
286 qemu_mod_timer(s
->second_timer
, s
->next_second_time
);
288 rtc_next_second(&s
->current_tm
);
290 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
291 /* update in progress bit */
292 s
->cmos_data
[RTC_REG_A
] |= REG_A_UIP
;
294 /* should be 244 us = 8 / 32768 seconds, but currently the
295 timers do not have the necessary resolution. */
296 delay
= (ticks_per_sec
* 1) / 100;
299 qemu_mod_timer(s
->second_timer2
,
300 s
->next_second_time
+ delay
);
304 static void rtc_update_second2(void *opaque
)
306 RTCState
*s
= opaque
;
308 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
313 if (s
->cmos_data
[RTC_REG_B
] & REG_B_AIE
) {
314 if (((s
->cmos_data
[RTC_SECONDS_ALARM
] & 0xc0) == 0xc0 ||
315 s
->cmos_data
[RTC_SECONDS_ALARM
] == s
->current_tm
.tm_sec
) &&
316 ((s
->cmos_data
[RTC_MINUTES_ALARM
] & 0xc0) == 0xc0 ||
317 s
->cmos_data
[RTC_MINUTES_ALARM
] == s
->current_tm
.tm_mon
) &&
318 ((s
->cmos_data
[RTC_HOURS_ALARM
] & 0xc0) == 0xc0 ||
319 s
->cmos_data
[RTC_HOURS_ALARM
] == s
->current_tm
.tm_hour
)) {
321 s
->cmos_data
[RTC_REG_C
] |= 0xa0;
322 qemu_irq_raise(s
->irq
);
326 /* update ended interrupt */
327 if (s
->cmos_data
[RTC_REG_B
] & REG_B_UIE
) {
328 s
->cmos_data
[RTC_REG_C
] |= 0x90;
329 qemu_irq_raise(s
->irq
);
332 /* clear update in progress bit */
333 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
335 s
->next_second_time
+= ticks_per_sec
;
336 qemu_mod_timer(s
->second_timer
, s
->next_second_time
);
339 static uint32_t cmos_ioport_read(void *opaque
, uint32_t addr
)
341 RTCState
*s
= opaque
;
343 if ((addr
& 1) == 0) {
346 switch(s
->cmos_index
) {
350 case RTC_DAY_OF_WEEK
:
351 case RTC_DAY_OF_MONTH
:
354 ret
= s
->cmos_data
[s
->cmos_index
];
357 ret
= s
->cmos_data
[s
->cmos_index
];
360 ret
= s
->cmos_data
[s
->cmos_index
];
361 qemu_irq_lower(s
->irq
);
362 s
->cmos_data
[RTC_REG_C
] = 0x00;
365 ret
= s
->cmos_data
[s
->cmos_index
];
369 printf("cmos: read index=0x%02x val=0x%02x\n",
376 void rtc_set_memory(RTCState
*s
, int addr
, int val
)
378 if (addr
>= 0 && addr
<= 127)
379 s
->cmos_data
[addr
] = val
;
382 void rtc_set_date(RTCState
*s
, const struct tm
*tm
)
388 /* PC cmos mappings */
389 #define REG_IBM_CENTURY_BYTE 0x32
390 #define REG_IBM_PS2_CENTURY_BYTE 0x37
392 static void rtc_set_date_from_host(RTCState
*s
)
397 /* set the CMOS date */
398 qemu_get_timedate(&tm
, 0);
399 rtc_set_date(s
, &tm
);
401 val
= to_bcd(s
, (tm
.tm_year
/ 100) + 19);
402 rtc_set_memory(s
, REG_IBM_CENTURY_BYTE
, val
);
403 rtc_set_memory(s
, REG_IBM_PS2_CENTURY_BYTE
, val
);
406 static void rtc_save(QEMUFile
*f
, void *opaque
)
408 RTCState
*s
= opaque
;
410 qemu_put_buffer(f
, s
->cmos_data
, 128);
411 qemu_put_8s(f
, &s
->cmos_index
);
413 qemu_put_be32(f
, s
->current_tm
.tm_sec
);
414 qemu_put_be32(f
, s
->current_tm
.tm_min
);
415 qemu_put_be32(f
, s
->current_tm
.tm_hour
);
416 qemu_put_be32(f
, s
->current_tm
.tm_wday
);
417 qemu_put_be32(f
, s
->current_tm
.tm_mday
);
418 qemu_put_be32(f
, s
->current_tm
.tm_mon
);
419 qemu_put_be32(f
, s
->current_tm
.tm_year
);
421 qemu_put_timer(f
, s
->periodic_timer
);
422 qemu_put_be64(f
, s
->next_periodic_time
);
424 qemu_put_be64(f
, s
->next_second_time
);
425 qemu_put_timer(f
, s
->second_timer
);
426 qemu_put_timer(f
, s
->second_timer2
);
429 static int rtc_load(QEMUFile
*f
, void *opaque
, int version_id
)
431 RTCState
*s
= opaque
;
436 qemu_get_buffer(f
, s
->cmos_data
, 128);
437 qemu_get_8s(f
, &s
->cmos_index
);
439 s
->current_tm
.tm_sec
=qemu_get_be32(f
);
440 s
->current_tm
.tm_min
=qemu_get_be32(f
);
441 s
->current_tm
.tm_hour
=qemu_get_be32(f
);
442 s
->current_tm
.tm_wday
=qemu_get_be32(f
);
443 s
->current_tm
.tm_mday
=qemu_get_be32(f
);
444 s
->current_tm
.tm_mon
=qemu_get_be32(f
);
445 s
->current_tm
.tm_year
=qemu_get_be32(f
);
447 qemu_get_timer(f
, s
->periodic_timer
);
448 s
->next_periodic_time
=qemu_get_be64(f
);
450 s
->next_second_time
=qemu_get_be64(f
);
451 qemu_get_timer(f
, s
->second_timer
);
452 qemu_get_timer(f
, s
->second_timer2
);
456 RTCState
*rtc_init(int base
, qemu_irq irq
)
460 s
= qemu_mallocz(sizeof(RTCState
));
465 s
->cmos_data
[RTC_REG_A
] = 0x26;
466 s
->cmos_data
[RTC_REG_B
] = 0x02;
467 s
->cmos_data
[RTC_REG_C
] = 0x00;
468 s
->cmos_data
[RTC_REG_D
] = 0x80;
470 rtc_set_date_from_host(s
);
472 s
->periodic_timer
= qemu_new_timer(vm_clock
,
473 rtc_periodic_timer
, s
);
474 s
->second_timer
= qemu_new_timer(vm_clock
,
475 rtc_update_second
, s
);
476 s
->second_timer2
= qemu_new_timer(vm_clock
,
477 rtc_update_second2
, s
);
479 s
->next_second_time
= qemu_get_clock(vm_clock
) + (ticks_per_sec
* 99) / 100;
480 qemu_mod_timer(s
->second_timer2
, s
->next_second_time
);
482 register_ioport_write(base
, 2, 1, cmos_ioport_write
, s
);
483 register_ioport_read(base
, 2, 1, cmos_ioport_read
, s
);
485 register_savevm("mc146818rtc", base
, 1, rtc_save
, rtc_load
, s
);
489 /* Memory mapped interface */
490 static uint32_t cmos_mm_readb (void *opaque
, target_phys_addr_t addr
)
492 RTCState
*s
= opaque
;
494 return cmos_ioport_read(s
, addr
>> s
->it_shift
) & 0xFF;
497 static void cmos_mm_writeb (void *opaque
,
498 target_phys_addr_t addr
, uint32_t value
)
500 RTCState
*s
= opaque
;
502 cmos_ioport_write(s
, addr
>> s
->it_shift
, value
& 0xFF);
505 static uint32_t cmos_mm_readw (void *opaque
, target_phys_addr_t addr
)
507 RTCState
*s
= opaque
;
510 val
= cmos_ioport_read(s
, addr
>> s
->it_shift
) & 0xFFFF;
511 #ifdef TARGET_WORDS_BIGENDIAN
517 static void cmos_mm_writew (void *opaque
,
518 target_phys_addr_t addr
, uint32_t value
)
520 RTCState
*s
= opaque
;
521 #ifdef TARGET_WORDS_BIGENDIAN
522 value
= bswap16(value
);
524 cmos_ioport_write(s
, addr
>> s
->it_shift
, value
& 0xFFFF);
527 static uint32_t cmos_mm_readl (void *opaque
, target_phys_addr_t addr
)
529 RTCState
*s
= opaque
;
532 val
= cmos_ioport_read(s
, addr
>> s
->it_shift
);
533 #ifdef TARGET_WORDS_BIGENDIAN
539 static void cmos_mm_writel (void *opaque
,
540 target_phys_addr_t addr
, uint32_t value
)
542 RTCState
*s
= opaque
;
543 #ifdef TARGET_WORDS_BIGENDIAN
544 value
= bswap32(value
);
546 cmos_ioport_write(s
, addr
>> s
->it_shift
, value
);
549 static CPUReadMemoryFunc
*rtc_mm_read
[] = {
555 static CPUWriteMemoryFunc
*rtc_mm_write
[] = {
561 RTCState
*rtc_mm_init(target_phys_addr_t base
, int it_shift
, qemu_irq irq
)
566 s
= qemu_mallocz(sizeof(RTCState
));
571 s
->cmos_data
[RTC_REG_A
] = 0x26;
572 s
->cmos_data
[RTC_REG_B
] = 0x02;
573 s
->cmos_data
[RTC_REG_C
] = 0x00;
574 s
->cmos_data
[RTC_REG_D
] = 0x80;
576 rtc_set_date_from_host(s
);
578 s
->periodic_timer
= qemu_new_timer(vm_clock
,
579 rtc_periodic_timer
, s
);
580 s
->second_timer
= qemu_new_timer(vm_clock
,
581 rtc_update_second
, s
);
582 s
->second_timer2
= qemu_new_timer(vm_clock
,
583 rtc_update_second2
, s
);
585 s
->next_second_time
= qemu_get_clock(vm_clock
) + (ticks_per_sec
* 99) / 100;
586 qemu_mod_timer(s
->second_timer2
, s
->next_second_time
);
588 io_memory
= cpu_register_io_memory(0, rtc_mm_read
, rtc_mm_write
, s
);
589 cpu_register_physical_memory(base
, 2 << it_shift
, io_memory
);
591 register_savevm("mc146818rtc", base
, 1, rtc_save
, rtc_load
, s
);