2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #if !defined(CONFIG_SOFTMMU)
35 #include <sys/ucontext.h>
38 int tb_invalidated_flag
;
41 //#define DEBUG_SIGNAL
43 #define SAVE_GLOBALS()
44 #define RESTORE_GLOBALS()
46 #if defined(__sparc__) && !defined(HOST_SOLARIS)
48 #if defined(__GLIBC__) && ((__GLIBC__ < 2) || \
49 ((__GLIBC__ == 2) && (__GLIBC_MINOR__ <= 90)))
50 // Work around ugly bugs in glibc that mangle global register contents
52 static volatile void *saved_env
;
53 static volatile unsigned long saved_t0
, saved_i7
;
55 #define SAVE_GLOBALS() do { \
58 asm volatile ("st %%i7, [%0]" : : "r" (&saved_i7)); \
61 #undef RESTORE_GLOBALS
62 #define RESTORE_GLOBALS() do { \
63 env = (void *)saved_env; \
65 asm volatile ("ld [%0], %%i7" : : "r" (&saved_i7)); \
68 static int sparc_setjmp(jmp_buf buf
)
78 #define setjmp(jmp_buf) sparc_setjmp(jmp_buf)
80 static void sparc_longjmp(jmp_buf buf
, int val
)
85 #define longjmp(jmp_buf, val) sparc_longjmp(jmp_buf, val)
89 void cpu_loop_exit(void)
91 /* NOTE: the register at this point must be saved by hand because
92 longjmp restore them */
94 longjmp(env
->jmp_env
, 1);
97 #if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
101 /* exit the current TB from a signal handler. The host registers are
102 restored in a state compatible with the CPU emulator
104 void cpu_resume_from_signal(CPUState
*env1
, void *puc
)
106 #if !defined(CONFIG_SOFTMMU)
107 struct ucontext
*uc
= puc
;
112 /* XXX: restore cpu registers saved in host registers */
114 #if !defined(CONFIG_SOFTMMU)
116 /* XXX: use siglongjmp ? */
117 sigprocmask(SIG_SETMASK
, &uc
->uc_sigmask
, NULL
);
120 longjmp(env
->jmp_env
, 1);
123 static TranslationBlock
*tb_find_slow(target_ulong pc
,
124 target_ulong cs_base
,
127 TranslationBlock
*tb
, **ptb1
;
130 target_ulong phys_pc
, phys_page1
, phys_page2
, virt_page2
;
135 tb_invalidated_flag
= 0;
137 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
139 /* find translated block using physical mappings */
140 phys_pc
= get_phys_addr_code(env
, pc
);
141 phys_page1
= phys_pc
& TARGET_PAGE_MASK
;
143 h
= tb_phys_hash_func(phys_pc
);
144 ptb1
= &tb_phys_hash
[h
];
150 tb
->page_addr
[0] == phys_page1
&&
151 tb
->cs_base
== cs_base
&&
152 tb
->flags
== flags
) {
153 /* check next page if needed */
154 if (tb
->page_addr
[1] != -1) {
155 virt_page2
= (pc
& TARGET_PAGE_MASK
) +
157 phys_page2
= get_phys_addr_code(env
, virt_page2
);
158 if (tb
->page_addr
[1] == phys_page2
)
164 ptb1
= &tb
->phys_hash_next
;
167 /* if no translated code available, then translate it now */
170 /* flush must be done */
172 /* cannot fail at this point */
174 /* don't forget to invalidate previous TB info */
175 tb_invalidated_flag
= 1;
177 tc_ptr
= code_gen_ptr
;
179 tb
->cs_base
= cs_base
;
182 cpu_gen_code(env
, tb
, &code_gen_size
);
184 code_gen_ptr
= (void *)(((unsigned long)code_gen_ptr
+ code_gen_size
+ CODE_GEN_ALIGN
- 1) & ~(CODE_GEN_ALIGN
- 1));
186 /* check next page if needed */
187 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
189 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
190 phys_page2
= get_phys_addr_code(env
, virt_page2
);
192 tb_link_phys(tb
, phys_pc
, phys_page2
);
195 /* we add the TB in the virtual pc hash table */
196 env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)] = tb
;
197 spin_unlock(&tb_lock
);
201 static inline TranslationBlock
*tb_find_fast(void)
203 TranslationBlock
*tb
;
204 target_ulong cs_base
, pc
;
207 /* we record a subset of the CPU state. It will
208 always be the same before a given translated block
210 #if defined(TARGET_I386)
212 flags
|= (env
->eflags
& (IOPL_MASK
| TF_MASK
| VM_MASK
));
213 flags
|= env
->intercept
;
214 cs_base
= env
->segs
[R_CS
].base
;
215 pc
= cs_base
+ env
->eip
;
216 #elif defined(TARGET_ARM)
217 flags
= env
->thumb
| (env
->vfp
.vec_len
<< 1)
218 | (env
->vfp
.vec_stride
<< 4);
219 if ((env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
)
221 if (env
->vfp
.xregs
[ARM_VFP_FPEXC
] & (1 << 30))
223 flags
|= (env
->condexec_bits
<< 8);
226 #elif defined(TARGET_SPARC)
227 #ifdef TARGET_SPARC64
228 // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
229 flags
= (((env
->pstate
& PS_PEF
) >> 1) | ((env
->fprs
& FPRS_FEF
) << 2))
230 | (env
->pstate
& PS_PRIV
) | ((env
->lsu
& (DMMU_E
| IMMU_E
)) >> 2);
232 // FPU enable . Supervisor
233 flags
= (env
->psref
<< 4) | env
->psrs
;
237 #elif defined(TARGET_PPC)
241 #elif defined(TARGET_MIPS)
242 flags
= env
->hflags
& (MIPS_HFLAG_TMASK
| MIPS_HFLAG_BMASK
);
244 pc
= env
->PC
[env
->current_tc
];
245 #elif defined(TARGET_M68K)
246 flags
= (env
->fpcr
& M68K_FPCR_PREC
) /* Bit 6 */
247 | (env
->sr
& SR_S
) /* Bit 13 */
248 | ((env
->macsr
>> 4) & 0xf); /* Bits 0-3 */
251 #elif defined(TARGET_SH4)
255 #elif defined(TARGET_ALPHA)
259 #elif defined(TARGET_CRIS)
264 #error unsupported CPU
266 tb
= env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)];
267 if (__builtin_expect(!tb
|| tb
->pc
!= pc
|| tb
->cs_base
!= cs_base
||
268 tb
->flags
!= flags
, 0)) {
269 tb
= tb_find_slow(pc
, cs_base
, flags
);
270 /* Note: we do it here to avoid a gcc bug on Mac OS X when
271 doing it in tb_find_slow */
272 if (tb_invalidated_flag
) {
273 /* as some TB could have been invalidated because
274 of memory exceptions while generating the code, we
275 must recompute the hash index here */
282 #define BREAK_CHAIN T0 = 0
284 /* main execution loop */
286 int cpu_exec(CPUState
*env1
)
288 #define DECLARE_HOST_REGS 1
289 #include "hostregs_helper.h"
290 #if defined(TARGET_SPARC)
291 #if defined(reg_REGWPTR)
292 uint32_t *saved_regwptr
;
295 int ret
, interrupt_request
;
296 long (*gen_func
)(void);
297 TranslationBlock
*tb
;
300 if (cpu_halted(env1
) == EXCP_HALTED
)
303 cpu_single_env
= env1
;
305 /* first we save global registers */
306 #define SAVE_HOST_REGS 1
307 #include "hostregs_helper.h"
312 #if defined(TARGET_I386)
313 /* put eflags in CPU temporary format */
314 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
315 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
316 CC_OP
= CC_OP_EFLAGS
;
317 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
318 #elif defined(TARGET_SPARC)
319 #if defined(reg_REGWPTR)
320 saved_regwptr
= REGWPTR
;
322 #elif defined(TARGET_M68K)
323 env
->cc_op
= CC_OP_FLAGS
;
324 env
->cc_dest
= env
->sr
& 0xf;
325 env
->cc_x
= (env
->sr
>> 4) & 1;
326 #elif defined(TARGET_ALPHA)
327 #elif defined(TARGET_ARM)
328 #elif defined(TARGET_PPC)
329 #elif defined(TARGET_MIPS)
330 #elif defined(TARGET_SH4)
331 #elif defined(TARGET_CRIS)
334 #error unsupported target CPU
336 env
->exception_index
= -1;
338 /* prepare setjmp context for exception handling */
340 if (setjmp(env
->jmp_env
) == 0) {
341 env
->current_tb
= NULL
;
342 /* if an exception is pending, we execute it here */
343 if (env
->exception_index
>= 0) {
344 if (env
->exception_index
>= EXCP_INTERRUPT
) {
345 /* exit request from the cpu execution loop */
346 ret
= env
->exception_index
;
348 } else if (env
->user_mode_only
) {
349 /* if user mode only, we simulate a fake exception
350 which will be handled outside the cpu execution
352 #if defined(TARGET_I386)
353 do_interrupt_user(env
->exception_index
,
354 env
->exception_is_int
,
356 env
->exception_next_eip
);
358 ret
= env
->exception_index
;
361 #if defined(TARGET_I386)
362 /* simulate a real cpu exception. On i386, it can
363 trigger new exceptions, but we do not handle
364 double or triple faults yet. */
365 do_interrupt(env
->exception_index
,
366 env
->exception_is_int
,
368 env
->exception_next_eip
, 0);
369 /* successfully delivered */
370 env
->old_exception
= -1;
371 #elif defined(TARGET_PPC)
373 #elif defined(TARGET_MIPS)
375 #elif defined(TARGET_SPARC)
376 do_interrupt(env
->exception_index
);
377 #elif defined(TARGET_ARM)
379 #elif defined(TARGET_SH4)
381 #elif defined(TARGET_ALPHA)
383 #elif defined(TARGET_CRIS)
385 #elif defined(TARGET_M68K)
389 env
->exception_index
= -1;
392 if (kqemu_is_ok(env
) && env
->interrupt_request
== 0) {
394 env
->eflags
= env
->eflags
| cc_table
[CC_OP
].compute_all() | (DF
& DF_MASK
);
395 ret
= kqemu_cpu_exec(env
);
396 /* put eflags in CPU temporary format */
397 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
398 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
399 CC_OP
= CC_OP_EFLAGS
;
400 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
403 longjmp(env
->jmp_env
, 1);
404 } else if (ret
== 2) {
405 /* softmmu execution needed */
407 if (env
->interrupt_request
!= 0) {
408 /* hardware interrupt will be executed just after */
410 /* otherwise, we restart */
411 longjmp(env
->jmp_env
, 1);
417 T0
= 0; /* force lookup of first TB */
420 interrupt_request
= env
->interrupt_request
;
421 if (__builtin_expect(interrupt_request
, 0)
422 #if defined(TARGET_I386)
423 && env
->hflags
& HF_GIF_MASK
426 if (interrupt_request
& CPU_INTERRUPT_DEBUG
) {
427 env
->interrupt_request
&= ~CPU_INTERRUPT_DEBUG
;
428 env
->exception_index
= EXCP_DEBUG
;
431 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
432 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS)
433 if (interrupt_request
& CPU_INTERRUPT_HALT
) {
434 env
->interrupt_request
&= ~CPU_INTERRUPT_HALT
;
436 env
->exception_index
= EXCP_HLT
;
440 #if defined(TARGET_I386)
441 if ((interrupt_request
& CPU_INTERRUPT_SMI
) &&
442 !(env
->hflags
& HF_SMM_MASK
)) {
443 svm_check_intercept(SVM_EXIT_SMI
);
444 env
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
447 } else if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
448 (env
->eflags
& IF_MASK
|| env
->hflags
& HF_HIF_MASK
) &&
449 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
)) {
451 svm_check_intercept(SVM_EXIT_INTR
);
452 env
->interrupt_request
&= ~(CPU_INTERRUPT_HARD
| CPU_INTERRUPT_VIRQ
);
453 intno
= cpu_get_pic_interrupt(env
);
454 if (loglevel
& CPU_LOG_TB_IN_ASM
) {
455 fprintf(logfile
, "Servicing hardware INT=0x%02x\n", intno
);
457 do_interrupt(intno
, 0, 0, 0, 1);
458 /* ensure that no TB jump will be modified as
459 the program flow was changed */
461 #if !defined(CONFIG_USER_ONLY)
462 } else if ((interrupt_request
& CPU_INTERRUPT_VIRQ
) &&
463 (env
->eflags
& IF_MASK
) && !(env
->hflags
& HF_INHIBIT_IRQ_MASK
)) {
465 /* FIXME: this should respect TPR */
466 env
->interrupt_request
&= ~CPU_INTERRUPT_VIRQ
;
467 svm_check_intercept(SVM_EXIT_VINTR
);
468 intno
= ldl_phys(env
->vm_vmcb
+ offsetof(struct vmcb
, control
.int_vector
));
469 if (loglevel
& CPU_LOG_TB_IN_ASM
)
470 fprintf(logfile
, "Servicing virtual hardware INT=0x%02x\n", intno
);
471 do_interrupt(intno
, 0, 0, -1, 1);
472 stl_phys(env
->vm_vmcb
+ offsetof(struct vmcb
, control
.int_ctl
),
473 ldl_phys(env
->vm_vmcb
+ offsetof(struct vmcb
, control
.int_ctl
)) & ~V_IRQ_MASK
);
477 #elif defined(TARGET_PPC)
479 if ((interrupt_request
& CPU_INTERRUPT_RESET
)) {
483 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
484 ppc_hw_interrupt(env
);
485 if (env
->pending_interrupts
== 0)
486 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
489 #elif defined(TARGET_MIPS)
490 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
491 (env
->CP0_Status
& env
->CP0_Cause
& CP0Ca_IP_mask
) &&
492 (env
->CP0_Status
& (1 << CP0St_IE
)) &&
493 !(env
->CP0_Status
& (1 << CP0St_EXL
)) &&
494 !(env
->CP0_Status
& (1 << CP0St_ERL
)) &&
495 !(env
->hflags
& MIPS_HFLAG_DM
)) {
497 env
->exception_index
= EXCP_EXT_INTERRUPT
;
502 #elif defined(TARGET_SPARC)
503 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
505 int pil
= env
->interrupt_index
& 15;
506 int type
= env
->interrupt_index
& 0xf0;
508 if (((type
== TT_EXTINT
) &&
509 (pil
== 15 || pil
> env
->psrpil
)) ||
511 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
512 do_interrupt(env
->interrupt_index
);
513 env
->interrupt_index
= 0;
514 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
519 } else if (interrupt_request
& CPU_INTERRUPT_TIMER
) {
520 //do_interrupt(0, 0, 0, 0, 0);
521 env
->interrupt_request
&= ~CPU_INTERRUPT_TIMER
;
523 #elif defined(TARGET_ARM)
524 if (interrupt_request
& CPU_INTERRUPT_FIQ
525 && !(env
->uncached_cpsr
& CPSR_F
)) {
526 env
->exception_index
= EXCP_FIQ
;
530 /* ARMv7-M interrupt return works by loading a magic value
531 into the PC. On real hardware the load causes the
532 return to occur. The qemu implementation performs the
533 jump normally, then does the exception return when the
534 CPU tries to execute code at the magic address.
535 This will cause the magic PC value to be pushed to
536 the stack if an interrupt occured at the wrong time.
537 We avoid this by disabling interrupts when
538 pc contains a magic address. */
539 if (interrupt_request
& CPU_INTERRUPT_HARD
540 && ((IS_M(env
) && env
->regs
[15] < 0xfffffff0)
541 || !(env
->uncached_cpsr
& CPSR_I
))) {
542 env
->exception_index
= EXCP_IRQ
;
546 #elif defined(TARGET_SH4)
547 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
551 #elif defined(TARGET_ALPHA)
552 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
556 #elif defined(TARGET_CRIS)
557 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
561 #elif defined(TARGET_M68K)
562 if (interrupt_request
& CPU_INTERRUPT_HARD
563 && ((env
->sr
& SR_I
) >> SR_I_SHIFT
)
564 < env
->pending_level
) {
565 /* Real hardware gets the interrupt vector via an
566 IACK cycle at this point. Current emulated
567 hardware doesn't rely on this, so we
568 provide/save the vector when the interrupt is
570 env
->exception_index
= env
->pending_vector
;
575 /* Don't use the cached interupt_request value,
576 do_interrupt may have updated the EXITTB flag. */
577 if (env
->interrupt_request
& CPU_INTERRUPT_EXITTB
) {
578 env
->interrupt_request
&= ~CPU_INTERRUPT_EXITTB
;
579 /* ensure that no TB jump will be modified as
580 the program flow was changed */
583 if (interrupt_request
& CPU_INTERRUPT_EXIT
) {
584 env
->interrupt_request
&= ~CPU_INTERRUPT_EXIT
;
585 env
->exception_index
= EXCP_INTERRUPT
;
590 if ((loglevel
& CPU_LOG_TB_CPU
)) {
591 /* restore flags in standard format */
593 #if defined(TARGET_I386)
594 env
->eflags
= env
->eflags
| cc_table
[CC_OP
].compute_all() | (DF
& DF_MASK
);
595 cpu_dump_state(env
, logfile
, fprintf
, X86_DUMP_CCOP
);
596 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
597 #elif defined(TARGET_ARM)
598 cpu_dump_state(env
, logfile
, fprintf
, 0);
599 #elif defined(TARGET_SPARC)
600 REGWPTR
= env
->regbase
+ (env
->cwp
* 16);
601 env
->regwptr
= REGWPTR
;
602 cpu_dump_state(env
, logfile
, fprintf
, 0);
603 #elif defined(TARGET_PPC)
604 cpu_dump_state(env
, logfile
, fprintf
, 0);
605 #elif defined(TARGET_M68K)
606 cpu_m68k_flush_flags(env
, env
->cc_op
);
607 env
->cc_op
= CC_OP_FLAGS
;
608 env
->sr
= (env
->sr
& 0xffe0)
609 | env
->cc_dest
| (env
->cc_x
<< 4);
610 cpu_dump_state(env
, logfile
, fprintf
, 0);
611 #elif defined(TARGET_MIPS)
612 cpu_dump_state(env
, logfile
, fprintf
, 0);
613 #elif defined(TARGET_SH4)
614 cpu_dump_state(env
, logfile
, fprintf
, 0);
615 #elif defined(TARGET_ALPHA)
616 cpu_dump_state(env
, logfile
, fprintf
, 0);
617 #elif defined(TARGET_CRIS)
618 cpu_dump_state(env
, logfile
, fprintf
, 0);
620 #error unsupported target CPU
626 if ((loglevel
& CPU_LOG_EXEC
)) {
627 fprintf(logfile
, "Trace 0x%08lx [" TARGET_FMT_lx
"] %s\n",
628 (long)tb
->tc_ptr
, tb
->pc
,
629 lookup_symbol(tb
->pc
));
633 /* see if we can patch the calling TB. When the TB
634 spans two pages, we cannot safely do a direct
639 (env
->kqemu_enabled
!= 2) &&
641 tb
->page_addr
[1] == -1) {
643 tb_add_jump((TranslationBlock
*)(long)(T0
& ~3), T0
& 3, tb
);
644 spin_unlock(&tb_lock
);
648 env
->current_tb
= tb
;
649 /* execute the generated code */
650 gen_func
= (void *)tc_ptr
;
651 #if defined(__sparc__)
652 __asm__
__volatile__("call %0\n\t"
656 : "i0", "i1", "i2", "i3", "i4", "i5",
657 "o0", "o1", "o2", "o3", "o4", "o5",
658 "l0", "l1", "l2", "l3", "l4", "l5",
660 #elif defined(__arm__)
661 asm volatile ("mov pc, %0\n\t"
662 ".global exec_loop\n\t"
666 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
667 #elif defined(__ia64)
674 fp
.gp
= code_gen_buffer
+ 2 * (1 << 20);
675 (*(void (*)(void)) &fp
)();
679 env
->current_tb
= NULL
;
680 /* reset soft MMU for next block (it can currently
681 only be set by a memory fault) */
682 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
683 if (env
->hflags
& HF_SOFTMMU_MASK
) {
684 env
->hflags
&= ~HF_SOFTMMU_MASK
;
685 /* do not allow linking to another block */
689 #if defined(USE_KQEMU)
690 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
691 if (kqemu_is_ok(env
) &&
692 (cpu_get_time_fast() - env
->last_io_time
) >= MIN_CYCLE_BEFORE_SWITCH
) {
703 #if defined(TARGET_I386)
704 /* restore flags in standard format */
705 env
->eflags
= env
->eflags
| cc_table
[CC_OP
].compute_all() | (DF
& DF_MASK
);
706 #elif defined(TARGET_ARM)
707 /* XXX: Save/restore host fpu exception state?. */
708 #elif defined(TARGET_SPARC)
709 #if defined(reg_REGWPTR)
710 REGWPTR
= saved_regwptr
;
712 #elif defined(TARGET_PPC)
713 #elif defined(TARGET_M68K)
714 cpu_m68k_flush_flags(env
, env
->cc_op
);
715 env
->cc_op
= CC_OP_FLAGS
;
716 env
->sr
= (env
->sr
& 0xffe0)
717 | env
->cc_dest
| (env
->cc_x
<< 4);
718 #elif defined(TARGET_MIPS)
719 #elif defined(TARGET_SH4)
720 #elif defined(TARGET_ALPHA)
721 #elif defined(TARGET_CRIS)
724 #error unsupported target CPU
727 /* restore global registers */
729 #include "hostregs_helper.h"
731 /* fail safe : never use cpu_single_env outside cpu_exec() */
732 cpu_single_env
= NULL
;
736 /* must only be called from the generated code as an exception can be
738 void tb_invalidate_page_range(target_ulong start
, target_ulong end
)
740 /* XXX: cannot enable it yet because it yields to MMU exception
741 where NIP != read address on PowerPC */
743 target_ulong phys_addr
;
744 phys_addr
= get_phys_addr_code(env
, start
);
745 tb_invalidate_phys_page_range(phys_addr
, phys_addr
+ end
- start
, 0);
749 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
751 void cpu_x86_load_seg(CPUX86State
*s
, int seg_reg
, int selector
)
753 CPUX86State
*saved_env
;
757 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
759 cpu_x86_load_seg_cache(env
, seg_reg
, selector
,
760 (selector
<< 4), 0xffff, 0);
762 load_seg(seg_reg
, selector
);
767 void cpu_x86_fsave(CPUX86State
*s
, target_ulong ptr
, int data32
)
769 CPUX86State
*saved_env
;
774 helper_fsave(ptr
, data32
);
779 void cpu_x86_frstor(CPUX86State
*s
, target_ulong ptr
, int data32
)
781 CPUX86State
*saved_env
;
786 helper_frstor(ptr
, data32
);
791 #endif /* TARGET_I386 */
793 #if !defined(CONFIG_SOFTMMU)
795 #if defined(TARGET_I386)
797 /* 'pc' is the host PC at which the exception was raised. 'address' is
798 the effective address of the memory exception. 'is_write' is 1 if a
799 write caused the exception and otherwise 0'. 'old_set' is the
800 signal set which should be restored */
801 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
802 int is_write
, sigset_t
*old_set
,
805 TranslationBlock
*tb
;
809 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
810 #if defined(DEBUG_SIGNAL)
811 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
812 pc
, address
, is_write
, *(unsigned long *)old_set
);
814 /* XXX: locking issue */
815 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
819 /* see if it is an MMU fault */
820 ret
= cpu_x86_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
822 return 0; /* not an MMU fault */
824 return 1; /* the MMU fault was handled without causing real CPU fault */
825 /* now we have a real cpu fault */
828 /* the PC is inside the translated code. It means that we have
829 a virtual CPU fault */
830 cpu_restore_state(tb
, env
, pc
, puc
);
834 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
835 env
->eip
, env
->cr
[2], env
->error_code
);
837 /* we restore the process signal mask as the sigreturn should
838 do it (XXX: use sigsetjmp) */
839 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
840 raise_exception_err(env
->exception_index
, env
->error_code
);
842 /* activate soft MMU for this block */
843 env
->hflags
|= HF_SOFTMMU_MASK
;
844 cpu_resume_from_signal(env
, puc
);
846 /* never comes here */
850 #elif defined(TARGET_ARM)
851 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
852 int is_write
, sigset_t
*old_set
,
855 TranslationBlock
*tb
;
859 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
860 #if defined(DEBUG_SIGNAL)
861 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
862 pc
, address
, is_write
, *(unsigned long *)old_set
);
864 /* XXX: locking issue */
865 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
868 /* see if it is an MMU fault */
869 ret
= cpu_arm_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
871 return 0; /* not an MMU fault */
873 return 1; /* the MMU fault was handled without causing real CPU fault */
874 /* now we have a real cpu fault */
877 /* the PC is inside the translated code. It means that we have
878 a virtual CPU fault */
879 cpu_restore_state(tb
, env
, pc
, puc
);
881 /* we restore the process signal mask as the sigreturn should
882 do it (XXX: use sigsetjmp) */
883 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
886 #elif defined(TARGET_SPARC)
887 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
888 int is_write
, sigset_t
*old_set
,
891 TranslationBlock
*tb
;
895 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
896 #if defined(DEBUG_SIGNAL)
897 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
898 pc
, address
, is_write
, *(unsigned long *)old_set
);
900 /* XXX: locking issue */
901 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
904 /* see if it is an MMU fault */
905 ret
= cpu_sparc_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
907 return 0; /* not an MMU fault */
909 return 1; /* the MMU fault was handled without causing real CPU fault */
910 /* now we have a real cpu fault */
913 /* the PC is inside the translated code. It means that we have
914 a virtual CPU fault */
915 cpu_restore_state(tb
, env
, pc
, puc
);
917 /* we restore the process signal mask as the sigreturn should
918 do it (XXX: use sigsetjmp) */
919 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
922 #elif defined (TARGET_PPC)
923 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
924 int is_write
, sigset_t
*old_set
,
927 TranslationBlock
*tb
;
931 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
932 #if defined(DEBUG_SIGNAL)
933 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
934 pc
, address
, is_write
, *(unsigned long *)old_set
);
936 /* XXX: locking issue */
937 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
941 /* see if it is an MMU fault */
942 ret
= cpu_ppc_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
944 return 0; /* not an MMU fault */
946 return 1; /* the MMU fault was handled without causing real CPU fault */
948 /* now we have a real cpu fault */
951 /* the PC is inside the translated code. It means that we have
952 a virtual CPU fault */
953 cpu_restore_state(tb
, env
, pc
, puc
);
957 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
958 env
->nip
, env
->error_code
, tb
);
960 /* we restore the process signal mask as the sigreturn should
961 do it (XXX: use sigsetjmp) */
962 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
963 do_raise_exception_err(env
->exception_index
, env
->error_code
);
965 /* activate soft MMU for this block */
966 cpu_resume_from_signal(env
, puc
);
968 /* never comes here */
972 #elif defined(TARGET_M68K)
973 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
974 int is_write
, sigset_t
*old_set
,
977 TranslationBlock
*tb
;
981 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
982 #if defined(DEBUG_SIGNAL)
983 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
984 pc
, address
, is_write
, *(unsigned long *)old_set
);
986 /* XXX: locking issue */
987 if (is_write
&& page_unprotect(address
, pc
, puc
)) {
990 /* see if it is an MMU fault */
991 ret
= cpu_m68k_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
993 return 0; /* not an MMU fault */
995 return 1; /* the MMU fault was handled without causing real CPU fault */
996 /* now we have a real cpu fault */
999 /* the PC is inside the translated code. It means that we have
1000 a virtual CPU fault */
1001 cpu_restore_state(tb
, env
, pc
, puc
);
1003 /* we restore the process signal mask as the sigreturn should
1004 do it (XXX: use sigsetjmp) */
1005 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1007 /* never comes here */
1011 #elif defined (TARGET_MIPS)
1012 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1013 int is_write
, sigset_t
*old_set
,
1016 TranslationBlock
*tb
;
1020 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1021 #if defined(DEBUG_SIGNAL)
1022 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1023 pc
, address
, is_write
, *(unsigned long *)old_set
);
1025 /* XXX: locking issue */
1026 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1030 /* see if it is an MMU fault */
1031 ret
= cpu_mips_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1033 return 0; /* not an MMU fault */
1035 return 1; /* the MMU fault was handled without causing real CPU fault */
1037 /* now we have a real cpu fault */
1038 tb
= tb_find_pc(pc
);
1040 /* the PC is inside the translated code. It means that we have
1041 a virtual CPU fault */
1042 cpu_restore_state(tb
, env
, pc
, puc
);
1046 printf("PF exception: PC=0x" TARGET_FMT_lx
" error=0x%x %p\n",
1047 env
->PC
, env
->error_code
, tb
);
1049 /* we restore the process signal mask as the sigreturn should
1050 do it (XXX: use sigsetjmp) */
1051 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1052 do_raise_exception_err(env
->exception_index
, env
->error_code
);
1054 /* activate soft MMU for this block */
1055 cpu_resume_from_signal(env
, puc
);
1057 /* never comes here */
1061 #elif defined (TARGET_SH4)
1062 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1063 int is_write
, sigset_t
*old_set
,
1066 TranslationBlock
*tb
;
1070 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1071 #if defined(DEBUG_SIGNAL)
1072 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1073 pc
, address
, is_write
, *(unsigned long *)old_set
);
1075 /* XXX: locking issue */
1076 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1080 /* see if it is an MMU fault */
1081 ret
= cpu_sh4_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1083 return 0; /* not an MMU fault */
1085 return 1; /* the MMU fault was handled without causing real CPU fault */
1087 /* now we have a real cpu fault */
1088 tb
= tb_find_pc(pc
);
1090 /* the PC is inside the translated code. It means that we have
1091 a virtual CPU fault */
1092 cpu_restore_state(tb
, env
, pc
, puc
);
1095 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1096 env
->nip
, env
->error_code
, tb
);
1098 /* we restore the process signal mask as the sigreturn should
1099 do it (XXX: use sigsetjmp) */
1100 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1102 /* never comes here */
1106 #elif defined (TARGET_ALPHA)
1107 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1108 int is_write
, sigset_t
*old_set
,
1111 TranslationBlock
*tb
;
1115 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1116 #if defined(DEBUG_SIGNAL)
1117 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1118 pc
, address
, is_write
, *(unsigned long *)old_set
);
1120 /* XXX: locking issue */
1121 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1125 /* see if it is an MMU fault */
1126 ret
= cpu_alpha_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1128 return 0; /* not an MMU fault */
1130 return 1; /* the MMU fault was handled without causing real CPU fault */
1132 /* now we have a real cpu fault */
1133 tb
= tb_find_pc(pc
);
1135 /* the PC is inside the translated code. It means that we have
1136 a virtual CPU fault */
1137 cpu_restore_state(tb
, env
, pc
, puc
);
1140 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1141 env
->nip
, env
->error_code
, tb
);
1143 /* we restore the process signal mask as the sigreturn should
1144 do it (XXX: use sigsetjmp) */
1145 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1147 /* never comes here */
1150 #elif defined (TARGET_CRIS)
1151 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1152 int is_write
, sigset_t
*old_set
,
1155 TranslationBlock
*tb
;
1159 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1160 #if defined(DEBUG_SIGNAL)
1161 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1162 pc
, address
, is_write
, *(unsigned long *)old_set
);
1164 /* XXX: locking issue */
1165 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1169 /* see if it is an MMU fault */
1170 ret
= cpu_cris_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1172 return 0; /* not an MMU fault */
1174 return 1; /* the MMU fault was handled without causing real CPU fault */
1176 /* now we have a real cpu fault */
1177 tb
= tb_find_pc(pc
);
1179 /* the PC is inside the translated code. It means that we have
1180 a virtual CPU fault */
1181 cpu_restore_state(tb
, env
, pc
, puc
);
1183 /* we restore the process signal mask as the sigreturn should
1184 do it (XXX: use sigsetjmp) */
1185 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1187 /* never comes here */
1192 #error unsupported target CPU
1195 #if defined(__i386__)
1197 #if defined(__APPLE__)
1198 # include <sys/ucontext.h>
1200 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1201 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1202 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1204 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1205 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1206 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1209 int cpu_signal_handler(int host_signum
, void *pinfo
,
1212 siginfo_t
*info
= pinfo
;
1213 struct ucontext
*uc
= puc
;
1221 #define REG_TRAPNO TRAPNO
1224 trapno
= TRAP_sig(uc
);
1225 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1227 (ERROR_sig(uc
) >> 1) & 1 : 0,
1228 &uc
->uc_sigmask
, puc
);
1231 #elif defined(__x86_64__)
1233 int cpu_signal_handler(int host_signum
, void *pinfo
,
1236 siginfo_t
*info
= pinfo
;
1237 struct ucontext
*uc
= puc
;
1240 pc
= uc
->uc_mcontext
.gregs
[REG_RIP
];
1241 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1242 uc
->uc_mcontext
.gregs
[REG_TRAPNO
] == 0xe ?
1243 (uc
->uc_mcontext
.gregs
[REG_ERR
] >> 1) & 1 : 0,
1244 &uc
->uc_sigmask
, puc
);
1247 #elif defined(__powerpc__)
1249 /***********************************************************************
1250 * signal context platform-specific definitions
1254 /* All Registers access - only for local access */
1255 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1256 /* Gpr Registers access */
1257 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1258 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1259 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1260 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1261 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1262 # define LR_sig(context) REG_sig(link, context) /* Link register */
1263 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1264 /* Float Registers access */
1265 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1266 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1267 /* Exception Registers access */
1268 # define DAR_sig(context) REG_sig(dar, context)
1269 # define DSISR_sig(context) REG_sig(dsisr, context)
1270 # define TRAP_sig(context) REG_sig(trap, context)
1274 # include <sys/ucontext.h>
1275 typedef struct ucontext SIGCONTEXT
;
1276 /* All Registers access - only for local access */
1277 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1278 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1279 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1280 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1281 /* Gpr Registers access */
1282 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1283 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1284 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1285 # define CTR_sig(context) REG_sig(ctr, context)
1286 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1287 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1288 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1289 /* Float Registers access */
1290 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1291 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1292 /* Exception Registers access */
1293 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1294 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1295 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1296 #endif /* __APPLE__ */
1298 int cpu_signal_handler(int host_signum
, void *pinfo
,
1301 siginfo_t
*info
= pinfo
;
1302 struct ucontext
*uc
= puc
;
1310 if (DSISR_sig(uc
) & 0x00800000)
1313 if (TRAP_sig(uc
) != 0x400 && (DSISR_sig(uc
) & 0x02000000))
1316 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1317 is_write
, &uc
->uc_sigmask
, puc
);
1320 #elif defined(__alpha__)
1322 int cpu_signal_handler(int host_signum
, void *pinfo
,
1325 siginfo_t
*info
= pinfo
;
1326 struct ucontext
*uc
= puc
;
1327 uint32_t *pc
= uc
->uc_mcontext
.sc_pc
;
1328 uint32_t insn
= *pc
;
1331 /* XXX: need kernel patch to get write flag faster */
1332 switch (insn
>> 26) {
1347 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1348 is_write
, &uc
->uc_sigmask
, puc
);
1350 #elif defined(__sparc__)
1352 int cpu_signal_handler(int host_signum
, void *pinfo
,
1355 siginfo_t
*info
= pinfo
;
1356 uint32_t *regs
= (uint32_t *)(info
+ 1);
1357 void *sigmask
= (regs
+ 20);
1362 /* XXX: is there a standard glibc define ? */
1364 /* XXX: need kernel patch to get write flag faster */
1366 insn
= *(uint32_t *)pc
;
1367 if ((insn
>> 30) == 3) {
1368 switch((insn
>> 19) & 0x3f) {
1380 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1381 is_write
, sigmask
, NULL
);
1384 #elif defined(__arm__)
1386 int cpu_signal_handler(int host_signum
, void *pinfo
,
1389 siginfo_t
*info
= pinfo
;
1390 struct ucontext
*uc
= puc
;
1394 pc
= uc
->uc_mcontext
.gregs
[R15
];
1395 /* XXX: compute is_write */
1397 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1399 &uc
->uc_sigmask
, puc
);
1402 #elif defined(__mc68000)
1404 int cpu_signal_handler(int host_signum
, void *pinfo
,
1407 siginfo_t
*info
= pinfo
;
1408 struct ucontext
*uc
= puc
;
1412 pc
= uc
->uc_mcontext
.gregs
[16];
1413 /* XXX: compute is_write */
1415 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1417 &uc
->uc_sigmask
, puc
);
1420 #elif defined(__ia64)
1423 /* This ought to be in <bits/siginfo.h>... */
1424 # define __ISR_VALID 1
1427 int cpu_signal_handler(int host_signum
, void *pinfo
, void *puc
)
1429 siginfo_t
*info
= pinfo
;
1430 struct ucontext
*uc
= puc
;
1434 ip
= uc
->uc_mcontext
.sc_ip
;
1435 switch (host_signum
) {
1441 if (info
->si_code
&& (info
->si_segvflags
& __ISR_VALID
))
1442 /* ISR.W (write-access) is bit 33: */
1443 is_write
= (info
->si_isr
>> 33) & 1;
1449 return handle_cpu_signal(ip
, (unsigned long)info
->si_addr
,
1451 &uc
->uc_sigmask
, puc
);
1454 #elif defined(__s390__)
1456 int cpu_signal_handler(int host_signum
, void *pinfo
,
1459 siginfo_t
*info
= pinfo
;
1460 struct ucontext
*uc
= puc
;
1464 pc
= uc
->uc_mcontext
.psw
.addr
;
1465 /* XXX: compute is_write */
1467 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1468 is_write
, &uc
->uc_sigmask
, puc
);
1471 #elif defined(__mips__)
1473 int cpu_signal_handler(int host_signum
, void *pinfo
,
1476 siginfo_t
*info
= pinfo
;
1477 struct ucontext
*uc
= puc
;
1478 greg_t pc
= uc
->uc_mcontext
.pc
;
1481 /* XXX: compute is_write */
1483 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1484 is_write
, &uc
->uc_sigmask
, puc
);
1489 #error host CPU specific signal handler needed
1493 #endif /* !defined(CONFIG_SOFTMMU) */