2 * TI OMAP processors emulation.
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
25 #include "qemu-timer.h"
26 #include "qemu-char.h"
28 /* We use pc-style serial ports. */
31 /* Should signal the TCMI/GPMC */
32 uint32_t omap_badwidth_read8(void *opaque
, target_phys_addr_t addr
)
37 cpu_physical_memory_read(addr
, (void *) &ret
, 1);
41 void omap_badwidth_write8(void *opaque
, target_phys_addr_t addr
,
47 cpu_physical_memory_write(addr
, (void *) &val8
, 1);
50 uint32_t omap_badwidth_read16(void *opaque
, target_phys_addr_t addr
)
55 cpu_physical_memory_read(addr
, (void *) &ret
, 2);
59 void omap_badwidth_write16(void *opaque
, target_phys_addr_t addr
,
62 uint16_t val16
= value
;
65 cpu_physical_memory_write(addr
, (void *) &val16
, 2);
68 uint32_t omap_badwidth_read32(void *opaque
, target_phys_addr_t addr
)
73 cpu_physical_memory_read(addr
, (void *) &ret
, 4);
77 void omap_badwidth_write32(void *opaque
, target_phys_addr_t addr
,
81 cpu_physical_memory_write(addr
, (void *) &value
, 4);
84 /* Interrupt Handlers */
85 struct omap_intr_handler_bank_s
{
92 unsigned char priority
[32];
95 struct omap_intr_handler_s
{
97 qemu_irq parent_intr
[2];
106 struct omap_intr_handler_bank_s bank
[];
109 static void omap_inth_sir_update(struct omap_intr_handler_s
*s
, int is_fiq
)
111 int i
, j
, sir_intr
, p_intr
, p
, f
;
116 /* Find the interrupt line with the highest dynamic priority.
117 * Note: 0 denotes the hightest priority.
118 * If all interrupts have the same priority, the default order is IRQ_N,
119 * IRQ_N-1,...,IRQ_0. */
120 for (j
= 0; j
< s
->nbanks
; ++j
) {
121 level
= s
->bank
[j
].irqs
& ~s
->bank
[j
].mask
&
122 (is_fiq
? s
->bank
[j
].fiq
: ~s
->bank
[j
].fiq
);
123 for (f
= ffs(level
), i
= f
- 1, level
>>= f
- 1; f
; i
+= f
,
125 p
= s
->bank
[j
].priority
[i
];
128 sir_intr
= 32 * j
+ i
;
133 s
->sir_intr
[is_fiq
] = sir_intr
;
136 static inline void omap_inth_update(struct omap_intr_handler_s
*s
, int is_fiq
)
139 uint32_t has_intr
= 0;
141 for (i
= 0; i
< s
->nbanks
; ++i
)
142 has_intr
|= s
->bank
[i
].irqs
& ~s
->bank
[i
].mask
&
143 (is_fiq
? s
->bank
[i
].fiq
: ~s
->bank
[i
].fiq
);
145 if (s
->new_agr
[is_fiq
] & has_intr
& s
->mask
) {
146 s
->new_agr
[is_fiq
] = 0;
147 omap_inth_sir_update(s
, is_fiq
);
148 qemu_set_irq(s
->parent_intr
[is_fiq
], 1);
152 #define INT_FALLING_EDGE 0
153 #define INT_LOW_LEVEL 1
155 static void omap_set_intr(void *opaque
, int irq
, int req
)
157 struct omap_intr_handler_s
*ih
= (struct omap_intr_handler_s
*) opaque
;
160 struct omap_intr_handler_bank_s
*bank
= &ih
->bank
[irq
>> 5];
164 rise
= ~bank
->irqs
& (1 << n
);
165 if (~bank
->sens_edge
& (1 << n
))
166 rise
&= ~bank
->inputs
;
168 bank
->inputs
|= (1 << n
);
171 omap_inth_update(ih
, 0);
172 omap_inth_update(ih
, 1);
175 rise
= bank
->sens_edge
& bank
->irqs
& (1 << n
);
177 bank
->inputs
&= ~(1 << n
);
181 /* Simplified version with no edge detection */
182 static void omap_set_intr_noedge(void *opaque
, int irq
, int req
)
184 struct omap_intr_handler_s
*ih
= (struct omap_intr_handler_s
*) opaque
;
187 struct omap_intr_handler_bank_s
*bank
= &ih
->bank
[irq
>> 5];
191 rise
= ~bank
->inputs
& (1 << n
);
193 bank
->irqs
|= bank
->inputs
|= rise
;
194 omap_inth_update(ih
, 0);
195 omap_inth_update(ih
, 1);
198 bank
->irqs
= (bank
->inputs
&= ~(1 << n
)) | bank
->swi
;
201 static uint32_t omap_inth_read(void *opaque
, target_phys_addr_t addr
)
203 struct omap_intr_handler_s
*s
= (struct omap_intr_handler_s
*) opaque
;
204 int i
, offset
= addr
;
205 int bank_no
= offset
>> 8;
207 struct omap_intr_handler_bank_s
*bank
= &s
->bank
[bank_no
];
217 case 0x10: /* SIR_IRQ_CODE */
218 case 0x14: /* SIR_FIQ_CODE */
221 line_no
= s
->sir_intr
[(offset
- 0x10) >> 2];
222 bank
= &s
->bank
[line_no
>> 5];
224 if (((bank
->sens_edge
>> i
) & 1) == INT_FALLING_EDGE
)
225 bank
->irqs
&= ~(1 << i
);
228 case 0x18: /* CONTROL_REG */
233 case 0x1c: /* ILR0 */
234 case 0x20: /* ILR1 */
235 case 0x24: /* ILR2 */
236 case 0x28: /* ILR3 */
237 case 0x2c: /* ILR4 */
238 case 0x30: /* ILR5 */
239 case 0x34: /* ILR6 */
240 case 0x38: /* ILR7 */
241 case 0x3c: /* ILR8 */
242 case 0x40: /* ILR9 */
243 case 0x44: /* ILR10 */
244 case 0x48: /* ILR11 */
245 case 0x4c: /* ILR12 */
246 case 0x50: /* ILR13 */
247 case 0x54: /* ILR14 */
248 case 0x58: /* ILR15 */
249 case 0x5c: /* ILR16 */
250 case 0x60: /* ILR17 */
251 case 0x64: /* ILR18 */
252 case 0x68: /* ILR19 */
253 case 0x6c: /* ILR20 */
254 case 0x70: /* ILR21 */
255 case 0x74: /* ILR22 */
256 case 0x78: /* ILR23 */
257 case 0x7c: /* ILR24 */
258 case 0x80: /* ILR25 */
259 case 0x84: /* ILR26 */
260 case 0x88: /* ILR27 */
261 case 0x8c: /* ILR28 */
262 case 0x90: /* ILR29 */
263 case 0x94: /* ILR30 */
264 case 0x98: /* ILR31 */
265 i
= (offset
- 0x1c) >> 2;
266 return (bank
->priority
[i
] << 2) |
267 (((bank
->sens_edge
>> i
) & 1) << 1) |
268 ((bank
->fiq
>> i
) & 1);
278 static void omap_inth_write(void *opaque
, target_phys_addr_t addr
,
281 struct omap_intr_handler_s
*s
= (struct omap_intr_handler_s
*) opaque
;
282 int i
, offset
= addr
;
283 int bank_no
= offset
>> 8;
284 struct omap_intr_handler_bank_s
*bank
= &s
->bank
[bank_no
];
289 /* Important: ignore the clearing if the IRQ is level-triggered and
290 the input bit is 1 */
291 bank
->irqs
&= value
| (bank
->inputs
& bank
->sens_edge
);
296 omap_inth_update(s
, 0);
297 omap_inth_update(s
, 1);
300 case 0x10: /* SIR_IRQ_CODE */
301 case 0x14: /* SIR_FIQ_CODE */
305 case 0x18: /* CONTROL_REG */
309 qemu_set_irq(s
->parent_intr
[1], 0);
311 omap_inth_update(s
, 1);
314 qemu_set_irq(s
->parent_intr
[0], 0);
316 omap_inth_update(s
, 0);
320 case 0x1c: /* ILR0 */
321 case 0x20: /* ILR1 */
322 case 0x24: /* ILR2 */
323 case 0x28: /* ILR3 */
324 case 0x2c: /* ILR4 */
325 case 0x30: /* ILR5 */
326 case 0x34: /* ILR6 */
327 case 0x38: /* ILR7 */
328 case 0x3c: /* ILR8 */
329 case 0x40: /* ILR9 */
330 case 0x44: /* ILR10 */
331 case 0x48: /* ILR11 */
332 case 0x4c: /* ILR12 */
333 case 0x50: /* ILR13 */
334 case 0x54: /* ILR14 */
335 case 0x58: /* ILR15 */
336 case 0x5c: /* ILR16 */
337 case 0x60: /* ILR17 */
338 case 0x64: /* ILR18 */
339 case 0x68: /* ILR19 */
340 case 0x6c: /* ILR20 */
341 case 0x70: /* ILR21 */
342 case 0x74: /* ILR22 */
343 case 0x78: /* ILR23 */
344 case 0x7c: /* ILR24 */
345 case 0x80: /* ILR25 */
346 case 0x84: /* ILR26 */
347 case 0x88: /* ILR27 */
348 case 0x8c: /* ILR28 */
349 case 0x90: /* ILR29 */
350 case 0x94: /* ILR30 */
351 case 0x98: /* ILR31 */
352 i
= (offset
- 0x1c) >> 2;
353 bank
->priority
[i
] = (value
>> 2) & 0x1f;
354 bank
->sens_edge
&= ~(1 << i
);
355 bank
->sens_edge
|= ((value
>> 1) & 1) << i
;
356 bank
->fiq
&= ~(1 << i
);
357 bank
->fiq
|= (value
& 1) << i
;
361 for (i
= 0; i
< 32; i
++)
362 if (value
& (1 << i
)) {
363 omap_set_intr(s
, 32 * bank_no
+ i
, 1);
371 static CPUReadMemoryFunc
*omap_inth_readfn
[] = {
372 omap_badwidth_read32
,
373 omap_badwidth_read32
,
377 static CPUWriteMemoryFunc
*omap_inth_writefn
[] = {
383 void omap_inth_reset(struct omap_intr_handler_s
*s
)
387 for (i
= 0; i
< s
->nbanks
; ++i
){
388 s
->bank
[i
].irqs
= 0x00000000;
389 s
->bank
[i
].mask
= 0xffffffff;
390 s
->bank
[i
].sens_edge
= 0x00000000;
391 s
->bank
[i
].fiq
= 0x00000000;
392 s
->bank
[i
].inputs
= 0x00000000;
393 s
->bank
[i
].swi
= 0x00000000;
394 memset(s
->bank
[i
].priority
, 0, sizeof(s
->bank
[i
].priority
));
397 s
->bank
[i
].sens_edge
= 0xffffffff;
407 qemu_set_irq(s
->parent_intr
[0], 0);
408 qemu_set_irq(s
->parent_intr
[1], 0);
411 struct omap_intr_handler_s
*omap_inth_init(target_phys_addr_t base
,
412 unsigned long size
, unsigned char nbanks
, qemu_irq
**pins
,
413 qemu_irq parent_irq
, qemu_irq parent_fiq
, omap_clk clk
)
416 struct omap_intr_handler_s
*s
= (struct omap_intr_handler_s
*)
417 qemu_mallocz(sizeof(struct omap_intr_handler_s
) +
418 sizeof(struct omap_intr_handler_bank_s
) * nbanks
);
420 s
->parent_intr
[0] = parent_irq
;
421 s
->parent_intr
[1] = parent_fiq
;
423 s
->pins
= qemu_allocate_irqs(omap_set_intr
, s
, nbanks
* 32);
429 iomemtype
= cpu_register_io_memory(0, omap_inth_readfn
,
430 omap_inth_writefn
, s
);
431 cpu_register_physical_memory(base
, size
, iomemtype
);
436 static uint32_t omap2_inth_read(void *opaque
, target_phys_addr_t addr
)
438 struct omap_intr_handler_s
*s
= (struct omap_intr_handler_s
*) opaque
;
440 int bank_no
, line_no
;
441 struct omap_intr_handler_bank_s
*bank
= 0;
443 if ((offset
& 0xf80) == 0x80) {
444 bank_no
= (offset
& 0x60) >> 5;
445 if (bank_no
< s
->nbanks
) {
447 bank
= &s
->bank
[bank_no
];
452 case 0x00: /* INTC_REVISION */
455 case 0x10: /* INTC_SYSCONFIG */
456 return (s
->autoidle
>> 2) & 1;
458 case 0x14: /* INTC_SYSSTATUS */
459 return 1; /* RESETDONE */
461 case 0x40: /* INTC_SIR_IRQ */
462 return s
->sir_intr
[0];
464 case 0x44: /* INTC_SIR_FIQ */
465 return s
->sir_intr
[1];
467 case 0x48: /* INTC_CONTROL */
468 return (!s
->mask
) << 2; /* GLOBALMASK */
470 case 0x4c: /* INTC_PROTECTION */
473 case 0x50: /* INTC_IDLE */
474 return s
->autoidle
& 3;
476 /* Per-bank registers */
477 case 0x80: /* INTC_ITR */
480 case 0x84: /* INTC_MIR */
483 case 0x88: /* INTC_MIR_CLEAR */
484 case 0x8c: /* INTC_MIR_SET */
487 case 0x90: /* INTC_ISR_SET */
490 case 0x94: /* INTC_ISR_CLEAR */
493 case 0x98: /* INTC_PENDING_IRQ */
494 return bank
->irqs
& ~bank
->mask
& ~bank
->fiq
;
496 case 0x9c: /* INTC_PENDING_FIQ */
497 return bank
->irqs
& ~bank
->mask
& bank
->fiq
;
499 /* Per-line registers */
500 case 0x100 ... 0x300: /* INTC_ILR */
501 bank_no
= (offset
- 0x100) >> 7;
502 if (bank_no
> s
->nbanks
)
504 bank
= &s
->bank
[bank_no
];
505 line_no
= (offset
& 0x7f) >> 2;
506 return (bank
->priority
[line_no
] << 2) |
507 ((bank
->fiq
>> line_no
) & 1);
513 static void omap2_inth_write(void *opaque
, target_phys_addr_t addr
,
516 struct omap_intr_handler_s
*s
= (struct omap_intr_handler_s
*) opaque
;
518 int bank_no
, line_no
;
519 struct omap_intr_handler_bank_s
*bank
= 0;
521 if ((offset
& 0xf80) == 0x80) {
522 bank_no
= (offset
& 0x60) >> 5;
523 if (bank_no
< s
->nbanks
) {
525 bank
= &s
->bank
[bank_no
];
530 case 0x10: /* INTC_SYSCONFIG */
532 s
->autoidle
|= (value
& 1) << 2;
533 if (value
& 2) /* SOFTRESET */
537 case 0x48: /* INTC_CONTROL */
538 s
->mask
= (value
& 4) ? 0 : ~0; /* GLOBALMASK */
539 if (value
& 2) { /* NEWFIQAGR */
540 qemu_set_irq(s
->parent_intr
[1], 0);
542 omap_inth_update(s
, 1);
544 if (value
& 1) { /* NEWIRQAGR */
545 qemu_set_irq(s
->parent_intr
[0], 0);
547 omap_inth_update(s
, 0);
551 case 0x4c: /* INTC_PROTECTION */
552 /* TODO: Make a bitmap (or sizeof(char)map) of access privileges
553 * for every register, see Chapter 3 and 4 for privileged mode. */
555 fprintf(stderr
, "%s: protection mode enable attempt\n",
559 case 0x50: /* INTC_IDLE */
561 s
->autoidle
|= value
& 3;
564 /* Per-bank registers */
565 case 0x84: /* INTC_MIR */
567 omap_inth_update(s
, 0);
568 omap_inth_update(s
, 1);
571 case 0x88: /* INTC_MIR_CLEAR */
572 bank
->mask
&= ~value
;
573 omap_inth_update(s
, 0);
574 omap_inth_update(s
, 1);
577 case 0x8c: /* INTC_MIR_SET */
581 case 0x90: /* INTC_ISR_SET */
582 bank
->irqs
|= bank
->swi
|= value
;
583 omap_inth_update(s
, 0);
584 omap_inth_update(s
, 1);
587 case 0x94: /* INTC_ISR_CLEAR */
589 bank
->irqs
= bank
->swi
& bank
->inputs
;
592 /* Per-line registers */
593 case 0x100 ... 0x300: /* INTC_ILR */
594 bank_no
= (offset
- 0x100) >> 7;
595 if (bank_no
> s
->nbanks
)
597 bank
= &s
->bank
[bank_no
];
598 line_no
= (offset
& 0x7f) >> 2;
599 bank
->priority
[line_no
] = (value
>> 2) & 0x3f;
600 bank
->fiq
&= ~(1 << line_no
);
601 bank
->fiq
|= (value
& 1) << line_no
;
604 case 0x00: /* INTC_REVISION */
605 case 0x14: /* INTC_SYSSTATUS */
606 case 0x40: /* INTC_SIR_IRQ */
607 case 0x44: /* INTC_SIR_FIQ */
608 case 0x80: /* INTC_ITR */
609 case 0x98: /* INTC_PENDING_IRQ */
610 case 0x9c: /* INTC_PENDING_FIQ */
617 static CPUReadMemoryFunc
*omap2_inth_readfn
[] = {
618 omap_badwidth_read32
,
619 omap_badwidth_read32
,
623 static CPUWriteMemoryFunc
*omap2_inth_writefn
[] = {
629 struct omap_intr_handler_s
*omap2_inth_init(target_phys_addr_t base
,
630 int size
, int nbanks
, qemu_irq
**pins
,
631 qemu_irq parent_irq
, qemu_irq parent_fiq
,
632 omap_clk fclk
, omap_clk iclk
)
635 struct omap_intr_handler_s
*s
= (struct omap_intr_handler_s
*)
636 qemu_mallocz(sizeof(struct omap_intr_handler_s
) +
637 sizeof(struct omap_intr_handler_bank_s
) * nbanks
);
639 s
->parent_intr
[0] = parent_irq
;
640 s
->parent_intr
[1] = parent_fiq
;
643 s
->pins
= qemu_allocate_irqs(omap_set_intr_noedge
, s
, nbanks
* 32);
649 iomemtype
= cpu_register_io_memory(0, omap2_inth_readfn
,
650 omap2_inth_writefn
, s
);
651 cpu_register_physical_memory(base
, size
, iomemtype
);
657 struct omap_mpu_timer_s
{
674 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s
*timer
)
676 uint64_t distance
= qemu_get_clock(vm_clock
) - timer
->time
;
678 if (timer
->st
&& timer
->enable
&& timer
->rate
)
679 return timer
->val
- muldiv64(distance
>> (timer
->ptv
+ 1),
680 timer
->rate
, ticks_per_sec
);
685 static inline void omap_timer_sync(struct omap_mpu_timer_s
*timer
)
687 timer
->val
= omap_timer_read(timer
);
688 timer
->time
= qemu_get_clock(vm_clock
);
691 static inline void omap_timer_update(struct omap_mpu_timer_s
*timer
)
695 if (timer
->enable
&& timer
->st
&& timer
->rate
) {
696 timer
->val
= timer
->reset_val
; /* Should skip this on clk enable */
697 expires
= muldiv64((uint64_t) timer
->val
<< (timer
->ptv
+ 1),
698 ticks_per_sec
, timer
->rate
);
700 /* If timer expiry would be sooner than in about 1 ms and
701 * auto-reload isn't set, then fire immediately. This is a hack
702 * to make systems like PalmOS run in acceptable time. PalmOS
703 * sets the interval to a very low value and polls the status bit
704 * in a busy loop when it wants to sleep just a couple of CPU
706 if (expires
> (ticks_per_sec
>> 10) || timer
->ar
)
707 qemu_mod_timer(timer
->timer
, timer
->time
+ expires
);
709 qemu_bh_schedule(timer
->tick
);
711 qemu_del_timer(timer
->timer
);
714 static void omap_timer_fire(void *opaque
)
716 struct omap_mpu_timer_s
*timer
= opaque
;
724 /* Edge-triggered irq */
725 qemu_irq_pulse(timer
->irq
);
728 static void omap_timer_tick(void *opaque
)
730 struct omap_mpu_timer_s
*timer
= (struct omap_mpu_timer_s
*) opaque
;
732 omap_timer_sync(timer
);
733 omap_timer_fire(timer
);
734 omap_timer_update(timer
);
737 static void omap_timer_clk_update(void *opaque
, int line
, int on
)
739 struct omap_mpu_timer_s
*timer
= (struct omap_mpu_timer_s
*) opaque
;
741 omap_timer_sync(timer
);
742 timer
->rate
= on
? omap_clk_getrate(timer
->clk
) : 0;
743 omap_timer_update(timer
);
746 static void omap_timer_clk_setup(struct omap_mpu_timer_s
*timer
)
748 omap_clk_adduser(timer
->clk
,
749 qemu_allocate_irqs(omap_timer_clk_update
, timer
, 1)[0]);
750 timer
->rate
= omap_clk_getrate(timer
->clk
);
753 static uint32_t omap_mpu_timer_read(void *opaque
, target_phys_addr_t addr
)
755 struct omap_mpu_timer_s
*s
= (struct omap_mpu_timer_s
*) opaque
;
758 case 0x00: /* CNTL_TIMER */
759 return (s
->enable
<< 5) | (s
->ptv
<< 2) | (s
->ar
<< 1) | s
->st
;
761 case 0x04: /* LOAD_TIM */
764 case 0x08: /* READ_TIM */
765 return omap_timer_read(s
);
772 static void omap_mpu_timer_write(void *opaque
, target_phys_addr_t addr
,
775 struct omap_mpu_timer_s
*s
= (struct omap_mpu_timer_s
*) opaque
;
778 case 0x00: /* CNTL_TIMER */
780 s
->enable
= (value
>> 5) & 1;
781 s
->ptv
= (value
>> 2) & 7;
782 s
->ar
= (value
>> 1) & 1;
784 omap_timer_update(s
);
787 case 0x04: /* LOAD_TIM */
788 s
->reset_val
= value
;
791 case 0x08: /* READ_TIM */
800 static CPUReadMemoryFunc
*omap_mpu_timer_readfn
[] = {
801 omap_badwidth_read32
,
802 omap_badwidth_read32
,
806 static CPUWriteMemoryFunc
*omap_mpu_timer_writefn
[] = {
807 omap_badwidth_write32
,
808 omap_badwidth_write32
,
809 omap_mpu_timer_write
,
812 static void omap_mpu_timer_reset(struct omap_mpu_timer_s
*s
)
814 qemu_del_timer(s
->timer
);
816 s
->reset_val
= 31337;
824 struct omap_mpu_timer_s
*omap_mpu_timer_init(target_phys_addr_t base
,
825 qemu_irq irq
, omap_clk clk
)
828 struct omap_mpu_timer_s
*s
= (struct omap_mpu_timer_s
*)
829 qemu_mallocz(sizeof(struct omap_mpu_timer_s
));
833 s
->timer
= qemu_new_timer(vm_clock
, omap_timer_tick
, s
);
834 s
->tick
= qemu_bh_new(omap_timer_fire
, s
);
835 omap_mpu_timer_reset(s
);
836 omap_timer_clk_setup(s
);
838 iomemtype
= cpu_register_io_memory(0, omap_mpu_timer_readfn
,
839 omap_mpu_timer_writefn
, s
);
840 cpu_register_physical_memory(base
, 0x100, iomemtype
);
846 struct omap_watchdog_timer_s
{
847 struct omap_mpu_timer_s timer
;
854 static uint32_t omap_wd_timer_read(void *opaque
, target_phys_addr_t addr
)
856 struct omap_watchdog_timer_s
*s
= (struct omap_watchdog_timer_s
*) opaque
;
859 case 0x00: /* CNTL_TIMER */
860 return (s
->timer
.ptv
<< 9) | (s
->timer
.ar
<< 8) |
861 (s
->timer
.st
<< 7) | (s
->free
<< 1);
863 case 0x04: /* READ_TIMER */
864 return omap_timer_read(&s
->timer
);
866 case 0x08: /* TIMER_MODE */
867 return s
->mode
<< 15;
874 static void omap_wd_timer_write(void *opaque
, target_phys_addr_t addr
,
877 struct omap_watchdog_timer_s
*s
= (struct omap_watchdog_timer_s
*) opaque
;
880 case 0x00: /* CNTL_TIMER */
881 omap_timer_sync(&s
->timer
);
882 s
->timer
.ptv
= (value
>> 9) & 7;
883 s
->timer
.ar
= (value
>> 8) & 1;
884 s
->timer
.st
= (value
>> 7) & 1;
885 s
->free
= (value
>> 1) & 1;
886 omap_timer_update(&s
->timer
);
889 case 0x04: /* LOAD_TIMER */
890 s
->timer
.reset_val
= value
& 0xffff;
893 case 0x08: /* TIMER_MODE */
894 if (!s
->mode
&& ((value
>> 15) & 1))
895 omap_clk_get(s
->timer
.clk
);
896 s
->mode
|= (value
>> 15) & 1;
897 if (s
->last_wr
== 0xf5) {
898 if ((value
& 0xff) == 0xa0) {
901 omap_clk_put(s
->timer
.clk
);
904 /* XXX: on T|E hardware somehow this has no effect,
905 * on Zire 71 it works as specified. */
907 qemu_system_reset_request();
910 s
->last_wr
= value
& 0xff;
918 static CPUReadMemoryFunc
*omap_wd_timer_readfn
[] = {
919 omap_badwidth_read16
,
921 omap_badwidth_read16
,
924 static CPUWriteMemoryFunc
*omap_wd_timer_writefn
[] = {
925 omap_badwidth_write16
,
927 omap_badwidth_write16
,
930 static void omap_wd_timer_reset(struct omap_watchdog_timer_s
*s
)
932 qemu_del_timer(s
->timer
.timer
);
934 omap_clk_get(s
->timer
.clk
);
940 s
->timer
.reset_val
= 0xffff;
945 omap_timer_update(&s
->timer
);
948 struct omap_watchdog_timer_s
*omap_wd_timer_init(target_phys_addr_t base
,
949 qemu_irq irq
, omap_clk clk
)
952 struct omap_watchdog_timer_s
*s
= (struct omap_watchdog_timer_s
*)
953 qemu_mallocz(sizeof(struct omap_watchdog_timer_s
));
957 s
->timer
.timer
= qemu_new_timer(vm_clock
, omap_timer_tick
, &s
->timer
);
958 omap_wd_timer_reset(s
);
959 omap_timer_clk_setup(&s
->timer
);
961 iomemtype
= cpu_register_io_memory(0, omap_wd_timer_readfn
,
962 omap_wd_timer_writefn
, s
);
963 cpu_register_physical_memory(base
, 0x100, iomemtype
);
969 struct omap_32khz_timer_s
{
970 struct omap_mpu_timer_s timer
;
973 static uint32_t omap_os_timer_read(void *opaque
, target_phys_addr_t addr
)
975 struct omap_32khz_timer_s
*s
= (struct omap_32khz_timer_s
*) opaque
;
976 int offset
= addr
& OMAP_MPUI_REG_MASK
;
980 return s
->timer
.reset_val
;
983 return omap_timer_read(&s
->timer
);
986 return (s
->timer
.ar
<< 3) | (s
->timer
.it_ena
<< 2) | s
->timer
.st
;
995 static void omap_os_timer_write(void *opaque
, target_phys_addr_t addr
,
998 struct omap_32khz_timer_s
*s
= (struct omap_32khz_timer_s
*) opaque
;
999 int offset
= addr
& OMAP_MPUI_REG_MASK
;
1002 case 0x00: /* TVR */
1003 s
->timer
.reset_val
= value
& 0x00ffffff;
1006 case 0x04: /* TCR */
1011 s
->timer
.ar
= (value
>> 3) & 1;
1012 s
->timer
.it_ena
= (value
>> 2) & 1;
1013 if (s
->timer
.st
!= (value
& 1) || (value
& 2)) {
1014 omap_timer_sync(&s
->timer
);
1015 s
->timer
.enable
= value
& 1;
1016 s
->timer
.st
= value
& 1;
1017 omap_timer_update(&s
->timer
);
1026 static CPUReadMemoryFunc
*omap_os_timer_readfn
[] = {
1027 omap_badwidth_read32
,
1028 omap_badwidth_read32
,
1032 static CPUWriteMemoryFunc
*omap_os_timer_writefn
[] = {
1033 omap_badwidth_write32
,
1034 omap_badwidth_write32
,
1035 omap_os_timer_write
,
1038 static void omap_os_timer_reset(struct omap_32khz_timer_s
*s
)
1040 qemu_del_timer(s
->timer
.timer
);
1041 s
->timer
.enable
= 0;
1042 s
->timer
.it_ena
= 0;
1043 s
->timer
.reset_val
= 0x00ffffff;
1050 struct omap_32khz_timer_s
*omap_os_timer_init(target_phys_addr_t base
,
1051 qemu_irq irq
, omap_clk clk
)
1054 struct omap_32khz_timer_s
*s
= (struct omap_32khz_timer_s
*)
1055 qemu_mallocz(sizeof(struct omap_32khz_timer_s
));
1059 s
->timer
.timer
= qemu_new_timer(vm_clock
, omap_timer_tick
, &s
->timer
);
1060 omap_os_timer_reset(s
);
1061 omap_timer_clk_setup(&s
->timer
);
1063 iomemtype
= cpu_register_io_memory(0, omap_os_timer_readfn
,
1064 omap_os_timer_writefn
, s
);
1065 cpu_register_physical_memory(base
, 0x800, iomemtype
);
1070 /* Ultra Low-Power Device Module */
1071 static uint32_t omap_ulpd_pm_read(void *opaque
, target_phys_addr_t addr
)
1073 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
1077 case 0x14: /* IT_STATUS */
1078 ret
= s
->ulpd_pm_regs
[addr
>> 2];
1079 s
->ulpd_pm_regs
[addr
>> 2] = 0;
1080 qemu_irq_lower(s
->irq
[1][OMAP_INT_GAUGE_32K
]);
1083 case 0x18: /* Reserved */
1084 case 0x1c: /* Reserved */
1085 case 0x20: /* Reserved */
1086 case 0x28: /* Reserved */
1087 case 0x2c: /* Reserved */
1089 case 0x00: /* COUNTER_32_LSB */
1090 case 0x04: /* COUNTER_32_MSB */
1091 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
1092 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
1093 case 0x10: /* GAUGING_CTRL */
1094 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
1095 case 0x30: /* CLOCK_CTRL */
1096 case 0x34: /* SOFT_REQ */
1097 case 0x38: /* COUNTER_32_FIQ */
1098 case 0x3c: /* DPLL_CTRL */
1099 case 0x40: /* STATUS_REQ */
1100 /* XXX: check clk::usecount state for every clock */
1101 case 0x48: /* LOCL_TIME */
1102 case 0x4c: /* APLL_CTRL */
1103 case 0x50: /* POWER_CTRL */
1104 return s
->ulpd_pm_regs
[addr
>> 2];
1111 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s
*s
,
1112 uint16_t diff
, uint16_t value
)
1114 if (diff
& (1 << 4)) /* USB_MCLK_EN */
1115 omap_clk_onoff(omap_findclk(s
, "usb_clk0"), (value
>> 4) & 1);
1116 if (diff
& (1 << 5)) /* DIS_USB_PVCI_CLK */
1117 omap_clk_onoff(omap_findclk(s
, "usb_w2fc_ck"), (~value
>> 5) & 1);
1120 static inline void omap_ulpd_req_update(struct omap_mpu_state_s
*s
,
1121 uint16_t diff
, uint16_t value
)
1123 if (diff
& (1 << 0)) /* SOFT_DPLL_REQ */
1124 omap_clk_canidle(omap_findclk(s
, "dpll4"), (~value
>> 0) & 1);
1125 if (diff
& (1 << 1)) /* SOFT_COM_REQ */
1126 omap_clk_canidle(omap_findclk(s
, "com_mclk_out"), (~value
>> 1) & 1);
1127 if (diff
& (1 << 2)) /* SOFT_SDW_REQ */
1128 omap_clk_canidle(omap_findclk(s
, "bt_mclk_out"), (~value
>> 2) & 1);
1129 if (diff
& (1 << 3)) /* SOFT_USB_REQ */
1130 omap_clk_canidle(omap_findclk(s
, "usb_clk0"), (~value
>> 3) & 1);
1133 static void omap_ulpd_pm_write(void *opaque
, target_phys_addr_t addr
,
1136 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
1139 static const int bypass_div
[4] = { 1, 2, 4, 4 };
1143 case 0x00: /* COUNTER_32_LSB */
1144 case 0x04: /* COUNTER_32_MSB */
1145 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
1146 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
1147 case 0x14: /* IT_STATUS */
1148 case 0x40: /* STATUS_REQ */
1152 case 0x10: /* GAUGING_CTRL */
1153 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
1154 if ((s
->ulpd_pm_regs
[addr
>> 2] ^ value
) & 1) {
1155 now
= qemu_get_clock(vm_clock
);
1158 s
->ulpd_gauge_start
= now
;
1160 now
-= s
->ulpd_gauge_start
;
1163 ticks
= muldiv64(now
, 32768, ticks_per_sec
);
1164 s
->ulpd_pm_regs
[0x00 >> 2] = (ticks
>> 0) & 0xffff;
1165 s
->ulpd_pm_regs
[0x04 >> 2] = (ticks
>> 16) & 0xffff;
1166 if (ticks
>> 32) /* OVERFLOW_32K */
1167 s
->ulpd_pm_regs
[0x14 >> 2] |= 1 << 2;
1169 /* High frequency ticks */
1170 ticks
= muldiv64(now
, 12000000, ticks_per_sec
);
1171 s
->ulpd_pm_regs
[0x08 >> 2] = (ticks
>> 0) & 0xffff;
1172 s
->ulpd_pm_regs
[0x0c >> 2] = (ticks
>> 16) & 0xffff;
1173 if (ticks
>> 32) /* OVERFLOW_HI_FREQ */
1174 s
->ulpd_pm_regs
[0x14 >> 2] |= 1 << 1;
1176 s
->ulpd_pm_regs
[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
1177 qemu_irq_raise(s
->irq
[1][OMAP_INT_GAUGE_32K
]);
1180 s
->ulpd_pm_regs
[addr
>> 2] = value
;
1183 case 0x18: /* Reserved */
1184 case 0x1c: /* Reserved */
1185 case 0x20: /* Reserved */
1186 case 0x28: /* Reserved */
1187 case 0x2c: /* Reserved */
1189 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
1190 case 0x38: /* COUNTER_32_FIQ */
1191 case 0x48: /* LOCL_TIME */
1192 case 0x50: /* POWER_CTRL */
1193 s
->ulpd_pm_regs
[addr
>> 2] = value
;
1196 case 0x30: /* CLOCK_CTRL */
1197 diff
= s
->ulpd_pm_regs
[addr
>> 2] ^ value
;
1198 s
->ulpd_pm_regs
[addr
>> 2] = value
& 0x3f;
1199 omap_ulpd_clk_update(s
, diff
, value
);
1202 case 0x34: /* SOFT_REQ */
1203 diff
= s
->ulpd_pm_regs
[addr
>> 2] ^ value
;
1204 s
->ulpd_pm_regs
[addr
>> 2] = value
& 0x1f;
1205 omap_ulpd_req_update(s
, diff
, value
);
1208 case 0x3c: /* DPLL_CTRL */
1209 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
1210 * omitted altogether, probably a typo. */
1211 /* This register has identical semantics with DPLL(1:3) control
1212 * registers, see omap_dpll_write() */
1213 diff
= s
->ulpd_pm_regs
[addr
>> 2] & value
;
1214 s
->ulpd_pm_regs
[addr
>> 2] = value
& 0x2fff;
1215 if (diff
& (0x3ff << 2)) {
1216 if (value
& (1 << 4)) { /* PLL_ENABLE */
1217 div
= ((value
>> 5) & 3) + 1; /* PLL_DIV */
1218 mult
= MIN((value
>> 7) & 0x1f, 1); /* PLL_MULT */
1220 div
= bypass_div
[((value
>> 2) & 3)]; /* BYPASS_DIV */
1223 omap_clk_setrate(omap_findclk(s
, "dpll4"), div
, mult
);
1226 /* Enter the desired mode. */
1227 s
->ulpd_pm_regs
[addr
>> 2] =
1228 (s
->ulpd_pm_regs
[addr
>> 2] & 0xfffe) |
1229 ((s
->ulpd_pm_regs
[addr
>> 2] >> 4) & 1);
1231 /* Act as if the lock is restored. */
1232 s
->ulpd_pm_regs
[addr
>> 2] |= 2;
1235 case 0x4c: /* APLL_CTRL */
1236 diff
= s
->ulpd_pm_regs
[addr
>> 2] & value
;
1237 s
->ulpd_pm_regs
[addr
>> 2] = value
& 0xf;
1238 if (diff
& (1 << 0)) /* APLL_NDPLL_SWITCH */
1239 omap_clk_reparent(omap_findclk(s
, "ck_48m"), omap_findclk(s
,
1240 (value
& (1 << 0)) ? "apll" : "dpll4"));
1248 static CPUReadMemoryFunc
*omap_ulpd_pm_readfn
[] = {
1249 omap_badwidth_read16
,
1251 omap_badwidth_read16
,
1254 static CPUWriteMemoryFunc
*omap_ulpd_pm_writefn
[] = {
1255 omap_badwidth_write16
,
1257 omap_badwidth_write16
,
1260 static void omap_ulpd_pm_reset(struct omap_mpu_state_s
*mpu
)
1262 mpu
->ulpd_pm_regs
[0x00 >> 2] = 0x0001;
1263 mpu
->ulpd_pm_regs
[0x04 >> 2] = 0x0000;
1264 mpu
->ulpd_pm_regs
[0x08 >> 2] = 0x0001;
1265 mpu
->ulpd_pm_regs
[0x0c >> 2] = 0x0000;
1266 mpu
->ulpd_pm_regs
[0x10 >> 2] = 0x0000;
1267 mpu
->ulpd_pm_regs
[0x18 >> 2] = 0x01;
1268 mpu
->ulpd_pm_regs
[0x1c >> 2] = 0x01;
1269 mpu
->ulpd_pm_regs
[0x20 >> 2] = 0x01;
1270 mpu
->ulpd_pm_regs
[0x24 >> 2] = 0x03ff;
1271 mpu
->ulpd_pm_regs
[0x28 >> 2] = 0x01;
1272 mpu
->ulpd_pm_regs
[0x2c >> 2] = 0x01;
1273 omap_ulpd_clk_update(mpu
, mpu
->ulpd_pm_regs
[0x30 >> 2], 0x0000);
1274 mpu
->ulpd_pm_regs
[0x30 >> 2] = 0x0000;
1275 omap_ulpd_req_update(mpu
, mpu
->ulpd_pm_regs
[0x34 >> 2], 0x0000);
1276 mpu
->ulpd_pm_regs
[0x34 >> 2] = 0x0000;
1277 mpu
->ulpd_pm_regs
[0x38 >> 2] = 0x0001;
1278 mpu
->ulpd_pm_regs
[0x3c >> 2] = 0x2211;
1279 mpu
->ulpd_pm_regs
[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
1280 mpu
->ulpd_pm_regs
[0x48 >> 2] = 0x960;
1281 mpu
->ulpd_pm_regs
[0x4c >> 2] = 0x08;
1282 mpu
->ulpd_pm_regs
[0x50 >> 2] = 0x08;
1283 omap_clk_setrate(omap_findclk(mpu
, "dpll4"), 1, 4);
1284 omap_clk_reparent(omap_findclk(mpu
, "ck_48m"), omap_findclk(mpu
, "dpll4"));
1287 static void omap_ulpd_pm_init(target_phys_addr_t base
,
1288 struct omap_mpu_state_s
*mpu
)
1290 int iomemtype
= cpu_register_io_memory(0, omap_ulpd_pm_readfn
,
1291 omap_ulpd_pm_writefn
, mpu
);
1293 cpu_register_physical_memory(base
, 0x800, iomemtype
);
1294 omap_ulpd_pm_reset(mpu
);
1297 /* OMAP Pin Configuration */
1298 static uint32_t omap_pin_cfg_read(void *opaque
, target_phys_addr_t addr
)
1300 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
1303 case 0x00: /* FUNC_MUX_CTRL_0 */
1304 case 0x04: /* FUNC_MUX_CTRL_1 */
1305 case 0x08: /* FUNC_MUX_CTRL_2 */
1306 return s
->func_mux_ctrl
[addr
>> 2];
1308 case 0x0c: /* COMP_MODE_CTRL_0 */
1309 return s
->comp_mode_ctrl
[0];
1311 case 0x10: /* FUNC_MUX_CTRL_3 */
1312 case 0x14: /* FUNC_MUX_CTRL_4 */
1313 case 0x18: /* FUNC_MUX_CTRL_5 */
1314 case 0x1c: /* FUNC_MUX_CTRL_6 */
1315 case 0x20: /* FUNC_MUX_CTRL_7 */
1316 case 0x24: /* FUNC_MUX_CTRL_8 */
1317 case 0x28: /* FUNC_MUX_CTRL_9 */
1318 case 0x2c: /* FUNC_MUX_CTRL_A */
1319 case 0x30: /* FUNC_MUX_CTRL_B */
1320 case 0x34: /* FUNC_MUX_CTRL_C */
1321 case 0x38: /* FUNC_MUX_CTRL_D */
1322 return s
->func_mux_ctrl
[(addr
>> 2) - 1];
1324 case 0x40: /* PULL_DWN_CTRL_0 */
1325 case 0x44: /* PULL_DWN_CTRL_1 */
1326 case 0x48: /* PULL_DWN_CTRL_2 */
1327 case 0x4c: /* PULL_DWN_CTRL_3 */
1328 return s
->pull_dwn_ctrl
[(addr
& 0xf) >> 2];
1330 case 0x50: /* GATE_INH_CTRL_0 */
1331 return s
->gate_inh_ctrl
[0];
1333 case 0x60: /* VOLTAGE_CTRL_0 */
1334 return s
->voltage_ctrl
[0];
1336 case 0x70: /* TEST_DBG_CTRL_0 */
1337 return s
->test_dbg_ctrl
[0];
1339 case 0x80: /* MOD_CONF_CTRL_0 */
1340 return s
->mod_conf_ctrl
[0];
1347 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s
*s
,
1348 uint32_t diff
, uint32_t value
)
1350 if (s
->compat1509
) {
1351 if (diff
& (1 << 9)) /* BLUETOOTH */
1352 omap_clk_onoff(omap_findclk(s
, "bt_mclk_out"),
1354 if (diff
& (1 << 7)) /* USB.CLKO */
1355 omap_clk_onoff(omap_findclk(s
, "usb.clko"),
1360 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s
*s
,
1361 uint32_t diff
, uint32_t value
)
1363 if (s
->compat1509
) {
1364 if (diff
& (1 << 31)) /* MCBSP3_CLK_HIZ_DI */
1365 omap_clk_onoff(omap_findclk(s
, "mcbsp3.clkx"),
1367 if (diff
& (1 << 1)) /* CLK32K */
1368 omap_clk_onoff(omap_findclk(s
, "clk32k_out"),
1373 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s
*s
,
1374 uint32_t diff
, uint32_t value
)
1376 if (diff
& (1 << 31)) /* CONF_MOD_UART3_CLK_MODE_R */
1377 omap_clk_reparent(omap_findclk(s
, "uart3_ck"),
1378 omap_findclk(s
, ((value
>> 31) & 1) ?
1379 "ck_48m" : "armper_ck"));
1380 if (diff
& (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
1381 omap_clk_reparent(omap_findclk(s
, "uart2_ck"),
1382 omap_findclk(s
, ((value
>> 30) & 1) ?
1383 "ck_48m" : "armper_ck"));
1384 if (diff
& (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
1385 omap_clk_reparent(omap_findclk(s
, "uart1_ck"),
1386 omap_findclk(s
, ((value
>> 29) & 1) ?
1387 "ck_48m" : "armper_ck"));
1388 if (diff
& (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
1389 omap_clk_reparent(omap_findclk(s
, "mmc_ck"),
1390 omap_findclk(s
, ((value
>> 23) & 1) ?
1391 "ck_48m" : "armper_ck"));
1392 if (diff
& (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
1393 omap_clk_reparent(omap_findclk(s
, "com_mclk_out"),
1394 omap_findclk(s
, ((value
>> 12) & 1) ?
1395 "ck_48m" : "armper_ck"));
1396 if (diff
& (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
1397 omap_clk_onoff(omap_findclk(s
, "usb_hhc_ck"), (value
>> 9) & 1);
1400 static void omap_pin_cfg_write(void *opaque
, target_phys_addr_t addr
,
1403 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
1407 case 0x00: /* FUNC_MUX_CTRL_0 */
1408 diff
= s
->func_mux_ctrl
[addr
>> 2] ^ value
;
1409 s
->func_mux_ctrl
[addr
>> 2] = value
;
1410 omap_pin_funcmux0_update(s
, diff
, value
);
1413 case 0x04: /* FUNC_MUX_CTRL_1 */
1414 diff
= s
->func_mux_ctrl
[addr
>> 2] ^ value
;
1415 s
->func_mux_ctrl
[addr
>> 2] = value
;
1416 omap_pin_funcmux1_update(s
, diff
, value
);
1419 case 0x08: /* FUNC_MUX_CTRL_2 */
1420 s
->func_mux_ctrl
[addr
>> 2] = value
;
1423 case 0x0c: /* COMP_MODE_CTRL_0 */
1424 s
->comp_mode_ctrl
[0] = value
;
1425 s
->compat1509
= (value
!= 0x0000eaef);
1426 omap_pin_funcmux0_update(s
, ~0, s
->func_mux_ctrl
[0]);
1427 omap_pin_funcmux1_update(s
, ~0, s
->func_mux_ctrl
[1]);
1430 case 0x10: /* FUNC_MUX_CTRL_3 */
1431 case 0x14: /* FUNC_MUX_CTRL_4 */
1432 case 0x18: /* FUNC_MUX_CTRL_5 */
1433 case 0x1c: /* FUNC_MUX_CTRL_6 */
1434 case 0x20: /* FUNC_MUX_CTRL_7 */
1435 case 0x24: /* FUNC_MUX_CTRL_8 */
1436 case 0x28: /* FUNC_MUX_CTRL_9 */
1437 case 0x2c: /* FUNC_MUX_CTRL_A */
1438 case 0x30: /* FUNC_MUX_CTRL_B */
1439 case 0x34: /* FUNC_MUX_CTRL_C */
1440 case 0x38: /* FUNC_MUX_CTRL_D */
1441 s
->func_mux_ctrl
[(addr
>> 2) - 1] = value
;
1444 case 0x40: /* PULL_DWN_CTRL_0 */
1445 case 0x44: /* PULL_DWN_CTRL_1 */
1446 case 0x48: /* PULL_DWN_CTRL_2 */
1447 case 0x4c: /* PULL_DWN_CTRL_3 */
1448 s
->pull_dwn_ctrl
[(addr
& 0xf) >> 2] = value
;
1451 case 0x50: /* GATE_INH_CTRL_0 */
1452 s
->gate_inh_ctrl
[0] = value
;
1455 case 0x60: /* VOLTAGE_CTRL_0 */
1456 s
->voltage_ctrl
[0] = value
;
1459 case 0x70: /* TEST_DBG_CTRL_0 */
1460 s
->test_dbg_ctrl
[0] = value
;
1463 case 0x80: /* MOD_CONF_CTRL_0 */
1464 diff
= s
->mod_conf_ctrl
[0] ^ value
;
1465 s
->mod_conf_ctrl
[0] = value
;
1466 omap_pin_modconf1_update(s
, diff
, value
);
1474 static CPUReadMemoryFunc
*omap_pin_cfg_readfn
[] = {
1475 omap_badwidth_read32
,
1476 omap_badwidth_read32
,
1480 static CPUWriteMemoryFunc
*omap_pin_cfg_writefn
[] = {
1481 omap_badwidth_write32
,
1482 omap_badwidth_write32
,
1486 static void omap_pin_cfg_reset(struct omap_mpu_state_s
*mpu
)
1488 /* Start in Compatibility Mode. */
1489 mpu
->compat1509
= 1;
1490 omap_pin_funcmux0_update(mpu
, mpu
->func_mux_ctrl
[0], 0);
1491 omap_pin_funcmux1_update(mpu
, mpu
->func_mux_ctrl
[1], 0);
1492 omap_pin_modconf1_update(mpu
, mpu
->mod_conf_ctrl
[0], 0);
1493 memset(mpu
->func_mux_ctrl
, 0, sizeof(mpu
->func_mux_ctrl
));
1494 memset(mpu
->comp_mode_ctrl
, 0, sizeof(mpu
->comp_mode_ctrl
));
1495 memset(mpu
->pull_dwn_ctrl
, 0, sizeof(mpu
->pull_dwn_ctrl
));
1496 memset(mpu
->gate_inh_ctrl
, 0, sizeof(mpu
->gate_inh_ctrl
));
1497 memset(mpu
->voltage_ctrl
, 0, sizeof(mpu
->voltage_ctrl
));
1498 memset(mpu
->test_dbg_ctrl
, 0, sizeof(mpu
->test_dbg_ctrl
));
1499 memset(mpu
->mod_conf_ctrl
, 0, sizeof(mpu
->mod_conf_ctrl
));
1502 static void omap_pin_cfg_init(target_phys_addr_t base
,
1503 struct omap_mpu_state_s
*mpu
)
1505 int iomemtype
= cpu_register_io_memory(0, omap_pin_cfg_readfn
,
1506 omap_pin_cfg_writefn
, mpu
);
1508 cpu_register_physical_memory(base
, 0x800, iomemtype
);
1509 omap_pin_cfg_reset(mpu
);
1512 /* Device Identification, Die Identification */
1513 static uint32_t omap_id_read(void *opaque
, target_phys_addr_t addr
)
1515 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
1518 case 0xfffe1800: /* DIE_ID_LSB */
1520 case 0xfffe1804: /* DIE_ID_MSB */
1523 case 0xfffe2000: /* PRODUCT_ID_LSB */
1525 case 0xfffe2004: /* PRODUCT_ID_MSB */
1528 case 0xfffed400: /* JTAG_ID_LSB */
1529 switch (s
->mpu_model
) {
1535 cpu_abort(cpu_single_env
, "%s: bad mpu model\n", __FUNCTION__
);
1539 case 0xfffed404: /* JTAG_ID_MSB */
1540 switch (s
->mpu_model
) {
1546 cpu_abort(cpu_single_env
, "%s: bad mpu model\n", __FUNCTION__
);
1555 static void omap_id_write(void *opaque
, target_phys_addr_t addr
,
1561 static CPUReadMemoryFunc
*omap_id_readfn
[] = {
1562 omap_badwidth_read32
,
1563 omap_badwidth_read32
,
1567 static CPUWriteMemoryFunc
*omap_id_writefn
[] = {
1568 omap_badwidth_write32
,
1569 omap_badwidth_write32
,
1573 static void omap_id_init(struct omap_mpu_state_s
*mpu
)
1575 int iomemtype
= cpu_register_io_memory(0, omap_id_readfn
,
1576 omap_id_writefn
, mpu
);
1577 cpu_register_physical_memory_offset(0xfffe1800, 0x800, iomemtype
, 0xfffe1800);
1578 cpu_register_physical_memory_offset(0xfffed400, 0x100, iomemtype
, 0xfffed400);
1579 if (!cpu_is_omap15xx(mpu
))
1580 cpu_register_physical_memory_offset(0xfffe2000, 0x800, iomemtype
, 0xfffe2000);
1583 /* MPUI Control (Dummy) */
1584 static uint32_t omap_mpui_read(void *opaque
, target_phys_addr_t addr
)
1586 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
1589 case 0x00: /* CTRL */
1590 return s
->mpui_ctrl
;
1591 case 0x04: /* DEBUG_ADDR */
1593 case 0x08: /* DEBUG_DATA */
1595 case 0x0c: /* DEBUG_FLAG */
1597 case 0x10: /* STATUS */
1600 /* Not in OMAP310 */
1601 case 0x14: /* DSP_STATUS */
1602 case 0x18: /* DSP_BOOT_CONFIG */
1604 case 0x1c: /* DSP_MPUI_CONFIG */
1612 static void omap_mpui_write(void *opaque
, target_phys_addr_t addr
,
1615 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
1618 case 0x00: /* CTRL */
1619 s
->mpui_ctrl
= value
& 0x007fffff;
1622 case 0x04: /* DEBUG_ADDR */
1623 case 0x08: /* DEBUG_DATA */
1624 case 0x0c: /* DEBUG_FLAG */
1625 case 0x10: /* STATUS */
1626 /* Not in OMAP310 */
1627 case 0x14: /* DSP_STATUS */
1629 case 0x18: /* DSP_BOOT_CONFIG */
1630 case 0x1c: /* DSP_MPUI_CONFIG */
1638 static CPUReadMemoryFunc
*omap_mpui_readfn
[] = {
1639 omap_badwidth_read32
,
1640 omap_badwidth_read32
,
1644 static CPUWriteMemoryFunc
*omap_mpui_writefn
[] = {
1645 omap_badwidth_write32
,
1646 omap_badwidth_write32
,
1650 static void omap_mpui_reset(struct omap_mpu_state_s
*s
)
1652 s
->mpui_ctrl
= 0x0003ff1b;
1655 static void omap_mpui_init(target_phys_addr_t base
,
1656 struct omap_mpu_state_s
*mpu
)
1658 int iomemtype
= cpu_register_io_memory(0, omap_mpui_readfn
,
1659 omap_mpui_writefn
, mpu
);
1661 cpu_register_physical_memory(base
, 0x100, iomemtype
);
1663 omap_mpui_reset(mpu
);
1667 struct omap_tipb_bridge_s
{
1674 uint16_t enh_control
;
1677 static uint32_t omap_tipb_bridge_read(void *opaque
, target_phys_addr_t addr
)
1679 struct omap_tipb_bridge_s
*s
= (struct omap_tipb_bridge_s
*) opaque
;
1682 case 0x00: /* TIPB_CNTL */
1684 case 0x04: /* TIPB_BUS_ALLOC */
1686 case 0x08: /* MPU_TIPB_CNTL */
1688 case 0x0c: /* ENHANCED_TIPB_CNTL */
1689 return s
->enh_control
;
1690 case 0x10: /* ADDRESS_DBG */
1691 case 0x14: /* DATA_DEBUG_LOW */
1692 case 0x18: /* DATA_DEBUG_HIGH */
1694 case 0x1c: /* DEBUG_CNTR_SIG */
1702 static void omap_tipb_bridge_write(void *opaque
, target_phys_addr_t addr
,
1705 struct omap_tipb_bridge_s
*s
= (struct omap_tipb_bridge_s
*) opaque
;
1708 case 0x00: /* TIPB_CNTL */
1709 s
->control
= value
& 0xffff;
1712 case 0x04: /* TIPB_BUS_ALLOC */
1713 s
->alloc
= value
& 0x003f;
1716 case 0x08: /* MPU_TIPB_CNTL */
1717 s
->buffer
= value
& 0x0003;
1720 case 0x0c: /* ENHANCED_TIPB_CNTL */
1721 s
->width_intr
= !(value
& 2);
1722 s
->enh_control
= value
& 0x000f;
1725 case 0x10: /* ADDRESS_DBG */
1726 case 0x14: /* DATA_DEBUG_LOW */
1727 case 0x18: /* DATA_DEBUG_HIGH */
1728 case 0x1c: /* DEBUG_CNTR_SIG */
1737 static CPUReadMemoryFunc
*omap_tipb_bridge_readfn
[] = {
1738 omap_badwidth_read16
,
1739 omap_tipb_bridge_read
,
1740 omap_tipb_bridge_read
,
1743 static CPUWriteMemoryFunc
*omap_tipb_bridge_writefn
[] = {
1744 omap_badwidth_write16
,
1745 omap_tipb_bridge_write
,
1746 omap_tipb_bridge_write
,
1749 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s
*s
)
1751 s
->control
= 0xffff;
1754 s
->enh_control
= 0x000f;
1757 struct omap_tipb_bridge_s
*omap_tipb_bridge_init(target_phys_addr_t base
,
1758 qemu_irq abort_irq
, omap_clk clk
)
1761 struct omap_tipb_bridge_s
*s
= (struct omap_tipb_bridge_s
*)
1762 qemu_mallocz(sizeof(struct omap_tipb_bridge_s
));
1764 s
->abort
= abort_irq
;
1765 omap_tipb_bridge_reset(s
);
1767 iomemtype
= cpu_register_io_memory(0, omap_tipb_bridge_readfn
,
1768 omap_tipb_bridge_writefn
, s
);
1769 cpu_register_physical_memory(base
, 0x100, iomemtype
);
1774 /* Dummy Traffic Controller's Memory Interface */
1775 static uint32_t omap_tcmi_read(void *opaque
, target_phys_addr_t addr
)
1777 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
1781 case 0x00: /* IMIF_PRIO */
1782 case 0x04: /* EMIFS_PRIO */
1783 case 0x08: /* EMIFF_PRIO */
1784 case 0x0c: /* EMIFS_CONFIG */
1785 case 0x10: /* EMIFS_CS0_CONFIG */
1786 case 0x14: /* EMIFS_CS1_CONFIG */
1787 case 0x18: /* EMIFS_CS2_CONFIG */
1788 case 0x1c: /* EMIFS_CS3_CONFIG */
1789 case 0x24: /* EMIFF_MRS */
1790 case 0x28: /* TIMEOUT1 */
1791 case 0x2c: /* TIMEOUT2 */
1792 case 0x30: /* TIMEOUT3 */
1793 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1794 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1795 return s
->tcmi_regs
[addr
>> 2];
1797 case 0x20: /* EMIFF_SDRAM_CONFIG */
1798 ret
= s
->tcmi_regs
[addr
>> 2];
1799 s
->tcmi_regs
[addr
>> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1800 /* XXX: We can try using the VGA_DIRTY flag for this */
1808 static void omap_tcmi_write(void *opaque
, target_phys_addr_t addr
,
1811 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
1814 case 0x00: /* IMIF_PRIO */
1815 case 0x04: /* EMIFS_PRIO */
1816 case 0x08: /* EMIFF_PRIO */
1817 case 0x10: /* EMIFS_CS0_CONFIG */
1818 case 0x14: /* EMIFS_CS1_CONFIG */
1819 case 0x18: /* EMIFS_CS2_CONFIG */
1820 case 0x1c: /* EMIFS_CS3_CONFIG */
1821 case 0x20: /* EMIFF_SDRAM_CONFIG */
1822 case 0x24: /* EMIFF_MRS */
1823 case 0x28: /* TIMEOUT1 */
1824 case 0x2c: /* TIMEOUT2 */
1825 case 0x30: /* TIMEOUT3 */
1826 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1827 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1828 s
->tcmi_regs
[addr
>> 2] = value
;
1830 case 0x0c: /* EMIFS_CONFIG */
1831 s
->tcmi_regs
[addr
>> 2] = (value
& 0xf) | (1 << 4);
1839 static CPUReadMemoryFunc
*omap_tcmi_readfn
[] = {
1840 omap_badwidth_read32
,
1841 omap_badwidth_read32
,
1845 static CPUWriteMemoryFunc
*omap_tcmi_writefn
[] = {
1846 omap_badwidth_write32
,
1847 omap_badwidth_write32
,
1851 static void omap_tcmi_reset(struct omap_mpu_state_s
*mpu
)
1853 mpu
->tcmi_regs
[0x00 >> 2] = 0x00000000;
1854 mpu
->tcmi_regs
[0x04 >> 2] = 0x00000000;
1855 mpu
->tcmi_regs
[0x08 >> 2] = 0x00000000;
1856 mpu
->tcmi_regs
[0x0c >> 2] = 0x00000010;
1857 mpu
->tcmi_regs
[0x10 >> 2] = 0x0010fffb;
1858 mpu
->tcmi_regs
[0x14 >> 2] = 0x0010fffb;
1859 mpu
->tcmi_regs
[0x18 >> 2] = 0x0010fffb;
1860 mpu
->tcmi_regs
[0x1c >> 2] = 0x0010fffb;
1861 mpu
->tcmi_regs
[0x20 >> 2] = 0x00618800;
1862 mpu
->tcmi_regs
[0x24 >> 2] = 0x00000037;
1863 mpu
->tcmi_regs
[0x28 >> 2] = 0x00000000;
1864 mpu
->tcmi_regs
[0x2c >> 2] = 0x00000000;
1865 mpu
->tcmi_regs
[0x30 >> 2] = 0x00000000;
1866 mpu
->tcmi_regs
[0x3c >> 2] = 0x00000003;
1867 mpu
->tcmi_regs
[0x40 >> 2] = 0x00000000;
1870 static void omap_tcmi_init(target_phys_addr_t base
,
1871 struct omap_mpu_state_s
*mpu
)
1873 int iomemtype
= cpu_register_io_memory(0, omap_tcmi_readfn
,
1874 omap_tcmi_writefn
, mpu
);
1876 cpu_register_physical_memory(base
, 0x100, iomemtype
);
1877 omap_tcmi_reset(mpu
);
1880 /* Digital phase-locked loops control */
1881 static uint32_t omap_dpll_read(void *opaque
, target_phys_addr_t addr
)
1883 struct dpll_ctl_s
*s
= (struct dpll_ctl_s
*) opaque
;
1885 if (addr
== 0x00) /* CTL_REG */
1892 static void omap_dpll_write(void *opaque
, target_phys_addr_t addr
,
1895 struct dpll_ctl_s
*s
= (struct dpll_ctl_s
*) opaque
;
1897 static const int bypass_div
[4] = { 1, 2, 4, 4 };
1900 if (addr
== 0x00) { /* CTL_REG */
1901 /* See omap_ulpd_pm_write() too */
1902 diff
= s
->mode
& value
;
1903 s
->mode
= value
& 0x2fff;
1904 if (diff
& (0x3ff << 2)) {
1905 if (value
& (1 << 4)) { /* PLL_ENABLE */
1906 div
= ((value
>> 5) & 3) + 1; /* PLL_DIV */
1907 mult
= MIN((value
>> 7) & 0x1f, 1); /* PLL_MULT */
1909 div
= bypass_div
[((value
>> 2) & 3)]; /* BYPASS_DIV */
1912 omap_clk_setrate(s
->dpll
, div
, mult
);
1915 /* Enter the desired mode. */
1916 s
->mode
= (s
->mode
& 0xfffe) | ((s
->mode
>> 4) & 1);
1918 /* Act as if the lock is restored. */
1925 static CPUReadMemoryFunc
*omap_dpll_readfn
[] = {
1926 omap_badwidth_read16
,
1928 omap_badwidth_read16
,
1931 static CPUWriteMemoryFunc
*omap_dpll_writefn
[] = {
1932 omap_badwidth_write16
,
1934 omap_badwidth_write16
,
1937 static void omap_dpll_reset(struct dpll_ctl_s
*s
)
1940 omap_clk_setrate(s
->dpll
, 1, 1);
1943 static void omap_dpll_init(struct dpll_ctl_s
*s
, target_phys_addr_t base
,
1946 int iomemtype
= cpu_register_io_memory(0, omap_dpll_readfn
,
1947 omap_dpll_writefn
, s
);
1952 cpu_register_physical_memory(base
, 0x100, iomemtype
);
1956 struct omap_uart_s
{
1957 target_phys_addr_t base
;
1958 SerialState
*serial
; /* TODO */
1959 struct omap_target_agent_s
*ta
;
1972 void omap_uart_reset(struct omap_uart_s
*s
)
1981 struct omap_uart_s
*omap_uart_init(target_phys_addr_t base
,
1982 qemu_irq irq
, omap_clk fclk
, omap_clk iclk
,
1983 qemu_irq txdma
, qemu_irq rxdma
, CharDriverState
*chr
)
1985 struct omap_uart_s
*s
= (struct omap_uart_s
*)
1986 qemu_mallocz(sizeof(struct omap_uart_s
));
1991 s
->serial
= serial_mm_init(base
, 2, irq
, omap_clk_getrate(fclk
)/16,
1992 chr
?: qemu_chr_open("null", "null"), 1);
1997 static uint32_t omap_uart_read(void *opaque
, target_phys_addr_t addr
)
1999 struct omap_uart_s
*s
= (struct omap_uart_s
*) opaque
;
2003 case 0x20: /* MDR1 */
2005 case 0x24: /* MDR2 */
2007 case 0x40: /* SCR */
2009 case 0x44: /* SSR */
2011 case 0x48: /* EBLR (OMAP2) */
2013 case 0x4C: /* OSC_12M_SEL (OMAP1) */
2015 case 0x50: /* MVR */
2017 case 0x54: /* SYSC (OMAP2) */
2018 return s
->syscontrol
;
2019 case 0x58: /* SYSS (OMAP2) */
2021 case 0x5c: /* WER (OMAP2) */
2023 case 0x60: /* CFPS (OMAP2) */
2031 static void omap_uart_write(void *opaque
, target_phys_addr_t addr
,
2034 struct omap_uart_s
*s
= (struct omap_uart_s
*) opaque
;
2038 case 0x20: /* MDR1 */
2039 s
->mdr
[0] = value
& 0x7f;
2041 case 0x24: /* MDR2 */
2042 s
->mdr
[1] = value
& 0xff;
2044 case 0x40: /* SCR */
2045 s
->scr
= value
& 0xff;
2047 case 0x48: /* EBLR (OMAP2) */
2048 s
->eblr
= value
& 0xff;
2050 case 0x4C: /* OSC_12M_SEL (OMAP1) */
2051 s
->clksel
= value
& 1;
2053 case 0x44: /* SSR */
2054 case 0x50: /* MVR */
2055 case 0x58: /* SYSS (OMAP2) */
2058 case 0x54: /* SYSC (OMAP2) */
2059 s
->syscontrol
= value
& 0x1d;
2063 case 0x5c: /* WER (OMAP2) */
2064 s
->wkup
= value
& 0x7f;
2066 case 0x60: /* CFPS (OMAP2) */
2067 s
->cfps
= value
& 0xff;
2074 static CPUReadMemoryFunc
*omap_uart_readfn
[] = {
2077 omap_badwidth_read8
,
2080 static CPUWriteMemoryFunc
*omap_uart_writefn
[] = {
2083 omap_badwidth_write8
,
2086 struct omap_uart_s
*omap2_uart_init(struct omap_target_agent_s
*ta
,
2087 qemu_irq irq
, omap_clk fclk
, omap_clk iclk
,
2088 qemu_irq txdma
, qemu_irq rxdma
, CharDriverState
*chr
)
2090 target_phys_addr_t base
= omap_l4_attach(ta
, 0, 0);
2091 struct omap_uart_s
*s
= omap_uart_init(base
, irq
,
2092 fclk
, iclk
, txdma
, rxdma
, chr
);
2093 int iomemtype
= cpu_register_io_memory(0, omap_uart_readfn
,
2094 omap_uart_writefn
, s
);
2098 cpu_register_physical_memory(base
+ 0x20, 0x100, iomemtype
);
2103 void omap_uart_attach(struct omap_uart_s
*s
, CharDriverState
*chr
)
2105 /* TODO: Should reuse or destroy current s->serial */
2106 s
->serial
= serial_mm_init(s
->base
, 2, s
->irq
,
2107 omap_clk_getrate(s
->fclk
) / 16,
2108 chr
?: qemu_chr_open("null", "null"), 1);
2111 /* MPU Clock/Reset/Power Mode Control */
2112 static uint32_t omap_clkm_read(void *opaque
, target_phys_addr_t addr
)
2114 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
2117 case 0x00: /* ARM_CKCTL */
2118 return s
->clkm
.arm_ckctl
;
2120 case 0x04: /* ARM_IDLECT1 */
2121 return s
->clkm
.arm_idlect1
;
2123 case 0x08: /* ARM_IDLECT2 */
2124 return s
->clkm
.arm_idlect2
;
2126 case 0x0c: /* ARM_EWUPCT */
2127 return s
->clkm
.arm_ewupct
;
2129 case 0x10: /* ARM_RSTCT1 */
2130 return s
->clkm
.arm_rstct1
;
2132 case 0x14: /* ARM_RSTCT2 */
2133 return s
->clkm
.arm_rstct2
;
2135 case 0x18: /* ARM_SYSST */
2136 return (s
->clkm
.clocking_scheme
<< 11) | s
->clkm
.cold_start
;
2138 case 0x1c: /* ARM_CKOUT1 */
2139 return s
->clkm
.arm_ckout1
;
2141 case 0x20: /* ARM_CKOUT2 */
2149 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s
*s
,
2150 uint16_t diff
, uint16_t value
)
2154 if (diff
& (1 << 14)) { /* ARM_INTHCK_SEL */
2155 if (value
& (1 << 14))
2158 clk
= omap_findclk(s
, "arminth_ck");
2159 omap_clk_reparent(clk
, omap_findclk(s
, "tc_ck"));
2162 if (diff
& (1 << 12)) { /* ARM_TIMXO */
2163 clk
= omap_findclk(s
, "armtim_ck");
2164 if (value
& (1 << 12))
2165 omap_clk_reparent(clk
, omap_findclk(s
, "clkin"));
2167 omap_clk_reparent(clk
, omap_findclk(s
, "ck_gen1"));
2170 if (diff
& (3 << 10)) { /* DSPMMUDIV */
2171 clk
= omap_findclk(s
, "dspmmu_ck");
2172 omap_clk_setrate(clk
, 1 << ((value
>> 10) & 3), 1);
2174 if (diff
& (3 << 8)) { /* TCDIV */
2175 clk
= omap_findclk(s
, "tc_ck");
2176 omap_clk_setrate(clk
, 1 << ((value
>> 8) & 3), 1);
2178 if (diff
& (3 << 6)) { /* DSPDIV */
2179 clk
= omap_findclk(s
, "dsp_ck");
2180 omap_clk_setrate(clk
, 1 << ((value
>> 6) & 3), 1);
2182 if (diff
& (3 << 4)) { /* ARMDIV */
2183 clk
= omap_findclk(s
, "arm_ck");
2184 omap_clk_setrate(clk
, 1 << ((value
>> 4) & 3), 1);
2186 if (diff
& (3 << 2)) { /* LCDDIV */
2187 clk
= omap_findclk(s
, "lcd_ck");
2188 omap_clk_setrate(clk
, 1 << ((value
>> 2) & 3), 1);
2190 if (diff
& (3 << 0)) { /* PERDIV */
2191 clk
= omap_findclk(s
, "armper_ck");
2192 omap_clk_setrate(clk
, 1 << ((value
>> 0) & 3), 1);
2196 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s
*s
,
2197 uint16_t diff
, uint16_t value
)
2201 if (value
& (1 << 11)) /* SETARM_IDLE */
2202 cpu_interrupt(s
->env
, CPU_INTERRUPT_HALT
);
2203 if (!(value
& (1 << 10))) /* WKUP_MODE */
2204 qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
2206 #define SET_CANIDLE(clock, bit) \
2207 if (diff & (1 << bit)) { \
2208 clk = omap_findclk(s, clock); \
2209 omap_clk_canidle(clk, (value >> bit) & 1); \
2211 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
2212 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
2213 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
2214 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
2215 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
2216 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
2217 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
2218 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
2219 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
2220 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
2221 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
2222 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
2223 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
2224 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
2227 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s
*s
,
2228 uint16_t diff
, uint16_t value
)
2232 #define SET_ONOFF(clock, bit) \
2233 if (diff & (1 << bit)) { \
2234 clk = omap_findclk(s, clock); \
2235 omap_clk_onoff(clk, (value >> bit) & 1); \
2237 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
2238 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
2239 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
2240 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
2241 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
2242 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
2243 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
2244 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
2245 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
2246 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
2247 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
2250 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s
*s
,
2251 uint16_t diff
, uint16_t value
)
2255 if (diff
& (3 << 4)) { /* TCLKOUT */
2256 clk
= omap_findclk(s
, "tclk_out");
2257 switch ((value
>> 4) & 3) {
2259 omap_clk_reparent(clk
, omap_findclk(s
, "ck_gen3"));
2260 omap_clk_onoff(clk
, 1);
2263 omap_clk_reparent(clk
, omap_findclk(s
, "tc_ck"));
2264 omap_clk_onoff(clk
, 1);
2267 omap_clk_onoff(clk
, 0);
2270 if (diff
& (3 << 2)) { /* DCLKOUT */
2271 clk
= omap_findclk(s
, "dclk_out");
2272 switch ((value
>> 2) & 3) {
2274 omap_clk_reparent(clk
, omap_findclk(s
, "dspmmu_ck"));
2277 omap_clk_reparent(clk
, omap_findclk(s
, "ck_gen2"));
2280 omap_clk_reparent(clk
, omap_findclk(s
, "dsp_ck"));
2283 omap_clk_reparent(clk
, omap_findclk(s
, "ck_ref14"));
2287 if (diff
& (3 << 0)) { /* ACLKOUT */
2288 clk
= omap_findclk(s
, "aclk_out");
2289 switch ((value
>> 0) & 3) {
2291 omap_clk_reparent(clk
, omap_findclk(s
, "ck_gen1"));
2292 omap_clk_onoff(clk
, 1);
2295 omap_clk_reparent(clk
, omap_findclk(s
, "arm_ck"));
2296 omap_clk_onoff(clk
, 1);
2299 omap_clk_reparent(clk
, omap_findclk(s
, "ck_ref14"));
2300 omap_clk_onoff(clk
, 1);
2303 omap_clk_onoff(clk
, 0);
2308 static void omap_clkm_write(void *opaque
, target_phys_addr_t addr
,
2311 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
2314 static const char *clkschemename
[8] = {
2315 "fully synchronous", "fully asynchronous", "synchronous scalable",
2316 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
2320 case 0x00: /* ARM_CKCTL */
2321 diff
= s
->clkm
.arm_ckctl
^ value
;
2322 s
->clkm
.arm_ckctl
= value
& 0x7fff;
2323 omap_clkm_ckctl_update(s
, diff
, value
);
2326 case 0x04: /* ARM_IDLECT1 */
2327 diff
= s
->clkm
.arm_idlect1
^ value
;
2328 s
->clkm
.arm_idlect1
= value
& 0x0fff;
2329 omap_clkm_idlect1_update(s
, diff
, value
);
2332 case 0x08: /* ARM_IDLECT2 */
2333 diff
= s
->clkm
.arm_idlect2
^ value
;
2334 s
->clkm
.arm_idlect2
= value
& 0x07ff;
2335 omap_clkm_idlect2_update(s
, diff
, value
);
2338 case 0x0c: /* ARM_EWUPCT */
2339 diff
= s
->clkm
.arm_ewupct
^ value
;
2340 s
->clkm
.arm_ewupct
= value
& 0x003f;
2343 case 0x10: /* ARM_RSTCT1 */
2344 diff
= s
->clkm
.arm_rstct1
^ value
;
2345 s
->clkm
.arm_rstct1
= value
& 0x0007;
2347 qemu_system_reset_request();
2348 s
->clkm
.cold_start
= 0xa;
2350 if (diff
& ~value
& 4) { /* DSP_RST */
2352 omap_tipb_bridge_reset(s
->private_tipb
);
2353 omap_tipb_bridge_reset(s
->public_tipb
);
2355 if (diff
& 2) { /* DSP_EN */
2356 clk
= omap_findclk(s
, "dsp_ck");
2357 omap_clk_canidle(clk
, (~value
>> 1) & 1);
2361 case 0x14: /* ARM_RSTCT2 */
2362 s
->clkm
.arm_rstct2
= value
& 0x0001;
2365 case 0x18: /* ARM_SYSST */
2366 if ((s
->clkm
.clocking_scheme
^ (value
>> 11)) & 7) {
2367 s
->clkm
.clocking_scheme
= (value
>> 11) & 7;
2368 printf("%s: clocking scheme set to %s\n", __FUNCTION__
,
2369 clkschemename
[s
->clkm
.clocking_scheme
]);
2371 s
->clkm
.cold_start
&= value
& 0x3f;
2374 case 0x1c: /* ARM_CKOUT1 */
2375 diff
= s
->clkm
.arm_ckout1
^ value
;
2376 s
->clkm
.arm_ckout1
= value
& 0x003f;
2377 omap_clkm_ckout1_update(s
, diff
, value
);
2380 case 0x20: /* ARM_CKOUT2 */
2386 static CPUReadMemoryFunc
*omap_clkm_readfn
[] = {
2387 omap_badwidth_read16
,
2389 omap_badwidth_read16
,
2392 static CPUWriteMemoryFunc
*omap_clkm_writefn
[] = {
2393 omap_badwidth_write16
,
2395 omap_badwidth_write16
,
2398 static uint32_t omap_clkdsp_read(void *opaque
, target_phys_addr_t addr
)
2400 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
2403 case 0x04: /* DSP_IDLECT1 */
2404 return s
->clkm
.dsp_idlect1
;
2406 case 0x08: /* DSP_IDLECT2 */
2407 return s
->clkm
.dsp_idlect2
;
2409 case 0x14: /* DSP_RSTCT2 */
2410 return s
->clkm
.dsp_rstct2
;
2412 case 0x18: /* DSP_SYSST */
2413 return (s
->clkm
.clocking_scheme
<< 11) | s
->clkm
.cold_start
|
2414 (s
->env
->halted
<< 6); /* Quite useless... */
2421 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s
*s
,
2422 uint16_t diff
, uint16_t value
)
2426 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
2429 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s
*s
,
2430 uint16_t diff
, uint16_t value
)
2434 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
2437 static void omap_clkdsp_write(void *opaque
, target_phys_addr_t addr
,
2440 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
2444 case 0x04: /* DSP_IDLECT1 */
2445 diff
= s
->clkm
.dsp_idlect1
^ value
;
2446 s
->clkm
.dsp_idlect1
= value
& 0x01f7;
2447 omap_clkdsp_idlect1_update(s
, diff
, value
);
2450 case 0x08: /* DSP_IDLECT2 */
2451 s
->clkm
.dsp_idlect2
= value
& 0x0037;
2452 diff
= s
->clkm
.dsp_idlect1
^ value
;
2453 omap_clkdsp_idlect2_update(s
, diff
, value
);
2456 case 0x14: /* DSP_RSTCT2 */
2457 s
->clkm
.dsp_rstct2
= value
& 0x0001;
2460 case 0x18: /* DSP_SYSST */
2461 s
->clkm
.cold_start
&= value
& 0x3f;
2469 static CPUReadMemoryFunc
*omap_clkdsp_readfn
[] = {
2470 omap_badwidth_read16
,
2472 omap_badwidth_read16
,
2475 static CPUWriteMemoryFunc
*omap_clkdsp_writefn
[] = {
2476 omap_badwidth_write16
,
2478 omap_badwidth_write16
,
2481 static void omap_clkm_reset(struct omap_mpu_state_s
*s
)
2483 if (s
->wdt
&& s
->wdt
->reset
)
2484 s
->clkm
.cold_start
= 0x6;
2485 s
->clkm
.clocking_scheme
= 0;
2486 omap_clkm_ckctl_update(s
, ~0, 0x3000);
2487 s
->clkm
.arm_ckctl
= 0x3000;
2488 omap_clkm_idlect1_update(s
, s
->clkm
.arm_idlect1
^ 0x0400, 0x0400);
2489 s
->clkm
.arm_idlect1
= 0x0400;
2490 omap_clkm_idlect2_update(s
, s
->clkm
.arm_idlect2
^ 0x0100, 0x0100);
2491 s
->clkm
.arm_idlect2
= 0x0100;
2492 s
->clkm
.arm_ewupct
= 0x003f;
2493 s
->clkm
.arm_rstct1
= 0x0000;
2494 s
->clkm
.arm_rstct2
= 0x0000;
2495 s
->clkm
.arm_ckout1
= 0x0015;
2496 s
->clkm
.dpll1_mode
= 0x2002;
2497 omap_clkdsp_idlect1_update(s
, s
->clkm
.dsp_idlect1
^ 0x0040, 0x0040);
2498 s
->clkm
.dsp_idlect1
= 0x0040;
2499 omap_clkdsp_idlect2_update(s
, ~0, 0x0000);
2500 s
->clkm
.dsp_idlect2
= 0x0000;
2501 s
->clkm
.dsp_rstct2
= 0x0000;
2504 static void omap_clkm_init(target_phys_addr_t mpu_base
,
2505 target_phys_addr_t dsp_base
, struct omap_mpu_state_s
*s
)
2507 int iomemtype
[2] = {
2508 cpu_register_io_memory(0, omap_clkm_readfn
, omap_clkm_writefn
, s
),
2509 cpu_register_io_memory(0, omap_clkdsp_readfn
, omap_clkdsp_writefn
, s
),
2512 s
->clkm
.arm_idlect1
= 0x03ff;
2513 s
->clkm
.arm_idlect2
= 0x0100;
2514 s
->clkm
.dsp_idlect1
= 0x0002;
2516 s
->clkm
.cold_start
= 0x3a;
2518 cpu_register_physical_memory(mpu_base
, 0x100, iomemtype
[0]);
2519 cpu_register_physical_memory(dsp_base
, 0x1000, iomemtype
[1]);
2523 struct omap_mpuio_s
{
2527 qemu_irq handler
[16];
2548 static void omap_mpuio_set(void *opaque
, int line
, int level
)
2550 struct omap_mpuio_s
*s
= (struct omap_mpuio_s
*) opaque
;
2551 uint16_t prev
= s
->inputs
;
2554 s
->inputs
|= 1 << line
;
2556 s
->inputs
&= ~(1 << line
);
2558 if (((1 << line
) & s
->dir
& ~s
->mask
) && s
->clk
) {
2559 if ((s
->edge
& s
->inputs
& ~prev
) | (~s
->edge
& ~s
->inputs
& prev
)) {
2560 s
->ints
|= 1 << line
;
2561 qemu_irq_raise(s
->irq
);
2564 if ((s
->event
& (1 << 0)) && /* SET_GPIO_EVENT_MODE */
2565 (s
->event
>> 1) == line
) /* PIN_SELECT */
2566 s
->latch
= s
->inputs
;
2570 static void omap_mpuio_kbd_update(struct omap_mpuio_s
*s
)
2573 uint8_t *row
, rows
= 0, cols
= ~s
->cols
;
2575 for (row
= s
->buttons
+ 4, i
= 1 << 4; i
; row
--, i
>>= 1)
2579 qemu_set_irq(s
->kbd_irq
, rows
&& !s
->kbd_mask
&& s
->clk
);
2580 s
->row_latch
= ~rows
;
2583 static uint32_t omap_mpuio_read(void *opaque
, target_phys_addr_t addr
)
2585 struct omap_mpuio_s
*s
= (struct omap_mpuio_s
*) opaque
;
2586 int offset
= addr
& OMAP_MPUI_REG_MASK
;
2590 case 0x00: /* INPUT_LATCH */
2593 case 0x04: /* OUTPUT_REG */
2596 case 0x08: /* IO_CNTL */
2599 case 0x10: /* KBR_LATCH */
2600 return s
->row_latch
;
2602 case 0x14: /* KBC_REG */
2605 case 0x18: /* GPIO_EVENT_MODE_REG */
2608 case 0x1c: /* GPIO_INT_EDGE_REG */
2611 case 0x20: /* KBD_INT */
2612 return (~s
->row_latch
& 0x1f) && !s
->kbd_mask
;
2614 case 0x24: /* GPIO_INT */
2618 qemu_irq_lower(s
->irq
);
2621 case 0x28: /* KBD_MASKIT */
2624 case 0x2c: /* GPIO_MASKIT */
2627 case 0x30: /* GPIO_DEBOUNCING_REG */
2630 case 0x34: /* GPIO_LATCH_REG */
2638 static void omap_mpuio_write(void *opaque
, target_phys_addr_t addr
,
2641 struct omap_mpuio_s
*s
= (struct omap_mpuio_s
*) opaque
;
2642 int offset
= addr
& OMAP_MPUI_REG_MASK
;
2647 case 0x04: /* OUTPUT_REG */
2648 diff
= (s
->outputs
^ value
) & ~s
->dir
;
2650 while ((ln
= ffs(diff
))) {
2653 qemu_set_irq(s
->handler
[ln
], (value
>> ln
) & 1);
2658 case 0x08: /* IO_CNTL */
2659 diff
= s
->outputs
& (s
->dir
^ value
);
2662 value
= s
->outputs
& ~s
->dir
;
2663 while ((ln
= ffs(diff
))) {
2666 qemu_set_irq(s
->handler
[ln
], (value
>> ln
) & 1);
2671 case 0x14: /* KBC_REG */
2673 omap_mpuio_kbd_update(s
);
2676 case 0x18: /* GPIO_EVENT_MODE_REG */
2677 s
->event
= value
& 0x1f;
2680 case 0x1c: /* GPIO_INT_EDGE_REG */
2684 case 0x28: /* KBD_MASKIT */
2685 s
->kbd_mask
= value
& 1;
2686 omap_mpuio_kbd_update(s
);
2689 case 0x2c: /* GPIO_MASKIT */
2693 case 0x30: /* GPIO_DEBOUNCING_REG */
2694 s
->debounce
= value
& 0x1ff;
2697 case 0x00: /* INPUT_LATCH */
2698 case 0x10: /* KBR_LATCH */
2699 case 0x20: /* KBD_INT */
2700 case 0x24: /* GPIO_INT */
2701 case 0x34: /* GPIO_LATCH_REG */
2711 static CPUReadMemoryFunc
*omap_mpuio_readfn
[] = {
2712 omap_badwidth_read16
,
2714 omap_badwidth_read16
,
2717 static CPUWriteMemoryFunc
*omap_mpuio_writefn
[] = {
2718 omap_badwidth_write16
,
2720 omap_badwidth_write16
,
2723 static void omap_mpuio_reset(struct omap_mpuio_s
*s
)
2735 s
->row_latch
= 0x1f;
2739 static void omap_mpuio_onoff(void *opaque
, int line
, int on
)
2741 struct omap_mpuio_s
*s
= (struct omap_mpuio_s
*) opaque
;
2745 omap_mpuio_kbd_update(s
);
2748 struct omap_mpuio_s
*omap_mpuio_init(target_phys_addr_t base
,
2749 qemu_irq kbd_int
, qemu_irq gpio_int
, qemu_irq wakeup
,
2753 struct omap_mpuio_s
*s
= (struct omap_mpuio_s
*)
2754 qemu_mallocz(sizeof(struct omap_mpuio_s
));
2757 s
->kbd_irq
= kbd_int
;
2759 s
->in
= qemu_allocate_irqs(omap_mpuio_set
, s
, 16);
2760 omap_mpuio_reset(s
);
2762 iomemtype
= cpu_register_io_memory(0, omap_mpuio_readfn
,
2763 omap_mpuio_writefn
, s
);
2764 cpu_register_physical_memory(base
, 0x800, iomemtype
);
2766 omap_clk_adduser(clk
, qemu_allocate_irqs(omap_mpuio_onoff
, s
, 1)[0]);
2771 qemu_irq
*omap_mpuio_in_get(struct omap_mpuio_s
*s
)
2776 void omap_mpuio_out_set(struct omap_mpuio_s
*s
, int line
, qemu_irq handler
)
2778 if (line
>= 16 || line
< 0)
2779 cpu_abort(cpu_single_env
, "%s: No GPIO line %i\n", __FUNCTION__
, line
);
2780 s
->handler
[line
] = handler
;
2783 void omap_mpuio_key(struct omap_mpuio_s
*s
, int row
, int col
, int down
)
2785 if (row
>= 5 || row
< 0)
2786 cpu_abort(cpu_single_env
, "%s: No key %i-%i\n",
2787 __FUNCTION__
, col
, row
);
2790 s
->buttons
[row
] |= 1 << col
;
2792 s
->buttons
[row
] &= ~(1 << col
);
2794 omap_mpuio_kbd_update(s
);
2797 /* General-Purpose I/O */
2798 struct omap_gpio_s
{
2801 qemu_irq handler
[16];
2812 static void omap_gpio_set(void *opaque
, int line
, int level
)
2814 struct omap_gpio_s
*s
= (struct omap_gpio_s
*) opaque
;
2815 uint16_t prev
= s
->inputs
;
2818 s
->inputs
|= 1 << line
;
2820 s
->inputs
&= ~(1 << line
);
2822 if (((s
->edge
& s
->inputs
& ~prev
) | (~s
->edge
& ~s
->inputs
& prev
)) &
2823 (1 << line
) & s
->dir
& ~s
->mask
) {
2824 s
->ints
|= 1 << line
;
2825 qemu_irq_raise(s
->irq
);
2829 static uint32_t omap_gpio_read(void *opaque
, target_phys_addr_t addr
)
2831 struct omap_gpio_s
*s
= (struct omap_gpio_s
*) opaque
;
2832 int offset
= addr
& OMAP_MPUI_REG_MASK
;
2835 case 0x00: /* DATA_INPUT */
2836 return s
->inputs
& s
->pins
;
2838 case 0x04: /* DATA_OUTPUT */
2841 case 0x08: /* DIRECTION_CONTROL */
2844 case 0x0c: /* INTERRUPT_CONTROL */
2847 case 0x10: /* INTERRUPT_MASK */
2850 case 0x14: /* INTERRUPT_STATUS */
2853 case 0x18: /* PIN_CONTROL (not in OMAP310) */
2862 static void omap_gpio_write(void *opaque
, target_phys_addr_t addr
,
2865 struct omap_gpio_s
*s
= (struct omap_gpio_s
*) opaque
;
2866 int offset
= addr
& OMAP_MPUI_REG_MASK
;
2871 case 0x00: /* DATA_INPUT */
2875 case 0x04: /* DATA_OUTPUT */
2876 diff
= (s
->outputs
^ value
) & ~s
->dir
;
2878 while ((ln
= ffs(diff
))) {
2881 qemu_set_irq(s
->handler
[ln
], (value
>> ln
) & 1);
2886 case 0x08: /* DIRECTION_CONTROL */
2887 diff
= s
->outputs
& (s
->dir
^ value
);
2890 value
= s
->outputs
& ~s
->dir
;
2891 while ((ln
= ffs(diff
))) {
2894 qemu_set_irq(s
->handler
[ln
], (value
>> ln
) & 1);
2899 case 0x0c: /* INTERRUPT_CONTROL */
2903 case 0x10: /* INTERRUPT_MASK */
2907 case 0x14: /* INTERRUPT_STATUS */
2910 qemu_irq_lower(s
->irq
);
2913 case 0x18: /* PIN_CONTROL (not in OMAP310 TRM) */
2924 /* *Some* sources say the memory region is 32-bit. */
2925 static CPUReadMemoryFunc
*omap_gpio_readfn
[] = {
2926 omap_badwidth_read16
,
2928 omap_badwidth_read16
,
2931 static CPUWriteMemoryFunc
*omap_gpio_writefn
[] = {
2932 omap_badwidth_write16
,
2934 omap_badwidth_write16
,
2937 static void omap_gpio_reset(struct omap_gpio_s
*s
)
2948 struct omap_gpio_s
*omap_gpio_init(target_phys_addr_t base
,
2949 qemu_irq irq
, omap_clk clk
)
2952 struct omap_gpio_s
*s
= (struct omap_gpio_s
*)
2953 qemu_mallocz(sizeof(struct omap_gpio_s
));
2956 s
->in
= qemu_allocate_irqs(omap_gpio_set
, s
, 16);
2959 iomemtype
= cpu_register_io_memory(0, omap_gpio_readfn
,
2960 omap_gpio_writefn
, s
);
2961 cpu_register_physical_memory(base
, 0x1000, iomemtype
);
2966 qemu_irq
*omap_gpio_in_get(struct omap_gpio_s
*s
)
2971 void omap_gpio_out_set(struct omap_gpio_s
*s
, int line
, qemu_irq handler
)
2973 if (line
>= 16 || line
< 0)
2974 cpu_abort(cpu_single_env
, "%s: No GPIO line %i\n", __FUNCTION__
, line
);
2975 s
->handler
[line
] = handler
;
2978 /* MicroWire Interface */
2979 struct omap_uwire_s
{
2989 struct uwire_slave_s
*chip
[4];
2992 static void omap_uwire_transfer_start(struct omap_uwire_s
*s
)
2994 int chipselect
= (s
->control
>> 10) & 3; /* INDEX */
2995 struct uwire_slave_s
*slave
= s
->chip
[chipselect
];
2997 if ((s
->control
>> 5) & 0x1f) { /* NB_BITS_WR */
2998 if (s
->control
& (1 << 12)) /* CS_CMD */
2999 if (slave
&& slave
->send
)
3000 slave
->send(slave
->opaque
,
3001 s
->txbuf
>> (16 - ((s
->control
>> 5) & 0x1f)));
3002 s
->control
&= ~(1 << 14); /* CSRB */
3003 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
3004 * a DRQ. When is the level IRQ supposed to be reset? */
3007 if ((s
->control
>> 0) & 0x1f) { /* NB_BITS_RD */
3008 if (s
->control
& (1 << 12)) /* CS_CMD */
3009 if (slave
&& slave
->receive
)
3010 s
->rxbuf
= slave
->receive(slave
->opaque
);
3011 s
->control
|= 1 << 15; /* RDRB */
3012 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
3013 * a DRQ. When is the level IRQ supposed to be reset? */
3017 static uint32_t omap_uwire_read(void *opaque
, target_phys_addr_t addr
)
3019 struct omap_uwire_s
*s
= (struct omap_uwire_s
*) opaque
;
3020 int offset
= addr
& OMAP_MPUI_REG_MASK
;
3023 case 0x00: /* RDR */
3024 s
->control
&= ~(1 << 15); /* RDRB */
3027 case 0x04: /* CSR */
3030 case 0x08: /* SR1 */
3032 case 0x0c: /* SR2 */
3034 case 0x10: /* SR3 */
3036 case 0x14: /* SR4 */
3038 case 0x18: /* SR5 */
3046 static void omap_uwire_write(void *opaque
, target_phys_addr_t addr
,
3049 struct omap_uwire_s
*s
= (struct omap_uwire_s
*) opaque
;
3050 int offset
= addr
& OMAP_MPUI_REG_MASK
;
3053 case 0x00: /* TDR */
3054 s
->txbuf
= value
; /* TD */
3055 if ((s
->setup
[4] & (1 << 2)) && /* AUTO_TX_EN */
3056 ((s
->setup
[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
3057 (s
->control
& (1 << 12)))) { /* CS_CMD */
3058 s
->control
|= 1 << 14; /* CSRB */
3059 omap_uwire_transfer_start(s
);
3063 case 0x04: /* CSR */
3064 s
->control
= value
& 0x1fff;
3065 if (value
& (1 << 13)) /* START */
3066 omap_uwire_transfer_start(s
);
3069 case 0x08: /* SR1 */
3070 s
->setup
[0] = value
& 0x003f;
3073 case 0x0c: /* SR2 */
3074 s
->setup
[1] = value
& 0x0fc0;
3077 case 0x10: /* SR3 */
3078 s
->setup
[2] = value
& 0x0003;
3081 case 0x14: /* SR4 */
3082 s
->setup
[3] = value
& 0x0001;
3085 case 0x18: /* SR5 */
3086 s
->setup
[4] = value
& 0x000f;
3095 static CPUReadMemoryFunc
*omap_uwire_readfn
[] = {
3096 omap_badwidth_read16
,
3098 omap_badwidth_read16
,
3101 static CPUWriteMemoryFunc
*omap_uwire_writefn
[] = {
3102 omap_badwidth_write16
,
3104 omap_badwidth_write16
,
3107 static void omap_uwire_reset(struct omap_uwire_s
*s
)
3117 struct omap_uwire_s
*omap_uwire_init(target_phys_addr_t base
,
3118 qemu_irq
*irq
, qemu_irq dma
, omap_clk clk
)
3121 struct omap_uwire_s
*s
= (struct omap_uwire_s
*)
3122 qemu_mallocz(sizeof(struct omap_uwire_s
));
3127 omap_uwire_reset(s
);
3129 iomemtype
= cpu_register_io_memory(0, omap_uwire_readfn
,
3130 omap_uwire_writefn
, s
);
3131 cpu_register_physical_memory(base
, 0x800, iomemtype
);
3136 void omap_uwire_attach(struct omap_uwire_s
*s
,
3137 struct uwire_slave_s
*slave
, int chipselect
)
3139 if (chipselect
< 0 || chipselect
> 3) {
3140 fprintf(stderr
, "%s: Bad chipselect %i\n", __FUNCTION__
, chipselect
);
3144 s
->chip
[chipselect
] = slave
;
3147 /* Pseudonoise Pulse-Width Light Modulator */
3148 static void omap_pwl_update(struct omap_mpu_state_s
*s
)
3150 int output
= (s
->pwl
.clk
&& s
->pwl
.enable
) ? s
->pwl
.level
: 0;
3152 if (output
!= s
->pwl
.output
) {
3153 s
->pwl
.output
= output
;
3154 printf("%s: Backlight now at %i/256\n", __FUNCTION__
, output
);
3158 static uint32_t omap_pwl_read(void *opaque
, target_phys_addr_t addr
)
3160 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
3161 int offset
= addr
& OMAP_MPUI_REG_MASK
;
3164 case 0x00: /* PWL_LEVEL */
3165 return s
->pwl
.level
;
3166 case 0x04: /* PWL_CTRL */
3167 return s
->pwl
.enable
;
3173 static void omap_pwl_write(void *opaque
, target_phys_addr_t addr
,
3176 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
3177 int offset
= addr
& OMAP_MPUI_REG_MASK
;
3180 case 0x00: /* PWL_LEVEL */
3181 s
->pwl
.level
= value
;
3184 case 0x04: /* PWL_CTRL */
3185 s
->pwl
.enable
= value
& 1;
3194 static CPUReadMemoryFunc
*omap_pwl_readfn
[] = {
3196 omap_badwidth_read8
,
3197 omap_badwidth_read8
,
3200 static CPUWriteMemoryFunc
*omap_pwl_writefn
[] = {
3202 omap_badwidth_write8
,
3203 omap_badwidth_write8
,
3206 static void omap_pwl_reset(struct omap_mpu_state_s
*s
)
3215 static void omap_pwl_clk_update(void *opaque
, int line
, int on
)
3217 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
3223 static void omap_pwl_init(target_phys_addr_t base
, struct omap_mpu_state_s
*s
,
3230 iomemtype
= cpu_register_io_memory(0, omap_pwl_readfn
,
3231 omap_pwl_writefn
, s
);
3232 cpu_register_physical_memory(base
, 0x800, iomemtype
);
3234 omap_clk_adduser(clk
, qemu_allocate_irqs(omap_pwl_clk_update
, s
, 1)[0]);
3237 /* Pulse-Width Tone module */
3238 static uint32_t omap_pwt_read(void *opaque
, target_phys_addr_t addr
)
3240 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
3241 int offset
= addr
& OMAP_MPUI_REG_MASK
;
3244 case 0x00: /* FRC */
3246 case 0x04: /* VCR */
3248 case 0x08: /* GCR */
3255 static void omap_pwt_write(void *opaque
, target_phys_addr_t addr
,
3258 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
3259 int offset
= addr
& OMAP_MPUI_REG_MASK
;
3262 case 0x00: /* FRC */
3263 s
->pwt
.frc
= value
& 0x3f;
3265 case 0x04: /* VRC */
3266 if ((value
^ s
->pwt
.vrc
) & 1) {
3268 printf("%s: %iHz buzz on\n", __FUNCTION__
, (int)
3269 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
3270 ((omap_clk_getrate(s
->pwt
.clk
) >> 3) /
3271 /* Pre-multiplexer divider */
3272 ((s
->pwt
.gcr
& 2) ? 1 : 154) /
3273 /* Octave multiplexer */
3274 (2 << (value
& 3)) *
3275 /* 101/107 divider */
3276 ((value
& (1 << 2)) ? 101 : 107) *
3278 ((value
& (1 << 3)) ? 49 : 55) *
3280 ((value
& (1 << 4)) ? 50 : 63) *
3281 /* 80/127 divider */
3282 ((value
& (1 << 5)) ? 80 : 127) /
3283 (107 * 55 * 63 * 127)));
3285 printf("%s: silence!\n", __FUNCTION__
);
3287 s
->pwt
.vrc
= value
& 0x7f;
3289 case 0x08: /* GCR */
3290 s
->pwt
.gcr
= value
& 3;
3298 static CPUReadMemoryFunc
*omap_pwt_readfn
[] = {
3300 omap_badwidth_read8
,
3301 omap_badwidth_read8
,
3304 static CPUWriteMemoryFunc
*omap_pwt_writefn
[] = {
3306 omap_badwidth_write8
,
3307 omap_badwidth_write8
,
3310 static void omap_pwt_reset(struct omap_mpu_state_s
*s
)
3317 static void omap_pwt_init(target_phys_addr_t base
, struct omap_mpu_state_s
*s
,
3325 iomemtype
= cpu_register_io_memory(0, omap_pwt_readfn
,
3326 omap_pwt_writefn
, s
);
3327 cpu_register_physical_memory(base
, 0x800, iomemtype
);
3330 /* Real-time Clock module */
3346 struct tm current_tm
;
3351 static void omap_rtc_interrupts_update(struct omap_rtc_s
*s
)
3353 /* s->alarm is level-triggered */
3354 qemu_set_irq(s
->alarm
, (s
->status
>> 6) & 1);
3357 static void omap_rtc_alarm_update(struct omap_rtc_s
*s
)
3359 s
->alarm_ti
= mktimegm(&s
->alarm_tm
);
3360 if (s
->alarm_ti
== -1)
3361 printf("%s: conversion failed\n", __FUNCTION__
);
3364 static inline uint8_t omap_rtc_bcd(int num
)
3366 return ((num
/ 10) << 4) | (num
% 10);
3369 static inline int omap_rtc_bin(uint8_t num
)
3371 return (num
& 15) + 10 * (num
>> 4);
3374 static uint32_t omap_rtc_read(void *opaque
, target_phys_addr_t addr
)
3376 struct omap_rtc_s
*s
= (struct omap_rtc_s
*) opaque
;
3377 int offset
= addr
& OMAP_MPUI_REG_MASK
;
3381 case 0x00: /* SECONDS_REG */
3382 return omap_rtc_bcd(s
->current_tm
.tm_sec
);
3384 case 0x04: /* MINUTES_REG */
3385 return omap_rtc_bcd(s
->current_tm
.tm_min
);
3387 case 0x08: /* HOURS_REG */
3389 return ((s
->current_tm
.tm_hour
> 11) << 7) |
3390 omap_rtc_bcd(((s
->current_tm
.tm_hour
- 1) % 12) + 1);
3392 return omap_rtc_bcd(s
->current_tm
.tm_hour
);
3394 case 0x0c: /* DAYS_REG */
3395 return omap_rtc_bcd(s
->current_tm
.tm_mday
);
3397 case 0x10: /* MONTHS_REG */
3398 return omap_rtc_bcd(s
->current_tm
.tm_mon
+ 1);
3400 case 0x14: /* YEARS_REG */
3401 return omap_rtc_bcd(s
->current_tm
.tm_year
% 100);
3403 case 0x18: /* WEEK_REG */
3404 return s
->current_tm
.tm_wday
;
3406 case 0x20: /* ALARM_SECONDS_REG */
3407 return omap_rtc_bcd(s
->alarm_tm
.tm_sec
);
3409 case 0x24: /* ALARM_MINUTES_REG */
3410 return omap_rtc_bcd(s
->alarm_tm
.tm_min
);
3412 case 0x28: /* ALARM_HOURS_REG */
3414 return ((s
->alarm_tm
.tm_hour
> 11) << 7) |
3415 omap_rtc_bcd(((s
->alarm_tm
.tm_hour
- 1) % 12) + 1);
3417 return omap_rtc_bcd(s
->alarm_tm
.tm_hour
);
3419 case 0x2c: /* ALARM_DAYS_REG */
3420 return omap_rtc_bcd(s
->alarm_tm
.tm_mday
);
3422 case 0x30: /* ALARM_MONTHS_REG */
3423 return omap_rtc_bcd(s
->alarm_tm
.tm_mon
+ 1);
3425 case 0x34: /* ALARM_YEARS_REG */
3426 return omap_rtc_bcd(s
->alarm_tm
.tm_year
% 100);
3428 case 0x40: /* RTC_CTRL_REG */
3429 return (s
->pm_am
<< 3) | (s
->auto_comp
<< 2) |
3430 (s
->round
<< 1) | s
->running
;
3432 case 0x44: /* RTC_STATUS_REG */
3437 case 0x48: /* RTC_INTERRUPTS_REG */
3438 return s
->interrupts
;
3440 case 0x4c: /* RTC_COMP_LSB_REG */
3441 return ((uint16_t) s
->comp_reg
) & 0xff;
3443 case 0x50: /* RTC_COMP_MSB_REG */
3444 return ((uint16_t) s
->comp_reg
) >> 8;
3451 static void omap_rtc_write(void *opaque
, target_phys_addr_t addr
,
3454 struct omap_rtc_s
*s
= (struct omap_rtc_s
*) opaque
;
3455 int offset
= addr
& OMAP_MPUI_REG_MASK
;
3460 case 0x00: /* SECONDS_REG */
3462 printf("RTC SEC_REG <-- %02x\n", value
);
3464 s
->ti
-= s
->current_tm
.tm_sec
;
3465 s
->ti
+= omap_rtc_bin(value
);
3468 case 0x04: /* MINUTES_REG */
3470 printf("RTC MIN_REG <-- %02x\n", value
);
3472 s
->ti
-= s
->current_tm
.tm_min
* 60;
3473 s
->ti
+= omap_rtc_bin(value
) * 60;
3476 case 0x08: /* HOURS_REG */
3478 printf("RTC HRS_REG <-- %02x\n", value
);
3480 s
->ti
-= s
->current_tm
.tm_hour
* 3600;
3482 s
->ti
+= (omap_rtc_bin(value
& 0x3f) & 12) * 3600;
3483 s
->ti
+= ((value
>> 7) & 1) * 43200;
3485 s
->ti
+= omap_rtc_bin(value
& 0x3f) * 3600;
3488 case 0x0c: /* DAYS_REG */
3490 printf("RTC DAY_REG <-- %02x\n", value
);
3492 s
->ti
-= s
->current_tm
.tm_mday
* 86400;
3493 s
->ti
+= omap_rtc_bin(value
) * 86400;
3496 case 0x10: /* MONTHS_REG */
3498 printf("RTC MTH_REG <-- %02x\n", value
);
3500 memcpy(&new_tm
, &s
->current_tm
, sizeof(new_tm
));
3501 new_tm
.tm_mon
= omap_rtc_bin(value
);
3502 ti
[0] = mktimegm(&s
->current_tm
);
3503 ti
[1] = mktimegm(&new_tm
);
3505 if (ti
[0] != -1 && ti
[1] != -1) {
3509 /* A less accurate version */
3510 s
->ti
-= s
->current_tm
.tm_mon
* 2592000;
3511 s
->ti
+= omap_rtc_bin(value
) * 2592000;
3515 case 0x14: /* YEARS_REG */
3517 printf("RTC YRS_REG <-- %02x\n", value
);
3519 memcpy(&new_tm
, &s
->current_tm
, sizeof(new_tm
));
3520 new_tm
.tm_year
+= omap_rtc_bin(value
) - (new_tm
.tm_year
% 100);
3521 ti
[0] = mktimegm(&s
->current_tm
);
3522 ti
[1] = mktimegm(&new_tm
);
3524 if (ti
[0] != -1 && ti
[1] != -1) {
3528 /* A less accurate version */
3529 s
->ti
-= (s
->current_tm
.tm_year
% 100) * 31536000;
3530 s
->ti
+= omap_rtc_bin(value
) * 31536000;
3534 case 0x18: /* WEEK_REG */
3535 return; /* Ignored */
3537 case 0x20: /* ALARM_SECONDS_REG */
3539 printf("ALM SEC_REG <-- %02x\n", value
);
3541 s
->alarm_tm
.tm_sec
= omap_rtc_bin(value
);
3542 omap_rtc_alarm_update(s
);
3545 case 0x24: /* ALARM_MINUTES_REG */
3547 printf("ALM MIN_REG <-- %02x\n", value
);
3549 s
->alarm_tm
.tm_min
= omap_rtc_bin(value
);
3550 omap_rtc_alarm_update(s
);
3553 case 0x28: /* ALARM_HOURS_REG */
3555 printf("ALM HRS_REG <-- %02x\n", value
);
3558 s
->alarm_tm
.tm_hour
=
3559 ((omap_rtc_bin(value
& 0x3f)) % 12) +
3560 ((value
>> 7) & 1) * 12;
3562 s
->alarm_tm
.tm_hour
= omap_rtc_bin(value
);
3563 omap_rtc_alarm_update(s
);
3566 case 0x2c: /* ALARM_DAYS_REG */
3568 printf("ALM DAY_REG <-- %02x\n", value
);
3570 s
->alarm_tm
.tm_mday
= omap_rtc_bin(value
);
3571 omap_rtc_alarm_update(s
);
3574 case 0x30: /* ALARM_MONTHS_REG */
3576 printf("ALM MON_REG <-- %02x\n", value
);
3578 s
->alarm_tm
.tm_mon
= omap_rtc_bin(value
);
3579 omap_rtc_alarm_update(s
);
3582 case 0x34: /* ALARM_YEARS_REG */
3584 printf("ALM YRS_REG <-- %02x\n", value
);
3586 s
->alarm_tm
.tm_year
= omap_rtc_bin(value
);
3587 omap_rtc_alarm_update(s
);
3590 case 0x40: /* RTC_CTRL_REG */
3592 printf("RTC CONTROL <-- %02x\n", value
);
3594 s
->pm_am
= (value
>> 3) & 1;
3595 s
->auto_comp
= (value
>> 2) & 1;
3596 s
->round
= (value
>> 1) & 1;
3597 s
->running
= value
& 1;
3599 s
->status
|= s
->running
<< 1;
3602 case 0x44: /* RTC_STATUS_REG */
3604 printf("RTC STATUSL <-- %02x\n", value
);
3606 s
->status
&= ~((value
& 0xc0) ^ 0x80);
3607 omap_rtc_interrupts_update(s
);
3610 case 0x48: /* RTC_INTERRUPTS_REG */
3612 printf("RTC INTRS <-- %02x\n", value
);
3614 s
->interrupts
= value
;
3617 case 0x4c: /* RTC_COMP_LSB_REG */
3619 printf("RTC COMPLSB <-- %02x\n", value
);
3621 s
->comp_reg
&= 0xff00;
3622 s
->comp_reg
|= 0x00ff & value
;
3625 case 0x50: /* RTC_COMP_MSB_REG */
3627 printf("RTC COMPMSB <-- %02x\n", value
);
3629 s
->comp_reg
&= 0x00ff;
3630 s
->comp_reg
|= 0xff00 & (value
<< 8);
3639 static CPUReadMemoryFunc
*omap_rtc_readfn
[] = {
3641 omap_badwidth_read8
,
3642 omap_badwidth_read8
,
3645 static CPUWriteMemoryFunc
*omap_rtc_writefn
[] = {
3647 omap_badwidth_write8
,
3648 omap_badwidth_write8
,
3651 static void omap_rtc_tick(void *opaque
)
3653 struct omap_rtc_s
*s
= opaque
;
3656 /* Round to nearest full minute. */
3657 if (s
->current_tm
.tm_sec
< 30)
3658 s
->ti
-= s
->current_tm
.tm_sec
;
3660 s
->ti
+= 60 - s
->current_tm
.tm_sec
;
3665 memcpy(&s
->current_tm
, localtime(&s
->ti
), sizeof(s
->current_tm
));
3667 if ((s
->interrupts
& 0x08) && s
->ti
== s
->alarm_ti
) {
3669 omap_rtc_interrupts_update(s
);
3672 if (s
->interrupts
& 0x04)
3673 switch (s
->interrupts
& 3) {
3676 qemu_irq_pulse(s
->irq
);
3679 if (s
->current_tm
.tm_sec
)
3682 qemu_irq_pulse(s
->irq
);
3685 if (s
->current_tm
.tm_sec
|| s
->current_tm
.tm_min
)
3688 qemu_irq_pulse(s
->irq
);
3691 if (s
->current_tm
.tm_sec
||
3692 s
->current_tm
.tm_min
|| s
->current_tm
.tm_hour
)
3695 qemu_irq_pulse(s
->irq
);
3705 * Every full hour add a rough approximation of the compensation
3706 * register to the 32kHz Timer (which drives the RTC) value.
3708 if (s
->auto_comp
&& !s
->current_tm
.tm_sec
&& !s
->current_tm
.tm_min
)
3709 s
->tick
+= s
->comp_reg
* 1000 / 32768;
3711 qemu_mod_timer(s
->clk
, s
->tick
);
3714 static void omap_rtc_reset(struct omap_rtc_s
*s
)
3724 s
->tick
= qemu_get_clock(rt_clock
);
3725 memset(&s
->alarm_tm
, 0, sizeof(s
->alarm_tm
));
3726 s
->alarm_tm
.tm_mday
= 0x01;
3728 qemu_get_timedate(&tm
, 0);
3729 s
->ti
= mktimegm(&tm
);
3731 omap_rtc_alarm_update(s
);
3735 struct omap_rtc_s
*omap_rtc_init(target_phys_addr_t base
,
3736 qemu_irq
*irq
, omap_clk clk
)
3739 struct omap_rtc_s
*s
= (struct omap_rtc_s
*)
3740 qemu_mallocz(sizeof(struct omap_rtc_s
));
3744 s
->clk
= qemu_new_timer(rt_clock
, omap_rtc_tick
, s
);
3748 iomemtype
= cpu_register_io_memory(0, omap_rtc_readfn
,
3749 omap_rtc_writefn
, s
);
3750 cpu_register_physical_memory(base
, 0x800, iomemtype
);
3755 /* Multi-channel Buffered Serial Port interfaces */
3756 struct omap_mcbsp_s
{
3775 struct i2s_codec_s
*codec
;
3776 QEMUTimer
*source_timer
;
3777 QEMUTimer
*sink_timer
;
3780 static void omap_mcbsp_intr_update(struct omap_mcbsp_s
*s
)
3784 switch ((s
->spcr
[0] >> 4) & 3) { /* RINTM */
3786 irq
= (s
->spcr
[0] >> 1) & 1; /* RRDY */
3789 irq
= (s
->spcr
[0] >> 3) & 1; /* RSYNCERR */
3797 qemu_irq_pulse(s
->rxirq
);
3799 switch ((s
->spcr
[1] >> 4) & 3) { /* XINTM */
3801 irq
= (s
->spcr
[1] >> 1) & 1; /* XRDY */
3804 irq
= (s
->spcr
[1] >> 3) & 1; /* XSYNCERR */
3812 qemu_irq_pulse(s
->txirq
);
3815 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s
*s
)
3817 if ((s
->spcr
[0] >> 1) & 1) /* RRDY */
3818 s
->spcr
[0] |= 1 << 2; /* RFULL */
3819 s
->spcr
[0] |= 1 << 1; /* RRDY */
3820 qemu_irq_raise(s
->rxdrq
);
3821 omap_mcbsp_intr_update(s
);
3824 static void omap_mcbsp_source_tick(void *opaque
)
3826 struct omap_mcbsp_s
*s
= (struct omap_mcbsp_s
*) opaque
;
3827 static const int bps
[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3832 printf("%s: Rx FIFO overrun\n", __FUNCTION__
);
3834 s
->rx_req
= s
->rx_rate
<< bps
[(s
->rcr
[0] >> 5) & 7];
3836 omap_mcbsp_rx_newdata(s
);
3837 qemu_mod_timer(s
->source_timer
, qemu_get_clock(vm_clock
) + ticks_per_sec
);
3840 static void omap_mcbsp_rx_start(struct omap_mcbsp_s
*s
)
3842 if (!s
->codec
|| !s
->codec
->rts
)
3843 omap_mcbsp_source_tick(s
);
3844 else if (s
->codec
->in
.len
) {
3845 s
->rx_req
= s
->codec
->in
.len
;
3846 omap_mcbsp_rx_newdata(s
);
3850 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s
*s
)
3852 qemu_del_timer(s
->source_timer
);
3855 static void omap_mcbsp_rx_done(struct omap_mcbsp_s
*s
)
3857 s
->spcr
[0] &= ~(1 << 1); /* RRDY */
3858 qemu_irq_lower(s
->rxdrq
);
3859 omap_mcbsp_intr_update(s
);
3862 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s
*s
)
3864 s
->spcr
[1] |= 1 << 1; /* XRDY */
3865 qemu_irq_raise(s
->txdrq
);
3866 omap_mcbsp_intr_update(s
);
3869 static void omap_mcbsp_sink_tick(void *opaque
)
3871 struct omap_mcbsp_s
*s
= (struct omap_mcbsp_s
*) opaque
;
3872 static const int bps
[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3877 printf("%s: Tx FIFO underrun\n", __FUNCTION__
);
3879 s
->tx_req
= s
->tx_rate
<< bps
[(s
->xcr
[0] >> 5) & 7];
3881 omap_mcbsp_tx_newdata(s
);
3882 qemu_mod_timer(s
->sink_timer
, qemu_get_clock(vm_clock
) + ticks_per_sec
);
3885 static void omap_mcbsp_tx_start(struct omap_mcbsp_s
*s
)
3887 if (!s
->codec
|| !s
->codec
->cts
)
3888 omap_mcbsp_sink_tick(s
);
3889 else if (s
->codec
->out
.size
) {
3890 s
->tx_req
= s
->codec
->out
.size
;
3891 omap_mcbsp_tx_newdata(s
);
3895 static void omap_mcbsp_tx_done(struct omap_mcbsp_s
*s
)
3897 s
->spcr
[1] &= ~(1 << 1); /* XRDY */
3898 qemu_irq_lower(s
->txdrq
);
3899 omap_mcbsp_intr_update(s
);
3900 if (s
->codec
&& s
->codec
->cts
)
3901 s
->codec
->tx_swallow(s
->codec
->opaque
);
3904 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s
*s
)
3907 omap_mcbsp_tx_done(s
);
3908 qemu_del_timer(s
->sink_timer
);
3911 static void omap_mcbsp_req_update(struct omap_mcbsp_s
*s
)
3913 int prev_rx_rate
, prev_tx_rate
;
3914 int rx_rate
= 0, tx_rate
= 0;
3915 int cpu_rate
= 1500000; /* XXX */
3917 /* TODO: check CLKSTP bit */
3918 if (s
->spcr
[1] & (1 << 6)) { /* GRST */
3919 if (s
->spcr
[0] & (1 << 0)) { /* RRST */
3920 if ((s
->srgr
[1] & (1 << 13)) && /* CLKSM */
3921 (s
->pcr
& (1 << 8))) { /* CLKRM */
3922 if (~s
->pcr
& (1 << 7)) /* SCLKME */
3923 rx_rate
= cpu_rate
/
3924 ((s
->srgr
[0] & 0xff) + 1); /* CLKGDV */
3927 rx_rate
= s
->codec
->rx_rate
;
3930 if (s
->spcr
[1] & (1 << 0)) { /* XRST */
3931 if ((s
->srgr
[1] & (1 << 13)) && /* CLKSM */
3932 (s
->pcr
& (1 << 9))) { /* CLKXM */
3933 if (~s
->pcr
& (1 << 7)) /* SCLKME */
3934 tx_rate
= cpu_rate
/
3935 ((s
->srgr
[0] & 0xff) + 1); /* CLKGDV */
3938 tx_rate
= s
->codec
->tx_rate
;
3941 prev_tx_rate
= s
->tx_rate
;
3942 prev_rx_rate
= s
->rx_rate
;
3943 s
->tx_rate
= tx_rate
;
3944 s
->rx_rate
= rx_rate
;
3947 s
->codec
->set_rate(s
->codec
->opaque
, rx_rate
, tx_rate
);
3949 if (!prev_tx_rate
&& tx_rate
)
3950 omap_mcbsp_tx_start(s
);
3951 else if (s
->tx_rate
&& !tx_rate
)
3952 omap_mcbsp_tx_stop(s
);
3954 if (!prev_rx_rate
&& rx_rate
)
3955 omap_mcbsp_rx_start(s
);
3956 else if (prev_tx_rate
&& !tx_rate
)
3957 omap_mcbsp_rx_stop(s
);
3960 static uint32_t omap_mcbsp_read(void *opaque
, target_phys_addr_t addr
)
3962 struct omap_mcbsp_s
*s
= (struct omap_mcbsp_s
*) opaque
;
3963 int offset
= addr
& OMAP_MPUI_REG_MASK
;
3967 case 0x00: /* DRR2 */
3968 if (((s
->rcr
[0] >> 5) & 7) < 3) /* RWDLEN1 */
3971 case 0x02: /* DRR1 */
3972 if (s
->rx_req
< 2) {
3973 printf("%s: Rx FIFO underrun\n", __FUNCTION__
);
3974 omap_mcbsp_rx_done(s
);
3977 if (s
->codec
&& s
->codec
->in
.len
>= 2) {
3978 ret
= s
->codec
->in
.fifo
[s
->codec
->in
.start
++] << 8;
3979 ret
|= s
->codec
->in
.fifo
[s
->codec
->in
.start
++];
3980 s
->codec
->in
.len
-= 2;
3984 omap_mcbsp_rx_done(s
);
3989 case 0x04: /* DXR2 */
3990 case 0x06: /* DXR1 */
3993 case 0x08: /* SPCR2 */
3995 case 0x0a: /* SPCR1 */
3997 case 0x0c: /* RCR2 */
3999 case 0x0e: /* RCR1 */
4001 case 0x10: /* XCR2 */
4003 case 0x12: /* XCR1 */
4005 case 0x14: /* SRGR2 */
4007 case 0x16: /* SRGR1 */
4009 case 0x18: /* MCR2 */
4011 case 0x1a: /* MCR1 */
4013 case 0x1c: /* RCERA */
4015 case 0x1e: /* RCERB */
4017 case 0x20: /* XCERA */
4019 case 0x22: /* XCERB */
4021 case 0x24: /* PCR0 */
4023 case 0x26: /* RCERC */
4025 case 0x28: /* RCERD */
4027 case 0x2a: /* XCERC */
4029 case 0x2c: /* XCERD */
4031 case 0x2e: /* RCERE */
4033 case 0x30: /* RCERF */
4035 case 0x32: /* XCERE */
4037 case 0x34: /* XCERF */
4039 case 0x36: /* RCERG */
4041 case 0x38: /* RCERH */
4043 case 0x3a: /* XCERG */
4045 case 0x3c: /* XCERH */
4053 static void omap_mcbsp_writeh(void *opaque
, target_phys_addr_t addr
,
4056 struct omap_mcbsp_s
*s
= (struct omap_mcbsp_s
*) opaque
;
4057 int offset
= addr
& OMAP_MPUI_REG_MASK
;
4060 case 0x00: /* DRR2 */
4061 case 0x02: /* DRR1 */
4065 case 0x04: /* DXR2 */
4066 if (((s
->xcr
[0] >> 5) & 7) < 3) /* XWDLEN1 */
4069 case 0x06: /* DXR1 */
4070 if (s
->tx_req
> 1) {
4072 if (s
->codec
&& s
->codec
->cts
) {
4073 s
->codec
->out
.fifo
[s
->codec
->out
.len
++] = (value
>> 8) & 0xff;
4074 s
->codec
->out
.fifo
[s
->codec
->out
.len
++] = (value
>> 0) & 0xff;
4077 omap_mcbsp_tx_done(s
);
4079 printf("%s: Tx FIFO overrun\n", __FUNCTION__
);
4082 case 0x08: /* SPCR2 */
4083 s
->spcr
[1] &= 0x0002;
4084 s
->spcr
[1] |= 0x03f9 & value
;
4085 s
->spcr
[1] |= 0x0004 & (value
<< 2); /* XEMPTY := XRST */
4086 if (~value
& 1) /* XRST */
4088 omap_mcbsp_req_update(s
);
4090 case 0x0a: /* SPCR1 */
4091 s
->spcr
[0] &= 0x0006;
4092 s
->spcr
[0] |= 0xf8f9 & value
;
4093 if (value
& (1 << 15)) /* DLB */
4094 printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__
);
4095 if (~value
& 1) { /* RRST */
4098 omap_mcbsp_rx_done(s
);
4100 omap_mcbsp_req_update(s
);
4103 case 0x0c: /* RCR2 */
4104 s
->rcr
[1] = value
& 0xffff;
4106 case 0x0e: /* RCR1 */
4107 s
->rcr
[0] = value
& 0x7fe0;
4109 case 0x10: /* XCR2 */
4110 s
->xcr
[1] = value
& 0xffff;
4112 case 0x12: /* XCR1 */
4113 s
->xcr
[0] = value
& 0x7fe0;
4115 case 0x14: /* SRGR2 */
4116 s
->srgr
[1] = value
& 0xffff;
4117 omap_mcbsp_req_update(s
);
4119 case 0x16: /* SRGR1 */
4120 s
->srgr
[0] = value
& 0xffff;
4121 omap_mcbsp_req_update(s
);
4123 case 0x18: /* MCR2 */
4124 s
->mcr
[1] = value
& 0x03e3;
4125 if (value
& 3) /* XMCM */
4126 printf("%s: Tx channel selection mode enable attempt\n",
4129 case 0x1a: /* MCR1 */
4130 s
->mcr
[0] = value
& 0x03e1;
4131 if (value
& 1) /* RMCM */
4132 printf("%s: Rx channel selection mode enable attempt\n",
4135 case 0x1c: /* RCERA */
4136 s
->rcer
[0] = value
& 0xffff;
4138 case 0x1e: /* RCERB */
4139 s
->rcer
[1] = value
& 0xffff;
4141 case 0x20: /* XCERA */
4142 s
->xcer
[0] = value
& 0xffff;
4144 case 0x22: /* XCERB */
4145 s
->xcer
[1] = value
& 0xffff;
4147 case 0x24: /* PCR0 */
4148 s
->pcr
= value
& 0x7faf;
4150 case 0x26: /* RCERC */
4151 s
->rcer
[2] = value
& 0xffff;
4153 case 0x28: /* RCERD */
4154 s
->rcer
[3] = value
& 0xffff;
4156 case 0x2a: /* XCERC */
4157 s
->xcer
[2] = value
& 0xffff;
4159 case 0x2c: /* XCERD */
4160 s
->xcer
[3] = value
& 0xffff;
4162 case 0x2e: /* RCERE */
4163 s
->rcer
[4] = value
& 0xffff;
4165 case 0x30: /* RCERF */
4166 s
->rcer
[5] = value
& 0xffff;
4168 case 0x32: /* XCERE */
4169 s
->xcer
[4] = value
& 0xffff;
4171 case 0x34: /* XCERF */
4172 s
->xcer
[5] = value
& 0xffff;
4174 case 0x36: /* RCERG */
4175 s
->rcer
[6] = value
& 0xffff;
4177 case 0x38: /* RCERH */
4178 s
->rcer
[7] = value
& 0xffff;
4180 case 0x3a: /* XCERG */
4181 s
->xcer
[6] = value
& 0xffff;
4183 case 0x3c: /* XCERH */
4184 s
->xcer
[7] = value
& 0xffff;
4191 static void omap_mcbsp_writew(void *opaque
, target_phys_addr_t addr
,
4194 struct omap_mcbsp_s
*s
= (struct omap_mcbsp_s
*) opaque
;
4195 int offset
= addr
& OMAP_MPUI_REG_MASK
;
4197 if (offset
== 0x04) { /* DXR */
4198 if (((s
->xcr
[0] >> 5) & 7) < 3) /* XWDLEN1 */
4200 if (s
->tx_req
> 3) {
4202 if (s
->codec
&& s
->codec
->cts
) {
4203 s
->codec
->out
.fifo
[s
->codec
->out
.len
++] =
4204 (value
>> 24) & 0xff;
4205 s
->codec
->out
.fifo
[s
->codec
->out
.len
++] =
4206 (value
>> 16) & 0xff;
4207 s
->codec
->out
.fifo
[s
->codec
->out
.len
++] =
4208 (value
>> 8) & 0xff;
4209 s
->codec
->out
.fifo
[s
->codec
->out
.len
++] =
4210 (value
>> 0) & 0xff;
4213 omap_mcbsp_tx_done(s
);
4215 printf("%s: Tx FIFO overrun\n", __FUNCTION__
);
4219 omap_badwidth_write16(opaque
, addr
, value
);
4222 static CPUReadMemoryFunc
*omap_mcbsp_readfn
[] = {
4223 omap_badwidth_read16
,
4225 omap_badwidth_read16
,
4228 static CPUWriteMemoryFunc
*omap_mcbsp_writefn
[] = {
4229 omap_badwidth_write16
,
4234 static void omap_mcbsp_reset(struct omap_mcbsp_s
*s
)
4236 memset(&s
->spcr
, 0, sizeof(s
->spcr
));
4237 memset(&s
->rcr
, 0, sizeof(s
->rcr
));
4238 memset(&s
->xcr
, 0, sizeof(s
->xcr
));
4239 s
->srgr
[0] = 0x0001;
4240 s
->srgr
[1] = 0x2000;
4241 memset(&s
->mcr
, 0, sizeof(s
->mcr
));
4242 memset(&s
->pcr
, 0, sizeof(s
->pcr
));
4243 memset(&s
->rcer
, 0, sizeof(s
->rcer
));
4244 memset(&s
->xcer
, 0, sizeof(s
->xcer
));
4249 qemu_del_timer(s
->source_timer
);
4250 qemu_del_timer(s
->sink_timer
);
4253 struct omap_mcbsp_s
*omap_mcbsp_init(target_phys_addr_t base
,
4254 qemu_irq
*irq
, qemu_irq
*dma
, omap_clk clk
)
4257 struct omap_mcbsp_s
*s
= (struct omap_mcbsp_s
*)
4258 qemu_mallocz(sizeof(struct omap_mcbsp_s
));
4264 s
->sink_timer
= qemu_new_timer(vm_clock
, omap_mcbsp_sink_tick
, s
);
4265 s
->source_timer
= qemu_new_timer(vm_clock
, omap_mcbsp_source_tick
, s
);
4266 omap_mcbsp_reset(s
);
4268 iomemtype
= cpu_register_io_memory(0, omap_mcbsp_readfn
,
4269 omap_mcbsp_writefn
, s
);
4270 cpu_register_physical_memory(base
, 0x800, iomemtype
);
4275 static void omap_mcbsp_i2s_swallow(void *opaque
, int line
, int level
)
4277 struct omap_mcbsp_s
*s
= (struct omap_mcbsp_s
*) opaque
;
4280 s
->rx_req
= s
->codec
->in
.len
;
4281 omap_mcbsp_rx_newdata(s
);
4285 static void omap_mcbsp_i2s_start(void *opaque
, int line
, int level
)
4287 struct omap_mcbsp_s
*s
= (struct omap_mcbsp_s
*) opaque
;
4290 s
->tx_req
= s
->codec
->out
.size
;
4291 omap_mcbsp_tx_newdata(s
);
4295 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s
*s
, struct i2s_codec_s
*slave
)
4298 slave
->rx_swallow
= qemu_allocate_irqs(omap_mcbsp_i2s_swallow
, s
, 1)[0];
4299 slave
->tx_start
= qemu_allocate_irqs(omap_mcbsp_i2s_start
, s
, 1)[0];
4302 /* LED Pulse Generators */
4314 static void omap_lpg_tick(void *opaque
)
4316 struct omap_lpg_s
*s
= opaque
;
4319 qemu_mod_timer(s
->tm
, qemu_get_clock(rt_clock
) + s
->period
- s
->on
);
4321 qemu_mod_timer(s
->tm
, qemu_get_clock(rt_clock
) + s
->on
);
4323 s
->cycle
= !s
->cycle
;
4324 printf("%s: LED is %s\n", __FUNCTION__
, s
->cycle
? "on" : "off");
4327 static void omap_lpg_update(struct omap_lpg_s
*s
)
4329 int64_t on
, period
= 1, ticks
= 1000;
4330 static const int per
[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
4332 if (~s
->control
& (1 << 6)) /* LPGRES */
4334 else if (s
->control
& (1 << 7)) /* PERM_ON */
4337 period
= muldiv64(ticks
, per
[s
->control
& 7], /* PERCTRL */
4339 on
= (s
->clk
&& s
->power
) ? muldiv64(ticks
,
4340 per
[(s
->control
>> 3) & 7], 256) : 0; /* ONCTRL */
4343 qemu_del_timer(s
->tm
);
4344 if (on
== period
&& s
->on
< s
->period
)
4345 printf("%s: LED is on\n", __FUNCTION__
);
4346 else if (on
== 0 && s
->on
)
4347 printf("%s: LED is off\n", __FUNCTION__
);
4348 else if (on
&& (on
!= s
->on
|| period
!= s
->period
)) {
4360 static void omap_lpg_reset(struct omap_lpg_s
*s
)
4368 static uint32_t omap_lpg_read(void *opaque
, target_phys_addr_t addr
)
4370 struct omap_lpg_s
*s
= (struct omap_lpg_s
*) opaque
;
4371 int offset
= addr
& OMAP_MPUI_REG_MASK
;
4374 case 0x00: /* LCR */
4377 case 0x04: /* PMR */
4385 static void omap_lpg_write(void *opaque
, target_phys_addr_t addr
,
4388 struct omap_lpg_s
*s
= (struct omap_lpg_s
*) opaque
;
4389 int offset
= addr
& OMAP_MPUI_REG_MASK
;
4392 case 0x00: /* LCR */
4393 if (~value
& (1 << 6)) /* LPGRES */
4395 s
->control
= value
& 0xff;
4399 case 0x04: /* PMR */
4400 s
->power
= value
& 0x01;
4410 static CPUReadMemoryFunc
*omap_lpg_readfn
[] = {
4412 omap_badwidth_read8
,
4413 omap_badwidth_read8
,
4416 static CPUWriteMemoryFunc
*omap_lpg_writefn
[] = {
4418 omap_badwidth_write8
,
4419 omap_badwidth_write8
,
4422 static void omap_lpg_clk_update(void *opaque
, int line
, int on
)
4424 struct omap_lpg_s
*s
= (struct omap_lpg_s
*) opaque
;
4430 struct omap_lpg_s
*omap_lpg_init(target_phys_addr_t base
, omap_clk clk
)
4433 struct omap_lpg_s
*s
= (struct omap_lpg_s
*)
4434 qemu_mallocz(sizeof(struct omap_lpg_s
));
4436 s
->tm
= qemu_new_timer(rt_clock
, omap_lpg_tick
, s
);
4440 iomemtype
= cpu_register_io_memory(0, omap_lpg_readfn
,
4441 omap_lpg_writefn
, s
);
4442 cpu_register_physical_memory(base
, 0x800, iomemtype
);
4444 omap_clk_adduser(clk
, qemu_allocate_irqs(omap_lpg_clk_update
, s
, 1)[0]);
4449 /* MPUI Peripheral Bridge configuration */
4450 static uint32_t omap_mpui_io_read(void *opaque
, target_phys_addr_t addr
)
4452 if (addr
== OMAP_MPUI_BASE
) /* CMR */
4459 static CPUReadMemoryFunc
*omap_mpui_io_readfn
[] = {
4460 omap_badwidth_read16
,
4462 omap_badwidth_read16
,
4465 static CPUWriteMemoryFunc
*omap_mpui_io_writefn
[] = {
4466 omap_badwidth_write16
,
4467 omap_badwidth_write16
,
4468 omap_badwidth_write16
,
4471 static void omap_setup_mpui_io(struct omap_mpu_state_s
*mpu
)
4473 int iomemtype
= cpu_register_io_memory(0, omap_mpui_io_readfn
,
4474 omap_mpui_io_writefn
, mpu
);
4475 cpu_register_physical_memory(OMAP_MPUI_BASE
, 0x7fff, iomemtype
);
4478 /* General chip reset */
4479 static void omap1_mpu_reset(void *opaque
)
4481 struct omap_mpu_state_s
*mpu
= (struct omap_mpu_state_s
*) opaque
;
4483 omap_inth_reset(mpu
->ih
[0]);
4484 omap_inth_reset(mpu
->ih
[1]);
4485 omap_dma_reset(mpu
->dma
);
4486 omap_mpu_timer_reset(mpu
->timer
[0]);
4487 omap_mpu_timer_reset(mpu
->timer
[1]);
4488 omap_mpu_timer_reset(mpu
->timer
[2]);
4489 omap_wd_timer_reset(mpu
->wdt
);
4490 omap_os_timer_reset(mpu
->os_timer
);
4491 omap_lcdc_reset(mpu
->lcd
);
4492 omap_ulpd_pm_reset(mpu
);
4493 omap_pin_cfg_reset(mpu
);
4494 omap_mpui_reset(mpu
);
4495 omap_tipb_bridge_reset(mpu
->private_tipb
);
4496 omap_tipb_bridge_reset(mpu
->public_tipb
);
4497 omap_dpll_reset(&mpu
->dpll
[0]);
4498 omap_dpll_reset(&mpu
->dpll
[1]);
4499 omap_dpll_reset(&mpu
->dpll
[2]);
4500 omap_uart_reset(mpu
->uart
[0]);
4501 omap_uart_reset(mpu
->uart
[1]);
4502 omap_uart_reset(mpu
->uart
[2]);
4503 omap_mmc_reset(mpu
->mmc
);
4504 omap_mpuio_reset(mpu
->mpuio
);
4505 omap_gpio_reset(mpu
->gpio
);
4506 omap_uwire_reset(mpu
->microwire
);
4507 omap_pwl_reset(mpu
);
4508 omap_pwt_reset(mpu
);
4509 omap_i2c_reset(mpu
->i2c
[0]);
4510 omap_rtc_reset(mpu
->rtc
);
4511 omap_mcbsp_reset(mpu
->mcbsp1
);
4512 omap_mcbsp_reset(mpu
->mcbsp2
);
4513 omap_mcbsp_reset(mpu
->mcbsp3
);
4514 omap_lpg_reset(mpu
->led
[0]);
4515 omap_lpg_reset(mpu
->led
[1]);
4516 omap_clkm_reset(mpu
);
4517 cpu_reset(mpu
->env
);
4520 static const struct omap_map_s
{
4521 target_phys_addr_t phys_dsp
;
4522 target_phys_addr_t phys_mpu
;
4525 } omap15xx_dsp_mm
[] = {
4527 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
4528 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
4529 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
4530 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
4531 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
4532 { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
4533 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
4534 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
4535 { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
4536 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
4537 { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
4538 { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
4539 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
4540 { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
4541 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
4542 { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
4543 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
4545 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
4550 static void omap_setup_dsp_mapping(const struct omap_map_s
*map
)
4554 for (; map
->phys_dsp
; map
++) {
4555 io
= cpu_get_physical_page_desc(map
->phys_mpu
);
4557 cpu_register_physical_memory(map
->phys_dsp
, map
->size
, io
);
4561 void omap_mpu_wakeup(void *opaque
, int irq
, int req
)
4563 struct omap_mpu_state_s
*mpu
= (struct omap_mpu_state_s
*) opaque
;
4565 if (mpu
->env
->halted
)
4566 cpu_interrupt(mpu
->env
, CPU_INTERRUPT_EXITTB
);
4569 static const struct dma_irq_map omap1_dma_irq_map
[] = {
4570 { 0, OMAP_INT_DMA_CH0_6
},
4571 { 0, OMAP_INT_DMA_CH1_7
},
4572 { 0, OMAP_INT_DMA_CH2_8
},
4573 { 0, OMAP_INT_DMA_CH3
},
4574 { 0, OMAP_INT_DMA_CH4
},
4575 { 0, OMAP_INT_DMA_CH5
},
4576 { 1, OMAP_INT_1610_DMA_CH6
},
4577 { 1, OMAP_INT_1610_DMA_CH7
},
4578 { 1, OMAP_INT_1610_DMA_CH8
},
4579 { 1, OMAP_INT_1610_DMA_CH9
},
4580 { 1, OMAP_INT_1610_DMA_CH10
},
4581 { 1, OMAP_INT_1610_DMA_CH11
},
4582 { 1, OMAP_INT_1610_DMA_CH12
},
4583 { 1, OMAP_INT_1610_DMA_CH13
},
4584 { 1, OMAP_INT_1610_DMA_CH14
},
4585 { 1, OMAP_INT_1610_DMA_CH15
}
4588 /* DMA ports for OMAP1 */
4589 static int omap_validate_emiff_addr(struct omap_mpu_state_s
*s
,
4590 target_phys_addr_t addr
)
4592 return addr
>= OMAP_EMIFF_BASE
&& addr
< OMAP_EMIFF_BASE
+ s
->sdram_size
;
4595 static int omap_validate_emifs_addr(struct omap_mpu_state_s
*s
,
4596 target_phys_addr_t addr
)
4598 return addr
>= OMAP_EMIFS_BASE
&& addr
< OMAP_EMIFF_BASE
;
4601 static int omap_validate_imif_addr(struct omap_mpu_state_s
*s
,
4602 target_phys_addr_t addr
)
4604 return addr
>= OMAP_IMIF_BASE
&& addr
< OMAP_IMIF_BASE
+ s
->sram_size
;
4607 static int omap_validate_tipb_addr(struct omap_mpu_state_s
*s
,
4608 target_phys_addr_t addr
)
4610 return addr
>= 0xfffb0000 && addr
< 0xffff0000;
4613 static int omap_validate_local_addr(struct omap_mpu_state_s
*s
,
4614 target_phys_addr_t addr
)
4616 return addr
>= OMAP_LOCALBUS_BASE
&& addr
< OMAP_LOCALBUS_BASE
+ 0x1000000;
4619 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s
*s
,
4620 target_phys_addr_t addr
)
4622 return addr
>= 0xe1010000 && addr
< 0xe1020004;
4625 struct omap_mpu_state_s
*omap310_mpu_init(unsigned long sdram_size
,
4626 DisplayState
*ds
, const char *core
)
4629 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*)
4630 qemu_mallocz(sizeof(struct omap_mpu_state_s
));
4631 ram_addr_t imif_base
, emiff_base
;
4633 qemu_irq dma_irqs
[6];
4640 s
->mpu_model
= omap310
;
4641 s
->env
= cpu_init(core
);
4643 fprintf(stderr
, "Unable to find CPU definition\n");
4646 s
->sdram_size
= sdram_size
;
4647 s
->sram_size
= OMAP15XX_SRAM_SIZE
;
4649 s
->wakeup
= qemu_allocate_irqs(omap_mpu_wakeup
, s
, 1)[0];
4654 /* Memory-mapped stuff */
4655 cpu_register_physical_memory(OMAP_EMIFF_BASE
, s
->sdram_size
,
4656 (emiff_base
= qemu_ram_alloc(s
->sdram_size
)) | IO_MEM_RAM
);
4657 cpu_register_physical_memory(OMAP_IMIF_BASE
, s
->sram_size
,
4658 (imif_base
= qemu_ram_alloc(s
->sram_size
)) | IO_MEM_RAM
);
4660 omap_clkm_init(0xfffece00, 0xe1008000, s
);
4662 cpu_irq
= arm_pic_init_cpu(s
->env
);
4663 s
->ih
[0] = omap_inth_init(0xfffecb00, 0x100, 1, &s
->irq
[0],
4664 cpu_irq
[ARM_PIC_CPU_IRQ
], cpu_irq
[ARM_PIC_CPU_FIQ
],
4665 omap_findclk(s
, "arminth_ck"));
4666 s
->ih
[1] = omap_inth_init(0xfffe0000, 0x800, 1, &s
->irq
[1],
4667 s
->ih
[0]->pins
[OMAP_INT_15XX_IH2_IRQ
], NULL
,
4668 omap_findclk(s
, "arminth_ck"));
4670 for (i
= 0; i
< 6; i
++)
4672 s
->irq
[omap1_dma_irq_map
[i
].ih
][omap1_dma_irq_map
[i
].intr
];
4673 s
->dma
= omap_dma_init(0xfffed800, dma_irqs
, s
->irq
[0][OMAP_INT_DMA_LCD
],
4674 s
, omap_findclk(s
, "dma_ck"), omap_dma_3_1
);
4676 s
->port
[emiff
].addr_valid
= omap_validate_emiff_addr
;
4677 s
->port
[emifs
].addr_valid
= omap_validate_emifs_addr
;
4678 s
->port
[imif
].addr_valid
= omap_validate_imif_addr
;
4679 s
->port
[tipb
].addr_valid
= omap_validate_tipb_addr
;
4680 s
->port
[local
].addr_valid
= omap_validate_local_addr
;
4681 s
->port
[tipb_mpui
].addr_valid
= omap_validate_tipb_mpui_addr
;
4683 /* Register SDRAM and SRAM DMA ports for fast transfers. */
4684 soc_dma_port_add_mem_ram(s
->dma
,
4685 emiff_base
, OMAP_EMIFF_BASE
, s
->sdram_size
);
4686 soc_dma_port_add_mem_ram(s
->dma
,
4687 imif_base
, OMAP_IMIF_BASE
, s
->sram_size
);
4689 s
->timer
[0] = omap_mpu_timer_init(0xfffec500,
4690 s
->irq
[0][OMAP_INT_TIMER1
],
4691 omap_findclk(s
, "mputim_ck"));
4692 s
->timer
[1] = omap_mpu_timer_init(0xfffec600,
4693 s
->irq
[0][OMAP_INT_TIMER2
],
4694 omap_findclk(s
, "mputim_ck"));
4695 s
->timer
[2] = omap_mpu_timer_init(0xfffec700,
4696 s
->irq
[0][OMAP_INT_TIMER3
],
4697 omap_findclk(s
, "mputim_ck"));
4699 s
->wdt
= omap_wd_timer_init(0xfffec800,
4700 s
->irq
[0][OMAP_INT_WD_TIMER
],
4701 omap_findclk(s
, "armwdt_ck"));
4703 s
->os_timer
= omap_os_timer_init(0xfffb9000,
4704 s
->irq
[1][OMAP_INT_OS_TIMER
],
4705 omap_findclk(s
, "clk32-kHz"));
4707 s
->lcd
= omap_lcdc_init(0xfffec000, s
->irq
[0][OMAP_INT_LCD_CTRL
],
4708 omap_dma_get_lcdch(s
->dma
), ds
, imif_base
, emiff_base
,
4709 omap_findclk(s
, "lcd_ck"));
4711 omap_ulpd_pm_init(0xfffe0800, s
);
4712 omap_pin_cfg_init(0xfffe1000, s
);
4715 omap_mpui_init(0xfffec900, s
);
4717 s
->private_tipb
= omap_tipb_bridge_init(0xfffeca00,
4718 s
->irq
[0][OMAP_INT_BRIDGE_PRIV
],
4719 omap_findclk(s
, "tipb_ck"));
4720 s
->public_tipb
= omap_tipb_bridge_init(0xfffed300,
4721 s
->irq
[0][OMAP_INT_BRIDGE_PUB
],
4722 omap_findclk(s
, "tipb_ck"));
4724 omap_tcmi_init(0xfffecc00, s
);
4726 s
->uart
[0] = omap_uart_init(0xfffb0000, s
->irq
[1][OMAP_INT_UART1
],
4727 omap_findclk(s
, "uart1_ck"),
4728 omap_findclk(s
, "uart1_ck"),
4729 s
->drq
[OMAP_DMA_UART1_TX
], s
->drq
[OMAP_DMA_UART1_RX
],
4731 s
->uart
[1] = omap_uart_init(0xfffb0800, s
->irq
[1][OMAP_INT_UART2
],
4732 omap_findclk(s
, "uart2_ck"),
4733 omap_findclk(s
, "uart2_ck"),
4734 s
->drq
[OMAP_DMA_UART2_TX
], s
->drq
[OMAP_DMA_UART2_RX
],
4735 serial_hds
[0] ? serial_hds
[1] : 0);
4736 s
->uart
[2] = omap_uart_init(0xfffb9800, s
->irq
[0][OMAP_INT_UART3
],
4737 omap_findclk(s
, "uart3_ck"),
4738 omap_findclk(s
, "uart3_ck"),
4739 s
->drq
[OMAP_DMA_UART3_TX
], s
->drq
[OMAP_DMA_UART3_RX
],
4740 serial_hds
[0] && serial_hds
[1] ? serial_hds
[2] : 0);
4742 omap_dpll_init(&s
->dpll
[0], 0xfffecf00, omap_findclk(s
, "dpll1"));
4743 omap_dpll_init(&s
->dpll
[1], 0xfffed000, omap_findclk(s
, "dpll2"));
4744 omap_dpll_init(&s
->dpll
[2], 0xfffed100, omap_findclk(s
, "dpll3"));
4746 sdindex
= drive_get_index(IF_SD
, 0, 0);
4747 if (sdindex
== -1) {
4748 fprintf(stderr
, "qemu: missing SecureDigital device\n");
4751 s
->mmc
= omap_mmc_init(0xfffb7800, drives_table
[sdindex
].bdrv
,
4752 s
->irq
[1][OMAP_INT_OQN
], &s
->drq
[OMAP_DMA_MMC_TX
],
4753 omap_findclk(s
, "mmc_ck"));
4755 s
->mpuio
= omap_mpuio_init(0xfffb5000,
4756 s
->irq
[1][OMAP_INT_KEYBOARD
], s
->irq
[1][OMAP_INT_MPUIO
],
4757 s
->wakeup
, omap_findclk(s
, "clk32-kHz"));
4759 s
->gpio
= omap_gpio_init(0xfffce000, s
->irq
[0][OMAP_INT_GPIO_BANK1
],
4760 omap_findclk(s
, "arm_gpio_ck"));
4762 s
->microwire
= omap_uwire_init(0xfffb3000, &s
->irq
[1][OMAP_INT_uWireTX
],
4763 s
->drq
[OMAP_DMA_UWIRE_TX
], omap_findclk(s
, "mpuper_ck"));
4765 omap_pwl_init(0xfffb5800, s
, omap_findclk(s
, "armxor_ck"));
4766 omap_pwt_init(0xfffb6000, s
, omap_findclk(s
, "armxor_ck"));
4768 s
->i2c
[0] = omap_i2c_init(0xfffb3800, s
->irq
[1][OMAP_INT_I2C
],
4769 &s
->drq
[OMAP_DMA_I2C_RX
], omap_findclk(s
, "mpuper_ck"));
4771 s
->rtc
= omap_rtc_init(0xfffb4800, &s
->irq
[1][OMAP_INT_RTC_TIMER
],
4772 omap_findclk(s
, "clk32-kHz"));
4774 s
->mcbsp1
= omap_mcbsp_init(0xfffb1800, &s
->irq
[1][OMAP_INT_McBSP1TX
],
4775 &s
->drq
[OMAP_DMA_MCBSP1_TX
], omap_findclk(s
, "dspxor_ck"));
4776 s
->mcbsp2
= omap_mcbsp_init(0xfffb1000, &s
->irq
[0][OMAP_INT_310_McBSP2_TX
],
4777 &s
->drq
[OMAP_DMA_MCBSP2_TX
], omap_findclk(s
, "mpuper_ck"));
4778 s
->mcbsp3
= omap_mcbsp_init(0xfffb7000, &s
->irq
[1][OMAP_INT_McBSP3TX
],
4779 &s
->drq
[OMAP_DMA_MCBSP3_TX
], omap_findclk(s
, "dspxor_ck"));
4781 s
->led
[0] = omap_lpg_init(0xfffbd000, omap_findclk(s
, "clk32-kHz"));
4782 s
->led
[1] = omap_lpg_init(0xfffbd800, omap_findclk(s
, "clk32-kHz"));
4784 /* Register mappings not currenlty implemented:
4785 * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
4786 * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
4787 * USB W2FC fffb4000 - fffb47ff
4788 * Camera Interface fffb6800 - fffb6fff
4789 * USB Host fffba000 - fffba7ff
4790 * FAC fffba800 - fffbafff
4791 * HDQ/1-Wire fffbc000 - fffbc7ff
4792 * TIPB switches fffbc800 - fffbcfff
4793 * Mailbox fffcf000 - fffcf7ff
4794 * Local bus IF fffec100 - fffec1ff
4795 * Local bus MMU fffec200 - fffec2ff
4796 * DSP MMU fffed200 - fffed2ff
4799 omap_setup_dsp_mapping(omap15xx_dsp_mm
);
4800 omap_setup_mpui_io(s
);
4802 qemu_register_reset(omap1_mpu_reset
, s
);