Fixed unintentional reversion of floating point support configuration
[qemu/openrisc.git] / cpu-exec.c
blob7c047c7c84dab08b7791f0d4d5a7f5ba6205325e
1 /*
2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #include "exec.h"
21 #include "disas.h"
22 #include "tcg.h"
23 #include "kvm.h"
24 #include "qemu-barrier.h"
26 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
27 // Work around ugly bugs in glibc that mangle global register contents
28 #undef env
29 #define env cpu_single_env
30 #endif
32 int tb_invalidated_flag;
34 #define CONFIG_DEBUG_EXEC
36 int qemu_cpu_has_work(CPUState *env)
38 return cpu_has_work(env);
41 void cpu_loop_exit(void)
43 env->current_tb = NULL;
44 longjmp(env->jmp_env, 1);
47 /* exit the current TB from a signal handler. The host registers are
48 restored in a state compatible with the CPU emulator
50 #if defined(CONFIG_SOFTMMU)
51 void cpu_resume_from_signal(CPUState *env1, void *puc)
53 env = env1;
55 /* XXX: restore cpu registers saved in host registers */
57 env->exception_index = -1;
58 longjmp(env->jmp_env, 1);
60 #endif
62 /* Execute the code without caching the generated code. An interpreter
63 could be used if available. */
64 static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb)
66 unsigned long next_tb;
67 TranslationBlock *tb;
69 /* Should never happen.
70 We only end up here when an existing TB is too long. */
71 if (max_cycles > CF_COUNT_MASK)
72 max_cycles = CF_COUNT_MASK;
74 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
75 max_cycles);
76 env->current_tb = tb;
77 /* execute the generated code */
78 next_tb = tcg_qemu_tb_exec(tb->tc_ptr);
79 env->current_tb = NULL;
81 if ((next_tb & 3) == 2) {
82 /* Restore PC. This may happen if async event occurs before
83 the TB starts executing. */
84 cpu_pc_from_tb(env, tb);
86 tb_phys_invalidate(tb, -1);
87 tb_free(tb);
90 static TranslationBlock *tb_find_slow(target_ulong pc,
91 target_ulong cs_base,
92 uint64_t flags)
94 TranslationBlock *tb, **ptb1;
95 unsigned int h;
96 tb_page_addr_t phys_pc, phys_page1, phys_page2;
97 target_ulong virt_page2;
99 tb_invalidated_flag = 0;
101 /* find translated block using physical mappings */
102 phys_pc = get_page_addr_code(env, pc);
103 phys_page1 = phys_pc & TARGET_PAGE_MASK;
104 phys_page2 = -1;
105 h = tb_phys_hash_func(phys_pc);
106 ptb1 = &tb_phys_hash[h];
107 for(;;) {
108 tb = *ptb1;
109 if (!tb)
110 goto not_found;
111 if (tb->pc == pc &&
112 tb->page_addr[0] == phys_page1 &&
113 tb->cs_base == cs_base &&
114 tb->flags == flags) {
115 /* check next page if needed */
116 if (tb->page_addr[1] != -1) {
117 virt_page2 = (pc & TARGET_PAGE_MASK) +
118 TARGET_PAGE_SIZE;
119 phys_page2 = get_page_addr_code(env, virt_page2);
120 if (tb->page_addr[1] == phys_page2)
121 goto found;
122 } else {
123 goto found;
126 ptb1 = &tb->phys_hash_next;
128 not_found:
129 /* if no translated code available, then translate it now */
130 tb = tb_gen_code(env, pc, cs_base, flags, 0);
132 found:
133 /* Move the last found TB to the head of the list */
134 if (likely(*ptb1)) {
135 *ptb1 = tb->phys_hash_next;
136 tb->phys_hash_next = tb_phys_hash[h];
137 tb_phys_hash[h] = tb;
139 /* we add the TB in the virtual pc hash table */
140 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
141 return tb;
144 static inline TranslationBlock *tb_find_fast(void)
146 TranslationBlock *tb;
147 target_ulong cs_base, pc;
148 int flags;
150 /* we record a subset of the CPU state. It will
151 always be the same before a given translated block
152 is executed. */
153 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
154 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
155 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
156 tb->flags != flags)) {
157 tb = tb_find_slow(pc, cs_base, flags);
159 return tb;
162 static CPUDebugExcpHandler *debug_excp_handler;
164 CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
166 CPUDebugExcpHandler *old_handler = debug_excp_handler;
168 debug_excp_handler = handler;
169 return old_handler;
172 static void cpu_handle_debug_exception(CPUState *env)
174 CPUWatchpoint *wp;
176 if (!env->watchpoint_hit) {
177 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
178 wp->flags &= ~BP_WATCHPOINT_HIT;
181 if (debug_excp_handler) {
182 debug_excp_handler(env);
186 /* main execution loop */
188 volatile sig_atomic_t exit_request;
190 int cpu_exec(CPUState *env1)
192 volatile host_reg_t saved_env_reg;
193 int ret, interrupt_request;
194 TranslationBlock *tb;
195 uint8_t *tc_ptr;
196 unsigned long next_tb;
198 if (env1->halted) {
199 if (!cpu_has_work(env1)) {
200 return EXCP_HALTED;
203 env1->halted = 0;
206 cpu_single_env = env1;
208 /* the access to env below is actually saving the global register's
209 value, so that files not including target-xyz/exec.h are free to
210 use it. */
211 QEMU_BUILD_BUG_ON (sizeof (saved_env_reg) != sizeof (env));
212 saved_env_reg = (host_reg_t) env;
213 barrier();
214 env = env1;
216 if (unlikely(exit_request)) {
217 env->exit_request = 1;
220 #if defined(TARGET_I386)
221 /* put eflags in CPU temporary format */
222 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
223 DF = 1 - (2 * ((env->eflags >> 10) & 1));
224 CC_OP = CC_OP_EFLAGS;
225 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
226 #elif defined(TARGET_SPARC)
227 #elif defined(TARGET_M68K)
228 env->cc_op = CC_OP_FLAGS;
229 env->cc_dest = env->sr & 0xf;
230 env->cc_x = (env->sr >> 4) & 1;
231 #elif defined(TARGET_ALPHA)
232 #elif defined(TARGET_ARM)
233 #elif defined(TARGET_UNICORE32)
234 #elif defined(TARGET_PPC)
235 #elif defined(TARGET_LM32)
236 #elif defined(TARGET_MICROBLAZE)
237 #elif defined(TARGET_MIPS)
238 #elif defined(TARGET_SH4)
239 #elif defined(TARGET_CRIS)
240 #elif defined(TARGET_OPENRISC)
241 #elif defined(TARGET_S390X)
242 /* XXXXX */
243 #else
244 #error unsupported target CPU
245 #endif
246 env->exception_index = -1;
248 /* prepare setjmp context for exception handling */
249 for(;;) {
250 if (setjmp(env->jmp_env) == 0) {
251 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
252 #undef env
253 env = cpu_single_env;
254 #define env cpu_single_env
255 #endif
256 /* if an exception is pending, we execute it here */
257 if (env->exception_index >= 0) {
258 if (env->exception_index >= EXCP_INTERRUPT) {
259 /* exit request from the cpu execution loop */
260 ret = env->exception_index;
261 if (ret == EXCP_DEBUG) {
262 cpu_handle_debug_exception(env);
264 break;
265 } else {
266 #if defined(CONFIG_USER_ONLY)
267 /* if user mode only, we simulate a fake exception
268 which will be handled outside the cpu execution
269 loop */
270 #if defined(TARGET_I386)
271 do_interrupt_user(env->exception_index,
272 env->exception_is_int,
273 env->error_code,
274 env->exception_next_eip);
275 /* successfully delivered */
276 env->old_exception = -1;
277 #endif
278 ret = env->exception_index;
279 break;
280 #else
281 #if defined(TARGET_I386)
282 /* simulate a real cpu exception. On i386, it can
283 trigger new exceptions, but we do not handle
284 double or triple faults yet. */
285 do_interrupt(env->exception_index,
286 env->exception_is_int,
287 env->error_code,
288 env->exception_next_eip, 0);
289 /* successfully delivered */
290 env->old_exception = -1;
291 #elif defined(TARGET_PPC)
292 do_interrupt(env);
293 #elif defined(TARGET_LM32)
294 do_interrupt(env);
295 #elif defined(TARGET_MICROBLAZE)
296 do_interrupt(env);
297 #elif defined(TARGET_MIPS)
298 do_interrupt(env);
299 #elif defined(TARGET_SPARC)
300 do_interrupt(env);
301 #elif defined(TARGET_ARM)
302 do_interrupt(env);
303 #elif defined(TARGET_UNICORE32)
304 do_interrupt(env);
305 #elif defined(TARGET_SH4)
306 do_interrupt(env);
307 #elif defined(TARGET_ALPHA)
308 do_interrupt(env);
309 #elif defined(TARGET_CRIS)
310 do_interrupt(env);
311 #elif defined(TARGET_M68K)
312 do_interrupt(0);
313 #elif defined(TARGET_OPENRISC)
314 /* XXX: tempo */
315 do_interrupt(0);
316 #elif defined(TARGET_S390X)
317 do_interrupt(env);
318 #endif
319 env->exception_index = -1;
320 #endif
324 next_tb = 0; /* force lookup of first TB */
325 for(;;) {
326 interrupt_request = env->interrupt_request;
327 if (unlikely(interrupt_request)) {
328 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
329 /* Mask out external interrupts for this step. */
330 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
332 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
333 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
334 env->exception_index = EXCP_DEBUG;
335 cpu_loop_exit();
337 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
338 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
339 defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || defined(TARGET_UNICORE32)
340 if (interrupt_request & CPU_INTERRUPT_HALT) {
341 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
342 env->halted = 1;
343 env->exception_index = EXCP_HLT;
344 cpu_loop_exit();
346 #endif
347 #if defined(TARGET_I386)
348 if (interrupt_request & CPU_INTERRUPT_INIT) {
349 svm_check_intercept(SVM_EXIT_INIT);
350 do_cpu_init(env);
351 env->exception_index = EXCP_HALTED;
352 cpu_loop_exit();
353 } else if (interrupt_request & CPU_INTERRUPT_SIPI) {
354 do_cpu_sipi(env);
355 } else if (env->hflags2 & HF2_GIF_MASK) {
356 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
357 !(env->hflags & HF_SMM_MASK)) {
358 svm_check_intercept(SVM_EXIT_SMI);
359 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
360 do_smm_enter();
361 next_tb = 0;
362 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
363 !(env->hflags2 & HF2_NMI_MASK)) {
364 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
365 env->hflags2 |= HF2_NMI_MASK;
366 do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
367 next_tb = 0;
368 } else if (interrupt_request & CPU_INTERRUPT_MCE) {
369 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
370 do_interrupt(EXCP12_MCHK, 0, 0, 0, 0);
371 next_tb = 0;
372 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
373 (((env->hflags2 & HF2_VINTR_MASK) &&
374 (env->hflags2 & HF2_HIF_MASK)) ||
375 (!(env->hflags2 & HF2_VINTR_MASK) &&
376 (env->eflags & IF_MASK &&
377 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
378 int intno;
379 svm_check_intercept(SVM_EXIT_INTR);
380 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
381 intno = cpu_get_pic_interrupt(env);
382 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
383 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
384 #undef env
385 env = cpu_single_env;
386 #define env cpu_single_env
387 #endif
388 do_interrupt(intno, 0, 0, 0, 1);
389 /* ensure that no TB jump will be modified as
390 the program flow was changed */
391 next_tb = 0;
392 #if !defined(CONFIG_USER_ONLY)
393 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
394 (env->eflags & IF_MASK) &&
395 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
396 int intno;
397 /* FIXME: this should respect TPR */
398 svm_check_intercept(SVM_EXIT_VINTR);
399 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
400 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
401 do_interrupt(intno, 0, 0, 0, 1);
402 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
403 next_tb = 0;
404 #endif
407 #elif defined(TARGET_PPC)
408 #if 0
409 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
410 cpu_reset(env);
412 #endif
413 if (interrupt_request & CPU_INTERRUPT_HARD) {
414 ppc_hw_interrupt(env);
415 if (env->pending_interrupts == 0)
416 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
417 next_tb = 0;
419 #elif defined(TARGET_LM32)
420 if ((interrupt_request & CPU_INTERRUPT_HARD)
421 && (env->ie & IE_IE)) {
422 env->exception_index = EXCP_IRQ;
423 do_interrupt(env);
424 next_tb = 0;
426 #elif defined(TARGET_MICROBLAZE)
427 if ((interrupt_request & CPU_INTERRUPT_HARD)
428 && (env->sregs[SR_MSR] & MSR_IE)
429 && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
430 && !(env->iflags & (D_FLAG | IMM_FLAG))) {
431 env->exception_index = EXCP_IRQ;
432 do_interrupt(env);
433 next_tb = 0;
435 #elif defined(TARGET_MIPS)
436 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
437 cpu_mips_hw_interrupts_pending(env)) {
438 /* Raise it */
439 env->exception_index = EXCP_EXT_INTERRUPT;
440 env->error_code = 0;
441 do_interrupt(env);
442 next_tb = 0;
444 #elif defined(TARGET_SPARC)
445 if (interrupt_request & CPU_INTERRUPT_HARD) {
446 if (cpu_interrupts_enabled(env) &&
447 env->interrupt_index > 0) {
448 int pil = env->interrupt_index & 0xf;
449 int type = env->interrupt_index & 0xf0;
451 if (((type == TT_EXTINT) &&
452 cpu_pil_allowed(env, pil)) ||
453 type != TT_EXTINT) {
454 env->exception_index = env->interrupt_index;
455 do_interrupt(env);
456 next_tb = 0;
460 #elif defined(TARGET_ARM)
461 if (interrupt_request & CPU_INTERRUPT_FIQ
462 && !(env->uncached_cpsr & CPSR_F)) {
463 env->exception_index = EXCP_FIQ;
464 do_interrupt(env);
465 next_tb = 0;
467 /* ARMv7-M interrupt return works by loading a magic value
468 into the PC. On real hardware the load causes the
469 return to occur. The qemu implementation performs the
470 jump normally, then does the exception return when the
471 CPU tries to execute code at the magic address.
472 This will cause the magic PC value to be pushed to
473 the stack if an interrupt occurred at the wrong time.
474 We avoid this by disabling interrupts when
475 pc contains a magic address. */
476 if (interrupt_request & CPU_INTERRUPT_HARD
477 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
478 || !(env->uncached_cpsr & CPSR_I))) {
479 env->exception_index = EXCP_IRQ;
480 do_interrupt(env);
481 next_tb = 0;
483 #elif defined(TARGET_UNICORE32)
484 if (interrupt_request & CPU_INTERRUPT_HARD
485 && !(env->uncached_asr & ASR_I)) {
486 do_interrupt(env);
487 next_tb = 0;
489 #elif defined(TARGET_SH4)
490 if (interrupt_request & CPU_INTERRUPT_HARD) {
491 do_interrupt(env);
492 next_tb = 0;
494 #elif defined(TARGET_ALPHA)
495 if (interrupt_request & CPU_INTERRUPT_HARD) {
496 do_interrupt(env);
497 next_tb = 0;
499 #elif defined(TARGET_CRIS)
500 if (interrupt_request & CPU_INTERRUPT_HARD
501 && (env->pregs[PR_CCS] & I_FLAG)
502 && !env->locked_irq) {
503 env->exception_index = EXCP_IRQ;
504 do_interrupt(env);
505 next_tb = 0;
507 if (interrupt_request & CPU_INTERRUPT_NMI
508 && (env->pregs[PR_CCS] & M_FLAG)) {
509 env->exception_index = EXCP_NMI;
510 do_interrupt(env);
511 next_tb = 0;
513 #elif defined(TARGET_M68K)
514 if (interrupt_request & CPU_INTERRUPT_HARD
515 && ((env->sr & SR_I) >> SR_I_SHIFT)
516 < env->pending_level) {
517 /* Real hardware gets the interrupt vector via an
518 IACK cycle at this point. Current emulated
519 hardware doesn't rely on this, so we
520 provide/save the vector when the interrupt is
521 first signalled. */
522 env->exception_index = env->pending_vector;
523 do_interrupt(1);
524 next_tb = 0;
526 #elif defined(TARGET_OPENRISC)
527 if (interrupt_request & CPU_INTERRUPT_HARD) {
528 do_interrupt(env);
529 next_tb = 0;
531 #elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY)
532 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
533 (env->psw.mask & PSW_MASK_EXT)) {
534 do_interrupt(env);
535 next_tb = 0;
537 #endif
538 /* Don't use the cached interrupt_request value,
539 do_interrupt may have updated the EXITTB flag. */
540 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
541 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
542 /* ensure that no TB jump will be modified as
543 the program flow was changed */
544 next_tb = 0;
547 if (unlikely(env->exit_request)) {
548 env->exit_request = 0;
549 env->exception_index = EXCP_INTERRUPT;
550 cpu_loop_exit();
552 #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
553 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
554 /* restore flags in standard format */
555 #if defined(TARGET_I386)
556 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
557 log_cpu_state(env, X86_DUMP_CCOP);
558 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
559 #elif defined(TARGET_M68K)
560 cpu_m68k_flush_flags(env, env->cc_op);
561 env->cc_op = CC_OP_FLAGS;
562 env->sr = (env->sr & 0xffe0)
563 | env->cc_dest | (env->cc_x << 4);
564 log_cpu_state(env, 0);
565 #elif defined(TARGET_OPENRISC)
566 /* OR1K */
567 log_cpu_state(env, 0);
568 #else
569 log_cpu_state(env, 0);
570 #endif
572 #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
573 spin_lock(&tb_lock);
574 tb = tb_find_fast();
575 /* Note: we do it here to avoid a gcc bug on Mac OS X when
576 doing it in tb_find_slow */
577 if (tb_invalidated_flag) {
578 /* as some TB could have been invalidated because
579 of memory exceptions while generating the code, we
580 must recompute the hash index here */
581 next_tb = 0;
582 tb_invalidated_flag = 0;
584 #ifdef CONFIG_DEBUG_EXEC
585 qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
586 (long)tb->tc_ptr, tb->pc,
587 lookup_symbol(tb->pc));
588 #endif
589 /* see if we can patch the calling TB. When the TB
590 spans two pages, we cannot safely do a direct
591 jump. */
592 if (next_tb != 0 && tb->page_addr[1] == -1) {
593 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
595 spin_unlock(&tb_lock);
597 /* cpu_interrupt might be called while translating the
598 TB, but before it is linked into a potentially
599 infinite loop and becomes env->current_tb. Avoid
600 starting execution if there is a pending interrupt. */
601 env->current_tb = tb;
602 barrier();
603 if (likely(!env->exit_request)) {
604 tc_ptr = tb->tc_ptr;
605 /* execute the generated code */
606 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
607 #undef env
608 env = cpu_single_env;
609 #define env cpu_single_env
610 #endif
611 next_tb = tcg_qemu_tb_exec(tc_ptr);
612 if ((next_tb & 3) == 2) {
613 /* Instruction counter expired. */
614 int insns_left;
615 tb = (TranslationBlock *)(long)(next_tb & ~3);
616 /* Restore PC. */
617 cpu_pc_from_tb(env, tb);
618 insns_left = env->icount_decr.u32;
619 if (env->icount_extra && insns_left >= 0) {
620 /* Refill decrementer and continue execution. */
621 env->icount_extra += insns_left;
622 if (env->icount_extra > 0xffff) {
623 insns_left = 0xffff;
624 } else {
625 insns_left = env->icount_extra;
627 env->icount_extra -= insns_left;
628 env->icount_decr.u16.low = insns_left;
629 } else {
630 if (insns_left > 0) {
631 /* Execute remaining instructions. */
632 cpu_exec_nocache(insns_left, tb);
634 env->exception_index = EXCP_INTERRUPT;
635 next_tb = 0;
636 cpu_loop_exit();
640 env->current_tb = NULL;
641 /* reset soft MMU for next block (it can currently
642 only be set by a memory fault) */
643 } /* for(;;) */
645 } /* for(;;) */
648 #if defined(TARGET_I386)
649 /* restore flags in standard format */
650 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
651 #elif defined(TARGET_ARM)
652 /* XXX: Save/restore host fpu exception state?. */
653 #elif defined(TARGET_UNICORE32)
654 #elif defined(TARGET_SPARC)
655 #elif defined(TARGET_PPC)
656 #elif defined(TARGET_LM32)
657 #elif defined(TARGET_M68K)
658 cpu_m68k_flush_flags(env, env->cc_op);
659 env->cc_op = CC_OP_FLAGS;
660 env->sr = (env->sr & 0xffe0)
661 | env->cc_dest | (env->cc_x << 4);
662 #elif defined(TARGET_MICROBLAZE)
663 #elif defined(TARGET_MIPS)
664 #elif defined(TARGET_SH4)
665 #elif defined(TARGET_ALPHA)
666 #elif defined(TARGET_CRIS)
667 #elif defined(TARGET_OPENRISC)
668 #elif defined(TARGET_S390X)
669 /* XXXXX */
670 #else
671 #error unsupported target CPU
672 #endif
674 /* restore global registers */
675 barrier();
676 env = (void *) saved_env_reg;
678 /* fail safe : never use cpu_single_env outside cpu_exec() */
679 cpu_single_env = NULL;
680 return ret;