A first small step to convert the CRIS translator to TCG.
[qemu/qemu-JZ.git] / cpu-exec.c
blob3246264fcec8153e3022a4d3f0db650f796dd0af
1 /*
2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "config.h"
21 #include "exec.h"
22 #include "disas.h"
24 #if !defined(CONFIG_SOFTMMU)
25 #undef EAX
26 #undef ECX
27 #undef EDX
28 #undef EBX
29 #undef ESP
30 #undef EBP
31 #undef ESI
32 #undef EDI
33 #undef EIP
34 #include <signal.h>
35 #include <sys/ucontext.h>
36 #endif
38 int tb_invalidated_flag;
40 //#define DEBUG_EXEC
41 //#define DEBUG_SIGNAL
43 #define SAVE_GLOBALS()
44 #define RESTORE_GLOBALS()
46 #if defined(__sparc__) && !defined(HOST_SOLARIS)
47 #include <features.h>
48 #if defined(__GLIBC__) && ((__GLIBC__ < 2) || \
49 ((__GLIBC__ == 2) && (__GLIBC_MINOR__ <= 90)))
50 // Work around ugly bugs in glibc that mangle global register contents
52 static volatile void *saved_env;
53 static volatile unsigned long saved_t0, saved_i7;
54 #undef SAVE_GLOBALS
55 #define SAVE_GLOBALS() do { \
56 saved_env = env; \
57 saved_t0 = T0; \
58 asm volatile ("st %%i7, [%0]" : : "r" (&saved_i7)); \
59 } while(0)
61 #undef RESTORE_GLOBALS
62 #define RESTORE_GLOBALS() do { \
63 env = (void *)saved_env; \
64 T0 = saved_t0; \
65 asm volatile ("ld [%0], %%i7" : : "r" (&saved_i7)); \
66 } while(0)
68 static int sparc_setjmp(jmp_buf buf)
70 int ret;
72 SAVE_GLOBALS();
73 ret = setjmp(buf);
74 RESTORE_GLOBALS();
75 return ret;
77 #undef setjmp
78 #define setjmp(jmp_buf) sparc_setjmp(jmp_buf)
80 static void sparc_longjmp(jmp_buf buf, int val)
82 SAVE_GLOBALS();
83 longjmp(buf, val);
85 #define longjmp(jmp_buf, val) sparc_longjmp(jmp_buf, val)
86 #endif
87 #endif
89 void cpu_loop_exit(void)
91 /* NOTE: the register at this point must be saved by hand because
92 longjmp restore them */
93 regs_to_env();
94 longjmp(env->jmp_env, 1);
97 #if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
98 #define reg_T2
99 #endif
101 /* exit the current TB from a signal handler. The host registers are
102 restored in a state compatible with the CPU emulator
104 void cpu_resume_from_signal(CPUState *env1, void *puc)
106 #if !defined(CONFIG_SOFTMMU)
107 struct ucontext *uc = puc;
108 #endif
110 env = env1;
112 /* XXX: restore cpu registers saved in host registers */
114 #if !defined(CONFIG_SOFTMMU)
115 if (puc) {
116 /* XXX: use siglongjmp ? */
117 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
119 #endif
120 longjmp(env->jmp_env, 1);
123 static TranslationBlock *tb_find_slow(target_ulong pc,
124 target_ulong cs_base,
125 uint64_t flags)
127 TranslationBlock *tb, **ptb1;
128 int code_gen_size;
129 unsigned int h;
130 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
131 uint8_t *tc_ptr;
133 spin_lock(&tb_lock);
135 tb_invalidated_flag = 0;
137 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
139 /* find translated block using physical mappings */
140 phys_pc = get_phys_addr_code(env, pc);
141 phys_page1 = phys_pc & TARGET_PAGE_MASK;
142 phys_page2 = -1;
143 h = tb_phys_hash_func(phys_pc);
144 ptb1 = &tb_phys_hash[h];
145 for(;;) {
146 tb = *ptb1;
147 if (!tb)
148 goto not_found;
149 if (tb->pc == pc &&
150 tb->page_addr[0] == phys_page1 &&
151 tb->cs_base == cs_base &&
152 tb->flags == flags) {
153 /* check next page if needed */
154 if (tb->page_addr[1] != -1) {
155 virt_page2 = (pc & TARGET_PAGE_MASK) +
156 TARGET_PAGE_SIZE;
157 phys_page2 = get_phys_addr_code(env, virt_page2);
158 if (tb->page_addr[1] == phys_page2)
159 goto found;
160 } else {
161 goto found;
164 ptb1 = &tb->phys_hash_next;
166 not_found:
167 /* if no translated code available, then translate it now */
168 tb = tb_alloc(pc);
169 if (!tb) {
170 /* flush must be done */
171 tb_flush(env);
172 /* cannot fail at this point */
173 tb = tb_alloc(pc);
174 /* don't forget to invalidate previous TB info */
175 tb_invalidated_flag = 1;
177 tc_ptr = code_gen_ptr;
178 tb->tc_ptr = tc_ptr;
179 tb->cs_base = cs_base;
180 tb->flags = flags;
181 SAVE_GLOBALS();
182 cpu_gen_code(env, tb, &code_gen_size);
183 RESTORE_GLOBALS();
184 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
186 /* check next page if needed */
187 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
188 phys_page2 = -1;
189 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
190 phys_page2 = get_phys_addr_code(env, virt_page2);
192 tb_link_phys(tb, phys_pc, phys_page2);
194 found:
195 /* we add the TB in the virtual pc hash table */
196 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
197 spin_unlock(&tb_lock);
198 return tb;
201 static inline TranslationBlock *tb_find_fast(void)
203 TranslationBlock *tb;
204 target_ulong cs_base, pc;
205 uint64_t flags;
207 /* we record a subset of the CPU state. It will
208 always be the same before a given translated block
209 is executed. */
210 #if defined(TARGET_I386)
211 flags = env->hflags;
212 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
213 flags |= env->intercept;
214 cs_base = env->segs[R_CS].base;
215 pc = cs_base + env->eip;
216 #elif defined(TARGET_ARM)
217 flags = env->thumb | (env->vfp.vec_len << 1)
218 | (env->vfp.vec_stride << 4);
219 if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
220 flags |= (1 << 6);
221 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
222 flags |= (1 << 7);
223 flags |= (env->condexec_bits << 8);
224 cs_base = 0;
225 pc = env->regs[15];
226 #elif defined(TARGET_SPARC)
227 #ifdef TARGET_SPARC64
228 // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
229 flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
230 | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
231 #else
232 // FPU enable . Supervisor
233 flags = (env->psref << 4) | env->psrs;
234 #endif
235 cs_base = env->npc;
236 pc = env->pc;
237 #elif defined(TARGET_PPC)
238 flags = env->hflags;
239 cs_base = 0;
240 pc = env->nip;
241 #elif defined(TARGET_MIPS)
242 flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
243 cs_base = 0;
244 pc = env->PC[env->current_tc];
245 #elif defined(TARGET_M68K)
246 flags = (env->fpcr & M68K_FPCR_PREC) /* Bit 6 */
247 | (env->sr & SR_S) /* Bit 13 */
248 | ((env->macsr >> 4) & 0xf); /* Bits 0-3 */
249 cs_base = 0;
250 pc = env->pc;
251 #elif defined(TARGET_SH4)
252 flags = env->flags;
253 cs_base = 0;
254 pc = env->pc;
255 #elif defined(TARGET_ALPHA)
256 flags = env->ps;
257 cs_base = 0;
258 pc = env->pc;
259 #elif defined(TARGET_CRIS)
260 flags = 0;
261 cs_base = 0;
262 pc = env->pc;
263 #else
264 #error unsupported CPU
265 #endif
266 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
267 if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
268 tb->flags != flags, 0)) {
269 tb = tb_find_slow(pc, cs_base, flags);
270 /* Note: we do it here to avoid a gcc bug on Mac OS X when
271 doing it in tb_find_slow */
272 if (tb_invalidated_flag) {
273 /* as some TB could have been invalidated because
274 of memory exceptions while generating the code, we
275 must recompute the hash index here */
276 T0 = 0;
279 return tb;
282 #define BREAK_CHAIN T0 = 0
284 /* main execution loop */
286 int cpu_exec(CPUState *env1)
288 #define DECLARE_HOST_REGS 1
289 #include "hostregs_helper.h"
290 #if defined(TARGET_SPARC)
291 #if defined(reg_REGWPTR)
292 uint32_t *saved_regwptr;
293 #endif
294 #endif
295 int ret, interrupt_request;
296 long (*gen_func)(void);
297 TranslationBlock *tb;
298 uint8_t *tc_ptr;
300 if (cpu_halted(env1) == EXCP_HALTED)
301 return EXCP_HALTED;
303 cpu_single_env = env1;
305 /* first we save global registers */
306 #define SAVE_HOST_REGS 1
307 #include "hostregs_helper.h"
308 env = env1;
309 SAVE_GLOBALS();
311 env_to_regs();
312 #if defined(TARGET_I386)
313 /* put eflags in CPU temporary format */
314 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
315 DF = 1 - (2 * ((env->eflags >> 10) & 1));
316 CC_OP = CC_OP_EFLAGS;
317 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
318 #elif defined(TARGET_SPARC)
319 #if defined(reg_REGWPTR)
320 saved_regwptr = REGWPTR;
321 #endif
322 #elif defined(TARGET_M68K)
323 env->cc_op = CC_OP_FLAGS;
324 env->cc_dest = env->sr & 0xf;
325 env->cc_x = (env->sr >> 4) & 1;
326 #elif defined(TARGET_ALPHA)
327 #elif defined(TARGET_ARM)
328 #elif defined(TARGET_PPC)
329 #elif defined(TARGET_MIPS)
330 #elif defined(TARGET_SH4)
331 #elif defined(TARGET_CRIS)
332 /* XXXXX */
333 #else
334 #error unsupported target CPU
335 #endif
336 env->exception_index = -1;
338 /* prepare setjmp context for exception handling */
339 for(;;) {
340 if (setjmp(env->jmp_env) == 0) {
341 env->current_tb = NULL;
342 /* if an exception is pending, we execute it here */
343 if (env->exception_index >= 0) {
344 if (env->exception_index >= EXCP_INTERRUPT) {
345 /* exit request from the cpu execution loop */
346 ret = env->exception_index;
347 break;
348 } else if (env->user_mode_only) {
349 /* if user mode only, we simulate a fake exception
350 which will be handled outside the cpu execution
351 loop */
352 #if defined(TARGET_I386)
353 do_interrupt_user(env->exception_index,
354 env->exception_is_int,
355 env->error_code,
356 env->exception_next_eip);
357 #endif
358 ret = env->exception_index;
359 break;
360 } else {
361 #if defined(TARGET_I386)
362 /* simulate a real cpu exception. On i386, it can
363 trigger new exceptions, but we do not handle
364 double or triple faults yet. */
365 do_interrupt(env->exception_index,
366 env->exception_is_int,
367 env->error_code,
368 env->exception_next_eip, 0);
369 /* successfully delivered */
370 env->old_exception = -1;
371 #elif defined(TARGET_PPC)
372 do_interrupt(env);
373 #elif defined(TARGET_MIPS)
374 do_interrupt(env);
375 #elif defined(TARGET_SPARC)
376 do_interrupt(env->exception_index);
377 #elif defined(TARGET_ARM)
378 do_interrupt(env);
379 #elif defined(TARGET_SH4)
380 do_interrupt(env);
381 #elif defined(TARGET_ALPHA)
382 do_interrupt(env);
383 #elif defined(TARGET_CRIS)
384 do_interrupt(env);
385 #elif defined(TARGET_M68K)
386 do_interrupt(0);
387 #endif
389 env->exception_index = -1;
391 #ifdef USE_KQEMU
392 if (kqemu_is_ok(env) && env->interrupt_request == 0) {
393 int ret;
394 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
395 ret = kqemu_cpu_exec(env);
396 /* put eflags in CPU temporary format */
397 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
398 DF = 1 - (2 * ((env->eflags >> 10) & 1));
399 CC_OP = CC_OP_EFLAGS;
400 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
401 if (ret == 1) {
402 /* exception */
403 longjmp(env->jmp_env, 1);
404 } else if (ret == 2) {
405 /* softmmu execution needed */
406 } else {
407 if (env->interrupt_request != 0) {
408 /* hardware interrupt will be executed just after */
409 } else {
410 /* otherwise, we restart */
411 longjmp(env->jmp_env, 1);
415 #endif
417 T0 = 0; /* force lookup of first TB */
418 for(;;) {
419 SAVE_GLOBALS();
420 interrupt_request = env->interrupt_request;
421 if (__builtin_expect(interrupt_request, 0)
422 #if defined(TARGET_I386)
423 && env->hflags & HF_GIF_MASK
424 #endif
426 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
427 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
428 env->exception_index = EXCP_DEBUG;
429 cpu_loop_exit();
431 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
432 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS)
433 if (interrupt_request & CPU_INTERRUPT_HALT) {
434 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
435 env->halted = 1;
436 env->exception_index = EXCP_HLT;
437 cpu_loop_exit();
439 #endif
440 #if defined(TARGET_I386)
441 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
442 !(env->hflags & HF_SMM_MASK)) {
443 svm_check_intercept(SVM_EXIT_SMI);
444 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
445 do_smm_enter();
446 BREAK_CHAIN;
447 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
448 (env->eflags & IF_MASK || env->hflags & HF_HIF_MASK) &&
449 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
450 int intno;
451 svm_check_intercept(SVM_EXIT_INTR);
452 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
453 intno = cpu_get_pic_interrupt(env);
454 if (loglevel & CPU_LOG_TB_IN_ASM) {
455 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
457 do_interrupt(intno, 0, 0, 0, 1);
458 /* ensure that no TB jump will be modified as
459 the program flow was changed */
460 BREAK_CHAIN;
461 #if !defined(CONFIG_USER_ONLY)
462 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
463 (env->eflags & IF_MASK) && !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
464 int intno;
465 /* FIXME: this should respect TPR */
466 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
467 svm_check_intercept(SVM_EXIT_VINTR);
468 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
469 if (loglevel & CPU_LOG_TB_IN_ASM)
470 fprintf(logfile, "Servicing virtual hardware INT=0x%02x\n", intno);
471 do_interrupt(intno, 0, 0, -1, 1);
472 stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl),
473 ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl)) & ~V_IRQ_MASK);
474 BREAK_CHAIN;
475 #endif
477 #elif defined(TARGET_PPC)
478 #if 0
479 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
480 cpu_ppc_reset(env);
482 #endif
483 if (interrupt_request & CPU_INTERRUPT_HARD) {
484 ppc_hw_interrupt(env);
485 if (env->pending_interrupts == 0)
486 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
487 BREAK_CHAIN;
489 #elif defined(TARGET_MIPS)
490 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
491 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
492 (env->CP0_Status & (1 << CP0St_IE)) &&
493 !(env->CP0_Status & (1 << CP0St_EXL)) &&
494 !(env->CP0_Status & (1 << CP0St_ERL)) &&
495 !(env->hflags & MIPS_HFLAG_DM)) {
496 /* Raise it */
497 env->exception_index = EXCP_EXT_INTERRUPT;
498 env->error_code = 0;
499 do_interrupt(env);
500 BREAK_CHAIN;
502 #elif defined(TARGET_SPARC)
503 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
504 (env->psret != 0)) {
505 int pil = env->interrupt_index & 15;
506 int type = env->interrupt_index & 0xf0;
508 if (((type == TT_EXTINT) &&
509 (pil == 15 || pil > env->psrpil)) ||
510 type != TT_EXTINT) {
511 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
512 do_interrupt(env->interrupt_index);
513 env->interrupt_index = 0;
514 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
515 cpu_check_irqs(env);
516 #endif
517 BREAK_CHAIN;
519 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
520 //do_interrupt(0, 0, 0, 0, 0);
521 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
523 #elif defined(TARGET_ARM)
524 if (interrupt_request & CPU_INTERRUPT_FIQ
525 && !(env->uncached_cpsr & CPSR_F)) {
526 env->exception_index = EXCP_FIQ;
527 do_interrupt(env);
528 BREAK_CHAIN;
530 /* ARMv7-M interrupt return works by loading a magic value
531 into the PC. On real hardware the load causes the
532 return to occur. The qemu implementation performs the
533 jump normally, then does the exception return when the
534 CPU tries to execute code at the magic address.
535 This will cause the magic PC value to be pushed to
536 the stack if an interrupt occured at the wrong time.
537 We avoid this by disabling interrupts when
538 pc contains a magic address. */
539 if (interrupt_request & CPU_INTERRUPT_HARD
540 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
541 || !(env->uncached_cpsr & CPSR_I))) {
542 env->exception_index = EXCP_IRQ;
543 do_interrupt(env);
544 BREAK_CHAIN;
546 #elif defined(TARGET_SH4)
547 if (interrupt_request & CPU_INTERRUPT_HARD) {
548 do_interrupt(env);
549 BREAK_CHAIN;
551 #elif defined(TARGET_ALPHA)
552 if (interrupt_request & CPU_INTERRUPT_HARD) {
553 do_interrupt(env);
554 BREAK_CHAIN;
556 #elif defined(TARGET_CRIS)
557 if (interrupt_request & CPU_INTERRUPT_HARD) {
558 do_interrupt(env);
559 BREAK_CHAIN;
561 #elif defined(TARGET_M68K)
562 if (interrupt_request & CPU_INTERRUPT_HARD
563 && ((env->sr & SR_I) >> SR_I_SHIFT)
564 < env->pending_level) {
565 /* Real hardware gets the interrupt vector via an
566 IACK cycle at this point. Current emulated
567 hardware doesn't rely on this, so we
568 provide/save the vector when the interrupt is
569 first signalled. */
570 env->exception_index = env->pending_vector;
571 do_interrupt(1);
572 BREAK_CHAIN;
574 #endif
575 /* Don't use the cached interupt_request value,
576 do_interrupt may have updated the EXITTB flag. */
577 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
578 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
579 /* ensure that no TB jump will be modified as
580 the program flow was changed */
581 BREAK_CHAIN;
583 if (interrupt_request & CPU_INTERRUPT_EXIT) {
584 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
585 env->exception_index = EXCP_INTERRUPT;
586 cpu_loop_exit();
589 #ifdef DEBUG_EXEC
590 if ((loglevel & CPU_LOG_TB_CPU)) {
591 /* restore flags in standard format */
592 regs_to_env();
593 #if defined(TARGET_I386)
594 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
595 cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
596 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
597 #elif defined(TARGET_ARM)
598 cpu_dump_state(env, logfile, fprintf, 0);
599 #elif defined(TARGET_SPARC)
600 REGWPTR = env->regbase + (env->cwp * 16);
601 env->regwptr = REGWPTR;
602 cpu_dump_state(env, logfile, fprintf, 0);
603 #elif defined(TARGET_PPC)
604 cpu_dump_state(env, logfile, fprintf, 0);
605 #elif defined(TARGET_M68K)
606 cpu_m68k_flush_flags(env, env->cc_op);
607 env->cc_op = CC_OP_FLAGS;
608 env->sr = (env->sr & 0xffe0)
609 | env->cc_dest | (env->cc_x << 4);
610 cpu_dump_state(env, logfile, fprintf, 0);
611 #elif defined(TARGET_MIPS)
612 cpu_dump_state(env, logfile, fprintf, 0);
613 #elif defined(TARGET_SH4)
614 cpu_dump_state(env, logfile, fprintf, 0);
615 #elif defined(TARGET_ALPHA)
616 cpu_dump_state(env, logfile, fprintf, 0);
617 #elif defined(TARGET_CRIS)
618 cpu_dump_state(env, logfile, fprintf, 0);
619 #else
620 #error unsupported target CPU
621 #endif
623 #endif
624 tb = tb_find_fast();
625 #ifdef DEBUG_EXEC
626 if ((loglevel & CPU_LOG_EXEC)) {
627 fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
628 (long)tb->tc_ptr, tb->pc,
629 lookup_symbol(tb->pc));
631 #endif
632 RESTORE_GLOBALS();
633 /* see if we can patch the calling TB. When the TB
634 spans two pages, we cannot safely do a direct
635 jump. */
637 if (T0 != 0 &&
638 #if USE_KQEMU
639 (env->kqemu_enabled != 2) &&
640 #endif
641 tb->page_addr[1] == -1) {
642 spin_lock(&tb_lock);
643 tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
644 spin_unlock(&tb_lock);
647 tc_ptr = tb->tc_ptr;
648 env->current_tb = tb;
649 /* execute the generated code */
650 gen_func = (void *)tc_ptr;
651 #if defined(__sparc__)
652 __asm__ __volatile__("call %0\n\t"
653 "mov %%o7,%%i0"
654 : /* no outputs */
655 : "r" (gen_func)
656 : "i0", "i1", "i2", "i3", "i4", "i5",
657 "o0", "o1", "o2", "o3", "o4", "o5",
658 "l0", "l1", "l2", "l3", "l4", "l5",
659 "l6", "l7");
660 #elif defined(__arm__)
661 asm volatile ("mov pc, %0\n\t"
662 ".global exec_loop\n\t"
663 "exec_loop:\n\t"
664 : /* no outputs */
665 : "r" (gen_func)
666 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
667 #elif defined(__ia64)
668 struct fptr {
669 void *ip;
670 void *gp;
671 } fp;
673 fp.ip = tc_ptr;
674 fp.gp = code_gen_buffer + 2 * (1 << 20);
675 (*(void (*)(void)) &fp)();
676 #else
677 T0 = gen_func();
678 #endif
679 env->current_tb = NULL;
680 /* reset soft MMU for next block (it can currently
681 only be set by a memory fault) */
682 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
683 if (env->hflags & HF_SOFTMMU_MASK) {
684 env->hflags &= ~HF_SOFTMMU_MASK;
685 /* do not allow linking to another block */
686 T0 = 0;
688 #endif
689 #if defined(USE_KQEMU)
690 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
691 if (kqemu_is_ok(env) &&
692 (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
693 cpu_loop_exit();
695 #endif
696 } /* for(;;) */
697 } else {
698 env_to_regs();
700 } /* for(;;) */
703 #if defined(TARGET_I386)
704 /* restore flags in standard format */
705 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
706 #elif defined(TARGET_ARM)
707 /* XXX: Save/restore host fpu exception state?. */
708 #elif defined(TARGET_SPARC)
709 #if defined(reg_REGWPTR)
710 REGWPTR = saved_regwptr;
711 #endif
712 #elif defined(TARGET_PPC)
713 #elif defined(TARGET_M68K)
714 cpu_m68k_flush_flags(env, env->cc_op);
715 env->cc_op = CC_OP_FLAGS;
716 env->sr = (env->sr & 0xffe0)
717 | env->cc_dest | (env->cc_x << 4);
718 #elif defined(TARGET_MIPS)
719 #elif defined(TARGET_SH4)
720 #elif defined(TARGET_ALPHA)
721 #elif defined(TARGET_CRIS)
722 /* XXXXX */
723 #else
724 #error unsupported target CPU
725 #endif
727 /* restore global registers */
728 RESTORE_GLOBALS();
729 #include "hostregs_helper.h"
731 /* fail safe : never use cpu_single_env outside cpu_exec() */
732 cpu_single_env = NULL;
733 return ret;
736 /* must only be called from the generated code as an exception can be
737 generated */
738 void tb_invalidate_page_range(target_ulong start, target_ulong end)
740 /* XXX: cannot enable it yet because it yields to MMU exception
741 where NIP != read address on PowerPC */
742 #if 0
743 target_ulong phys_addr;
744 phys_addr = get_phys_addr_code(env, start);
745 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
746 #endif
749 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
751 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
753 CPUX86State *saved_env;
755 saved_env = env;
756 env = s;
757 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
758 selector &= 0xffff;
759 cpu_x86_load_seg_cache(env, seg_reg, selector,
760 (selector << 4), 0xffff, 0);
761 } else {
762 load_seg(seg_reg, selector);
764 env = saved_env;
767 void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
769 CPUX86State *saved_env;
771 saved_env = env;
772 env = s;
774 helper_fsave(ptr, data32);
776 env = saved_env;
779 void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
781 CPUX86State *saved_env;
783 saved_env = env;
784 env = s;
786 helper_frstor(ptr, data32);
788 env = saved_env;
791 #endif /* TARGET_I386 */
793 #if !defined(CONFIG_SOFTMMU)
795 #if defined(TARGET_I386)
797 /* 'pc' is the host PC at which the exception was raised. 'address' is
798 the effective address of the memory exception. 'is_write' is 1 if a
799 write caused the exception and otherwise 0'. 'old_set' is the
800 signal set which should be restored */
801 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
802 int is_write, sigset_t *old_set,
803 void *puc)
805 TranslationBlock *tb;
806 int ret;
808 if (cpu_single_env)
809 env = cpu_single_env; /* XXX: find a correct solution for multithread */
810 #if defined(DEBUG_SIGNAL)
811 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
812 pc, address, is_write, *(unsigned long *)old_set);
813 #endif
814 /* XXX: locking issue */
815 if (is_write && page_unprotect(h2g(address), pc, puc)) {
816 return 1;
819 /* see if it is an MMU fault */
820 ret = cpu_x86_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
821 if (ret < 0)
822 return 0; /* not an MMU fault */
823 if (ret == 0)
824 return 1; /* the MMU fault was handled without causing real CPU fault */
825 /* now we have a real cpu fault */
826 tb = tb_find_pc(pc);
827 if (tb) {
828 /* the PC is inside the translated code. It means that we have
829 a virtual CPU fault */
830 cpu_restore_state(tb, env, pc, puc);
832 if (ret == 1) {
833 #if 0
834 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
835 env->eip, env->cr[2], env->error_code);
836 #endif
837 /* we restore the process signal mask as the sigreturn should
838 do it (XXX: use sigsetjmp) */
839 sigprocmask(SIG_SETMASK, old_set, NULL);
840 raise_exception_err(env->exception_index, env->error_code);
841 } else {
842 /* activate soft MMU for this block */
843 env->hflags |= HF_SOFTMMU_MASK;
844 cpu_resume_from_signal(env, puc);
846 /* never comes here */
847 return 1;
850 #elif defined(TARGET_ARM)
851 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
852 int is_write, sigset_t *old_set,
853 void *puc)
855 TranslationBlock *tb;
856 int ret;
858 if (cpu_single_env)
859 env = cpu_single_env; /* XXX: find a correct solution for multithread */
860 #if defined(DEBUG_SIGNAL)
861 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
862 pc, address, is_write, *(unsigned long *)old_set);
863 #endif
864 /* XXX: locking issue */
865 if (is_write && page_unprotect(h2g(address), pc, puc)) {
866 return 1;
868 /* see if it is an MMU fault */
869 ret = cpu_arm_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
870 if (ret < 0)
871 return 0; /* not an MMU fault */
872 if (ret == 0)
873 return 1; /* the MMU fault was handled without causing real CPU fault */
874 /* now we have a real cpu fault */
875 tb = tb_find_pc(pc);
876 if (tb) {
877 /* the PC is inside the translated code. It means that we have
878 a virtual CPU fault */
879 cpu_restore_state(tb, env, pc, puc);
881 /* we restore the process signal mask as the sigreturn should
882 do it (XXX: use sigsetjmp) */
883 sigprocmask(SIG_SETMASK, old_set, NULL);
884 cpu_loop_exit();
886 #elif defined(TARGET_SPARC)
887 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
888 int is_write, sigset_t *old_set,
889 void *puc)
891 TranslationBlock *tb;
892 int ret;
894 if (cpu_single_env)
895 env = cpu_single_env; /* XXX: find a correct solution for multithread */
896 #if defined(DEBUG_SIGNAL)
897 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
898 pc, address, is_write, *(unsigned long *)old_set);
899 #endif
900 /* XXX: locking issue */
901 if (is_write && page_unprotect(h2g(address), pc, puc)) {
902 return 1;
904 /* see if it is an MMU fault */
905 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
906 if (ret < 0)
907 return 0; /* not an MMU fault */
908 if (ret == 0)
909 return 1; /* the MMU fault was handled without causing real CPU fault */
910 /* now we have a real cpu fault */
911 tb = tb_find_pc(pc);
912 if (tb) {
913 /* the PC is inside the translated code. It means that we have
914 a virtual CPU fault */
915 cpu_restore_state(tb, env, pc, puc);
917 /* we restore the process signal mask as the sigreturn should
918 do it (XXX: use sigsetjmp) */
919 sigprocmask(SIG_SETMASK, old_set, NULL);
920 cpu_loop_exit();
922 #elif defined (TARGET_PPC)
923 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
924 int is_write, sigset_t *old_set,
925 void *puc)
927 TranslationBlock *tb;
928 int ret;
930 if (cpu_single_env)
931 env = cpu_single_env; /* XXX: find a correct solution for multithread */
932 #if defined(DEBUG_SIGNAL)
933 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
934 pc, address, is_write, *(unsigned long *)old_set);
935 #endif
936 /* XXX: locking issue */
937 if (is_write && page_unprotect(h2g(address), pc, puc)) {
938 return 1;
941 /* see if it is an MMU fault */
942 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
943 if (ret < 0)
944 return 0; /* not an MMU fault */
945 if (ret == 0)
946 return 1; /* the MMU fault was handled without causing real CPU fault */
948 /* now we have a real cpu fault */
949 tb = tb_find_pc(pc);
950 if (tb) {
951 /* the PC is inside the translated code. It means that we have
952 a virtual CPU fault */
953 cpu_restore_state(tb, env, pc, puc);
955 if (ret == 1) {
956 #if 0
957 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
958 env->nip, env->error_code, tb);
959 #endif
960 /* we restore the process signal mask as the sigreturn should
961 do it (XXX: use sigsetjmp) */
962 sigprocmask(SIG_SETMASK, old_set, NULL);
963 do_raise_exception_err(env->exception_index, env->error_code);
964 } else {
965 /* activate soft MMU for this block */
966 cpu_resume_from_signal(env, puc);
968 /* never comes here */
969 return 1;
972 #elif defined(TARGET_M68K)
973 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
974 int is_write, sigset_t *old_set,
975 void *puc)
977 TranslationBlock *tb;
978 int ret;
980 if (cpu_single_env)
981 env = cpu_single_env; /* XXX: find a correct solution for multithread */
982 #if defined(DEBUG_SIGNAL)
983 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
984 pc, address, is_write, *(unsigned long *)old_set);
985 #endif
986 /* XXX: locking issue */
987 if (is_write && page_unprotect(address, pc, puc)) {
988 return 1;
990 /* see if it is an MMU fault */
991 ret = cpu_m68k_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
992 if (ret < 0)
993 return 0; /* not an MMU fault */
994 if (ret == 0)
995 return 1; /* the MMU fault was handled without causing real CPU fault */
996 /* now we have a real cpu fault */
997 tb = tb_find_pc(pc);
998 if (tb) {
999 /* the PC is inside the translated code. It means that we have
1000 a virtual CPU fault */
1001 cpu_restore_state(tb, env, pc, puc);
1003 /* we restore the process signal mask as the sigreturn should
1004 do it (XXX: use sigsetjmp) */
1005 sigprocmask(SIG_SETMASK, old_set, NULL);
1006 cpu_loop_exit();
1007 /* never comes here */
1008 return 1;
1011 #elif defined (TARGET_MIPS)
1012 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1013 int is_write, sigset_t *old_set,
1014 void *puc)
1016 TranslationBlock *tb;
1017 int ret;
1019 if (cpu_single_env)
1020 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1021 #if defined(DEBUG_SIGNAL)
1022 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1023 pc, address, is_write, *(unsigned long *)old_set);
1024 #endif
1025 /* XXX: locking issue */
1026 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1027 return 1;
1030 /* see if it is an MMU fault */
1031 ret = cpu_mips_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1032 if (ret < 0)
1033 return 0; /* not an MMU fault */
1034 if (ret == 0)
1035 return 1; /* the MMU fault was handled without causing real CPU fault */
1037 /* now we have a real cpu fault */
1038 tb = tb_find_pc(pc);
1039 if (tb) {
1040 /* the PC is inside the translated code. It means that we have
1041 a virtual CPU fault */
1042 cpu_restore_state(tb, env, pc, puc);
1044 if (ret == 1) {
1045 #if 0
1046 printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n",
1047 env->PC, env->error_code, tb);
1048 #endif
1049 /* we restore the process signal mask as the sigreturn should
1050 do it (XXX: use sigsetjmp) */
1051 sigprocmask(SIG_SETMASK, old_set, NULL);
1052 do_raise_exception_err(env->exception_index, env->error_code);
1053 } else {
1054 /* activate soft MMU for this block */
1055 cpu_resume_from_signal(env, puc);
1057 /* never comes here */
1058 return 1;
1061 #elif defined (TARGET_SH4)
1062 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1063 int is_write, sigset_t *old_set,
1064 void *puc)
1066 TranslationBlock *tb;
1067 int ret;
1069 if (cpu_single_env)
1070 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1071 #if defined(DEBUG_SIGNAL)
1072 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1073 pc, address, is_write, *(unsigned long *)old_set);
1074 #endif
1075 /* XXX: locking issue */
1076 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1077 return 1;
1080 /* see if it is an MMU fault */
1081 ret = cpu_sh4_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1082 if (ret < 0)
1083 return 0; /* not an MMU fault */
1084 if (ret == 0)
1085 return 1; /* the MMU fault was handled without causing real CPU fault */
1087 /* now we have a real cpu fault */
1088 tb = tb_find_pc(pc);
1089 if (tb) {
1090 /* the PC is inside the translated code. It means that we have
1091 a virtual CPU fault */
1092 cpu_restore_state(tb, env, pc, puc);
1094 #if 0
1095 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1096 env->nip, env->error_code, tb);
1097 #endif
1098 /* we restore the process signal mask as the sigreturn should
1099 do it (XXX: use sigsetjmp) */
1100 sigprocmask(SIG_SETMASK, old_set, NULL);
1101 cpu_loop_exit();
1102 /* never comes here */
1103 return 1;
1106 #elif defined (TARGET_ALPHA)
1107 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1108 int is_write, sigset_t *old_set,
1109 void *puc)
1111 TranslationBlock *tb;
1112 int ret;
1114 if (cpu_single_env)
1115 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1116 #if defined(DEBUG_SIGNAL)
1117 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1118 pc, address, is_write, *(unsigned long *)old_set);
1119 #endif
1120 /* XXX: locking issue */
1121 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1122 return 1;
1125 /* see if it is an MMU fault */
1126 ret = cpu_alpha_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1127 if (ret < 0)
1128 return 0; /* not an MMU fault */
1129 if (ret == 0)
1130 return 1; /* the MMU fault was handled without causing real CPU fault */
1132 /* now we have a real cpu fault */
1133 tb = tb_find_pc(pc);
1134 if (tb) {
1135 /* the PC is inside the translated code. It means that we have
1136 a virtual CPU fault */
1137 cpu_restore_state(tb, env, pc, puc);
1139 #if 0
1140 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1141 env->nip, env->error_code, tb);
1142 #endif
1143 /* we restore the process signal mask as the sigreturn should
1144 do it (XXX: use sigsetjmp) */
1145 sigprocmask(SIG_SETMASK, old_set, NULL);
1146 cpu_loop_exit();
1147 /* never comes here */
1148 return 1;
1150 #elif defined (TARGET_CRIS)
1151 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1152 int is_write, sigset_t *old_set,
1153 void *puc)
1155 TranslationBlock *tb;
1156 int ret;
1158 if (cpu_single_env)
1159 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1160 #if defined(DEBUG_SIGNAL)
1161 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1162 pc, address, is_write, *(unsigned long *)old_set);
1163 #endif
1164 /* XXX: locking issue */
1165 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1166 return 1;
1169 /* see if it is an MMU fault */
1170 ret = cpu_cris_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1171 if (ret < 0)
1172 return 0; /* not an MMU fault */
1173 if (ret == 0)
1174 return 1; /* the MMU fault was handled without causing real CPU fault */
1176 /* now we have a real cpu fault */
1177 tb = tb_find_pc(pc);
1178 if (tb) {
1179 /* the PC is inside the translated code. It means that we have
1180 a virtual CPU fault */
1181 cpu_restore_state(tb, env, pc, puc);
1183 /* we restore the process signal mask as the sigreturn should
1184 do it (XXX: use sigsetjmp) */
1185 sigprocmask(SIG_SETMASK, old_set, NULL);
1186 cpu_loop_exit();
1187 /* never comes here */
1188 return 1;
1191 #else
1192 #error unsupported target CPU
1193 #endif
1195 #if defined(__i386__)
1197 #if defined(__APPLE__)
1198 # include <sys/ucontext.h>
1200 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1201 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1202 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1203 #else
1204 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1205 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1206 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1207 #endif
1209 int cpu_signal_handler(int host_signum, void *pinfo,
1210 void *puc)
1212 siginfo_t *info = pinfo;
1213 struct ucontext *uc = puc;
1214 unsigned long pc;
1215 int trapno;
1217 #ifndef REG_EIP
1218 /* for glibc 2.1 */
1219 #define REG_EIP EIP
1220 #define REG_ERR ERR
1221 #define REG_TRAPNO TRAPNO
1222 #endif
1223 pc = EIP_sig(uc);
1224 trapno = TRAP_sig(uc);
1225 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1226 trapno == 0xe ?
1227 (ERROR_sig(uc) >> 1) & 1 : 0,
1228 &uc->uc_sigmask, puc);
1231 #elif defined(__x86_64__)
1233 int cpu_signal_handler(int host_signum, void *pinfo,
1234 void *puc)
1236 siginfo_t *info = pinfo;
1237 struct ucontext *uc = puc;
1238 unsigned long pc;
1240 pc = uc->uc_mcontext.gregs[REG_RIP];
1241 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1242 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
1243 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1244 &uc->uc_sigmask, puc);
1247 #elif defined(__powerpc__)
1249 /***********************************************************************
1250 * signal context platform-specific definitions
1251 * From Wine
1253 #ifdef linux
1254 /* All Registers access - only for local access */
1255 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1256 /* Gpr Registers access */
1257 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1258 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1259 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1260 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1261 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1262 # define LR_sig(context) REG_sig(link, context) /* Link register */
1263 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1264 /* Float Registers access */
1265 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1266 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1267 /* Exception Registers access */
1268 # define DAR_sig(context) REG_sig(dar, context)
1269 # define DSISR_sig(context) REG_sig(dsisr, context)
1270 # define TRAP_sig(context) REG_sig(trap, context)
1271 #endif /* linux */
1273 #ifdef __APPLE__
1274 # include <sys/ucontext.h>
1275 typedef struct ucontext SIGCONTEXT;
1276 /* All Registers access - only for local access */
1277 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1278 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1279 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1280 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1281 /* Gpr Registers access */
1282 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1283 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1284 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1285 # define CTR_sig(context) REG_sig(ctr, context)
1286 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1287 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1288 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1289 /* Float Registers access */
1290 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1291 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1292 /* Exception Registers access */
1293 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1294 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1295 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1296 #endif /* __APPLE__ */
1298 int cpu_signal_handler(int host_signum, void *pinfo,
1299 void *puc)
1301 siginfo_t *info = pinfo;
1302 struct ucontext *uc = puc;
1303 unsigned long pc;
1304 int is_write;
1306 pc = IAR_sig(uc);
1307 is_write = 0;
1308 #if 0
1309 /* ppc 4xx case */
1310 if (DSISR_sig(uc) & 0x00800000)
1311 is_write = 1;
1312 #else
1313 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1314 is_write = 1;
1315 #endif
1316 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1317 is_write, &uc->uc_sigmask, puc);
1320 #elif defined(__alpha__)
1322 int cpu_signal_handler(int host_signum, void *pinfo,
1323 void *puc)
1325 siginfo_t *info = pinfo;
1326 struct ucontext *uc = puc;
1327 uint32_t *pc = uc->uc_mcontext.sc_pc;
1328 uint32_t insn = *pc;
1329 int is_write = 0;
1331 /* XXX: need kernel patch to get write flag faster */
1332 switch (insn >> 26) {
1333 case 0x0d: // stw
1334 case 0x0e: // stb
1335 case 0x0f: // stq_u
1336 case 0x24: // stf
1337 case 0x25: // stg
1338 case 0x26: // sts
1339 case 0x27: // stt
1340 case 0x2c: // stl
1341 case 0x2d: // stq
1342 case 0x2e: // stl_c
1343 case 0x2f: // stq_c
1344 is_write = 1;
1347 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1348 is_write, &uc->uc_sigmask, puc);
1350 #elif defined(__sparc__)
1352 int cpu_signal_handler(int host_signum, void *pinfo,
1353 void *puc)
1355 siginfo_t *info = pinfo;
1356 uint32_t *regs = (uint32_t *)(info + 1);
1357 void *sigmask = (regs + 20);
1358 unsigned long pc;
1359 int is_write;
1360 uint32_t insn;
1362 /* XXX: is there a standard glibc define ? */
1363 pc = regs[1];
1364 /* XXX: need kernel patch to get write flag faster */
1365 is_write = 0;
1366 insn = *(uint32_t *)pc;
1367 if ((insn >> 30) == 3) {
1368 switch((insn >> 19) & 0x3f) {
1369 case 0x05: // stb
1370 case 0x06: // sth
1371 case 0x04: // st
1372 case 0x07: // std
1373 case 0x24: // stf
1374 case 0x27: // stdf
1375 case 0x25: // stfsr
1376 is_write = 1;
1377 break;
1380 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1381 is_write, sigmask, NULL);
1384 #elif defined(__arm__)
1386 int cpu_signal_handler(int host_signum, void *pinfo,
1387 void *puc)
1389 siginfo_t *info = pinfo;
1390 struct ucontext *uc = puc;
1391 unsigned long pc;
1392 int is_write;
1394 pc = uc->uc_mcontext.gregs[R15];
1395 /* XXX: compute is_write */
1396 is_write = 0;
1397 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1398 is_write,
1399 &uc->uc_sigmask, puc);
1402 #elif defined(__mc68000)
1404 int cpu_signal_handler(int host_signum, void *pinfo,
1405 void *puc)
1407 siginfo_t *info = pinfo;
1408 struct ucontext *uc = puc;
1409 unsigned long pc;
1410 int is_write;
1412 pc = uc->uc_mcontext.gregs[16];
1413 /* XXX: compute is_write */
1414 is_write = 0;
1415 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1416 is_write,
1417 &uc->uc_sigmask, puc);
1420 #elif defined(__ia64)
1422 #ifndef __ISR_VALID
1423 /* This ought to be in <bits/siginfo.h>... */
1424 # define __ISR_VALID 1
1425 #endif
1427 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1429 siginfo_t *info = pinfo;
1430 struct ucontext *uc = puc;
1431 unsigned long ip;
1432 int is_write = 0;
1434 ip = uc->uc_mcontext.sc_ip;
1435 switch (host_signum) {
1436 case SIGILL:
1437 case SIGFPE:
1438 case SIGSEGV:
1439 case SIGBUS:
1440 case SIGTRAP:
1441 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1442 /* ISR.W (write-access) is bit 33: */
1443 is_write = (info->si_isr >> 33) & 1;
1444 break;
1446 default:
1447 break;
1449 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1450 is_write,
1451 &uc->uc_sigmask, puc);
1454 #elif defined(__s390__)
1456 int cpu_signal_handler(int host_signum, void *pinfo,
1457 void *puc)
1459 siginfo_t *info = pinfo;
1460 struct ucontext *uc = puc;
1461 unsigned long pc;
1462 int is_write;
1464 pc = uc->uc_mcontext.psw.addr;
1465 /* XXX: compute is_write */
1466 is_write = 0;
1467 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1468 is_write, &uc->uc_sigmask, puc);
1471 #elif defined(__mips__)
1473 int cpu_signal_handler(int host_signum, void *pinfo,
1474 void *puc)
1476 siginfo_t *info = pinfo;
1477 struct ucontext *uc = puc;
1478 greg_t pc = uc->uc_mcontext.pc;
1479 int is_write;
1481 /* XXX: compute is_write */
1482 is_write = 0;
1483 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1484 is_write, &uc->uc_sigmask, puc);
1487 #else
1489 #error host CPU specific signal handler needed
1491 #endif
1493 #endif /* !defined(CONFIG_SOFTMMU) */