Initialize disasinfo->private_data, binutils does it and some disassemblers depend...
[qemu/qemu-JZ.git] / cpu-all.h
blob7a7e6555e1f4419939d27b9b5def0e86b38a0eca
1 /*
2 * defines common to all virtual CPUs
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #ifndef CPU_ALL_H
21 #define CPU_ALL_H
23 #if defined(__arm__) || defined(__sparc__) || defined(__mips__)
24 #define WORDS_ALIGNED
25 #endif
27 /* some important defines:
29 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
30 * memory accesses.
32 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
33 * otherwise little endian.
35 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
37 * TARGET_WORDS_BIGENDIAN : same for target cpu
40 #include "bswap.h"
42 #if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
43 #define BSWAP_NEEDED
44 #endif
46 #ifdef BSWAP_NEEDED
48 static inline uint16_t tswap16(uint16_t s)
50 return bswap16(s);
53 static inline uint32_t tswap32(uint32_t s)
55 return bswap32(s);
58 static inline uint64_t tswap64(uint64_t s)
60 return bswap64(s);
63 static inline void tswap16s(uint16_t *s)
65 *s = bswap16(*s);
68 static inline void tswap32s(uint32_t *s)
70 *s = bswap32(*s);
73 static inline void tswap64s(uint64_t *s)
75 *s = bswap64(*s);
78 #else
80 static inline uint16_t tswap16(uint16_t s)
82 return s;
85 static inline uint32_t tswap32(uint32_t s)
87 return s;
90 static inline uint64_t tswap64(uint64_t s)
92 return s;
95 static inline void tswap16s(uint16_t *s)
99 static inline void tswap32s(uint32_t *s)
103 static inline void tswap64s(uint64_t *s)
107 #endif
109 #if TARGET_LONG_SIZE == 4
110 #define tswapl(s) tswap32(s)
111 #define tswapls(s) tswap32s((uint32_t *)(s))
112 #define bswaptls(s) bswap32s(s)
113 #else
114 #define tswapl(s) tswap64(s)
115 #define tswapls(s) tswap64s((uint64_t *)(s))
116 #define bswaptls(s) bswap64s(s)
117 #endif
119 /* NOTE: arm FPA is horrible as double 32 bit words are stored in big
120 endian ! */
121 typedef union {
122 float64 d;
123 #if defined(WORDS_BIGENDIAN) \
124 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
125 struct {
126 uint32_t upper;
127 uint32_t lower;
128 } l;
129 #else
130 struct {
131 uint32_t lower;
132 uint32_t upper;
133 } l;
134 #endif
135 uint64_t ll;
136 } CPU_DoubleU;
138 #ifdef TARGET_SPARC
139 typedef union {
140 float128 q;
141 #if defined(WORDS_BIGENDIAN) \
142 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
143 struct {
144 uint32_t upmost;
145 uint32_t upper;
146 uint32_t lower;
147 uint32_t lowest;
148 } l;
149 struct {
150 uint64_t upper;
151 uint64_t lower;
152 } ll;
153 #else
154 struct {
155 uint32_t lowest;
156 uint32_t lower;
157 uint32_t upper;
158 uint32_t upmost;
159 } l;
160 struct {
161 uint64_t lower;
162 uint64_t upper;
163 } ll;
164 #endif
165 } CPU_QuadU;
166 #endif
168 /* CPU memory access without any memory or io remapping */
171 * the generic syntax for the memory accesses is:
173 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
175 * store: st{type}{size}{endian}_{access_type}(ptr, val)
177 * type is:
178 * (empty): integer access
179 * f : float access
181 * sign is:
182 * (empty): for floats or 32 bit size
183 * u : unsigned
184 * s : signed
186 * size is:
187 * b: 8 bits
188 * w: 16 bits
189 * l: 32 bits
190 * q: 64 bits
192 * endian is:
193 * (empty): target cpu endianness or 8 bit access
194 * r : reversed target cpu endianness (not implemented yet)
195 * be : big endian (not implemented yet)
196 * le : little endian (not implemented yet)
198 * access_type is:
199 * raw : host memory access
200 * user : user mode access using soft MMU
201 * kernel : kernel mode access using soft MMU
203 static inline int ldub_p(void *ptr)
205 return *(uint8_t *)ptr;
208 static inline int ldsb_p(void *ptr)
210 return *(int8_t *)ptr;
213 static inline void stb_p(void *ptr, int v)
215 *(uint8_t *)ptr = v;
218 /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
219 kernel handles unaligned load/stores may give better results, but
220 it is a system wide setting : bad */
221 #if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
223 /* conservative code for little endian unaligned accesses */
224 static inline int lduw_le_p(void *ptr)
226 #ifdef __powerpc__
227 int val;
228 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
229 return val;
230 #else
231 uint8_t *p = ptr;
232 return p[0] | (p[1] << 8);
233 #endif
236 static inline int ldsw_le_p(void *ptr)
238 #ifdef __powerpc__
239 int val;
240 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
241 return (int16_t)val;
242 #else
243 uint8_t *p = ptr;
244 return (int16_t)(p[0] | (p[1] << 8));
245 #endif
248 static inline int ldl_le_p(void *ptr)
250 #ifdef __powerpc__
251 int val;
252 __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
253 return val;
254 #else
255 uint8_t *p = ptr;
256 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
257 #endif
260 static inline uint64_t ldq_le_p(void *ptr)
262 uint8_t *p = ptr;
263 uint32_t v1, v2;
264 v1 = ldl_le_p(p);
265 v2 = ldl_le_p(p + 4);
266 return v1 | ((uint64_t)v2 << 32);
269 static inline void stw_le_p(void *ptr, int v)
271 #ifdef __powerpc__
272 __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
273 #else
274 uint8_t *p = ptr;
275 p[0] = v;
276 p[1] = v >> 8;
277 #endif
280 static inline void stl_le_p(void *ptr, int v)
282 #ifdef __powerpc__
283 __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
284 #else
285 uint8_t *p = ptr;
286 p[0] = v;
287 p[1] = v >> 8;
288 p[2] = v >> 16;
289 p[3] = v >> 24;
290 #endif
293 static inline void stq_le_p(void *ptr, uint64_t v)
295 uint8_t *p = ptr;
296 stl_le_p(p, (uint32_t)v);
297 stl_le_p(p + 4, v >> 32);
300 /* float access */
302 static inline float32 ldfl_le_p(void *ptr)
304 union {
305 float32 f;
306 uint32_t i;
307 } u;
308 u.i = ldl_le_p(ptr);
309 return u.f;
312 static inline void stfl_le_p(void *ptr, float32 v)
314 union {
315 float32 f;
316 uint32_t i;
317 } u;
318 u.f = v;
319 stl_le_p(ptr, u.i);
322 static inline float64 ldfq_le_p(void *ptr)
324 CPU_DoubleU u;
325 u.l.lower = ldl_le_p(ptr);
326 u.l.upper = ldl_le_p(ptr + 4);
327 return u.d;
330 static inline void stfq_le_p(void *ptr, float64 v)
332 CPU_DoubleU u;
333 u.d = v;
334 stl_le_p(ptr, u.l.lower);
335 stl_le_p(ptr + 4, u.l.upper);
338 #else
340 static inline int lduw_le_p(void *ptr)
342 return *(uint16_t *)ptr;
345 static inline int ldsw_le_p(void *ptr)
347 return *(int16_t *)ptr;
350 static inline int ldl_le_p(void *ptr)
352 return *(uint32_t *)ptr;
355 static inline uint64_t ldq_le_p(void *ptr)
357 return *(uint64_t *)ptr;
360 static inline void stw_le_p(void *ptr, int v)
362 *(uint16_t *)ptr = v;
365 static inline void stl_le_p(void *ptr, int v)
367 *(uint32_t *)ptr = v;
370 static inline void stq_le_p(void *ptr, uint64_t v)
372 *(uint64_t *)ptr = v;
375 /* float access */
377 static inline float32 ldfl_le_p(void *ptr)
379 return *(float32 *)ptr;
382 static inline float64 ldfq_le_p(void *ptr)
384 return *(float64 *)ptr;
387 static inline void stfl_le_p(void *ptr, float32 v)
389 *(float32 *)ptr = v;
392 static inline void stfq_le_p(void *ptr, float64 v)
394 *(float64 *)ptr = v;
396 #endif
398 #if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
400 static inline int lduw_be_p(void *ptr)
402 #if defined(__i386__)
403 int val;
404 asm volatile ("movzwl %1, %0\n"
405 "xchgb %b0, %h0\n"
406 : "=q" (val)
407 : "m" (*(uint16_t *)ptr));
408 return val;
409 #else
410 uint8_t *b = (uint8_t *) ptr;
411 return ((b[0] << 8) | b[1]);
412 #endif
415 static inline int ldsw_be_p(void *ptr)
417 #if defined(__i386__)
418 int val;
419 asm volatile ("movzwl %1, %0\n"
420 "xchgb %b0, %h0\n"
421 : "=q" (val)
422 : "m" (*(uint16_t *)ptr));
423 return (int16_t)val;
424 #else
425 uint8_t *b = (uint8_t *) ptr;
426 return (int16_t)((b[0] << 8) | b[1]);
427 #endif
430 static inline int ldl_be_p(void *ptr)
432 #if defined(__i386__) || defined(__x86_64__)
433 int val;
434 asm volatile ("movl %1, %0\n"
435 "bswap %0\n"
436 : "=r" (val)
437 : "m" (*(uint32_t *)ptr));
438 return val;
439 #else
440 uint8_t *b = (uint8_t *) ptr;
441 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
442 #endif
445 static inline uint64_t ldq_be_p(void *ptr)
447 uint32_t a,b;
448 a = ldl_be_p(ptr);
449 b = ldl_be_p(ptr+4);
450 return (((uint64_t)a<<32)|b);
453 static inline void stw_be_p(void *ptr, int v)
455 #if defined(__i386__)
456 asm volatile ("xchgb %b0, %h0\n"
457 "movw %w0, %1\n"
458 : "=q" (v)
459 : "m" (*(uint16_t *)ptr), "0" (v));
460 #else
461 uint8_t *d = (uint8_t *) ptr;
462 d[0] = v >> 8;
463 d[1] = v;
464 #endif
467 static inline void stl_be_p(void *ptr, int v)
469 #if defined(__i386__) || defined(__x86_64__)
470 asm volatile ("bswap %0\n"
471 "movl %0, %1\n"
472 : "=r" (v)
473 : "m" (*(uint32_t *)ptr), "0" (v));
474 #else
475 uint8_t *d = (uint8_t *) ptr;
476 d[0] = v >> 24;
477 d[1] = v >> 16;
478 d[2] = v >> 8;
479 d[3] = v;
480 #endif
483 static inline void stq_be_p(void *ptr, uint64_t v)
485 stl_be_p(ptr, v >> 32);
486 stl_be_p(ptr + 4, v);
489 /* float access */
491 static inline float32 ldfl_be_p(void *ptr)
493 union {
494 float32 f;
495 uint32_t i;
496 } u;
497 u.i = ldl_be_p(ptr);
498 return u.f;
501 static inline void stfl_be_p(void *ptr, float32 v)
503 union {
504 float32 f;
505 uint32_t i;
506 } u;
507 u.f = v;
508 stl_be_p(ptr, u.i);
511 static inline float64 ldfq_be_p(void *ptr)
513 CPU_DoubleU u;
514 u.l.upper = ldl_be_p(ptr);
515 u.l.lower = ldl_be_p(ptr + 4);
516 return u.d;
519 static inline void stfq_be_p(void *ptr, float64 v)
521 CPU_DoubleU u;
522 u.d = v;
523 stl_be_p(ptr, u.l.upper);
524 stl_be_p(ptr + 4, u.l.lower);
527 #else
529 static inline int lduw_be_p(void *ptr)
531 return *(uint16_t *)ptr;
534 static inline int ldsw_be_p(void *ptr)
536 return *(int16_t *)ptr;
539 static inline int ldl_be_p(void *ptr)
541 return *(uint32_t *)ptr;
544 static inline uint64_t ldq_be_p(void *ptr)
546 return *(uint64_t *)ptr;
549 static inline void stw_be_p(void *ptr, int v)
551 *(uint16_t *)ptr = v;
554 static inline void stl_be_p(void *ptr, int v)
556 *(uint32_t *)ptr = v;
559 static inline void stq_be_p(void *ptr, uint64_t v)
561 *(uint64_t *)ptr = v;
564 /* float access */
566 static inline float32 ldfl_be_p(void *ptr)
568 return *(float32 *)ptr;
571 static inline float64 ldfq_be_p(void *ptr)
573 return *(float64 *)ptr;
576 static inline void stfl_be_p(void *ptr, float32 v)
578 *(float32 *)ptr = v;
581 static inline void stfq_be_p(void *ptr, float64 v)
583 *(float64 *)ptr = v;
586 #endif
588 /* target CPU memory access functions */
589 #if defined(TARGET_WORDS_BIGENDIAN)
590 #define lduw_p(p) lduw_be_p(p)
591 #define ldsw_p(p) ldsw_be_p(p)
592 #define ldl_p(p) ldl_be_p(p)
593 #define ldq_p(p) ldq_be_p(p)
594 #define ldfl_p(p) ldfl_be_p(p)
595 #define ldfq_p(p) ldfq_be_p(p)
596 #define stw_p(p, v) stw_be_p(p, v)
597 #define stl_p(p, v) stl_be_p(p, v)
598 #define stq_p(p, v) stq_be_p(p, v)
599 #define stfl_p(p, v) stfl_be_p(p, v)
600 #define stfq_p(p, v) stfq_be_p(p, v)
601 #else
602 #define lduw_p(p) lduw_le_p(p)
603 #define ldsw_p(p) ldsw_le_p(p)
604 #define ldl_p(p) ldl_le_p(p)
605 #define ldq_p(p) ldq_le_p(p)
606 #define ldfl_p(p) ldfl_le_p(p)
607 #define ldfq_p(p) ldfq_le_p(p)
608 #define stw_p(p, v) stw_le_p(p, v)
609 #define stl_p(p, v) stl_le_p(p, v)
610 #define stq_p(p, v) stq_le_p(p, v)
611 #define stfl_p(p, v) stfl_le_p(p, v)
612 #define stfq_p(p, v) stfq_le_p(p, v)
613 #endif
615 /* MMU memory access macros */
617 #if defined(CONFIG_USER_ONLY)
618 /* On some host systems the guest address space is reserved on the host.
619 * This allows the guest address space to be offset to a convenient location.
621 //#define GUEST_BASE 0x20000000
622 #define GUEST_BASE 0
624 /* All direct uses of g2h and h2g need to go away for usermode softmmu. */
625 #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
626 #define h2g(x) ((target_ulong)(x - GUEST_BASE))
628 #define saddr(x) g2h(x)
629 #define laddr(x) g2h(x)
631 #else /* !CONFIG_USER_ONLY */
632 /* NOTE: we use double casts if pointers and target_ulong have
633 different sizes */
634 #define saddr(x) (uint8_t *)(long)(x)
635 #define laddr(x) (uint8_t *)(long)(x)
636 #endif
638 #define ldub_raw(p) ldub_p(laddr((p)))
639 #define ldsb_raw(p) ldsb_p(laddr((p)))
640 #define lduw_raw(p) lduw_p(laddr((p)))
641 #define ldsw_raw(p) ldsw_p(laddr((p)))
642 #define ldl_raw(p) ldl_p(laddr((p)))
643 #define ldq_raw(p) ldq_p(laddr((p)))
644 #define ldfl_raw(p) ldfl_p(laddr((p)))
645 #define ldfq_raw(p) ldfq_p(laddr((p)))
646 #define stb_raw(p, v) stb_p(saddr((p)), v)
647 #define stw_raw(p, v) stw_p(saddr((p)), v)
648 #define stl_raw(p, v) stl_p(saddr((p)), v)
649 #define stq_raw(p, v) stq_p(saddr((p)), v)
650 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
651 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
654 #if defined(CONFIG_USER_ONLY)
656 /* if user mode, no other memory access functions */
657 #define ldub(p) ldub_raw(p)
658 #define ldsb(p) ldsb_raw(p)
659 #define lduw(p) lduw_raw(p)
660 #define ldsw(p) ldsw_raw(p)
661 #define ldl(p) ldl_raw(p)
662 #define ldq(p) ldq_raw(p)
663 #define ldfl(p) ldfl_raw(p)
664 #define ldfq(p) ldfq_raw(p)
665 #define stb(p, v) stb_raw(p, v)
666 #define stw(p, v) stw_raw(p, v)
667 #define stl(p, v) stl_raw(p, v)
668 #define stq(p, v) stq_raw(p, v)
669 #define stfl(p, v) stfl_raw(p, v)
670 #define stfq(p, v) stfq_raw(p, v)
672 #define ldub_code(p) ldub_raw(p)
673 #define ldsb_code(p) ldsb_raw(p)
674 #define lduw_code(p) lduw_raw(p)
675 #define ldsw_code(p) ldsw_raw(p)
676 #define ldl_code(p) ldl_raw(p)
677 #define ldq_code(p) ldq_raw(p)
679 #define ldub_kernel(p) ldub_raw(p)
680 #define ldsb_kernel(p) ldsb_raw(p)
681 #define lduw_kernel(p) lduw_raw(p)
682 #define ldsw_kernel(p) ldsw_raw(p)
683 #define ldl_kernel(p) ldl_raw(p)
684 #define ldq_kernel(p) ldq_raw(p)
685 #define ldfl_kernel(p) ldfl_raw(p)
686 #define ldfq_kernel(p) ldfq_raw(p)
687 #define stb_kernel(p, v) stb_raw(p, v)
688 #define stw_kernel(p, v) stw_raw(p, v)
689 #define stl_kernel(p, v) stl_raw(p, v)
690 #define stq_kernel(p, v) stq_raw(p, v)
691 #define stfl_kernel(p, v) stfl_raw(p, v)
692 #define stfq_kernel(p, vt) stfq_raw(p, v)
694 #endif /* defined(CONFIG_USER_ONLY) */
696 /* page related stuff */
698 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
699 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
700 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
702 /* ??? These should be the larger of unsigned long and target_ulong. */
703 extern unsigned long qemu_real_host_page_size;
704 extern unsigned long qemu_host_page_bits;
705 extern unsigned long qemu_host_page_size;
706 extern unsigned long qemu_host_page_mask;
708 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
710 /* same as PROT_xxx */
711 #define PAGE_READ 0x0001
712 #define PAGE_WRITE 0x0002
713 #define PAGE_EXEC 0x0004
714 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
715 #define PAGE_VALID 0x0008
716 /* original state of the write flag (used when tracking self-modifying
717 code */
718 #define PAGE_WRITE_ORG 0x0010
719 #define PAGE_RESERVED 0x0020
721 void page_dump(FILE *f);
722 int page_get_flags(target_ulong address);
723 void page_set_flags(target_ulong start, target_ulong end, int flags);
724 int page_check_range(target_ulong start, target_ulong len, int flags);
726 CPUState *cpu_copy(CPUState *env);
728 void cpu_dump_state(CPUState *env, FILE *f,
729 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
730 int flags);
731 void cpu_dump_statistics (CPUState *env, FILE *f,
732 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
733 int flags);
735 void cpu_abort(CPUState *env, const char *fmt, ...)
736 __attribute__ ((__format__ (__printf__, 2, 3)))
737 __attribute__ ((__noreturn__));
738 extern CPUState *first_cpu;
739 extern CPUState *cpu_single_env;
740 extern int code_copy_enabled;
742 #define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */
743 #define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
744 #define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
745 #define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
746 #define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
747 #define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
748 #define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
749 #define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
750 #define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
752 void cpu_interrupt(CPUState *s, int mask);
753 void cpu_reset_interrupt(CPUState *env, int mask);
755 int cpu_watchpoint_insert(CPUState *env, target_ulong addr);
756 int cpu_watchpoint_remove(CPUState *env, target_ulong addr);
757 int cpu_breakpoint_insert(CPUState *env, target_ulong pc);
758 int cpu_breakpoint_remove(CPUState *env, target_ulong pc);
759 void cpu_single_step(CPUState *env, int enabled);
760 void cpu_reset(CPUState *s);
762 /* Return the physical page corresponding to a virtual one. Use it
763 only for debugging because no protection checks are done. Return -1
764 if no page found. */
765 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
767 #define CPU_LOG_TB_OUT_ASM (1 << 0)
768 #define CPU_LOG_TB_IN_ASM (1 << 1)
769 #define CPU_LOG_TB_OP (1 << 2)
770 #define CPU_LOG_TB_OP_OPT (1 << 3)
771 #define CPU_LOG_INT (1 << 4)
772 #define CPU_LOG_EXEC (1 << 5)
773 #define CPU_LOG_PCALL (1 << 6)
774 #define CPU_LOG_IOPORT (1 << 7)
775 #define CPU_LOG_TB_CPU (1 << 8)
777 /* define log items */
778 typedef struct CPULogItem {
779 int mask;
780 const char *name;
781 const char *help;
782 } CPULogItem;
784 extern CPULogItem cpu_log_items[];
786 void cpu_set_log(int log_flags);
787 void cpu_set_log_filename(const char *filename);
788 int cpu_str_to_log_mask(const char *str);
790 /* IO ports API */
792 /* NOTE: as these functions may be even used when there is an isa
793 brige on non x86 targets, we always defined them */
794 #ifndef NO_CPU_IO_DEFS
795 void cpu_outb(CPUState *env, int addr, int val);
796 void cpu_outw(CPUState *env, int addr, int val);
797 void cpu_outl(CPUState *env, int addr, int val);
798 int cpu_inb(CPUState *env, int addr);
799 int cpu_inw(CPUState *env, int addr);
800 int cpu_inl(CPUState *env, int addr);
801 #endif
803 /* memory API */
805 extern int phys_ram_size;
806 extern int phys_ram_fd;
807 extern uint8_t *phys_ram_base;
808 extern uint8_t *phys_ram_dirty;
810 /* physical memory access */
811 #define TLB_INVALID_MASK (1 << 3)
812 #define IO_MEM_SHIFT 4
813 #define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
815 #define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */
816 #define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */
817 #define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT)
818 #define IO_MEM_NOTDIRTY (4 << IO_MEM_SHIFT) /* used internally, never use directly */
819 /* acts like a ROM when read and like a device when written. As an
820 exception, the write memory callback gets the ram offset instead of
821 the physical address */
822 #define IO_MEM_ROMD (1)
823 #define IO_MEM_SUBPAGE (2)
824 #define IO_MEM_SUBWIDTH (4)
826 typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
827 typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
829 void cpu_register_physical_memory(target_phys_addr_t start_addr,
830 unsigned long size,
831 unsigned long phys_offset);
832 uint32_t cpu_get_physical_page_desc(target_phys_addr_t addr);
833 ram_addr_t qemu_ram_alloc(unsigned int size);
834 void qemu_ram_free(ram_addr_t addr);
835 int cpu_register_io_memory(int io_index,
836 CPUReadMemoryFunc **mem_read,
837 CPUWriteMemoryFunc **mem_write,
838 void *opaque);
839 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
840 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
842 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
843 int len, int is_write);
844 static inline void cpu_physical_memory_read(target_phys_addr_t addr,
845 uint8_t *buf, int len)
847 cpu_physical_memory_rw(addr, buf, len, 0);
849 static inline void cpu_physical_memory_write(target_phys_addr_t addr,
850 const uint8_t *buf, int len)
852 cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
854 uint32_t ldub_phys(target_phys_addr_t addr);
855 uint32_t lduw_phys(target_phys_addr_t addr);
856 uint32_t ldl_phys(target_phys_addr_t addr);
857 uint64_t ldq_phys(target_phys_addr_t addr);
858 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
859 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
860 void stb_phys(target_phys_addr_t addr, uint32_t val);
861 void stw_phys(target_phys_addr_t addr, uint32_t val);
862 void stl_phys(target_phys_addr_t addr, uint32_t val);
863 void stq_phys(target_phys_addr_t addr, uint64_t val);
865 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
866 const uint8_t *buf, int len);
867 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
868 uint8_t *buf, int len, int is_write);
870 #define VGA_DIRTY_FLAG 0x01
871 #define CODE_DIRTY_FLAG 0x02
873 /* read dirty bit (return 0 or 1) */
874 static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
876 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
879 static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
880 int dirty_flags)
882 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
885 static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
887 phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
890 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
891 int dirty_flags);
892 void cpu_tlb_update_dirty(CPUState *env);
894 void dump_exec_info(FILE *f,
895 int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
897 /*******************************************/
898 /* host CPU ticks (if available) */
900 #if defined(__powerpc__)
902 static inline uint32_t get_tbl(void)
904 uint32_t tbl;
905 asm volatile("mftb %0" : "=r" (tbl));
906 return tbl;
909 static inline uint32_t get_tbu(void)
911 uint32_t tbl;
912 asm volatile("mftbu %0" : "=r" (tbl));
913 return tbl;
916 static inline int64_t cpu_get_real_ticks(void)
918 uint32_t l, h, h1;
919 /* NOTE: we test if wrapping has occurred */
920 do {
921 h = get_tbu();
922 l = get_tbl();
923 h1 = get_tbu();
924 } while (h != h1);
925 return ((int64_t)h << 32) | l;
928 #elif defined(__i386__)
930 static inline int64_t cpu_get_real_ticks(void)
932 int64_t val;
933 asm volatile ("rdtsc" : "=A" (val));
934 return val;
937 #elif defined(__x86_64__)
939 static inline int64_t cpu_get_real_ticks(void)
941 uint32_t low,high;
942 int64_t val;
943 asm volatile("rdtsc" : "=a" (low), "=d" (high));
944 val = high;
945 val <<= 32;
946 val |= low;
947 return val;
950 #elif defined(__ia64)
952 static inline int64_t cpu_get_real_ticks(void)
954 int64_t val;
955 asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
956 return val;
959 #elif defined(__s390__)
961 static inline int64_t cpu_get_real_ticks(void)
963 int64_t val;
964 asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
965 return val;
968 #elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
970 static inline int64_t cpu_get_real_ticks (void)
972 #if defined(_LP64)
973 uint64_t rval;
974 asm volatile("rd %%tick,%0" : "=r"(rval));
975 return rval;
976 #else
977 union {
978 uint64_t i64;
979 struct {
980 uint32_t high;
981 uint32_t low;
982 } i32;
983 } rval;
984 asm volatile("rd %%tick,%1; srlx %1,32,%0"
985 : "=r"(rval.i32.high), "=r"(rval.i32.low));
986 return rval.i64;
987 #endif
990 #elif defined(__mips__)
992 static inline int64_t cpu_get_real_ticks(void)
994 #if __mips_isa_rev >= 2
995 uint32_t count;
996 static uint32_t cyc_per_count = 0;
998 if (!cyc_per_count)
999 __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));
1001 __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
1002 return (int64_t)(count * cyc_per_count);
1003 #else
1004 /* FIXME */
1005 static int64_t ticks = 0;
1006 return ticks++;
1007 #endif
1010 #else
1011 /* The host CPU doesn't have an easily accessible cycle counter.
1012 Just return a monotonically increasing value. This will be
1013 totally wrong, but hopefully better than nothing. */
1014 static inline int64_t cpu_get_real_ticks (void)
1016 static int64_t ticks = 0;
1017 return ticks++;
1019 #endif
1021 /* profiling */
1022 #ifdef CONFIG_PROFILER
1023 static inline int64_t profile_getclock(void)
1025 return cpu_get_real_ticks();
1028 extern int64_t kqemu_time, kqemu_time_start;
1029 extern int64_t qemu_time, qemu_time_start;
1030 extern int64_t tlb_flush_time;
1031 extern int64_t kqemu_exec_count;
1032 extern int64_t dev_time;
1033 extern int64_t kqemu_ret_int_count;
1034 extern int64_t kqemu_ret_excp_count;
1035 extern int64_t kqemu_ret_intr_count;
1037 extern int64_t dyngen_tb_count1;
1038 extern int64_t dyngen_tb_count;
1039 extern int64_t dyngen_op_count;
1040 extern int64_t dyngen_old_op_count;
1041 extern int64_t dyngen_tcg_del_op_count;
1042 extern int dyngen_op_count_max;
1043 extern int64_t dyngen_code_in_len;
1044 extern int64_t dyngen_code_out_len;
1045 extern int64_t dyngen_interm_time;
1046 extern int64_t dyngen_code_time;
1047 extern int64_t dyngen_restore_count;
1048 extern int64_t dyngen_restore_time;
1049 #endif
1051 #endif /* CPU_ALL_H */