2 * Marvell MV88W8618 / Freecom MusicPal emulation.
4 * Copyright (c) 2008 Jan Kiszka
6 * This code is licenced under the GNU GPL v2.
16 #include "qemu-timer.h"
20 #include "audio/audio.h"
23 #define MP_ETH_BASE 0x80008000
24 #define MP_ETH_SIZE 0x00001000
26 #define MP_UART1_BASE 0x8000C840
27 #define MP_UART2_BASE 0x8000C940
29 #define MP_FLASHCFG_BASE 0x90006000
30 #define MP_FLASHCFG_SIZE 0x00001000
32 #define MP_AUDIO_BASE 0x90007000
33 #define MP_AUDIO_SIZE 0x00001000
35 #define MP_PIC_BASE 0x90008000
36 #define MP_PIC_SIZE 0x00001000
38 #define MP_PIT_BASE 0x90009000
39 #define MP_PIT_SIZE 0x00001000
41 #define MP_LCD_BASE 0x9000c000
42 #define MP_LCD_SIZE 0x00001000
44 #define MP_SRAM_BASE 0xC0000000
45 #define MP_SRAM_SIZE 0x00020000
47 #define MP_RAM_DEFAULT_SIZE 32*1024*1024
48 #define MP_FLASH_SIZE_MAX 32*1024*1024
50 #define MP_TIMER1_IRQ 4
52 #define MP_TIMER4_IRQ 7
55 #define MP_UART1_IRQ 11
56 #define MP_UART2_IRQ 11
57 #define MP_GPIO_IRQ 12
59 #define MP_AUDIO_IRQ 30
61 static uint32_t gpio_in_state
= 0xffffffff;
62 static uint32_t gpio_isr
;
63 static uint32_t gpio_out_state
;
64 static ram_addr_t sram_off
;
66 /* Address conversion helpers */
67 static void *target2host_addr(uint32_t addr
)
69 if (addr
< MP_SRAM_BASE
) {
70 if (addr
>= MP_RAM_DEFAULT_SIZE
)
72 return (void *)(phys_ram_base
+ addr
);
74 if (addr
>= MP_SRAM_BASE
+ MP_SRAM_SIZE
)
76 return (void *)(phys_ram_base
+ sram_off
+ addr
- MP_SRAM_BASE
);
80 static uint32_t host2target_addr(void *addr
)
82 if (addr
< ((void *)phys_ram_base
) + sram_off
)
83 return (unsigned long)addr
- (unsigned long)phys_ram_base
;
85 return (unsigned long)addr
- (unsigned long)phys_ram_base
-
86 sram_off
+ MP_SRAM_BASE
;
90 typedef enum i2c_state
{
113 typedef struct i2c_interface
{
122 static void i2c_enter_stop(i2c_interface
*i2c
)
124 if (i2c
->current_addr
>= 0)
125 i2c_end_transfer(i2c
->bus
);
126 i2c
->current_addr
= -1;
127 i2c
->state
= STOPPED
;
130 static void i2c_state_update(i2c_interface
*i2c
, int data
, int clock
)
135 switch (i2c
->state
) {
137 if (data
== 0 && i2c
->last_data
== 1 && clock
== 1)
138 i2c
->state
= INITIALIZING
;
142 if (clock
== 0 && i2c
->last_clock
== 1 && data
== 0)
143 i2c
->state
= SENDING_BIT7
;
148 case SENDING_BIT7
... SENDING_BIT0
:
149 if (clock
== 0 && i2c
->last_clock
== 1) {
150 i2c
->buffer
= (i2c
->buffer
<< 1) | data
;
151 i2c
->state
++; /* will end up in WAITING_FOR_ACK */
152 } else if (data
== 1 && i2c
->last_data
== 0 && clock
== 1)
156 case WAITING_FOR_ACK
:
157 if (clock
== 0 && i2c
->last_clock
== 1) {
158 if (i2c
->current_addr
< 0) {
159 i2c
->current_addr
= i2c
->buffer
;
160 i2c_start_transfer(i2c
->bus
, i2c
->current_addr
& 0xfe,
163 i2c_send(i2c
->bus
, i2c
->buffer
);
164 if (i2c
->current_addr
& 1) {
165 i2c
->state
= RECEIVING_BIT7
;
166 i2c
->buffer
= i2c_recv(i2c
->bus
);
168 i2c
->state
= SENDING_BIT7
;
169 } else if (data
== 1 && i2c
->last_data
== 0 && clock
== 1)
173 case RECEIVING_BIT7
... RECEIVING_BIT0
:
174 if (clock
== 0 && i2c
->last_clock
== 1) {
175 i2c
->state
++; /* will end up in SENDING_ACK */
177 } else if (data
== 1 && i2c
->last_data
== 0 && clock
== 1)
182 if (clock
== 0 && i2c
->last_clock
== 1) {
183 i2c
->state
= RECEIVING_BIT7
;
185 i2c
->buffer
= i2c_recv(i2c
->bus
);
188 } else if (data
== 1 && i2c
->last_data
== 0 && clock
== 1)
193 i2c
->last_data
= data
;
194 i2c
->last_clock
= clock
;
197 static int i2c_get_data(i2c_interface
*i2c
)
202 switch (i2c
->state
) {
203 case RECEIVING_BIT7
... RECEIVING_BIT0
:
204 return (i2c
->buffer
>> 7);
206 case WAITING_FOR_ACK
:
212 static i2c_interface
*mixer_i2c
;
216 /* Audio register offsets */
217 #define MP_AUDIO_PLAYBACK_MODE 0x00
218 #define MP_AUDIO_CLOCK_DIV 0x18
219 #define MP_AUDIO_IRQ_STATUS 0x20
220 #define MP_AUDIO_IRQ_ENABLE 0x24
221 #define MP_AUDIO_TX_START_LO 0x28
222 #define MP_AUDIO_TX_THRESHOLD 0x2C
223 #define MP_AUDIO_TX_STATUS 0x38
224 #define MP_AUDIO_TX_START_HI 0x40
226 /* Status register and IRQ enable bits */
227 #define MP_AUDIO_TX_HALF (1 << 6)
228 #define MP_AUDIO_TX_FULL (1 << 7)
230 /* Playback mode bits */
231 #define MP_AUDIO_16BIT_SAMPLE (1 << 0)
232 #define MP_AUDIO_PLAYBACK_EN (1 << 7)
233 #define MP_AUDIO_CLOCK_24MHZ (1 << 9)
234 #define MP_AUDIO_MONO (1 << 14)
236 /* Wolfson 8750 I2C address */
237 #define MP_WM_ADDR 0x34
239 const char audio_name
[] = "mv88w8618";
241 typedef struct musicpal_audio_state
{
244 uint32_t playback_mode
;
247 unsigned long phys_buf
;
248 int8_t *target_buffer
;
249 unsigned int threshold
;
250 unsigned int play_pos
;
251 unsigned int last_free
;
254 } musicpal_audio_state
;
256 static void audio_callback(void *opaque
, int free_out
, int free_in
)
258 musicpal_audio_state
*s
= opaque
;
259 int16_t *codec_buffer
;
263 if (!(s
->playback_mode
& MP_AUDIO_PLAYBACK_EN
))
266 if (s
->playback_mode
& MP_AUDIO_16BIT_SAMPLE
)
269 if (!(s
->playback_mode
& MP_AUDIO_MONO
))
272 block_size
= s
->threshold
/2;
273 if (free_out
- s
->last_free
< block_size
)
276 mem_buffer
= s
->target_buffer
+ s
->play_pos
;
277 if (s
->playback_mode
& MP_AUDIO_16BIT_SAMPLE
) {
278 if (s
->playback_mode
& MP_AUDIO_MONO
) {
279 codec_buffer
= wm8750_dac_buffer(s
->wm
, block_size
>> 1);
280 for (pos
= 0; pos
< block_size
; pos
+= 2) {
281 *codec_buffer
++ = *(int16_t *)mem_buffer
;
282 *codec_buffer
++ = *(int16_t *)mem_buffer
;
286 memcpy(wm8750_dac_buffer(s
->wm
, block_size
>> 2),
287 (uint32_t *)mem_buffer
, block_size
);
289 if (s
->playback_mode
& MP_AUDIO_MONO
) {
290 codec_buffer
= wm8750_dac_buffer(s
->wm
, block_size
);
291 for (pos
= 0; pos
< block_size
; pos
++) {
292 *codec_buffer
++ = cpu_to_le16(256 * *mem_buffer
);
293 *codec_buffer
++ = cpu_to_le16(256 * *mem_buffer
++);
296 codec_buffer
= wm8750_dac_buffer(s
->wm
, block_size
>> 1);
297 for (pos
= 0; pos
< block_size
; pos
+= 2) {
298 *codec_buffer
++ = cpu_to_le16(256 * *mem_buffer
++);
299 *codec_buffer
++ = cpu_to_le16(256 * *mem_buffer
++);
303 wm8750_dac_commit(s
->wm
);
305 s
->last_free
= free_out
- block_size
;
307 if (s
->play_pos
== 0) {
308 s
->status
|= MP_AUDIO_TX_HALF
;
309 s
->play_pos
= block_size
;
311 s
->status
|= MP_AUDIO_TX_FULL
;
315 if (s
->status
& s
->irq_enable
)
316 qemu_irq_raise(s
->irq
);
319 static void musicpal_audio_clock_update(musicpal_audio_state
*s
)
323 if (s
->playback_mode
& MP_AUDIO_CLOCK_24MHZ
)
324 rate
= 24576000 / 64; /* 24.576MHz */
326 rate
= 11289600 / 64; /* 11.2896MHz */
328 rate
/= ((s
->clock_div
>> 8) & 0xff) + 1;
330 wm8750_set_bclk_in(s
->wm
, rate
);
333 static uint32_t musicpal_audio_read(void *opaque
, target_phys_addr_t offset
)
335 musicpal_audio_state
*s
= opaque
;
339 case MP_AUDIO_PLAYBACK_MODE
:
340 return s
->playback_mode
;
342 case MP_AUDIO_CLOCK_DIV
:
345 case MP_AUDIO_IRQ_STATUS
:
348 case MP_AUDIO_IRQ_ENABLE
:
349 return s
->irq_enable
;
351 case MP_AUDIO_TX_STATUS
:
352 return s
->play_pos
>> 2;
359 static void musicpal_audio_write(void *opaque
, target_phys_addr_t offset
,
362 musicpal_audio_state
*s
= opaque
;
366 case MP_AUDIO_PLAYBACK_MODE
:
367 if (value
& MP_AUDIO_PLAYBACK_EN
&&
368 !(s
->playback_mode
& MP_AUDIO_PLAYBACK_EN
)) {
373 s
->playback_mode
= value
;
374 musicpal_audio_clock_update(s
);
377 case MP_AUDIO_CLOCK_DIV
:
378 s
->clock_div
= value
;
381 musicpal_audio_clock_update(s
);
384 case MP_AUDIO_IRQ_STATUS
:
388 case MP_AUDIO_IRQ_ENABLE
:
389 s
->irq_enable
= value
;
390 if (s
->status
& s
->irq_enable
)
391 qemu_irq_raise(s
->irq
);
394 case MP_AUDIO_TX_START_LO
:
395 s
->phys_buf
= (s
->phys_buf
& 0xFFFF0000) | (value
& 0xFFFF);
396 s
->target_buffer
= target2host_addr(s
->phys_buf
);
401 case MP_AUDIO_TX_THRESHOLD
:
402 s
->threshold
= (value
+ 1) * 4;
405 case MP_AUDIO_TX_START_HI
:
406 s
->phys_buf
= (s
->phys_buf
& 0xFFFF) | (value
<< 16);
407 s
->target_buffer
= target2host_addr(s
->phys_buf
);
414 static void musicpal_audio_reset(void *opaque
)
416 musicpal_audio_state
*s
= opaque
;
418 s
->playback_mode
= 0;
423 static CPUReadMemoryFunc
*musicpal_audio_readfn
[] = {
429 static CPUWriteMemoryFunc
*musicpal_audio_writefn
[] = {
430 musicpal_audio_write
,
431 musicpal_audio_write
,
435 static i2c_interface
*musicpal_audio_init(uint32_t base
, qemu_irq irq
)
438 musicpal_audio_state
*s
;
444 AUD_log(audio_name
, "No audio state\n");
448 s
= qemu_mallocz(sizeof(musicpal_audio_state
));
454 i2c
= qemu_mallocz(sizeof(i2c_interface
));
457 i2c
->bus
= i2c_init_bus();
458 i2c
->current_addr
= -1;
460 s
->wm
= wm8750_init(i2c
->bus
, audio
);
463 i2c_set_slave_address(s
->wm
, MP_WM_ADDR
);
464 wm8750_data_req_set(s
->wm
, audio_callback
, s
);
466 iomemtype
= cpu_register_io_memory(0, musicpal_audio_readfn
,
467 musicpal_audio_writefn
, s
);
468 cpu_register_physical_memory(base
, MP_AUDIO_SIZE
, iomemtype
);
470 qemu_register_reset(musicpal_audio_reset
, s
);
474 #else /* !HAS_AUDIO */
475 static i2c_interface
*musicpal_audio_init(uint32_t base
, qemu_irq irq
)
479 #endif /* !HAS_AUDIO */
481 /* Ethernet register offsets */
482 #define MP_ETH_SMIR 0x010
483 #define MP_ETH_PCXR 0x408
484 #define MP_ETH_SDCMR 0x448
485 #define MP_ETH_ICR 0x450
486 #define MP_ETH_IMR 0x458
487 #define MP_ETH_FRDP0 0x480
488 #define MP_ETH_FRDP1 0x484
489 #define MP_ETH_FRDP2 0x488
490 #define MP_ETH_FRDP3 0x48C
491 #define MP_ETH_CRDP0 0x4A0
492 #define MP_ETH_CRDP1 0x4A4
493 #define MP_ETH_CRDP2 0x4A8
494 #define MP_ETH_CRDP3 0x4AC
495 #define MP_ETH_CTDP0 0x4E0
496 #define MP_ETH_CTDP1 0x4E4
497 #define MP_ETH_CTDP2 0x4E8
498 #define MP_ETH_CTDP3 0x4EC
501 #define MP_ETH_SMIR_DATA 0x0000FFFF
502 #define MP_ETH_SMIR_ADDR 0x03FF0000
503 #define MP_ETH_SMIR_OPCODE (1 << 26) /* Read value */
504 #define MP_ETH_SMIR_RDVALID (1 << 27)
507 #define MP_ETH_PHY1_BMSR 0x00210000
508 #define MP_ETH_PHY1_PHYSID1 0x00410000
509 #define MP_ETH_PHY1_PHYSID2 0x00610000
511 #define MP_PHY_BMSR_LINK 0x0004
512 #define MP_PHY_BMSR_AUTONEG 0x0008
514 #define MP_PHY_88E3015 0x01410E20
516 /* TX descriptor status */
517 #define MP_ETH_TX_OWN (1 << 31)
519 /* RX descriptor status */
520 #define MP_ETH_RX_OWN (1 << 31)
522 /* Interrupt cause/mask bits */
523 #define MP_ETH_IRQ_RX_BIT 0
524 #define MP_ETH_IRQ_RX (1 << MP_ETH_IRQ_RX_BIT)
525 #define MP_ETH_IRQ_TXHI_BIT 2
526 #define MP_ETH_IRQ_TXLO_BIT 3
528 /* Port config bits */
529 #define MP_ETH_PCXR_2BSM_BIT 28 /* 2-byte incoming suffix */
531 /* SDMA command bits */
532 #define MP_ETH_CMD_TXHI (1 << 23)
533 #define MP_ETH_CMD_TXLO (1 << 22)
535 typedef struct mv88w8618_tx_desc
{
543 typedef struct mv88w8618_rx_desc
{
546 uint16_t buffer_size
;
551 typedef struct mv88w8618_eth_state
{
558 mv88w8618_tx_desc
*tx_queue
[2];
559 mv88w8618_rx_desc
*rx_queue
[4];
560 mv88w8618_rx_desc
*frx_queue
[4];
561 mv88w8618_rx_desc
*cur_rx
[4];
563 } mv88w8618_eth_state
;
565 static int eth_can_receive(void *opaque
)
570 static void eth_receive(void *opaque
, const uint8_t *buf
, int size
)
572 mv88w8618_eth_state
*s
= opaque
;
573 mv88w8618_rx_desc
*desc
;
576 for (i
= 0; i
< 4; i
++) {
581 if (le32_to_cpu(desc
->cmdstat
) & MP_ETH_RX_OWN
&&
582 le16_to_cpu(desc
->buffer_size
) >= size
) {
583 memcpy(target2host_addr(le32_to_cpu(desc
->buffer
) +
586 desc
->bytes
= cpu_to_le16(size
+ s
->vlan_header
);
587 desc
->cmdstat
&= cpu_to_le32(~MP_ETH_RX_OWN
);
588 s
->cur_rx
[i
] = target2host_addr(le32_to_cpu(desc
->next
));
590 s
->icr
|= MP_ETH_IRQ_RX
;
592 qemu_irq_raise(s
->irq
);
595 desc
= target2host_addr(le32_to_cpu(desc
->next
));
596 } while (desc
!= s
->rx_queue
[i
]);
600 static void eth_send(mv88w8618_eth_state
*s
, int queue_index
)
602 mv88w8618_tx_desc
*desc
= s
->tx_queue
[queue_index
];
605 if (le32_to_cpu(desc
->cmdstat
) & MP_ETH_TX_OWN
) {
606 qemu_send_packet(s
->vc
,
607 target2host_addr(le32_to_cpu(desc
->buffer
)),
608 le16_to_cpu(desc
->bytes
));
609 desc
->cmdstat
&= cpu_to_le32(~MP_ETH_TX_OWN
);
610 s
->icr
|= 1 << (MP_ETH_IRQ_TXLO_BIT
- queue_index
);
612 desc
= target2host_addr(le32_to_cpu(desc
->next
));
613 } while (desc
!= s
->tx_queue
[queue_index
]);
616 static uint32_t mv88w8618_eth_read(void *opaque
, target_phys_addr_t offset
)
618 mv88w8618_eth_state
*s
= opaque
;
623 if (s
->smir
& MP_ETH_SMIR_OPCODE
) {
624 switch (s
->smir
& MP_ETH_SMIR_ADDR
) {
625 case MP_ETH_PHY1_BMSR
:
626 return MP_PHY_BMSR_LINK
| MP_PHY_BMSR_AUTONEG
|
628 case MP_ETH_PHY1_PHYSID1
:
629 return (MP_PHY_88E3015
>> 16) | MP_ETH_SMIR_RDVALID
;
630 case MP_ETH_PHY1_PHYSID2
:
631 return (MP_PHY_88E3015
& 0xFFFF) | MP_ETH_SMIR_RDVALID
;
633 return MP_ETH_SMIR_RDVALID
;
644 case MP_ETH_FRDP0
... MP_ETH_FRDP3
:
645 return host2target_addr(s
->frx_queue
[(offset
- MP_ETH_FRDP0
)/4]);
647 case MP_ETH_CRDP0
... MP_ETH_CRDP3
:
648 return host2target_addr(s
->rx_queue
[(offset
- MP_ETH_CRDP0
)/4]);
650 case MP_ETH_CTDP0
... MP_ETH_CTDP3
:
651 return host2target_addr(s
->tx_queue
[(offset
- MP_ETH_CTDP0
)/4]);
658 static void mv88w8618_eth_write(void *opaque
, target_phys_addr_t offset
,
661 mv88w8618_eth_state
*s
= opaque
;
670 s
->vlan_header
= ((value
>> MP_ETH_PCXR_2BSM_BIT
) & 1) * 2;
674 if (value
& MP_ETH_CMD_TXHI
)
676 if (value
& MP_ETH_CMD_TXLO
)
678 if (value
& (MP_ETH_CMD_TXHI
| MP_ETH_CMD_TXLO
) && s
->icr
& s
->imr
)
679 qemu_irq_raise(s
->irq
);
689 qemu_irq_raise(s
->irq
);
692 case MP_ETH_FRDP0
... MP_ETH_FRDP3
:
693 s
->frx_queue
[(offset
- MP_ETH_FRDP0
)/4] = target2host_addr(value
);
696 case MP_ETH_CRDP0
... MP_ETH_CRDP3
:
697 s
->rx_queue
[(offset
- MP_ETH_CRDP0
)/4] =
698 s
->cur_rx
[(offset
- MP_ETH_CRDP0
)/4] = target2host_addr(value
);
701 case MP_ETH_CTDP0
... MP_ETH_CTDP3
:
702 s
->tx_queue
[(offset
- MP_ETH_CTDP0
)/4] = target2host_addr(value
);
707 static CPUReadMemoryFunc
*mv88w8618_eth_readfn
[] = {
713 static CPUWriteMemoryFunc
*mv88w8618_eth_writefn
[] = {
719 static void mv88w8618_eth_init(NICInfo
*nd
, uint32_t base
, qemu_irq irq
)
721 mv88w8618_eth_state
*s
;
724 s
= qemu_mallocz(sizeof(mv88w8618_eth_state
));
729 s
->vc
= qemu_new_vlan_client(nd
->vlan
, eth_receive
, eth_can_receive
, s
);
730 iomemtype
= cpu_register_io_memory(0, mv88w8618_eth_readfn
,
731 mv88w8618_eth_writefn
, s
);
732 cpu_register_physical_memory(base
, MP_ETH_SIZE
, iomemtype
);
735 /* LCD register offsets */
736 #define MP_LCD_IRQCTRL 0x180
737 #define MP_LCD_IRQSTAT 0x184
738 #define MP_LCD_SPICTRL 0x1ac
739 #define MP_LCD_INST 0x1bc
740 #define MP_LCD_DATA 0x1c0
743 #define MP_LCD_SPI_DATA 0x00100011
744 #define MP_LCD_SPI_CMD 0x00104011
745 #define MP_LCD_SPI_INVALID 0x00000000
748 #define MP_LCD_INST_SETPAGE0 0xB0
750 #define MP_LCD_INST_SETPAGE7 0xB7
752 #define MP_LCD_TEXTCOLOR 0xe0e0ff /* RRGGBB */
754 typedef struct musicpal_lcd_state
{
761 QEMUConsole
*console
;
762 uint8_t video_ram
[128*64/8];
763 } musicpal_lcd_state
;
765 static uint32_t lcd_brightness
;
767 static uint8_t scale_lcd_color(uint8_t col
)
771 switch (lcd_brightness
) {
772 case 0x00000007: /* 0 */
775 case 0x00020000: /* 1 */
776 return (tmp
* 1) / 7;
778 case 0x00020001: /* 2 */
779 return (tmp
* 2) / 7;
781 case 0x00040000: /* 3 */
782 return (tmp
* 3) / 7;
784 case 0x00010006: /* 4 */
785 return (tmp
* 4) / 7;
787 case 0x00020005: /* 5 */
788 return (tmp
* 5) / 7;
790 case 0x00040003: /* 6 */
791 return (tmp
* 6) / 7;
793 case 0x00030004: /* 7 */
799 #define SET_LCD_PIXEL(depth, type) \
800 static inline void glue(set_lcd_pixel, depth) \
801 (musicpal_lcd_state *s, int x, int y, type col) \
804 type *pixel = &((type *) s->ds->data)[(y * 128 * 3 + x) * 3]; \
806 for (dy = 0; dy < 3; dy++, pixel += 127 * 3) \
807 for (dx = 0; dx < 3; dx++, pixel++) \
810 SET_LCD_PIXEL(8, uint8_t)
811 SET_LCD_PIXEL(16, uint16_t)
812 SET_LCD_PIXEL(32, uint32_t)
814 #include "pixel_ops.h"
816 static void lcd_refresh(void *opaque
)
818 musicpal_lcd_state
*s
= opaque
;
821 switch (s
->ds
->depth
) {
824 #define LCD_REFRESH(depth, func) \
826 col = func(scale_lcd_color((MP_LCD_TEXTCOLOR >> 16) & 0xff), \
827 scale_lcd_color((MP_LCD_TEXTCOLOR >> 8) & 0xff), \
828 scale_lcd_color(MP_LCD_TEXTCOLOR & 0xff)); \
829 for (x = 0; x < 128; x++) \
830 for (y = 0; y < 64; y++) \
831 if (s->video_ram[x + (y/8)*128] & (1 << (y % 8))) \
832 glue(set_lcd_pixel, depth)(s, x, y, col); \
834 glue(set_lcd_pixel, depth)(s, x, y, 0); \
836 LCD_REFRESH(8, rgb_to_pixel8
)
837 LCD_REFRESH(16, rgb_to_pixel16
)
838 LCD_REFRESH(32, (s
->ds
->bgr
? rgb_to_pixel32bgr
: rgb_to_pixel32
))
840 cpu_abort(cpu_single_env
, "unsupported colour depth %i\n",
844 dpy_update(s
->ds
, 0, 0, 128*3, 64*3);
847 static void lcd_invalidate(void *opaque
)
851 static uint32_t musicpal_lcd_read(void *opaque
, target_phys_addr_t offset
)
853 musicpal_lcd_state
*s
= opaque
;
865 static void musicpal_lcd_write(void *opaque
, target_phys_addr_t offset
,
868 musicpal_lcd_state
*s
= opaque
;
877 if (value
== MP_LCD_SPI_DATA
|| value
== MP_LCD_SPI_CMD
)
880 s
->mode
= MP_LCD_SPI_INVALID
;
884 if (value
>= MP_LCD_INST_SETPAGE0
&& value
<= MP_LCD_INST_SETPAGE7
) {
885 s
->page
= value
- MP_LCD_INST_SETPAGE0
;
891 if (s
->mode
== MP_LCD_SPI_CMD
) {
892 if (value
>= MP_LCD_INST_SETPAGE0
&&
893 value
<= MP_LCD_INST_SETPAGE7
) {
894 s
->page
= value
- MP_LCD_INST_SETPAGE0
;
897 } else if (s
->mode
== MP_LCD_SPI_DATA
) {
898 s
->video_ram
[s
->page
*128 + s
->page_off
] = value
;
899 s
->page_off
= (s
->page_off
+ 1) & 127;
905 static CPUReadMemoryFunc
*musicpal_lcd_readfn
[] = {
911 static CPUWriteMemoryFunc
*musicpal_lcd_writefn
[] = {
917 static void musicpal_lcd_init(DisplayState
*ds
, uint32_t base
)
919 musicpal_lcd_state
*s
;
922 s
= qemu_mallocz(sizeof(musicpal_lcd_state
));
927 iomemtype
= cpu_register_io_memory(0, musicpal_lcd_readfn
,
928 musicpal_lcd_writefn
, s
);
929 cpu_register_physical_memory(base
, MP_LCD_SIZE
, iomemtype
);
931 s
->console
= graphic_console_init(ds
, lcd_refresh
, lcd_invalidate
,
933 qemu_console_resize(s
->console
, 128*3, 64*3);
936 /* PIC register offsets */
937 #define MP_PIC_STATUS 0x00
938 #define MP_PIC_ENABLE_SET 0x08
939 #define MP_PIC_ENABLE_CLR 0x0C
941 typedef struct mv88w8618_pic_state
947 } mv88w8618_pic_state
;
949 static void mv88w8618_pic_update(mv88w8618_pic_state
*s
)
951 qemu_set_irq(s
->parent_irq
, (s
->level
& s
->enabled
));
954 static void mv88w8618_pic_set_irq(void *opaque
, int irq
, int level
)
956 mv88w8618_pic_state
*s
= opaque
;
959 s
->level
|= 1 << irq
;
961 s
->level
&= ~(1 << irq
);
962 mv88w8618_pic_update(s
);
965 static uint32_t mv88w8618_pic_read(void *opaque
, target_phys_addr_t offset
)
967 mv88w8618_pic_state
*s
= opaque
;
972 return s
->level
& s
->enabled
;
979 static void mv88w8618_pic_write(void *opaque
, target_phys_addr_t offset
,
982 mv88w8618_pic_state
*s
= opaque
;
986 case MP_PIC_ENABLE_SET
:
990 case MP_PIC_ENABLE_CLR
:
991 s
->enabled
&= ~value
;
995 mv88w8618_pic_update(s
);
998 static void mv88w8618_pic_reset(void *opaque
)
1000 mv88w8618_pic_state
*s
= opaque
;
1006 static CPUReadMemoryFunc
*mv88w8618_pic_readfn
[] = {
1012 static CPUWriteMemoryFunc
*mv88w8618_pic_writefn
[] = {
1013 mv88w8618_pic_write
,
1014 mv88w8618_pic_write
,
1018 static qemu_irq
*mv88w8618_pic_init(uint32_t base
, qemu_irq parent_irq
)
1020 mv88w8618_pic_state
*s
;
1024 s
= qemu_mallocz(sizeof(mv88w8618_pic_state
));
1027 qi
= qemu_allocate_irqs(mv88w8618_pic_set_irq
, s
, 32);
1029 s
->parent_irq
= parent_irq
;
1030 iomemtype
= cpu_register_io_memory(0, mv88w8618_pic_readfn
,
1031 mv88w8618_pic_writefn
, s
);
1032 cpu_register_physical_memory(base
, MP_PIC_SIZE
, iomemtype
);
1034 qemu_register_reset(mv88w8618_pic_reset
, s
);
1039 /* PIT register offsets */
1040 #define MP_PIT_TIMER1_LENGTH 0x00
1042 #define MP_PIT_TIMER4_LENGTH 0x0C
1043 #define MP_PIT_CONTROL 0x10
1044 #define MP_PIT_TIMER1_VALUE 0x14
1046 #define MP_PIT_TIMER4_VALUE 0x20
1047 #define MP_BOARD_RESET 0x34
1049 /* Magic board reset value (probably some watchdog behind it) */
1050 #define MP_BOARD_RESET_MAGIC 0x10000
1052 typedef struct mv88w8618_timer_state
{
1053 ptimer_state
*timer
;
1057 } mv88w8618_timer_state
;
1059 typedef struct mv88w8618_pit_state
{
1063 } mv88w8618_pit_state
;
1065 static void mv88w8618_timer_tick(void *opaque
)
1067 mv88w8618_timer_state
*s
= opaque
;
1069 qemu_irq_raise(s
->irq
);
1072 static void *mv88w8618_timer_init(uint32_t freq
, qemu_irq irq
)
1074 mv88w8618_timer_state
*s
;
1077 s
= qemu_mallocz(sizeof(mv88w8618_timer_state
));
1081 bh
= qemu_bh_new(mv88w8618_timer_tick
, s
);
1082 s
->timer
= ptimer_init(bh
);
1087 static uint32_t mv88w8618_pit_read(void *opaque
, target_phys_addr_t offset
)
1089 mv88w8618_pit_state
*s
= opaque
;
1090 mv88w8618_timer_state
*t
;
1094 case MP_PIT_TIMER1_VALUE
... MP_PIT_TIMER4_VALUE
:
1095 t
= s
->timer
[(offset
-MP_PIT_TIMER1_VALUE
) >> 2];
1096 return ptimer_get_count(t
->timer
);
1103 static void mv88w8618_pit_write(void *opaque
, target_phys_addr_t offset
,
1106 mv88w8618_pit_state
*s
= opaque
;
1107 mv88w8618_timer_state
*t
;
1112 case MP_PIT_TIMER1_LENGTH
... MP_PIT_TIMER4_LENGTH
:
1113 t
= s
->timer
[offset
>> 2];
1115 ptimer_set_limit(t
->timer
, t
->limit
, 1);
1118 case MP_PIT_CONTROL
:
1119 for (i
= 0; i
< 4; i
++) {
1122 ptimer_set_limit(t
->timer
, t
->limit
, 0);
1123 ptimer_set_freq(t
->timer
, t
->freq
);
1124 ptimer_run(t
->timer
, 0);
1130 case MP_BOARD_RESET
:
1131 if (value
== MP_BOARD_RESET_MAGIC
)
1132 qemu_system_reset_request();
1137 static CPUReadMemoryFunc
*mv88w8618_pit_readfn
[] = {
1143 static CPUWriteMemoryFunc
*mv88w8618_pit_writefn
[] = {
1144 mv88w8618_pit_write
,
1145 mv88w8618_pit_write
,
1149 static void mv88w8618_pit_init(uint32_t base
, qemu_irq
*pic
, int irq
)
1152 mv88w8618_pit_state
*s
;
1154 s
= qemu_mallocz(sizeof(mv88w8618_pit_state
));
1159 /* Letting them all run at 1 MHz is likely just a pragmatic
1160 * simplification. */
1161 s
->timer
[0] = mv88w8618_timer_init(1000000, pic
[irq
]);
1162 s
->timer
[1] = mv88w8618_timer_init(1000000, pic
[irq
+ 1]);
1163 s
->timer
[2] = mv88w8618_timer_init(1000000, pic
[irq
+ 2]);
1164 s
->timer
[3] = mv88w8618_timer_init(1000000, pic
[irq
+ 3]);
1166 iomemtype
= cpu_register_io_memory(0, mv88w8618_pit_readfn
,
1167 mv88w8618_pit_writefn
, s
);
1168 cpu_register_physical_memory(base
, MP_PIT_SIZE
, iomemtype
);
1171 /* Flash config register offsets */
1172 #define MP_FLASHCFG_CFGR0 0x04
1174 typedef struct mv88w8618_flashcfg_state
{
1177 } mv88w8618_flashcfg_state
;
1179 static uint32_t mv88w8618_flashcfg_read(void *opaque
,
1180 target_phys_addr_t offset
)
1182 mv88w8618_flashcfg_state
*s
= opaque
;
1186 case MP_FLASHCFG_CFGR0
:
1194 static void mv88w8618_flashcfg_write(void *opaque
, target_phys_addr_t offset
,
1197 mv88w8618_flashcfg_state
*s
= opaque
;
1201 case MP_FLASHCFG_CFGR0
:
1207 static CPUReadMemoryFunc
*mv88w8618_flashcfg_readfn
[] = {
1208 mv88w8618_flashcfg_read
,
1209 mv88w8618_flashcfg_read
,
1210 mv88w8618_flashcfg_read
1213 static CPUWriteMemoryFunc
*mv88w8618_flashcfg_writefn
[] = {
1214 mv88w8618_flashcfg_write
,
1215 mv88w8618_flashcfg_write
,
1216 mv88w8618_flashcfg_write
1219 static void mv88w8618_flashcfg_init(uint32_t base
)
1222 mv88w8618_flashcfg_state
*s
;
1224 s
= qemu_mallocz(sizeof(mv88w8618_flashcfg_state
));
1229 s
->cfgr0
= 0xfffe4285; /* Default as set by U-Boot for 8 MB flash */
1230 iomemtype
= cpu_register_io_memory(0, mv88w8618_flashcfg_readfn
,
1231 mv88w8618_flashcfg_writefn
, s
);
1232 cpu_register_physical_memory(base
, MP_FLASHCFG_SIZE
, iomemtype
);
1235 /* Various registers in the 0x80000000 domain */
1236 #define MP_BOARD_REVISION 0x2018
1238 #define MP_WLAN_MAGIC1 0xc11c
1239 #define MP_WLAN_MAGIC2 0xc124
1241 #define MP_GPIO_OE_LO 0xd008
1242 #define MP_GPIO_OUT_LO 0xd00c
1243 #define MP_GPIO_IN_LO 0xd010
1244 #define MP_GPIO_ISR_LO 0xd020
1245 #define MP_GPIO_OE_HI 0xd508
1246 #define MP_GPIO_OUT_HI 0xd50c
1247 #define MP_GPIO_IN_HI 0xd510
1248 #define MP_GPIO_ISR_HI 0xd520
1250 /* GPIO bits & masks */
1251 #define MP_GPIO_WHEEL_VOL (1 << 8)
1252 #define MP_GPIO_WHEEL_VOL_INV (1 << 9)
1253 #define MP_GPIO_WHEEL_NAV (1 << 10)
1254 #define MP_GPIO_WHEEL_NAV_INV (1 << 11)
1255 #define MP_GPIO_LCD_BRIGHTNESS 0x00070000
1256 #define MP_GPIO_BTN_FAVORITS (1 << 19)
1257 #define MP_GPIO_BTN_MENU (1 << 20)
1258 #define MP_GPIO_BTN_VOLUME (1 << 21)
1259 #define MP_GPIO_BTN_NAVIGATION (1 << 22)
1260 #define MP_GPIO_I2C_DATA_BIT 29
1261 #define MP_GPIO_I2C_DATA (1 << MP_GPIO_I2C_DATA_BIT)
1262 #define MP_GPIO_I2C_CLOCK_BIT 30
1264 /* LCD brightness bits in GPIO_OE_HI */
1265 #define MP_OE_LCD_BRIGHTNESS 0x0007
1267 static uint32_t musicpal_read(void *opaque
, target_phys_addr_t offset
)
1269 offset
-= 0x80000000;
1271 case MP_BOARD_REVISION
:
1274 case MP_GPIO_OE_HI
: /* used for LCD brightness control */
1275 return lcd_brightness
& MP_OE_LCD_BRIGHTNESS
;
1277 case MP_GPIO_OUT_LO
:
1278 return gpio_out_state
& 0xFFFF;
1279 case MP_GPIO_OUT_HI
:
1280 return gpio_out_state
>> 16;
1283 return gpio_in_state
& 0xFFFF;
1285 /* Update received I2C data */
1286 gpio_in_state
= (gpio_in_state
& ~MP_GPIO_I2C_DATA
) |
1287 (i2c_get_data(mixer_i2c
) << MP_GPIO_I2C_DATA_BIT
);
1288 return gpio_in_state
>> 16;
1290 case MP_GPIO_ISR_LO
:
1291 return gpio_isr
& 0xFFFF;
1292 case MP_GPIO_ISR_HI
:
1293 return gpio_isr
>> 16;
1295 /* Workaround to allow loading the binary-only wlandrv.ko crap
1296 * from the original Freecom firmware. */
1297 case MP_WLAN_MAGIC1
:
1299 case MP_WLAN_MAGIC2
:
1307 static void musicpal_write(void *opaque
, target_phys_addr_t offset
,
1310 offset
-= 0x80000000;
1312 case MP_GPIO_OE_HI
: /* used for LCD brightness control */
1313 lcd_brightness
= (lcd_brightness
& MP_GPIO_LCD_BRIGHTNESS
) |
1314 (value
& MP_OE_LCD_BRIGHTNESS
);
1317 case MP_GPIO_OUT_LO
:
1318 gpio_out_state
= (gpio_out_state
& 0xFFFF0000) | (value
& 0xFFFF);
1320 case MP_GPIO_OUT_HI
:
1321 gpio_out_state
= (gpio_out_state
& 0xFFFF) | (value
<< 16);
1322 lcd_brightness
= (lcd_brightness
& 0xFFFF) |
1323 (gpio_out_state
& MP_GPIO_LCD_BRIGHTNESS
);
1324 i2c_state_update(mixer_i2c
,
1325 (gpio_out_state
>> MP_GPIO_I2C_DATA_BIT
) & 1,
1326 (gpio_out_state
>> MP_GPIO_I2C_CLOCK_BIT
) & 1);
1332 /* Keyboard codes & masks */
1333 #define KEY_RELEASED 0x80
1334 #define KEY_CODE 0x7f
1336 #define KEYCODE_TAB 0x0f
1337 #define KEYCODE_ENTER 0x1c
1338 #define KEYCODE_F 0x21
1339 #define KEYCODE_M 0x32
1341 #define KEYCODE_EXTENDED 0xe0
1342 #define KEYCODE_UP 0x48
1343 #define KEYCODE_DOWN 0x50
1344 #define KEYCODE_LEFT 0x4b
1345 #define KEYCODE_RIGHT 0x4d
1347 static void musicpal_key_event(void *opaque
, int keycode
)
1349 qemu_irq irq
= opaque
;
1351 static int kbd_extended
;
1353 if (keycode
== KEYCODE_EXTENDED
) {
1359 switch (keycode
& KEY_CODE
) {
1361 event
= MP_GPIO_WHEEL_NAV
| MP_GPIO_WHEEL_NAV_INV
;
1365 event
= MP_GPIO_WHEEL_NAV
;
1369 event
= MP_GPIO_WHEEL_VOL
| MP_GPIO_WHEEL_VOL_INV
;
1373 event
= MP_GPIO_WHEEL_VOL
;
1377 switch (keycode
& KEY_CODE
) {
1379 event
= MP_GPIO_BTN_FAVORITS
;
1383 event
= MP_GPIO_BTN_VOLUME
;
1387 event
= MP_GPIO_BTN_NAVIGATION
;
1391 event
= MP_GPIO_BTN_MENU
;
1394 /* Do not repeat already pressed buttons */
1395 if (!(keycode
& KEY_RELEASED
) && !(gpio_in_state
& event
))
1400 if (keycode
& KEY_RELEASED
) {
1401 gpio_in_state
|= event
;
1403 gpio_in_state
&= ~event
;
1405 qemu_irq_raise(irq
);
1412 static CPUReadMemoryFunc
*musicpal_readfn
[] = {
1418 static CPUWriteMemoryFunc
*musicpal_writefn
[] = {
1424 static struct arm_boot_info musicpal_binfo
= {
1425 .loader_start
= 0x0,
1429 static void musicpal_init(ram_addr_t ram_size
, int vga_ram_size
,
1430 const char *boot_device
, DisplayState
*ds
,
1431 const char *kernel_filename
, const char *kernel_cmdline
,
1432 const char *initrd_filename
, const char *cpu_model
)
1438 unsigned long flash_size
;
1441 cpu_model
= "arm926";
1443 env
= cpu_init(cpu_model
);
1445 fprintf(stderr
, "Unable to find CPU definition\n");
1448 pic
= arm_pic_init_cpu(env
);
1450 /* For now we use a fixed - the original - RAM size */
1451 cpu_register_physical_memory(0, MP_RAM_DEFAULT_SIZE
,
1452 qemu_ram_alloc(MP_RAM_DEFAULT_SIZE
));
1454 sram_off
= qemu_ram_alloc(MP_SRAM_SIZE
);
1455 cpu_register_physical_memory(MP_SRAM_BASE
, MP_SRAM_SIZE
, sram_off
);
1457 /* Catch various stuff not handled by separate subsystems */
1458 iomemtype
= cpu_register_io_memory(0, musicpal_readfn
,
1459 musicpal_writefn
, env
);
1460 cpu_register_physical_memory(0x80000000, 0x10000, iomemtype
);
1462 pic
= mv88w8618_pic_init(MP_PIC_BASE
, pic
[ARM_PIC_CPU_IRQ
]);
1463 mv88w8618_pit_init(MP_PIT_BASE
, pic
, MP_TIMER1_IRQ
);
1466 serial_mm_init(MP_UART1_BASE
, 2, pic
[MP_UART1_IRQ
], 1825000,
1469 serial_mm_init(MP_UART2_BASE
, 2, pic
[MP_UART2_IRQ
], 1825000,
1472 /* Register flash */
1473 index
= drive_get_index(IF_PFLASH
, 0, 0);
1475 flash_size
= bdrv_getlength(drives_table
[index
].bdrv
);
1476 if (flash_size
!= 8*1024*1024 && flash_size
!= 16*1024*1024 &&
1477 flash_size
!= 32*1024*1024) {
1478 fprintf(stderr
, "Invalid flash image size\n");
1483 * The original U-Boot accesses the flash at 0xFE000000 instead of
1484 * 0xFF800000 (if there is 8 MB flash). So remap flash access if the
1485 * image is smaller than 32 MB.
1487 pflash_cfi02_register(0-MP_FLASH_SIZE_MAX
, qemu_ram_alloc(flash_size
),
1488 drives_table
[index
].bdrv
, 0x10000,
1489 (flash_size
+ 0xffff) >> 16,
1490 MP_FLASH_SIZE_MAX
/ flash_size
,
1491 2, 0x00BF, 0x236D, 0x0000, 0x0000,
1494 mv88w8618_flashcfg_init(MP_FLASHCFG_BASE
);
1496 musicpal_lcd_init(ds
, MP_LCD_BASE
);
1498 qemu_add_kbd_event_handler(musicpal_key_event
, pic
[MP_GPIO_IRQ
]);
1500 mv88w8618_eth_init(&nd_table
[0], MP_ETH_BASE
, pic
[MP_ETH_IRQ
]);
1502 mixer_i2c
= musicpal_audio_init(MP_AUDIO_BASE
, pic
[MP_AUDIO_IRQ
]);
1504 musicpal_binfo
.ram_size
= MP_RAM_DEFAULT_SIZE
;
1505 musicpal_binfo
.kernel_filename
= kernel_filename
;
1506 musicpal_binfo
.kernel_cmdline
= kernel_cmdline
;
1507 musicpal_binfo
.initrd_filename
= initrd_filename
;
1508 arm_load_kernel(env
, &musicpal_binfo
);
1511 QEMUMachine musicpal_machine
= {
1513 .desc
= "Marvell 88w8618 / MusicPal (ARM926EJ-S)",
1514 .init
= musicpal_init
,
1515 .ram_require
= MP_RAM_DEFAULT_SIZE
+ MP_SRAM_SIZE
+ MP_FLASH_SIZE_MAX
+ RAMSIZE_FIXED
,