CRIS: Add support for the pseudo randomized set that the mmu provides with TLB refill...
[qemu/qemu-JZ.git] / exec.c
blob2fd00782e8fb41c6f1be849c59627b7364330e63
1 /*
2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "config.h"
21 #ifdef _WIN32
22 #define WIN32_LEAN_AND_MEAN
23 #include <windows.h>
24 #else
25 #include <sys/types.h>
26 #include <sys/mman.h>
27 #endif
28 #include <stdlib.h>
29 #include <stdio.h>
30 #include <stdarg.h>
31 #include <string.h>
32 #include <errno.h>
33 #include <unistd.h>
34 #include <inttypes.h>
36 #include "cpu.h"
37 #include "exec-all.h"
38 #include "qemu-common.h"
39 #if defined(CONFIG_USER_ONLY)
40 #include <qemu.h>
41 #endif
43 //#define DEBUG_TB_INVALIDATE
44 //#define DEBUG_FLUSH
45 //#define DEBUG_TLB
46 //#define DEBUG_UNASSIGNED
48 /* make various TB consistency checks */
49 //#define DEBUG_TB_CHECK
50 //#define DEBUG_TLB_CHECK
52 //#define DEBUG_IOPORT
53 //#define DEBUG_SUBPAGE
55 #if !defined(CONFIG_USER_ONLY)
56 /* TB consistency checks only implemented for usermode emulation. */
57 #undef DEBUG_TB_CHECK
58 #endif
60 /* threshold to flush the translated code buffer */
61 #define CODE_GEN_BUFFER_MAX_SIZE (CODE_GEN_BUFFER_SIZE - code_gen_max_block_size())
63 #define SMC_BITMAP_USE_THRESHOLD 10
65 #define MMAP_AREA_START 0x00000000
66 #define MMAP_AREA_END 0xa8000000
68 #if defined(TARGET_SPARC64)
69 #define TARGET_PHYS_ADDR_SPACE_BITS 41
70 #elif defined(TARGET_SPARC)
71 #define TARGET_PHYS_ADDR_SPACE_BITS 36
72 #elif defined(TARGET_ALPHA)
73 #define TARGET_PHYS_ADDR_SPACE_BITS 42
74 #define TARGET_VIRT_ADDR_SPACE_BITS 42
75 #elif defined(TARGET_PPC64)
76 #define TARGET_PHYS_ADDR_SPACE_BITS 42
77 #elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
78 #define TARGET_PHYS_ADDR_SPACE_BITS 42
79 #elif defined(TARGET_I386) && !defined(USE_KQEMU)
80 #define TARGET_PHYS_ADDR_SPACE_BITS 36
81 #else
82 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
83 #define TARGET_PHYS_ADDR_SPACE_BITS 32
84 #endif
86 TranslationBlock tbs[CODE_GEN_MAX_BLOCKS];
87 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
88 int nb_tbs;
89 /* any access to the tbs or the page table must use this lock */
90 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
92 uint8_t code_gen_prologue[1024] __attribute__((aligned (32)));
93 uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE] __attribute__((aligned (32)));
94 uint8_t *code_gen_ptr;
96 ram_addr_t phys_ram_size;
97 int phys_ram_fd;
98 uint8_t *phys_ram_base;
99 uint8_t *phys_ram_dirty;
100 static ram_addr_t phys_ram_alloc_offset = 0;
102 CPUState *first_cpu;
103 /* current CPU in the current thread. It is only valid inside
104 cpu_exec() */
105 CPUState *cpu_single_env;
107 typedef struct PageDesc {
108 /* list of TBs intersecting this ram page */
109 TranslationBlock *first_tb;
110 /* in order to optimize self modifying code, we count the number
111 of lookups we do to a given page to use a bitmap */
112 unsigned int code_write_count;
113 uint8_t *code_bitmap;
114 #if defined(CONFIG_USER_ONLY)
115 unsigned long flags;
116 #endif
117 } PageDesc;
119 typedef struct PhysPageDesc {
120 /* offset in host memory of the page + io_index in the low 12 bits */
121 ram_addr_t phys_offset;
122 } PhysPageDesc;
124 #define L2_BITS 10
125 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
126 /* XXX: this is a temporary hack for alpha target.
127 * In the future, this is to be replaced by a multi-level table
128 * to actually be able to handle the complete 64 bits address space.
130 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
131 #else
132 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
133 #endif
135 #define L1_SIZE (1 << L1_BITS)
136 #define L2_SIZE (1 << L2_BITS)
138 static void io_mem_init(void);
140 unsigned long qemu_real_host_page_size;
141 unsigned long qemu_host_page_bits;
142 unsigned long qemu_host_page_size;
143 unsigned long qemu_host_page_mask;
145 /* XXX: for system emulation, it could just be an array */
146 static PageDesc *l1_map[L1_SIZE];
147 PhysPageDesc **l1_phys_map;
149 /* io memory support */
150 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
151 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
152 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
153 static int io_mem_nb;
154 #if defined(CONFIG_SOFTMMU)
155 static int io_mem_watch;
156 #endif
158 /* log support */
159 char *logfilename = "/tmp/qemu.log";
160 FILE *logfile;
161 int loglevel;
162 static int log_append = 0;
164 /* statistics */
165 static int tlb_flush_count;
166 static int tb_flush_count;
167 static int tb_phys_invalidate_count;
169 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
170 typedef struct subpage_t {
171 target_phys_addr_t base;
172 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
173 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
174 void *opaque[TARGET_PAGE_SIZE][2][4];
175 } subpage_t;
177 #ifdef _WIN32
178 static void map_exec(void *addr, long size)
180 DWORD old_protect;
181 VirtualProtect(addr, size,
182 PAGE_EXECUTE_READWRITE, &old_protect);
185 #else
186 static void map_exec(void *addr, long size)
188 unsigned long start, end;
190 start = (unsigned long)addr;
191 start &= ~(qemu_real_host_page_size - 1);
193 end = (unsigned long)addr + size;
194 end += qemu_real_host_page_size - 1;
195 end &= ~(qemu_real_host_page_size - 1);
197 mprotect((void *)start, end - start,
198 PROT_READ | PROT_WRITE | PROT_EXEC);
200 #endif
202 static void page_init(void)
204 /* NOTE: we can always suppose that qemu_host_page_size >=
205 TARGET_PAGE_SIZE */
206 #ifdef _WIN32
208 SYSTEM_INFO system_info;
209 DWORD old_protect;
211 GetSystemInfo(&system_info);
212 qemu_real_host_page_size = system_info.dwPageSize;
214 #else
215 qemu_real_host_page_size = getpagesize();
216 #endif
217 map_exec(code_gen_buffer, sizeof(code_gen_buffer));
218 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
220 if (qemu_host_page_size == 0)
221 qemu_host_page_size = qemu_real_host_page_size;
222 if (qemu_host_page_size < TARGET_PAGE_SIZE)
223 qemu_host_page_size = TARGET_PAGE_SIZE;
224 qemu_host_page_bits = 0;
225 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
226 qemu_host_page_bits++;
227 qemu_host_page_mask = ~(qemu_host_page_size - 1);
228 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
229 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
231 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
233 long long startaddr, endaddr;
234 FILE *f;
235 int n;
237 f = fopen("/proc/self/maps", "r");
238 if (f) {
239 do {
240 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
241 if (n == 2) {
242 startaddr = MIN(startaddr,
243 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
244 endaddr = MIN(endaddr,
245 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
246 page_set_flags(TARGET_PAGE_ALIGN(startaddr),
247 TARGET_PAGE_ALIGN(endaddr),
248 PAGE_RESERVED);
250 } while (!feof(f));
251 fclose(f);
254 #endif
257 static inline PageDesc *page_find_alloc(target_ulong index)
259 PageDesc **lp, *p;
261 lp = &l1_map[index >> L2_BITS];
262 p = *lp;
263 if (!p) {
264 /* allocate if not found */
265 p = qemu_malloc(sizeof(PageDesc) * L2_SIZE);
266 memset(p, 0, sizeof(PageDesc) * L2_SIZE);
267 *lp = p;
269 return p + (index & (L2_SIZE - 1));
272 static inline PageDesc *page_find(target_ulong index)
274 PageDesc *p;
276 p = l1_map[index >> L2_BITS];
277 if (!p)
278 return 0;
279 return p + (index & (L2_SIZE - 1));
282 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
284 void **lp, **p;
285 PhysPageDesc *pd;
287 p = (void **)l1_phys_map;
288 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
290 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
291 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
292 #endif
293 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
294 p = *lp;
295 if (!p) {
296 /* allocate if not found */
297 if (!alloc)
298 return NULL;
299 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
300 memset(p, 0, sizeof(void *) * L1_SIZE);
301 *lp = p;
303 #endif
304 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
305 pd = *lp;
306 if (!pd) {
307 int i;
308 /* allocate if not found */
309 if (!alloc)
310 return NULL;
311 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
312 *lp = pd;
313 for (i = 0; i < L2_SIZE; i++)
314 pd[i].phys_offset = IO_MEM_UNASSIGNED;
316 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
319 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
321 return phys_page_find_alloc(index, 0);
324 #if !defined(CONFIG_USER_ONLY)
325 static void tlb_protect_code(ram_addr_t ram_addr);
326 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
327 target_ulong vaddr);
328 #endif
330 void cpu_exec_init(CPUState *env)
332 CPUState **penv;
333 int cpu_index;
335 if (!code_gen_ptr) {
336 cpu_gen_init();
337 code_gen_ptr = code_gen_buffer;
338 page_init();
339 io_mem_init();
341 env->next_cpu = NULL;
342 penv = &first_cpu;
343 cpu_index = 0;
344 while (*penv != NULL) {
345 penv = (CPUState **)&(*penv)->next_cpu;
346 cpu_index++;
348 env->cpu_index = cpu_index;
349 env->nb_watchpoints = 0;
350 *penv = env;
353 static inline void invalidate_page_bitmap(PageDesc *p)
355 if (p->code_bitmap) {
356 qemu_free(p->code_bitmap);
357 p->code_bitmap = NULL;
359 p->code_write_count = 0;
362 /* set to NULL all the 'first_tb' fields in all PageDescs */
363 static void page_flush_tb(void)
365 int i, j;
366 PageDesc *p;
368 for(i = 0; i < L1_SIZE; i++) {
369 p = l1_map[i];
370 if (p) {
371 for(j = 0; j < L2_SIZE; j++) {
372 p->first_tb = NULL;
373 invalidate_page_bitmap(p);
374 p++;
380 /* flush all the translation blocks */
381 /* XXX: tb_flush is currently not thread safe */
382 void tb_flush(CPUState *env1)
384 CPUState *env;
385 #if defined(DEBUG_FLUSH)
386 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
387 (unsigned long)(code_gen_ptr - code_gen_buffer),
388 nb_tbs, nb_tbs > 0 ?
389 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
390 #endif
391 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > CODE_GEN_BUFFER_SIZE)
392 cpu_abort(env1, "Internal error: code buffer overflow\n");
394 nb_tbs = 0;
396 for(env = first_cpu; env != NULL; env = env->next_cpu) {
397 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
400 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
401 page_flush_tb();
403 code_gen_ptr = code_gen_buffer;
404 /* XXX: flush processor icache at this point if cache flush is
405 expensive */
406 tb_flush_count++;
409 #ifdef DEBUG_TB_CHECK
411 static void tb_invalidate_check(target_ulong address)
413 TranslationBlock *tb;
414 int i;
415 address &= TARGET_PAGE_MASK;
416 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
417 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
418 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
419 address >= tb->pc + tb->size)) {
420 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
421 address, (long)tb->pc, tb->size);
427 /* verify that all the pages have correct rights for code */
428 static void tb_page_check(void)
430 TranslationBlock *tb;
431 int i, flags1, flags2;
433 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
434 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
435 flags1 = page_get_flags(tb->pc);
436 flags2 = page_get_flags(tb->pc + tb->size - 1);
437 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
438 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
439 (long)tb->pc, tb->size, flags1, flags2);
445 void tb_jmp_check(TranslationBlock *tb)
447 TranslationBlock *tb1;
448 unsigned int n1;
450 /* suppress any remaining jumps to this TB */
451 tb1 = tb->jmp_first;
452 for(;;) {
453 n1 = (long)tb1 & 3;
454 tb1 = (TranslationBlock *)((long)tb1 & ~3);
455 if (n1 == 2)
456 break;
457 tb1 = tb1->jmp_next[n1];
459 /* check end of list */
460 if (tb1 != tb) {
461 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
465 #endif
467 /* invalidate one TB */
468 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
469 int next_offset)
471 TranslationBlock *tb1;
472 for(;;) {
473 tb1 = *ptb;
474 if (tb1 == tb) {
475 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
476 break;
478 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
482 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
484 TranslationBlock *tb1;
485 unsigned int n1;
487 for(;;) {
488 tb1 = *ptb;
489 n1 = (long)tb1 & 3;
490 tb1 = (TranslationBlock *)((long)tb1 & ~3);
491 if (tb1 == tb) {
492 *ptb = tb1->page_next[n1];
493 break;
495 ptb = &tb1->page_next[n1];
499 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
501 TranslationBlock *tb1, **ptb;
502 unsigned int n1;
504 ptb = &tb->jmp_next[n];
505 tb1 = *ptb;
506 if (tb1) {
507 /* find tb(n) in circular list */
508 for(;;) {
509 tb1 = *ptb;
510 n1 = (long)tb1 & 3;
511 tb1 = (TranslationBlock *)((long)tb1 & ~3);
512 if (n1 == n && tb1 == tb)
513 break;
514 if (n1 == 2) {
515 ptb = &tb1->jmp_first;
516 } else {
517 ptb = &tb1->jmp_next[n1];
520 /* now we can suppress tb(n) from the list */
521 *ptb = tb->jmp_next[n];
523 tb->jmp_next[n] = NULL;
527 /* reset the jump entry 'n' of a TB so that it is not chained to
528 another TB */
529 static inline void tb_reset_jump(TranslationBlock *tb, int n)
531 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
534 static inline void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
536 CPUState *env;
537 PageDesc *p;
538 unsigned int h, n1;
539 target_phys_addr_t phys_pc;
540 TranslationBlock *tb1, *tb2;
542 /* remove the TB from the hash list */
543 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
544 h = tb_phys_hash_func(phys_pc);
545 tb_remove(&tb_phys_hash[h], tb,
546 offsetof(TranslationBlock, phys_hash_next));
548 /* remove the TB from the page list */
549 if (tb->page_addr[0] != page_addr) {
550 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
551 tb_page_remove(&p->first_tb, tb);
552 invalidate_page_bitmap(p);
554 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
555 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
556 tb_page_remove(&p->first_tb, tb);
557 invalidate_page_bitmap(p);
560 tb_invalidated_flag = 1;
562 /* remove the TB from the hash list */
563 h = tb_jmp_cache_hash_func(tb->pc);
564 for(env = first_cpu; env != NULL; env = env->next_cpu) {
565 if (env->tb_jmp_cache[h] == tb)
566 env->tb_jmp_cache[h] = NULL;
569 /* suppress this TB from the two jump lists */
570 tb_jmp_remove(tb, 0);
571 tb_jmp_remove(tb, 1);
573 /* suppress any remaining jumps to this TB */
574 tb1 = tb->jmp_first;
575 for(;;) {
576 n1 = (long)tb1 & 3;
577 if (n1 == 2)
578 break;
579 tb1 = (TranslationBlock *)((long)tb1 & ~3);
580 tb2 = tb1->jmp_next[n1];
581 tb_reset_jump(tb1, n1);
582 tb1->jmp_next[n1] = NULL;
583 tb1 = tb2;
585 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
587 tb_phys_invalidate_count++;
590 static inline void set_bits(uint8_t *tab, int start, int len)
592 int end, mask, end1;
594 end = start + len;
595 tab += start >> 3;
596 mask = 0xff << (start & 7);
597 if ((start & ~7) == (end & ~7)) {
598 if (start < end) {
599 mask &= ~(0xff << (end & 7));
600 *tab |= mask;
602 } else {
603 *tab++ |= mask;
604 start = (start + 8) & ~7;
605 end1 = end & ~7;
606 while (start < end1) {
607 *tab++ = 0xff;
608 start += 8;
610 if (start < end) {
611 mask = ~(0xff << (end & 7));
612 *tab |= mask;
617 static void build_page_bitmap(PageDesc *p)
619 int n, tb_start, tb_end;
620 TranslationBlock *tb;
622 p->code_bitmap = qemu_malloc(TARGET_PAGE_SIZE / 8);
623 if (!p->code_bitmap)
624 return;
625 memset(p->code_bitmap, 0, TARGET_PAGE_SIZE / 8);
627 tb = p->first_tb;
628 while (tb != NULL) {
629 n = (long)tb & 3;
630 tb = (TranslationBlock *)((long)tb & ~3);
631 /* NOTE: this is subtle as a TB may span two physical pages */
632 if (n == 0) {
633 /* NOTE: tb_end may be after the end of the page, but
634 it is not a problem */
635 tb_start = tb->pc & ~TARGET_PAGE_MASK;
636 tb_end = tb_start + tb->size;
637 if (tb_end > TARGET_PAGE_SIZE)
638 tb_end = TARGET_PAGE_SIZE;
639 } else {
640 tb_start = 0;
641 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
643 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
644 tb = tb->page_next[n];
648 #ifdef TARGET_HAS_PRECISE_SMC
650 static void tb_gen_code(CPUState *env,
651 target_ulong pc, target_ulong cs_base, int flags,
652 int cflags)
654 TranslationBlock *tb;
655 uint8_t *tc_ptr;
656 target_ulong phys_pc, phys_page2, virt_page2;
657 int code_gen_size;
659 phys_pc = get_phys_addr_code(env, pc);
660 tb = tb_alloc(pc);
661 if (!tb) {
662 /* flush must be done */
663 tb_flush(env);
664 /* cannot fail at this point */
665 tb = tb_alloc(pc);
667 tc_ptr = code_gen_ptr;
668 tb->tc_ptr = tc_ptr;
669 tb->cs_base = cs_base;
670 tb->flags = flags;
671 tb->cflags = cflags;
672 cpu_gen_code(env, tb, &code_gen_size);
673 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
675 /* check next page if needed */
676 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
677 phys_page2 = -1;
678 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
679 phys_page2 = get_phys_addr_code(env, virt_page2);
681 tb_link_phys(tb, phys_pc, phys_page2);
683 #endif
685 /* invalidate all TBs which intersect with the target physical page
686 starting in range [start;end[. NOTE: start and end must refer to
687 the same physical page. 'is_cpu_write_access' should be true if called
688 from a real cpu write access: the virtual CPU will exit the current
689 TB if code is modified inside this TB. */
690 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
691 int is_cpu_write_access)
693 int n, current_tb_modified, current_tb_not_found, current_flags;
694 CPUState *env = cpu_single_env;
695 PageDesc *p;
696 TranslationBlock *tb, *tb_next, *current_tb, *saved_tb;
697 target_ulong tb_start, tb_end;
698 target_ulong current_pc, current_cs_base;
700 p = page_find(start >> TARGET_PAGE_BITS);
701 if (!p)
702 return;
703 if (!p->code_bitmap &&
704 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
705 is_cpu_write_access) {
706 /* build code bitmap */
707 build_page_bitmap(p);
710 /* we remove all the TBs in the range [start, end[ */
711 /* XXX: see if in some cases it could be faster to invalidate all the code */
712 current_tb_not_found = is_cpu_write_access;
713 current_tb_modified = 0;
714 current_tb = NULL; /* avoid warning */
715 current_pc = 0; /* avoid warning */
716 current_cs_base = 0; /* avoid warning */
717 current_flags = 0; /* avoid warning */
718 tb = p->first_tb;
719 while (tb != NULL) {
720 n = (long)tb & 3;
721 tb = (TranslationBlock *)((long)tb & ~3);
722 tb_next = tb->page_next[n];
723 /* NOTE: this is subtle as a TB may span two physical pages */
724 if (n == 0) {
725 /* NOTE: tb_end may be after the end of the page, but
726 it is not a problem */
727 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
728 tb_end = tb_start + tb->size;
729 } else {
730 tb_start = tb->page_addr[1];
731 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
733 if (!(tb_end <= start || tb_start >= end)) {
734 #ifdef TARGET_HAS_PRECISE_SMC
735 if (current_tb_not_found) {
736 current_tb_not_found = 0;
737 current_tb = NULL;
738 if (env->mem_write_pc) {
739 /* now we have a real cpu fault */
740 current_tb = tb_find_pc(env->mem_write_pc);
743 if (current_tb == tb &&
744 !(current_tb->cflags & CF_SINGLE_INSN)) {
745 /* If we are modifying the current TB, we must stop
746 its execution. We could be more precise by checking
747 that the modification is after the current PC, but it
748 would require a specialized function to partially
749 restore the CPU state */
751 current_tb_modified = 1;
752 cpu_restore_state(current_tb, env,
753 env->mem_write_pc, NULL);
754 #if defined(TARGET_I386)
755 current_flags = env->hflags;
756 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
757 current_cs_base = (target_ulong)env->segs[R_CS].base;
758 current_pc = current_cs_base + env->eip;
759 #else
760 #error unsupported CPU
761 #endif
763 #endif /* TARGET_HAS_PRECISE_SMC */
764 /* we need to do that to handle the case where a signal
765 occurs while doing tb_phys_invalidate() */
766 saved_tb = NULL;
767 if (env) {
768 saved_tb = env->current_tb;
769 env->current_tb = NULL;
771 tb_phys_invalidate(tb, -1);
772 if (env) {
773 env->current_tb = saved_tb;
774 if (env->interrupt_request && env->current_tb)
775 cpu_interrupt(env, env->interrupt_request);
778 tb = tb_next;
780 #if !defined(CONFIG_USER_ONLY)
781 /* if no code remaining, no need to continue to use slow writes */
782 if (!p->first_tb) {
783 invalidate_page_bitmap(p);
784 if (is_cpu_write_access) {
785 tlb_unprotect_code_phys(env, start, env->mem_write_vaddr);
788 #endif
789 #ifdef TARGET_HAS_PRECISE_SMC
790 if (current_tb_modified) {
791 /* we generate a block containing just the instruction
792 modifying the memory. It will ensure that it cannot modify
793 itself */
794 env->current_tb = NULL;
795 tb_gen_code(env, current_pc, current_cs_base, current_flags,
796 CF_SINGLE_INSN);
797 cpu_resume_from_signal(env, NULL);
799 #endif
802 /* len must be <= 8 and start must be a multiple of len */
803 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
805 PageDesc *p;
806 int offset, b;
807 #if 0
808 if (1) {
809 if (loglevel) {
810 fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
811 cpu_single_env->mem_write_vaddr, len,
812 cpu_single_env->eip,
813 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
816 #endif
817 p = page_find(start >> TARGET_PAGE_BITS);
818 if (!p)
819 return;
820 if (p->code_bitmap) {
821 offset = start & ~TARGET_PAGE_MASK;
822 b = p->code_bitmap[offset >> 3] >> (offset & 7);
823 if (b & ((1 << len) - 1))
824 goto do_invalidate;
825 } else {
826 do_invalidate:
827 tb_invalidate_phys_page_range(start, start + len, 1);
831 #if !defined(CONFIG_SOFTMMU)
832 static void tb_invalidate_phys_page(target_phys_addr_t addr,
833 unsigned long pc, void *puc)
835 int n, current_flags, current_tb_modified;
836 target_ulong current_pc, current_cs_base;
837 PageDesc *p;
838 TranslationBlock *tb, *current_tb;
839 #ifdef TARGET_HAS_PRECISE_SMC
840 CPUState *env = cpu_single_env;
841 #endif
843 addr &= TARGET_PAGE_MASK;
844 p = page_find(addr >> TARGET_PAGE_BITS);
845 if (!p)
846 return;
847 tb = p->first_tb;
848 current_tb_modified = 0;
849 current_tb = NULL;
850 current_pc = 0; /* avoid warning */
851 current_cs_base = 0; /* avoid warning */
852 current_flags = 0; /* avoid warning */
853 #ifdef TARGET_HAS_PRECISE_SMC
854 if (tb && pc != 0) {
855 current_tb = tb_find_pc(pc);
857 #endif
858 while (tb != NULL) {
859 n = (long)tb & 3;
860 tb = (TranslationBlock *)((long)tb & ~3);
861 #ifdef TARGET_HAS_PRECISE_SMC
862 if (current_tb == tb &&
863 !(current_tb->cflags & CF_SINGLE_INSN)) {
864 /* If we are modifying the current TB, we must stop
865 its execution. We could be more precise by checking
866 that the modification is after the current PC, but it
867 would require a specialized function to partially
868 restore the CPU state */
870 current_tb_modified = 1;
871 cpu_restore_state(current_tb, env, pc, puc);
872 #if defined(TARGET_I386)
873 current_flags = env->hflags;
874 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
875 current_cs_base = (target_ulong)env->segs[R_CS].base;
876 current_pc = current_cs_base + env->eip;
877 #else
878 #error unsupported CPU
879 #endif
881 #endif /* TARGET_HAS_PRECISE_SMC */
882 tb_phys_invalidate(tb, addr);
883 tb = tb->page_next[n];
885 p->first_tb = NULL;
886 #ifdef TARGET_HAS_PRECISE_SMC
887 if (current_tb_modified) {
888 /* we generate a block containing just the instruction
889 modifying the memory. It will ensure that it cannot modify
890 itself */
891 env->current_tb = NULL;
892 tb_gen_code(env, current_pc, current_cs_base, current_flags,
893 CF_SINGLE_INSN);
894 cpu_resume_from_signal(env, puc);
896 #endif
898 #endif
900 /* add the tb in the target page and protect it if necessary */
901 static inline void tb_alloc_page(TranslationBlock *tb,
902 unsigned int n, target_ulong page_addr)
904 PageDesc *p;
905 TranslationBlock *last_first_tb;
907 tb->page_addr[n] = page_addr;
908 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
909 tb->page_next[n] = p->first_tb;
910 last_first_tb = p->first_tb;
911 p->first_tb = (TranslationBlock *)((long)tb | n);
912 invalidate_page_bitmap(p);
914 #if defined(TARGET_HAS_SMC) || 1
916 #if defined(CONFIG_USER_ONLY)
917 if (p->flags & PAGE_WRITE) {
918 target_ulong addr;
919 PageDesc *p2;
920 int prot;
922 /* force the host page as non writable (writes will have a
923 page fault + mprotect overhead) */
924 page_addr &= qemu_host_page_mask;
925 prot = 0;
926 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
927 addr += TARGET_PAGE_SIZE) {
929 p2 = page_find (addr >> TARGET_PAGE_BITS);
930 if (!p2)
931 continue;
932 prot |= p2->flags;
933 p2->flags &= ~PAGE_WRITE;
934 page_get_flags(addr);
936 mprotect(g2h(page_addr), qemu_host_page_size,
937 (prot & PAGE_BITS) & ~PAGE_WRITE);
938 #ifdef DEBUG_TB_INVALIDATE
939 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
940 page_addr);
941 #endif
943 #else
944 /* if some code is already present, then the pages are already
945 protected. So we handle the case where only the first TB is
946 allocated in a physical page */
947 if (!last_first_tb) {
948 tlb_protect_code(page_addr);
950 #endif
952 #endif /* TARGET_HAS_SMC */
955 /* Allocate a new translation block. Flush the translation buffer if
956 too many translation blocks or too much generated code. */
957 TranslationBlock *tb_alloc(target_ulong pc)
959 TranslationBlock *tb;
961 if (nb_tbs >= CODE_GEN_MAX_BLOCKS ||
962 (code_gen_ptr - code_gen_buffer) >= CODE_GEN_BUFFER_MAX_SIZE)
963 return NULL;
964 tb = &tbs[nb_tbs++];
965 tb->pc = pc;
966 tb->cflags = 0;
967 return tb;
970 /* add a new TB and link it to the physical page tables. phys_page2 is
971 (-1) to indicate that only one page contains the TB. */
972 void tb_link_phys(TranslationBlock *tb,
973 target_ulong phys_pc, target_ulong phys_page2)
975 unsigned int h;
976 TranslationBlock **ptb;
978 /* add in the physical hash table */
979 h = tb_phys_hash_func(phys_pc);
980 ptb = &tb_phys_hash[h];
981 tb->phys_hash_next = *ptb;
982 *ptb = tb;
984 /* add in the page list */
985 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
986 if (phys_page2 != -1)
987 tb_alloc_page(tb, 1, phys_page2);
988 else
989 tb->page_addr[1] = -1;
991 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
992 tb->jmp_next[0] = NULL;
993 tb->jmp_next[1] = NULL;
995 /* init original jump addresses */
996 if (tb->tb_next_offset[0] != 0xffff)
997 tb_reset_jump(tb, 0);
998 if (tb->tb_next_offset[1] != 0xffff)
999 tb_reset_jump(tb, 1);
1001 #ifdef DEBUG_TB_CHECK
1002 tb_page_check();
1003 #endif
1006 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1007 tb[1].tc_ptr. Return NULL if not found */
1008 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1010 int m_min, m_max, m;
1011 unsigned long v;
1012 TranslationBlock *tb;
1014 if (nb_tbs <= 0)
1015 return NULL;
1016 if (tc_ptr < (unsigned long)code_gen_buffer ||
1017 tc_ptr >= (unsigned long)code_gen_ptr)
1018 return NULL;
1019 /* binary search (cf Knuth) */
1020 m_min = 0;
1021 m_max = nb_tbs - 1;
1022 while (m_min <= m_max) {
1023 m = (m_min + m_max) >> 1;
1024 tb = &tbs[m];
1025 v = (unsigned long)tb->tc_ptr;
1026 if (v == tc_ptr)
1027 return tb;
1028 else if (tc_ptr < v) {
1029 m_max = m - 1;
1030 } else {
1031 m_min = m + 1;
1034 return &tbs[m_max];
1037 static void tb_reset_jump_recursive(TranslationBlock *tb);
1039 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1041 TranslationBlock *tb1, *tb_next, **ptb;
1042 unsigned int n1;
1044 tb1 = tb->jmp_next[n];
1045 if (tb1 != NULL) {
1046 /* find head of list */
1047 for(;;) {
1048 n1 = (long)tb1 & 3;
1049 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1050 if (n1 == 2)
1051 break;
1052 tb1 = tb1->jmp_next[n1];
1054 /* we are now sure now that tb jumps to tb1 */
1055 tb_next = tb1;
1057 /* remove tb from the jmp_first list */
1058 ptb = &tb_next->jmp_first;
1059 for(;;) {
1060 tb1 = *ptb;
1061 n1 = (long)tb1 & 3;
1062 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1063 if (n1 == n && tb1 == tb)
1064 break;
1065 ptb = &tb1->jmp_next[n1];
1067 *ptb = tb->jmp_next[n];
1068 tb->jmp_next[n] = NULL;
1070 /* suppress the jump to next tb in generated code */
1071 tb_reset_jump(tb, n);
1073 /* suppress jumps in the tb on which we could have jumped */
1074 tb_reset_jump_recursive(tb_next);
1078 static void tb_reset_jump_recursive(TranslationBlock *tb)
1080 tb_reset_jump_recursive2(tb, 0);
1081 tb_reset_jump_recursive2(tb, 1);
1084 #if defined(TARGET_HAS_ICE)
1085 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1087 target_phys_addr_t addr;
1088 target_ulong pd;
1089 ram_addr_t ram_addr;
1090 PhysPageDesc *p;
1092 addr = cpu_get_phys_page_debug(env, pc);
1093 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1094 if (!p) {
1095 pd = IO_MEM_UNASSIGNED;
1096 } else {
1097 pd = p->phys_offset;
1099 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1100 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1102 #endif
1104 /* Add a watchpoint. */
1105 int cpu_watchpoint_insert(CPUState *env, target_ulong addr)
1107 int i;
1109 for (i = 0; i < env->nb_watchpoints; i++) {
1110 if (addr == env->watchpoint[i].vaddr)
1111 return 0;
1113 if (env->nb_watchpoints >= MAX_WATCHPOINTS)
1114 return -1;
1116 i = env->nb_watchpoints++;
1117 env->watchpoint[i].vaddr = addr;
1118 tlb_flush_page(env, addr);
1119 /* FIXME: This flush is needed because of the hack to make memory ops
1120 terminate the TB. It can be removed once the proper IO trap and
1121 re-execute bits are in. */
1122 tb_flush(env);
1123 return i;
1126 /* Remove a watchpoint. */
1127 int cpu_watchpoint_remove(CPUState *env, target_ulong addr)
1129 int i;
1131 for (i = 0; i < env->nb_watchpoints; i++) {
1132 if (addr == env->watchpoint[i].vaddr) {
1133 env->nb_watchpoints--;
1134 env->watchpoint[i] = env->watchpoint[env->nb_watchpoints];
1135 tlb_flush_page(env, addr);
1136 return 0;
1139 return -1;
1142 /* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
1143 breakpoint is reached */
1144 int cpu_breakpoint_insert(CPUState *env, target_ulong pc)
1146 #if defined(TARGET_HAS_ICE)
1147 int i;
1149 for(i = 0; i < env->nb_breakpoints; i++) {
1150 if (env->breakpoints[i] == pc)
1151 return 0;
1154 if (env->nb_breakpoints >= MAX_BREAKPOINTS)
1155 return -1;
1156 env->breakpoints[env->nb_breakpoints++] = pc;
1158 breakpoint_invalidate(env, pc);
1159 return 0;
1160 #else
1161 return -1;
1162 #endif
1165 /* remove a breakpoint */
1166 int cpu_breakpoint_remove(CPUState *env, target_ulong pc)
1168 #if defined(TARGET_HAS_ICE)
1169 int i;
1170 for(i = 0; i < env->nb_breakpoints; i++) {
1171 if (env->breakpoints[i] == pc)
1172 goto found;
1174 return -1;
1175 found:
1176 env->nb_breakpoints--;
1177 if (i < env->nb_breakpoints)
1178 env->breakpoints[i] = env->breakpoints[env->nb_breakpoints];
1180 breakpoint_invalidate(env, pc);
1181 return 0;
1182 #else
1183 return -1;
1184 #endif
1187 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1188 CPU loop after each instruction */
1189 void cpu_single_step(CPUState *env, int enabled)
1191 #if defined(TARGET_HAS_ICE)
1192 if (env->singlestep_enabled != enabled) {
1193 env->singlestep_enabled = enabled;
1194 /* must flush all the translated code to avoid inconsistancies */
1195 /* XXX: only flush what is necessary */
1196 tb_flush(env);
1198 #endif
1201 /* enable or disable low levels log */
1202 void cpu_set_log(int log_flags)
1204 loglevel = log_flags;
1205 if (loglevel && !logfile) {
1206 logfile = fopen(logfilename, log_append ? "a" : "w");
1207 if (!logfile) {
1208 perror(logfilename);
1209 _exit(1);
1211 #if !defined(CONFIG_SOFTMMU)
1212 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1214 static uint8_t logfile_buf[4096];
1215 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1217 #else
1218 setvbuf(logfile, NULL, _IOLBF, 0);
1219 #endif
1220 log_append = 1;
1222 if (!loglevel && logfile) {
1223 fclose(logfile);
1224 logfile = NULL;
1228 void cpu_set_log_filename(const char *filename)
1230 logfilename = strdup(filename);
1231 if (logfile) {
1232 fclose(logfile);
1233 logfile = NULL;
1235 cpu_set_log(loglevel);
1238 /* mask must never be zero, except for A20 change call */
1239 void cpu_interrupt(CPUState *env, int mask)
1241 TranslationBlock *tb;
1242 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1244 env->interrupt_request |= mask;
1245 /* if the cpu is currently executing code, we must unlink it and
1246 all the potentially executing TB */
1247 tb = env->current_tb;
1248 if (tb && !testandset(&interrupt_lock)) {
1249 env->current_tb = NULL;
1250 tb_reset_jump_recursive(tb);
1251 resetlock(&interrupt_lock);
1255 void cpu_reset_interrupt(CPUState *env, int mask)
1257 env->interrupt_request &= ~mask;
1260 CPULogItem cpu_log_items[] = {
1261 { CPU_LOG_TB_OUT_ASM, "out_asm",
1262 "show generated host assembly code for each compiled TB" },
1263 { CPU_LOG_TB_IN_ASM, "in_asm",
1264 "show target assembly code for each compiled TB" },
1265 { CPU_LOG_TB_OP, "op",
1266 "show micro ops for each compiled TB" },
1267 { CPU_LOG_TB_OP_OPT, "op_opt",
1268 "show micro ops "
1269 #ifdef TARGET_I386
1270 "before eflags optimization and "
1271 #endif
1272 "after liveness analysis" },
1273 { CPU_LOG_INT, "int",
1274 "show interrupts/exceptions in short format" },
1275 { CPU_LOG_EXEC, "exec",
1276 "show trace before each executed TB (lots of logs)" },
1277 { CPU_LOG_TB_CPU, "cpu",
1278 "show CPU state before block translation" },
1279 #ifdef TARGET_I386
1280 { CPU_LOG_PCALL, "pcall",
1281 "show protected mode far calls/returns/exceptions" },
1282 #endif
1283 #ifdef DEBUG_IOPORT
1284 { CPU_LOG_IOPORT, "ioport",
1285 "show all i/o ports accesses" },
1286 #endif
1287 { 0, NULL, NULL },
1290 static int cmp1(const char *s1, int n, const char *s2)
1292 if (strlen(s2) != n)
1293 return 0;
1294 return memcmp(s1, s2, n) == 0;
1297 /* takes a comma separated list of log masks. Return 0 if error. */
1298 int cpu_str_to_log_mask(const char *str)
1300 CPULogItem *item;
1301 int mask;
1302 const char *p, *p1;
1304 p = str;
1305 mask = 0;
1306 for(;;) {
1307 p1 = strchr(p, ',');
1308 if (!p1)
1309 p1 = p + strlen(p);
1310 if(cmp1(p,p1-p,"all")) {
1311 for(item = cpu_log_items; item->mask != 0; item++) {
1312 mask |= item->mask;
1314 } else {
1315 for(item = cpu_log_items; item->mask != 0; item++) {
1316 if (cmp1(p, p1 - p, item->name))
1317 goto found;
1319 return 0;
1321 found:
1322 mask |= item->mask;
1323 if (*p1 != ',')
1324 break;
1325 p = p1 + 1;
1327 return mask;
1330 void cpu_abort(CPUState *env, const char *fmt, ...)
1332 va_list ap;
1333 va_list ap2;
1335 va_start(ap, fmt);
1336 va_copy(ap2, ap);
1337 fprintf(stderr, "qemu: fatal: ");
1338 vfprintf(stderr, fmt, ap);
1339 fprintf(stderr, "\n");
1340 #ifdef TARGET_I386
1341 if(env->intercept & INTERCEPT_SVM_MASK) {
1342 /* most probably the virtual machine should not
1343 be shut down but rather caught by the VMM */
1344 vmexit(SVM_EXIT_SHUTDOWN, 0);
1346 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1347 #else
1348 cpu_dump_state(env, stderr, fprintf, 0);
1349 #endif
1350 if (logfile) {
1351 fprintf(logfile, "qemu: fatal: ");
1352 vfprintf(logfile, fmt, ap2);
1353 fprintf(logfile, "\n");
1354 #ifdef TARGET_I386
1355 cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1356 #else
1357 cpu_dump_state(env, logfile, fprintf, 0);
1358 #endif
1359 fflush(logfile);
1360 fclose(logfile);
1362 va_end(ap2);
1363 va_end(ap);
1364 abort();
1367 CPUState *cpu_copy(CPUState *env)
1369 CPUState *new_env = cpu_init(env->cpu_model_str);
1370 /* preserve chaining and index */
1371 CPUState *next_cpu = new_env->next_cpu;
1372 int cpu_index = new_env->cpu_index;
1373 memcpy(new_env, env, sizeof(CPUState));
1374 new_env->next_cpu = next_cpu;
1375 new_env->cpu_index = cpu_index;
1376 return new_env;
1379 #if !defined(CONFIG_USER_ONLY)
1381 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1383 unsigned int i;
1385 /* Discard jump cache entries for any tb which might potentially
1386 overlap the flushed page. */
1387 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1388 memset (&env->tb_jmp_cache[i], 0,
1389 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1391 i = tb_jmp_cache_hash_page(addr);
1392 memset (&env->tb_jmp_cache[i], 0,
1393 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1396 /* NOTE: if flush_global is true, also flush global entries (not
1397 implemented yet) */
1398 void tlb_flush(CPUState *env, int flush_global)
1400 int i;
1402 #if defined(DEBUG_TLB)
1403 printf("tlb_flush:\n");
1404 #endif
1405 /* must reset current TB so that interrupts cannot modify the
1406 links while we are modifying them */
1407 env->current_tb = NULL;
1409 for(i = 0; i < CPU_TLB_SIZE; i++) {
1410 env->tlb_table[0][i].addr_read = -1;
1411 env->tlb_table[0][i].addr_write = -1;
1412 env->tlb_table[0][i].addr_code = -1;
1413 env->tlb_table[1][i].addr_read = -1;
1414 env->tlb_table[1][i].addr_write = -1;
1415 env->tlb_table[1][i].addr_code = -1;
1416 #if (NB_MMU_MODES >= 3)
1417 env->tlb_table[2][i].addr_read = -1;
1418 env->tlb_table[2][i].addr_write = -1;
1419 env->tlb_table[2][i].addr_code = -1;
1420 #if (NB_MMU_MODES == 4)
1421 env->tlb_table[3][i].addr_read = -1;
1422 env->tlb_table[3][i].addr_write = -1;
1423 env->tlb_table[3][i].addr_code = -1;
1424 #endif
1425 #endif
1428 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1430 #if !defined(CONFIG_SOFTMMU)
1431 munmap((void *)MMAP_AREA_START, MMAP_AREA_END - MMAP_AREA_START);
1432 #endif
1433 #ifdef USE_KQEMU
1434 if (env->kqemu_enabled) {
1435 kqemu_flush(env, flush_global);
1437 #endif
1438 tlb_flush_count++;
1441 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1443 if (addr == (tlb_entry->addr_read &
1444 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1445 addr == (tlb_entry->addr_write &
1446 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1447 addr == (tlb_entry->addr_code &
1448 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1449 tlb_entry->addr_read = -1;
1450 tlb_entry->addr_write = -1;
1451 tlb_entry->addr_code = -1;
1455 void tlb_flush_page(CPUState *env, target_ulong addr)
1457 int i;
1459 #if defined(DEBUG_TLB)
1460 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1461 #endif
1462 /* must reset current TB so that interrupts cannot modify the
1463 links while we are modifying them */
1464 env->current_tb = NULL;
1466 addr &= TARGET_PAGE_MASK;
1467 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1468 tlb_flush_entry(&env->tlb_table[0][i], addr);
1469 tlb_flush_entry(&env->tlb_table[1][i], addr);
1470 #if (NB_MMU_MODES >= 3)
1471 tlb_flush_entry(&env->tlb_table[2][i], addr);
1472 #if (NB_MMU_MODES == 4)
1473 tlb_flush_entry(&env->tlb_table[3][i], addr);
1474 #endif
1475 #endif
1477 tlb_flush_jmp_cache(env, addr);
1479 #if !defined(CONFIG_SOFTMMU)
1480 if (addr < MMAP_AREA_END)
1481 munmap((void *)addr, TARGET_PAGE_SIZE);
1482 #endif
1483 #ifdef USE_KQEMU
1484 if (env->kqemu_enabled) {
1485 kqemu_flush_page(env, addr);
1487 #endif
1490 /* update the TLBs so that writes to code in the virtual page 'addr'
1491 can be detected */
1492 static void tlb_protect_code(ram_addr_t ram_addr)
1494 cpu_physical_memory_reset_dirty(ram_addr,
1495 ram_addr + TARGET_PAGE_SIZE,
1496 CODE_DIRTY_FLAG);
1499 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1500 tested for self modifying code */
1501 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1502 target_ulong vaddr)
1504 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1507 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1508 unsigned long start, unsigned long length)
1510 unsigned long addr;
1511 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1512 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1513 if ((addr - start) < length) {
1514 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_NOTDIRTY;
1519 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1520 int dirty_flags)
1522 CPUState *env;
1523 unsigned long length, start1;
1524 int i, mask, len;
1525 uint8_t *p;
1527 start &= TARGET_PAGE_MASK;
1528 end = TARGET_PAGE_ALIGN(end);
1530 length = end - start;
1531 if (length == 0)
1532 return;
1533 len = length >> TARGET_PAGE_BITS;
1534 #ifdef USE_KQEMU
1535 /* XXX: should not depend on cpu context */
1536 env = first_cpu;
1537 if (env->kqemu_enabled) {
1538 ram_addr_t addr;
1539 addr = start;
1540 for(i = 0; i < len; i++) {
1541 kqemu_set_notdirty(env, addr);
1542 addr += TARGET_PAGE_SIZE;
1545 #endif
1546 mask = ~dirty_flags;
1547 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1548 for(i = 0; i < len; i++)
1549 p[i] &= mask;
1551 /* we modify the TLB cache so that the dirty bit will be set again
1552 when accessing the range */
1553 start1 = start + (unsigned long)phys_ram_base;
1554 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1555 for(i = 0; i < CPU_TLB_SIZE; i++)
1556 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
1557 for(i = 0; i < CPU_TLB_SIZE; i++)
1558 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
1559 #if (NB_MMU_MODES >= 3)
1560 for(i = 0; i < CPU_TLB_SIZE; i++)
1561 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1562 #if (NB_MMU_MODES == 4)
1563 for(i = 0; i < CPU_TLB_SIZE; i++)
1564 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1565 #endif
1566 #endif
1569 #if !defined(CONFIG_SOFTMMU)
1570 /* XXX: this is expensive */
1572 VirtPageDesc *p;
1573 int j;
1574 target_ulong addr;
1576 for(i = 0; i < L1_SIZE; i++) {
1577 p = l1_virt_map[i];
1578 if (p) {
1579 addr = i << (TARGET_PAGE_BITS + L2_BITS);
1580 for(j = 0; j < L2_SIZE; j++) {
1581 if (p->valid_tag == virt_valid_tag &&
1582 p->phys_addr >= start && p->phys_addr < end &&
1583 (p->prot & PROT_WRITE)) {
1584 if (addr < MMAP_AREA_END) {
1585 mprotect((void *)addr, TARGET_PAGE_SIZE,
1586 p->prot & ~PROT_WRITE);
1589 addr += TARGET_PAGE_SIZE;
1590 p++;
1595 #endif
1598 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1600 ram_addr_t ram_addr;
1602 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1603 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
1604 tlb_entry->addend - (unsigned long)phys_ram_base;
1605 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1606 tlb_entry->addr_write |= IO_MEM_NOTDIRTY;
1611 /* update the TLB according to the current state of the dirty bits */
1612 void cpu_tlb_update_dirty(CPUState *env)
1614 int i;
1615 for(i = 0; i < CPU_TLB_SIZE; i++)
1616 tlb_update_dirty(&env->tlb_table[0][i]);
1617 for(i = 0; i < CPU_TLB_SIZE; i++)
1618 tlb_update_dirty(&env->tlb_table[1][i]);
1619 #if (NB_MMU_MODES >= 3)
1620 for(i = 0; i < CPU_TLB_SIZE; i++)
1621 tlb_update_dirty(&env->tlb_table[2][i]);
1622 #if (NB_MMU_MODES == 4)
1623 for(i = 0; i < CPU_TLB_SIZE; i++)
1624 tlb_update_dirty(&env->tlb_table[3][i]);
1625 #endif
1626 #endif
1629 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry,
1630 unsigned long start)
1632 unsigned long addr;
1633 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_NOTDIRTY) {
1634 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1635 if (addr == start) {
1636 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_RAM;
1641 /* update the TLB corresponding to virtual page vaddr and phys addr
1642 addr so that it is no longer dirty */
1643 static inline void tlb_set_dirty(CPUState *env,
1644 unsigned long addr, target_ulong vaddr)
1646 int i;
1648 addr &= TARGET_PAGE_MASK;
1649 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1650 tlb_set_dirty1(&env->tlb_table[0][i], addr);
1651 tlb_set_dirty1(&env->tlb_table[1][i], addr);
1652 #if (NB_MMU_MODES >= 3)
1653 tlb_set_dirty1(&env->tlb_table[2][i], addr);
1654 #if (NB_MMU_MODES == 4)
1655 tlb_set_dirty1(&env->tlb_table[3][i], addr);
1656 #endif
1657 #endif
1660 /* add a new TLB entry. At most one entry for a given virtual address
1661 is permitted. Return 0 if OK or 2 if the page could not be mapped
1662 (can only happen in non SOFTMMU mode for I/O pages or pages
1663 conflicting with the host address space). */
1664 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1665 target_phys_addr_t paddr, int prot,
1666 int mmu_idx, int is_softmmu)
1668 PhysPageDesc *p;
1669 unsigned long pd;
1670 unsigned int index;
1671 target_ulong address;
1672 target_phys_addr_t addend;
1673 int ret;
1674 CPUTLBEntry *te;
1675 int i;
1677 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
1678 if (!p) {
1679 pd = IO_MEM_UNASSIGNED;
1680 } else {
1681 pd = p->phys_offset;
1683 #if defined(DEBUG_TLB)
1684 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1685 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
1686 #endif
1688 ret = 0;
1689 #if !defined(CONFIG_SOFTMMU)
1690 if (is_softmmu)
1691 #endif
1693 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1694 /* IO memory case */
1695 address = vaddr | pd;
1696 addend = paddr;
1697 } else {
1698 /* standard memory */
1699 address = vaddr;
1700 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1703 /* Make accesses to pages with watchpoints go via the
1704 watchpoint trap routines. */
1705 for (i = 0; i < env->nb_watchpoints; i++) {
1706 if (vaddr == (env->watchpoint[i].vaddr & TARGET_PAGE_MASK)) {
1707 if (address & ~TARGET_PAGE_MASK) {
1708 env->watchpoint[i].addend = 0;
1709 address = vaddr | io_mem_watch;
1710 } else {
1711 env->watchpoint[i].addend = pd - paddr +
1712 (unsigned long) phys_ram_base;
1713 /* TODO: Figure out how to make read watchpoints coexist
1714 with code. */
1715 pd = (pd & TARGET_PAGE_MASK) | io_mem_watch | IO_MEM_ROMD;
1720 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1721 addend -= vaddr;
1722 te = &env->tlb_table[mmu_idx][index];
1723 te->addend = addend;
1724 if (prot & PAGE_READ) {
1725 te->addr_read = address;
1726 } else {
1727 te->addr_read = -1;
1730 if (te->addr_code != -1) {
1731 tlb_flush_jmp_cache(env, te->addr_code);
1733 if (prot & PAGE_EXEC) {
1734 te->addr_code = address;
1735 } else {
1736 te->addr_code = -1;
1738 if (prot & PAGE_WRITE) {
1739 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
1740 (pd & IO_MEM_ROMD)) {
1741 /* write access calls the I/O callback */
1742 te->addr_write = vaddr |
1743 (pd & ~(TARGET_PAGE_MASK | IO_MEM_ROMD));
1744 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
1745 !cpu_physical_memory_is_dirty(pd)) {
1746 te->addr_write = vaddr | IO_MEM_NOTDIRTY;
1747 } else {
1748 te->addr_write = address;
1750 } else {
1751 te->addr_write = -1;
1754 #if !defined(CONFIG_SOFTMMU)
1755 else {
1756 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM) {
1757 /* IO access: no mapping is done as it will be handled by the
1758 soft MMU */
1759 if (!(env->hflags & HF_SOFTMMU_MASK))
1760 ret = 2;
1761 } else {
1762 void *map_addr;
1764 if (vaddr >= MMAP_AREA_END) {
1765 ret = 2;
1766 } else {
1767 if (prot & PROT_WRITE) {
1768 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
1769 #if defined(TARGET_HAS_SMC) || 1
1770 first_tb ||
1771 #endif
1772 ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
1773 !cpu_physical_memory_is_dirty(pd))) {
1774 /* ROM: we do as if code was inside */
1775 /* if code is present, we only map as read only and save the
1776 original mapping */
1777 VirtPageDesc *vp;
1779 vp = virt_page_find_alloc(vaddr >> TARGET_PAGE_BITS, 1);
1780 vp->phys_addr = pd;
1781 vp->prot = prot;
1782 vp->valid_tag = virt_valid_tag;
1783 prot &= ~PAGE_WRITE;
1786 map_addr = mmap((void *)vaddr, TARGET_PAGE_SIZE, prot,
1787 MAP_SHARED | MAP_FIXED, phys_ram_fd, (pd & TARGET_PAGE_MASK));
1788 if (map_addr == MAP_FAILED) {
1789 cpu_abort(env, "mmap failed when mapped physical address 0x%08x to virtual address 0x%08x\n",
1790 paddr, vaddr);
1795 #endif
1796 return ret;
1799 /* called from signal handler: invalidate the code and unprotect the
1800 page. Return TRUE if the fault was succesfully handled. */
1801 int page_unprotect(target_ulong addr, unsigned long pc, void *puc)
1803 #if !defined(CONFIG_SOFTMMU)
1804 VirtPageDesc *vp;
1806 #if defined(DEBUG_TLB)
1807 printf("page_unprotect: addr=0x%08x\n", addr);
1808 #endif
1809 addr &= TARGET_PAGE_MASK;
1811 /* if it is not mapped, no need to worry here */
1812 if (addr >= MMAP_AREA_END)
1813 return 0;
1814 vp = virt_page_find(addr >> TARGET_PAGE_BITS);
1815 if (!vp)
1816 return 0;
1817 /* NOTE: in this case, validate_tag is _not_ tested as it
1818 validates only the code TLB */
1819 if (vp->valid_tag != virt_valid_tag)
1820 return 0;
1821 if (!(vp->prot & PAGE_WRITE))
1822 return 0;
1823 #if defined(DEBUG_TLB)
1824 printf("page_unprotect: addr=0x%08x phys_addr=0x%08x prot=%x\n",
1825 addr, vp->phys_addr, vp->prot);
1826 #endif
1827 if (mprotect((void *)addr, TARGET_PAGE_SIZE, vp->prot) < 0)
1828 cpu_abort(cpu_single_env, "error mprotect addr=0x%lx prot=%d\n",
1829 (unsigned long)addr, vp->prot);
1830 /* set the dirty bit */
1831 phys_ram_dirty[vp->phys_addr >> TARGET_PAGE_BITS] = 0xff;
1832 /* flush the code inside */
1833 tb_invalidate_phys_page(vp->phys_addr, pc, puc);
1834 return 1;
1835 #else
1836 return 0;
1837 #endif
1840 #else
1842 void tlb_flush(CPUState *env, int flush_global)
1846 void tlb_flush_page(CPUState *env, target_ulong addr)
1850 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1851 target_phys_addr_t paddr, int prot,
1852 int mmu_idx, int is_softmmu)
1854 return 0;
1857 /* dump memory mappings */
1858 void page_dump(FILE *f)
1860 unsigned long start, end;
1861 int i, j, prot, prot1;
1862 PageDesc *p;
1864 fprintf(f, "%-8s %-8s %-8s %s\n",
1865 "start", "end", "size", "prot");
1866 start = -1;
1867 end = -1;
1868 prot = 0;
1869 for(i = 0; i <= L1_SIZE; i++) {
1870 if (i < L1_SIZE)
1871 p = l1_map[i];
1872 else
1873 p = NULL;
1874 for(j = 0;j < L2_SIZE; j++) {
1875 if (!p)
1876 prot1 = 0;
1877 else
1878 prot1 = p[j].flags;
1879 if (prot1 != prot) {
1880 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
1881 if (start != -1) {
1882 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
1883 start, end, end - start,
1884 prot & PAGE_READ ? 'r' : '-',
1885 prot & PAGE_WRITE ? 'w' : '-',
1886 prot & PAGE_EXEC ? 'x' : '-');
1888 if (prot1 != 0)
1889 start = end;
1890 else
1891 start = -1;
1892 prot = prot1;
1894 if (!p)
1895 break;
1900 int page_get_flags(target_ulong address)
1902 PageDesc *p;
1904 p = page_find(address >> TARGET_PAGE_BITS);
1905 if (!p)
1906 return 0;
1907 return p->flags;
1910 /* modify the flags of a page and invalidate the code if
1911 necessary. The flag PAGE_WRITE_ORG is positionned automatically
1912 depending on PAGE_WRITE */
1913 void page_set_flags(target_ulong start, target_ulong end, int flags)
1915 PageDesc *p;
1916 target_ulong addr;
1918 start = start & TARGET_PAGE_MASK;
1919 end = TARGET_PAGE_ALIGN(end);
1920 if (flags & PAGE_WRITE)
1921 flags |= PAGE_WRITE_ORG;
1922 spin_lock(&tb_lock);
1923 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
1924 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
1925 /* if the write protection is set, then we invalidate the code
1926 inside */
1927 if (!(p->flags & PAGE_WRITE) &&
1928 (flags & PAGE_WRITE) &&
1929 p->first_tb) {
1930 tb_invalidate_phys_page(addr, 0, NULL);
1932 p->flags = flags;
1934 spin_unlock(&tb_lock);
1937 int page_check_range(target_ulong start, target_ulong len, int flags)
1939 PageDesc *p;
1940 target_ulong end;
1941 target_ulong addr;
1943 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
1944 start = start & TARGET_PAGE_MASK;
1946 if( end < start )
1947 /* we've wrapped around */
1948 return -1;
1949 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
1950 p = page_find(addr >> TARGET_PAGE_BITS);
1951 if( !p )
1952 return -1;
1953 if( !(p->flags & PAGE_VALID) )
1954 return -1;
1956 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
1957 return -1;
1958 if (flags & PAGE_WRITE) {
1959 if (!(p->flags & PAGE_WRITE_ORG))
1960 return -1;
1961 /* unprotect the page if it was put read-only because it
1962 contains translated code */
1963 if (!(p->flags & PAGE_WRITE)) {
1964 if (!page_unprotect(addr, 0, NULL))
1965 return -1;
1967 return 0;
1970 return 0;
1973 /* called from signal handler: invalidate the code and unprotect the
1974 page. Return TRUE if the fault was succesfully handled. */
1975 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
1977 unsigned int page_index, prot, pindex;
1978 PageDesc *p, *p1;
1979 target_ulong host_start, host_end, addr;
1981 host_start = address & qemu_host_page_mask;
1982 page_index = host_start >> TARGET_PAGE_BITS;
1983 p1 = page_find(page_index);
1984 if (!p1)
1985 return 0;
1986 host_end = host_start + qemu_host_page_size;
1987 p = p1;
1988 prot = 0;
1989 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
1990 prot |= p->flags;
1991 p++;
1993 /* if the page was really writable, then we change its
1994 protection back to writable */
1995 if (prot & PAGE_WRITE_ORG) {
1996 pindex = (address - host_start) >> TARGET_PAGE_BITS;
1997 if (!(p1[pindex].flags & PAGE_WRITE)) {
1998 mprotect((void *)g2h(host_start), qemu_host_page_size,
1999 (prot & PAGE_BITS) | PAGE_WRITE);
2000 p1[pindex].flags |= PAGE_WRITE;
2001 /* and since the content will be modified, we must invalidate
2002 the corresponding translated code. */
2003 tb_invalidate_phys_page(address, pc, puc);
2004 #ifdef DEBUG_TB_CHECK
2005 tb_invalidate_check(address);
2006 #endif
2007 return 1;
2010 return 0;
2013 static inline void tlb_set_dirty(CPUState *env,
2014 unsigned long addr, target_ulong vaddr)
2017 #endif /* defined(CONFIG_USER_ONLY) */
2019 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2020 ram_addr_t memory);
2021 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2022 ram_addr_t orig_memory);
2023 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2024 need_subpage) \
2025 do { \
2026 if (addr > start_addr) \
2027 start_addr2 = 0; \
2028 else { \
2029 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2030 if (start_addr2 > 0) \
2031 need_subpage = 1; \
2034 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2035 end_addr2 = TARGET_PAGE_SIZE - 1; \
2036 else { \
2037 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2038 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2039 need_subpage = 1; \
2041 } while (0)
2043 /* register physical memory. 'size' must be a multiple of the target
2044 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2045 io memory page */
2046 void cpu_register_physical_memory(target_phys_addr_t start_addr,
2047 ram_addr_t size,
2048 ram_addr_t phys_offset)
2050 target_phys_addr_t addr, end_addr;
2051 PhysPageDesc *p;
2052 CPUState *env;
2053 ram_addr_t orig_size = size;
2054 void *subpage;
2056 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2057 end_addr = start_addr + (target_phys_addr_t)size;
2058 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2059 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2060 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2061 ram_addr_t orig_memory = p->phys_offset;
2062 target_phys_addr_t start_addr2, end_addr2;
2063 int need_subpage = 0;
2065 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2066 need_subpage);
2067 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2068 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2069 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2070 &p->phys_offset, orig_memory);
2071 } else {
2072 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2073 >> IO_MEM_SHIFT];
2075 subpage_register(subpage, start_addr2, end_addr2, phys_offset);
2076 } else {
2077 p->phys_offset = phys_offset;
2078 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2079 (phys_offset & IO_MEM_ROMD))
2080 phys_offset += TARGET_PAGE_SIZE;
2082 } else {
2083 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2084 p->phys_offset = phys_offset;
2085 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2086 (phys_offset & IO_MEM_ROMD))
2087 phys_offset += TARGET_PAGE_SIZE;
2088 else {
2089 target_phys_addr_t start_addr2, end_addr2;
2090 int need_subpage = 0;
2092 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2093 end_addr2, need_subpage);
2095 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2096 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2097 &p->phys_offset, IO_MEM_UNASSIGNED);
2098 subpage_register(subpage, start_addr2, end_addr2,
2099 phys_offset);
2105 /* since each CPU stores ram addresses in its TLB cache, we must
2106 reset the modified entries */
2107 /* XXX: slow ! */
2108 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2109 tlb_flush(env, 1);
2113 /* XXX: temporary until new memory mapping API */
2114 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2116 PhysPageDesc *p;
2118 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2119 if (!p)
2120 return IO_MEM_UNASSIGNED;
2121 return p->phys_offset;
2124 /* XXX: better than nothing */
2125 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2127 ram_addr_t addr;
2128 if ((phys_ram_alloc_offset + size) > phys_ram_size) {
2129 fprintf(stderr, "Not enough memory (requested_size = %lu, max memory = %ld)\n",
2130 size, phys_ram_size);
2131 abort();
2133 addr = phys_ram_alloc_offset;
2134 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2135 return addr;
2138 void qemu_ram_free(ram_addr_t addr)
2142 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2144 #ifdef DEBUG_UNASSIGNED
2145 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2146 #endif
2147 #ifdef TARGET_SPARC
2148 do_unassigned_access(addr, 0, 0, 0);
2149 #elif TARGET_CRIS
2150 do_unassigned_access(addr, 0, 0, 0);
2151 #endif
2152 return 0;
2155 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2157 #ifdef DEBUG_UNASSIGNED
2158 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2159 #endif
2160 #ifdef TARGET_SPARC
2161 do_unassigned_access(addr, 1, 0, 0);
2162 #elif TARGET_CRIS
2163 do_unassigned_access(addr, 1, 0, 0);
2164 #endif
2167 static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2168 unassigned_mem_readb,
2169 unassigned_mem_readb,
2170 unassigned_mem_readb,
2173 static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2174 unassigned_mem_writeb,
2175 unassigned_mem_writeb,
2176 unassigned_mem_writeb,
2179 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2181 unsigned long ram_addr;
2182 int dirty_flags;
2183 ram_addr = addr - (unsigned long)phys_ram_base;
2184 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2185 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2186 #if !defined(CONFIG_USER_ONLY)
2187 tb_invalidate_phys_page_fast(ram_addr, 1);
2188 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2189 #endif
2191 stb_p((uint8_t *)(long)addr, val);
2192 #ifdef USE_KQEMU
2193 if (cpu_single_env->kqemu_enabled &&
2194 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2195 kqemu_modify_page(cpu_single_env, ram_addr);
2196 #endif
2197 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2198 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2199 /* we remove the notdirty callback only if the code has been
2200 flushed */
2201 if (dirty_flags == 0xff)
2202 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
2205 static void notdirty_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2207 unsigned long ram_addr;
2208 int dirty_flags;
2209 ram_addr = addr - (unsigned long)phys_ram_base;
2210 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2211 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2212 #if !defined(CONFIG_USER_ONLY)
2213 tb_invalidate_phys_page_fast(ram_addr, 2);
2214 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2215 #endif
2217 stw_p((uint8_t *)(long)addr, val);
2218 #ifdef USE_KQEMU
2219 if (cpu_single_env->kqemu_enabled &&
2220 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2221 kqemu_modify_page(cpu_single_env, ram_addr);
2222 #endif
2223 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2224 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2225 /* we remove the notdirty callback only if the code has been
2226 flushed */
2227 if (dirty_flags == 0xff)
2228 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
2231 static void notdirty_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2233 unsigned long ram_addr;
2234 int dirty_flags;
2235 ram_addr = addr - (unsigned long)phys_ram_base;
2236 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2237 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2238 #if !defined(CONFIG_USER_ONLY)
2239 tb_invalidate_phys_page_fast(ram_addr, 4);
2240 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2241 #endif
2243 stl_p((uint8_t *)(long)addr, val);
2244 #ifdef USE_KQEMU
2245 if (cpu_single_env->kqemu_enabled &&
2246 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2247 kqemu_modify_page(cpu_single_env, ram_addr);
2248 #endif
2249 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2250 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2251 /* we remove the notdirty callback only if the code has been
2252 flushed */
2253 if (dirty_flags == 0xff)
2254 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
2257 static CPUReadMemoryFunc *error_mem_read[3] = {
2258 NULL, /* never used */
2259 NULL, /* never used */
2260 NULL, /* never used */
2263 static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2264 notdirty_mem_writeb,
2265 notdirty_mem_writew,
2266 notdirty_mem_writel,
2269 #if defined(CONFIG_SOFTMMU)
2270 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2271 so these check for a hit then pass through to the normal out-of-line
2272 phys routines. */
2273 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2275 return ldub_phys(addr);
2278 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2280 return lduw_phys(addr);
2283 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2285 return ldl_phys(addr);
2288 /* Generate a debug exception if a watchpoint has been hit.
2289 Returns the real physical address of the access. addr will be a host
2290 address in case of a RAM location. */
2291 static target_ulong check_watchpoint(target_phys_addr_t addr)
2293 CPUState *env = cpu_single_env;
2294 target_ulong watch;
2295 target_ulong retaddr;
2296 int i;
2298 retaddr = addr;
2299 for (i = 0; i < env->nb_watchpoints; i++) {
2300 watch = env->watchpoint[i].vaddr;
2301 if (((env->mem_write_vaddr ^ watch) & TARGET_PAGE_MASK) == 0) {
2302 retaddr = addr - env->watchpoint[i].addend;
2303 if (((addr ^ watch) & ~TARGET_PAGE_MASK) == 0) {
2304 cpu_single_env->watchpoint_hit = i + 1;
2305 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_DEBUG);
2306 break;
2310 return retaddr;
2313 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2314 uint32_t val)
2316 addr = check_watchpoint(addr);
2317 stb_phys(addr, val);
2320 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2321 uint32_t val)
2323 addr = check_watchpoint(addr);
2324 stw_phys(addr, val);
2327 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2328 uint32_t val)
2330 addr = check_watchpoint(addr);
2331 stl_phys(addr, val);
2334 static CPUReadMemoryFunc *watch_mem_read[3] = {
2335 watch_mem_readb,
2336 watch_mem_readw,
2337 watch_mem_readl,
2340 static CPUWriteMemoryFunc *watch_mem_write[3] = {
2341 watch_mem_writeb,
2342 watch_mem_writew,
2343 watch_mem_writel,
2345 #endif
2347 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2348 unsigned int len)
2350 uint32_t ret;
2351 unsigned int idx;
2353 idx = SUBPAGE_IDX(addr - mmio->base);
2354 #if defined(DEBUG_SUBPAGE)
2355 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2356 mmio, len, addr, idx);
2357 #endif
2358 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], addr);
2360 return ret;
2363 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2364 uint32_t value, unsigned int len)
2366 unsigned int idx;
2368 idx = SUBPAGE_IDX(addr - mmio->base);
2369 #if defined(DEBUG_SUBPAGE)
2370 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2371 mmio, len, addr, idx, value);
2372 #endif
2373 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], addr, value);
2376 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2378 #if defined(DEBUG_SUBPAGE)
2379 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2380 #endif
2382 return subpage_readlen(opaque, addr, 0);
2385 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2386 uint32_t value)
2388 #if defined(DEBUG_SUBPAGE)
2389 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2390 #endif
2391 subpage_writelen(opaque, addr, value, 0);
2394 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2396 #if defined(DEBUG_SUBPAGE)
2397 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2398 #endif
2400 return subpage_readlen(opaque, addr, 1);
2403 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2404 uint32_t value)
2406 #if defined(DEBUG_SUBPAGE)
2407 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2408 #endif
2409 subpage_writelen(opaque, addr, value, 1);
2412 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2414 #if defined(DEBUG_SUBPAGE)
2415 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2416 #endif
2418 return subpage_readlen(opaque, addr, 2);
2421 static void subpage_writel (void *opaque,
2422 target_phys_addr_t addr, uint32_t value)
2424 #if defined(DEBUG_SUBPAGE)
2425 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2426 #endif
2427 subpage_writelen(opaque, addr, value, 2);
2430 static CPUReadMemoryFunc *subpage_read[] = {
2431 &subpage_readb,
2432 &subpage_readw,
2433 &subpage_readl,
2436 static CPUWriteMemoryFunc *subpage_write[] = {
2437 &subpage_writeb,
2438 &subpage_writew,
2439 &subpage_writel,
2442 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2443 ram_addr_t memory)
2445 int idx, eidx;
2446 unsigned int i;
2448 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2449 return -1;
2450 idx = SUBPAGE_IDX(start);
2451 eidx = SUBPAGE_IDX(end);
2452 #if defined(DEBUG_SUBPAGE)
2453 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2454 mmio, start, end, idx, eidx, memory);
2455 #endif
2456 memory >>= IO_MEM_SHIFT;
2457 for (; idx <= eidx; idx++) {
2458 for (i = 0; i < 4; i++) {
2459 if (io_mem_read[memory][i]) {
2460 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2461 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2463 if (io_mem_write[memory][i]) {
2464 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2465 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2470 return 0;
2473 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2474 ram_addr_t orig_memory)
2476 subpage_t *mmio;
2477 int subpage_memory;
2479 mmio = qemu_mallocz(sizeof(subpage_t));
2480 if (mmio != NULL) {
2481 mmio->base = base;
2482 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2483 #if defined(DEBUG_SUBPAGE)
2484 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2485 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2486 #endif
2487 *phys = subpage_memory | IO_MEM_SUBPAGE;
2488 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory);
2491 return mmio;
2494 static void io_mem_init(void)
2496 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
2497 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
2498 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
2499 io_mem_nb = 5;
2501 #if defined(CONFIG_SOFTMMU)
2502 io_mem_watch = cpu_register_io_memory(-1, watch_mem_read,
2503 watch_mem_write, NULL);
2504 #endif
2505 /* alloc dirty bits array */
2506 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
2507 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
2510 /* mem_read and mem_write are arrays of functions containing the
2511 function to access byte (index 0), word (index 1) and dword (index
2512 2). Functions can be omitted with a NULL function pointer. The
2513 registered functions may be modified dynamically later.
2514 If io_index is non zero, the corresponding io zone is
2515 modified. If it is zero, a new io zone is allocated. The return
2516 value can be used with cpu_register_physical_memory(). (-1) is
2517 returned if error. */
2518 int cpu_register_io_memory(int io_index,
2519 CPUReadMemoryFunc **mem_read,
2520 CPUWriteMemoryFunc **mem_write,
2521 void *opaque)
2523 int i, subwidth = 0;
2525 if (io_index <= 0) {
2526 if (io_mem_nb >= IO_MEM_NB_ENTRIES)
2527 return -1;
2528 io_index = io_mem_nb++;
2529 } else {
2530 if (io_index >= IO_MEM_NB_ENTRIES)
2531 return -1;
2534 for(i = 0;i < 3; i++) {
2535 if (!mem_read[i] || !mem_write[i])
2536 subwidth = IO_MEM_SUBWIDTH;
2537 io_mem_read[io_index][i] = mem_read[i];
2538 io_mem_write[io_index][i] = mem_write[i];
2540 io_mem_opaque[io_index] = opaque;
2541 return (io_index << IO_MEM_SHIFT) | subwidth;
2544 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2546 return io_mem_write[io_index >> IO_MEM_SHIFT];
2549 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2551 return io_mem_read[io_index >> IO_MEM_SHIFT];
2554 /* physical memory access (slow version, mainly for debug) */
2555 #if defined(CONFIG_USER_ONLY)
2556 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2557 int len, int is_write)
2559 int l, flags;
2560 target_ulong page;
2561 void * p;
2563 while (len > 0) {
2564 page = addr & TARGET_PAGE_MASK;
2565 l = (page + TARGET_PAGE_SIZE) - addr;
2566 if (l > len)
2567 l = len;
2568 flags = page_get_flags(page);
2569 if (!(flags & PAGE_VALID))
2570 return;
2571 if (is_write) {
2572 if (!(flags & PAGE_WRITE))
2573 return;
2574 /* XXX: this code should not depend on lock_user */
2575 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2576 /* FIXME - should this return an error rather than just fail? */
2577 return;
2578 memcpy(p, buf, l);
2579 unlock_user(p, addr, l);
2580 } else {
2581 if (!(flags & PAGE_READ))
2582 return;
2583 /* XXX: this code should not depend on lock_user */
2584 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2585 /* FIXME - should this return an error rather than just fail? */
2586 return;
2587 memcpy(buf, p, l);
2588 unlock_user(p, addr, 0);
2590 len -= l;
2591 buf += l;
2592 addr += l;
2596 #else
2597 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2598 int len, int is_write)
2600 int l, io_index;
2601 uint8_t *ptr;
2602 uint32_t val;
2603 target_phys_addr_t page;
2604 unsigned long pd;
2605 PhysPageDesc *p;
2607 while (len > 0) {
2608 page = addr & TARGET_PAGE_MASK;
2609 l = (page + TARGET_PAGE_SIZE) - addr;
2610 if (l > len)
2611 l = len;
2612 p = phys_page_find(page >> TARGET_PAGE_BITS);
2613 if (!p) {
2614 pd = IO_MEM_UNASSIGNED;
2615 } else {
2616 pd = p->phys_offset;
2619 if (is_write) {
2620 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2621 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2622 /* XXX: could force cpu_single_env to NULL to avoid
2623 potential bugs */
2624 if (l >= 4 && ((addr & 3) == 0)) {
2625 /* 32 bit write access */
2626 val = ldl_p(buf);
2627 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2628 l = 4;
2629 } else if (l >= 2 && ((addr & 1) == 0)) {
2630 /* 16 bit write access */
2631 val = lduw_p(buf);
2632 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
2633 l = 2;
2634 } else {
2635 /* 8 bit write access */
2636 val = ldub_p(buf);
2637 io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
2638 l = 1;
2640 } else {
2641 unsigned long addr1;
2642 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2643 /* RAM case */
2644 ptr = phys_ram_base + addr1;
2645 memcpy(ptr, buf, l);
2646 if (!cpu_physical_memory_is_dirty(addr1)) {
2647 /* invalidate code */
2648 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
2649 /* set dirty bit */
2650 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
2651 (0xff & ~CODE_DIRTY_FLAG);
2654 } else {
2655 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2656 !(pd & IO_MEM_ROMD)) {
2657 /* I/O case */
2658 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2659 if (l >= 4 && ((addr & 3) == 0)) {
2660 /* 32 bit read access */
2661 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2662 stl_p(buf, val);
2663 l = 4;
2664 } else if (l >= 2 && ((addr & 1) == 0)) {
2665 /* 16 bit read access */
2666 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
2667 stw_p(buf, val);
2668 l = 2;
2669 } else {
2670 /* 8 bit read access */
2671 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
2672 stb_p(buf, val);
2673 l = 1;
2675 } else {
2676 /* RAM case */
2677 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2678 (addr & ~TARGET_PAGE_MASK);
2679 memcpy(buf, ptr, l);
2682 len -= l;
2683 buf += l;
2684 addr += l;
2688 /* used for ROM loading : can write in RAM and ROM */
2689 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
2690 const uint8_t *buf, int len)
2692 int l;
2693 uint8_t *ptr;
2694 target_phys_addr_t page;
2695 unsigned long pd;
2696 PhysPageDesc *p;
2698 while (len > 0) {
2699 page = addr & TARGET_PAGE_MASK;
2700 l = (page + TARGET_PAGE_SIZE) - addr;
2701 if (l > len)
2702 l = len;
2703 p = phys_page_find(page >> TARGET_PAGE_BITS);
2704 if (!p) {
2705 pd = IO_MEM_UNASSIGNED;
2706 } else {
2707 pd = p->phys_offset;
2710 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2711 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
2712 !(pd & IO_MEM_ROMD)) {
2713 /* do nothing */
2714 } else {
2715 unsigned long addr1;
2716 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2717 /* ROM/RAM case */
2718 ptr = phys_ram_base + addr1;
2719 memcpy(ptr, buf, l);
2721 len -= l;
2722 buf += l;
2723 addr += l;
2728 /* warning: addr must be aligned */
2729 uint32_t ldl_phys(target_phys_addr_t addr)
2731 int io_index;
2732 uint8_t *ptr;
2733 uint32_t val;
2734 unsigned long pd;
2735 PhysPageDesc *p;
2737 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2738 if (!p) {
2739 pd = IO_MEM_UNASSIGNED;
2740 } else {
2741 pd = p->phys_offset;
2744 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2745 !(pd & IO_MEM_ROMD)) {
2746 /* I/O case */
2747 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2748 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2749 } else {
2750 /* RAM case */
2751 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2752 (addr & ~TARGET_PAGE_MASK);
2753 val = ldl_p(ptr);
2755 return val;
2758 /* warning: addr must be aligned */
2759 uint64_t ldq_phys(target_phys_addr_t addr)
2761 int io_index;
2762 uint8_t *ptr;
2763 uint64_t val;
2764 unsigned long pd;
2765 PhysPageDesc *p;
2767 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2768 if (!p) {
2769 pd = IO_MEM_UNASSIGNED;
2770 } else {
2771 pd = p->phys_offset;
2774 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2775 !(pd & IO_MEM_ROMD)) {
2776 /* I/O case */
2777 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2778 #ifdef TARGET_WORDS_BIGENDIAN
2779 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
2780 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
2781 #else
2782 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2783 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
2784 #endif
2785 } else {
2786 /* RAM case */
2787 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2788 (addr & ~TARGET_PAGE_MASK);
2789 val = ldq_p(ptr);
2791 return val;
2794 /* XXX: optimize */
2795 uint32_t ldub_phys(target_phys_addr_t addr)
2797 uint8_t val;
2798 cpu_physical_memory_read(addr, &val, 1);
2799 return val;
2802 /* XXX: optimize */
2803 uint32_t lduw_phys(target_phys_addr_t addr)
2805 uint16_t val;
2806 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
2807 return tswap16(val);
2810 /* warning: addr must be aligned. The ram page is not masked as dirty
2811 and the code inside is not invalidated. It is useful if the dirty
2812 bits are used to track modified PTEs */
2813 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
2815 int io_index;
2816 uint8_t *ptr;
2817 unsigned long pd;
2818 PhysPageDesc *p;
2820 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2821 if (!p) {
2822 pd = IO_MEM_UNASSIGNED;
2823 } else {
2824 pd = p->phys_offset;
2827 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2828 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2829 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2830 } else {
2831 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2832 (addr & ~TARGET_PAGE_MASK);
2833 stl_p(ptr, val);
2837 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
2839 int io_index;
2840 uint8_t *ptr;
2841 unsigned long pd;
2842 PhysPageDesc *p;
2844 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2845 if (!p) {
2846 pd = IO_MEM_UNASSIGNED;
2847 } else {
2848 pd = p->phys_offset;
2851 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2852 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2853 #ifdef TARGET_WORDS_BIGENDIAN
2854 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
2855 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
2856 #else
2857 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2858 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
2859 #endif
2860 } else {
2861 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2862 (addr & ~TARGET_PAGE_MASK);
2863 stq_p(ptr, val);
2867 /* warning: addr must be aligned */
2868 void stl_phys(target_phys_addr_t addr, uint32_t val)
2870 int io_index;
2871 uint8_t *ptr;
2872 unsigned long pd;
2873 PhysPageDesc *p;
2875 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2876 if (!p) {
2877 pd = IO_MEM_UNASSIGNED;
2878 } else {
2879 pd = p->phys_offset;
2882 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2883 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2884 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2885 } else {
2886 unsigned long addr1;
2887 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2888 /* RAM case */
2889 ptr = phys_ram_base + addr1;
2890 stl_p(ptr, val);
2891 if (!cpu_physical_memory_is_dirty(addr1)) {
2892 /* invalidate code */
2893 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2894 /* set dirty bit */
2895 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
2896 (0xff & ~CODE_DIRTY_FLAG);
2901 /* XXX: optimize */
2902 void stb_phys(target_phys_addr_t addr, uint32_t val)
2904 uint8_t v = val;
2905 cpu_physical_memory_write(addr, &v, 1);
2908 /* XXX: optimize */
2909 void stw_phys(target_phys_addr_t addr, uint32_t val)
2911 uint16_t v = tswap16(val);
2912 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
2915 /* XXX: optimize */
2916 void stq_phys(target_phys_addr_t addr, uint64_t val)
2918 val = tswap64(val);
2919 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
2922 #endif
2924 /* virtual memory access for debug */
2925 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
2926 uint8_t *buf, int len, int is_write)
2928 int l;
2929 target_phys_addr_t phys_addr;
2930 target_ulong page;
2932 while (len > 0) {
2933 page = addr & TARGET_PAGE_MASK;
2934 phys_addr = cpu_get_phys_page_debug(env, page);
2935 /* if no physical page mapped, return an error */
2936 if (phys_addr == -1)
2937 return -1;
2938 l = (page + TARGET_PAGE_SIZE) - addr;
2939 if (l > len)
2940 l = len;
2941 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
2942 buf, l, is_write);
2943 len -= l;
2944 buf += l;
2945 addr += l;
2947 return 0;
2950 void dump_exec_info(FILE *f,
2951 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
2953 int i, target_code_size, max_target_code_size;
2954 int direct_jmp_count, direct_jmp2_count, cross_page;
2955 TranslationBlock *tb;
2957 target_code_size = 0;
2958 max_target_code_size = 0;
2959 cross_page = 0;
2960 direct_jmp_count = 0;
2961 direct_jmp2_count = 0;
2962 for(i = 0; i < nb_tbs; i++) {
2963 tb = &tbs[i];
2964 target_code_size += tb->size;
2965 if (tb->size > max_target_code_size)
2966 max_target_code_size = tb->size;
2967 if (tb->page_addr[1] != -1)
2968 cross_page++;
2969 if (tb->tb_next_offset[0] != 0xffff) {
2970 direct_jmp_count++;
2971 if (tb->tb_next_offset[1] != 0xffff) {
2972 direct_jmp2_count++;
2976 /* XXX: avoid using doubles ? */
2977 cpu_fprintf(f, "Translation buffer state:\n");
2978 cpu_fprintf(f, "TB count %d\n", nb_tbs);
2979 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
2980 nb_tbs ? target_code_size / nb_tbs : 0,
2981 max_target_code_size);
2982 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
2983 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
2984 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
2985 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
2986 cross_page,
2987 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
2988 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
2989 direct_jmp_count,
2990 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
2991 direct_jmp2_count,
2992 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
2993 cpu_fprintf(f, "\nStatistics:\n");
2994 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
2995 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
2996 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
2997 #ifdef CONFIG_PROFILER
2999 int64_t tot;
3000 tot = dyngen_interm_time + dyngen_code_time;
3001 cpu_fprintf(f, "JIT cycles %" PRId64 " (%0.3f s at 2.4 GHz)\n",
3002 tot, tot / 2.4e9);
3003 cpu_fprintf(f, "translated TBs %" PRId64 " (aborted=%" PRId64 " %0.1f%%)\n",
3004 dyngen_tb_count,
3005 dyngen_tb_count1 - dyngen_tb_count,
3006 dyngen_tb_count1 ? (double)(dyngen_tb_count1 - dyngen_tb_count) / dyngen_tb_count1 * 100.0 : 0);
3007 cpu_fprintf(f, "avg ops/TB %0.1f max=%d\n",
3008 dyngen_tb_count ? (double)dyngen_op_count / dyngen_tb_count : 0, dyngen_op_count_max);
3009 cpu_fprintf(f, "old ops/total ops %0.1f%%\n",
3010 dyngen_op_count ? (double)dyngen_old_op_count / dyngen_op_count * 100.0 : 0);
3011 cpu_fprintf(f, "deleted ops/TB %0.2f\n",
3012 dyngen_tb_count ?
3013 (double)dyngen_tcg_del_op_count / dyngen_tb_count : 0);
3014 cpu_fprintf(f, "cycles/op %0.1f\n",
3015 dyngen_op_count ? (double)tot / dyngen_op_count : 0);
3016 cpu_fprintf(f, "cycles/in byte %0.1f\n",
3017 dyngen_code_in_len ? (double)tot / dyngen_code_in_len : 0);
3018 cpu_fprintf(f, "cycles/out byte %0.1f\n",
3019 dyngen_code_out_len ? (double)tot / dyngen_code_out_len : 0);
3020 if (tot == 0)
3021 tot = 1;
3022 cpu_fprintf(f, " gen_interm time %0.1f%%\n",
3023 (double)dyngen_interm_time / tot * 100.0);
3024 cpu_fprintf(f, " gen_code time %0.1f%%\n",
3025 (double)dyngen_code_time / tot * 100.0);
3026 cpu_fprintf(f, "cpu_restore count %" PRId64 "\n",
3027 dyngen_restore_count);
3028 cpu_fprintf(f, " avg cycles %0.1f\n",
3029 dyngen_restore_count ? (double)dyngen_restore_time / dyngen_restore_count : 0);
3031 extern void dump_op_count(void);
3032 dump_op_count();
3035 #endif
3038 #if !defined(CONFIG_USER_ONLY)
3040 #define MMUSUFFIX _cmmu
3041 #define GETPC() NULL
3042 #define env cpu_single_env
3043 #define SOFTMMU_CODE_ACCESS
3045 #define SHIFT 0
3046 #include "softmmu_template.h"
3048 #define SHIFT 1
3049 #include "softmmu_template.h"
3051 #define SHIFT 2
3052 #include "softmmu_template.h"
3054 #define SHIFT 3
3055 #include "softmmu_template.h"
3057 #undef env
3059 #endif