2 * QEMU Sparc32 DMA controller emulation
4 * Copyright (c) 2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "sparc32_dma.h"
32 * This is the DMA controller part of chip STP2000 (Master I/O), also
33 * produced as NCR89C100. See
34 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
36 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/DMA2.txt
40 #define DPRINTF(fmt, args...) \
41 do { printf("DMA: " fmt , ##args); } while (0)
43 #define DPRINTF(fmt, args...)
47 #define DMA_SIZE (4 * sizeof(uint32_t))
49 #define DMA_VER 0xa0000000
51 #define DMA_INTREN 0x10
52 #define DMA_WRITE_MEM 0x100
53 #define DMA_LOADED 0x04000000
54 #define DMA_DRAIN_FIFO 0x40
55 #define DMA_RESET 0x80
57 typedef struct DMAState DMAState
;
60 uint32_t dmaregs
[DMA_REGS
];
66 /* Note: on sparc, the lance 16 bit bus is swapped */
67 void ledma_memory_read(void *opaque
, target_phys_addr_t addr
,
68 uint8_t *buf
, int len
, int do_bswap
)
73 DPRINTF("DMA write, direction: %c, addr 0x%8.8x\n",
74 s
->dmaregs
[0] & DMA_WRITE_MEM
? 'w': 'r', s
->dmaregs
[1]);
75 addr
|= s
->dmaregs
[3];
77 sparc_iommu_memory_read(s
->iommu
, addr
, buf
, len
);
81 sparc_iommu_memory_read(s
->iommu
, addr
, buf
, len
);
82 for(i
= 0; i
< len
; i
+= 2) {
83 bswap16s((uint16_t *)(buf
+ i
));
88 void ledma_memory_write(void *opaque
, target_phys_addr_t addr
,
89 uint8_t *buf
, int len
, int do_bswap
)
95 DPRINTF("DMA read, direction: %c, addr 0x%8.8x\n",
96 s
->dmaregs
[0] & DMA_WRITE_MEM
? 'w': 'r', s
->dmaregs
[1]);
97 addr
|= s
->dmaregs
[3];
99 sparc_iommu_memory_write(s
->iommu
, addr
, buf
, len
);
105 if (l
> sizeof(tmp_buf
))
107 for(i
= 0; i
< l
; i
+= 2) {
108 tmp_buf
[i
>> 1] = bswap16(*(uint16_t *)(buf
+ i
));
110 sparc_iommu_memory_write(s
->iommu
, addr
, (uint8_t *)tmp_buf
, l
);
118 static void dma_set_irq(void *opaque
, int irq
, int level
)
120 DMAState
*s
= opaque
;
122 DPRINTF("Raise IRQ\n");
123 s
->dmaregs
[0] |= DMA_INTR
;
124 qemu_irq_raise(s
->irq
);
126 s
->dmaregs
[0] &= ~DMA_INTR
;
127 DPRINTF("Lower IRQ\n");
128 qemu_irq_lower(s
->irq
);
132 void espdma_memory_read(void *opaque
, uint8_t *buf
, int len
)
134 DMAState
*s
= opaque
;
136 DPRINTF("DMA read, direction: %c, addr 0x%8.8x\n",
137 s
->dmaregs
[0] & DMA_WRITE_MEM
? 'w': 'r', s
->dmaregs
[1]);
138 sparc_iommu_memory_read(s
->iommu
, s
->dmaregs
[1], buf
, len
);
139 s
->dmaregs
[0] |= DMA_INTR
;
140 s
->dmaregs
[1] += len
;
143 void espdma_memory_write(void *opaque
, uint8_t *buf
, int len
)
145 DMAState
*s
= opaque
;
147 DPRINTF("DMA write, direction: %c, addr 0x%8.8x\n",
148 s
->dmaregs
[0] & DMA_WRITE_MEM
? 'w': 'r', s
->dmaregs
[1]);
149 sparc_iommu_memory_write(s
->iommu
, s
->dmaregs
[1], buf
, len
);
150 s
->dmaregs
[0] |= DMA_INTR
;
151 s
->dmaregs
[1] += len
;
154 static uint32_t dma_mem_readl(void *opaque
, target_phys_addr_t addr
)
156 DMAState
*s
= opaque
;
160 DPRINTF("read dmareg " TARGET_FMT_plx
": 0x%8.8x\n", addr
,
163 return s
->dmaregs
[saddr
];
166 static void dma_mem_writel(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
168 DMAState
*s
= opaque
;
172 DPRINTF("write dmareg " TARGET_FMT_plx
": 0x%8.8x -> 0x%8.8x\n", addr
,
173 s
->dmaregs
[saddr
], val
);
176 if (!(val
& DMA_INTREN
)) {
177 DPRINTF("Lower IRQ\n");
178 qemu_irq_lower(s
->irq
);
180 if (val
& DMA_RESET
) {
181 qemu_irq_raise(s
->dev_reset
);
182 qemu_irq_lower(s
->dev_reset
);
183 } else if (val
& DMA_DRAIN_FIFO
) {
184 val
&= ~DMA_DRAIN_FIFO
;
186 val
= DMA_DRAIN_FIFO
;
191 s
->dmaregs
[0] |= DMA_LOADED
;
196 s
->dmaregs
[saddr
] = val
;
199 static CPUReadMemoryFunc
*dma_mem_read
[3] = {
205 static CPUWriteMemoryFunc
*dma_mem_write
[3] = {
211 static void dma_reset(void *opaque
)
213 DMAState
*s
= opaque
;
215 memset(s
->dmaregs
, 0, DMA_SIZE
);
216 s
->dmaregs
[0] = DMA_VER
;
219 static void dma_save(QEMUFile
*f
, void *opaque
)
221 DMAState
*s
= opaque
;
224 for (i
= 0; i
< DMA_REGS
; i
++)
225 qemu_put_be32s(f
, &s
->dmaregs
[i
]);
228 static int dma_load(QEMUFile
*f
, void *opaque
, int version_id
)
230 DMAState
*s
= opaque
;
235 for (i
= 0; i
< DMA_REGS
; i
++)
236 qemu_get_be32s(f
, &s
->dmaregs
[i
]);
241 void *sparc32_dma_init(target_phys_addr_t daddr
, qemu_irq parent_irq
,
242 void *iommu
, qemu_irq
**dev_irq
, qemu_irq
**reset
)
247 s
= qemu_mallocz(sizeof(DMAState
));
254 dma_io_memory
= cpu_register_io_memory(0, dma_mem_read
, dma_mem_write
, s
);
255 cpu_register_physical_memory(daddr
, DMA_SIZE
, dma_io_memory
);
257 register_savevm("sparc32_dma", daddr
, 2, dma_save
, dma_load
, s
);
258 qemu_register_reset(dma_reset
, s
);
259 *dev_irq
= qemu_allocate_irqs(dma_set_irq
, s
, 1);
261 *reset
= &s
->dev_reset
;