2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu-barrier.h"
26 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
27 // Work around ugly bugs in glibc that mangle global register contents
29 #define env cpu_single_env
32 int tb_invalidated_flag
;
34 #define CONFIG_DEBUG_EXEC
36 int qemu_cpu_has_work(CPUState
*env
)
38 return cpu_has_work(env
);
41 void cpu_loop_exit(void)
43 env
->current_tb
= NULL
;
44 longjmp(env
->jmp_env
, 1);
47 /* exit the current TB from a signal handler. The host registers are
48 restored in a state compatible with the CPU emulator
50 #if defined(CONFIG_SOFTMMU)
51 void cpu_resume_from_signal(CPUState
*env1
, void *puc
)
55 /* XXX: restore cpu registers saved in host registers */
57 env
->exception_index
= -1;
58 longjmp(env
->jmp_env
, 1);
62 /* Execute the code without caching the generated code. An interpreter
63 could be used if available. */
64 static void cpu_exec_nocache(int max_cycles
, TranslationBlock
*orig_tb
)
66 unsigned long next_tb
;
69 /* Should never happen.
70 We only end up here when an existing TB is too long. */
71 if (max_cycles
> CF_COUNT_MASK
)
72 max_cycles
= CF_COUNT_MASK
;
74 tb
= tb_gen_code(env
, orig_tb
->pc
, orig_tb
->cs_base
, orig_tb
->flags
,
77 /* execute the generated code */
78 next_tb
= tcg_qemu_tb_exec(tb
->tc_ptr
);
79 env
->current_tb
= NULL
;
81 if ((next_tb
& 3) == 2) {
82 /* Restore PC. This may happen if async event occurs before
83 the TB starts executing. */
84 cpu_pc_from_tb(env
, tb
);
86 tb_phys_invalidate(tb
, -1);
90 static TranslationBlock
*tb_find_slow(target_ulong pc
,
94 TranslationBlock
*tb
, **ptb1
;
96 tb_page_addr_t phys_pc
, phys_page1
, phys_page2
;
97 target_ulong virt_page2
;
99 tb_invalidated_flag
= 0;
101 /* find translated block using physical mappings */
102 phys_pc
= get_page_addr_code(env
, pc
);
103 phys_page1
= phys_pc
& TARGET_PAGE_MASK
;
105 h
= tb_phys_hash_func(phys_pc
);
106 ptb1
= &tb_phys_hash
[h
];
112 tb
->page_addr
[0] == phys_page1
&&
113 tb
->cs_base
== cs_base
&&
114 tb
->flags
== flags
) {
115 /* check next page if needed */
116 if (tb
->page_addr
[1] != -1) {
117 virt_page2
= (pc
& TARGET_PAGE_MASK
) +
119 phys_page2
= get_page_addr_code(env
, virt_page2
);
120 if (tb
->page_addr
[1] == phys_page2
)
126 ptb1
= &tb
->phys_hash_next
;
129 /* if no translated code available, then translate it now */
130 tb
= tb_gen_code(env
, pc
, cs_base
, flags
, 0);
133 /* Move the last found TB to the head of the list */
135 *ptb1
= tb
->phys_hash_next
;
136 tb
->phys_hash_next
= tb_phys_hash
[h
];
137 tb_phys_hash
[h
] = tb
;
139 /* we add the TB in the virtual pc hash table */
140 env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)] = tb
;
144 static inline TranslationBlock
*tb_find_fast(void)
146 TranslationBlock
*tb
;
147 target_ulong cs_base
, pc
;
150 /* we record a subset of the CPU state. It will
151 always be the same before a given translated block
153 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &flags
);
154 tb
= env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)];
155 if (unlikely(!tb
|| tb
->pc
!= pc
|| tb
->cs_base
!= cs_base
||
156 tb
->flags
!= flags
)) {
157 tb
= tb_find_slow(pc
, cs_base
, flags
);
162 static CPUDebugExcpHandler
*debug_excp_handler
;
164 CPUDebugExcpHandler
*cpu_set_debug_excp_handler(CPUDebugExcpHandler
*handler
)
166 CPUDebugExcpHandler
*old_handler
= debug_excp_handler
;
168 debug_excp_handler
= handler
;
172 static void cpu_handle_debug_exception(CPUState
*env
)
176 if (!env
->watchpoint_hit
) {
177 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
178 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
181 if (debug_excp_handler
) {
182 debug_excp_handler(env
);
186 /* main execution loop */
188 volatile sig_atomic_t exit_request
;
190 int cpu_exec(CPUState
*env1
)
192 volatile host_reg_t saved_env_reg
;
193 int ret
, interrupt_request
;
194 TranslationBlock
*tb
;
196 unsigned long next_tb
;
199 if (!cpu_has_work(env1
)) {
206 cpu_single_env
= env1
;
208 /* the access to env below is actually saving the global register's
209 value, so that files not including target-xyz/exec.h are free to
211 QEMU_BUILD_BUG_ON (sizeof (saved_env_reg
) != sizeof (env
));
212 saved_env_reg
= (host_reg_t
) env
;
216 if (unlikely(exit_request
)) {
217 env
->exit_request
= 1;
220 #if defined(TARGET_I386)
221 /* put eflags in CPU temporary format */
222 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
223 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
224 CC_OP
= CC_OP_EFLAGS
;
225 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
226 #elif defined(TARGET_SPARC)
227 #elif defined(TARGET_M68K)
228 env
->cc_op
= CC_OP_FLAGS
;
229 env
->cc_dest
= env
->sr
& 0xf;
230 env
->cc_x
= (env
->sr
>> 4) & 1;
231 #elif defined(TARGET_ALPHA)
232 #elif defined(TARGET_ARM)
233 #elif defined(TARGET_UNICORE32)
234 #elif defined(TARGET_PPC)
235 #elif defined(TARGET_LM32)
236 #elif defined(TARGET_MICROBLAZE)
237 #elif defined(TARGET_MIPS)
238 #elif defined(TARGET_SH4)
239 #elif defined(TARGET_CRIS)
240 #elif defined(TARGET_OPENRISC)
241 #elif defined(TARGET_S390X)
244 #error unsupported target CPU
246 env
->exception_index
= -1;
248 /* prepare setjmp context for exception handling */
250 if (setjmp(env
->jmp_env
) == 0) {
251 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
253 env
= cpu_single_env
;
254 #define env cpu_single_env
256 /* if an exception is pending, we execute it here */
257 if (env
->exception_index
>= 0) {
258 if (env
->exception_index
>= EXCP_INTERRUPT
) {
259 /* exit request from the cpu execution loop */
260 ret
= env
->exception_index
;
261 if (ret
== EXCP_DEBUG
) {
262 cpu_handle_debug_exception(env
);
266 #if defined(CONFIG_USER_ONLY)
267 /* if user mode only, we simulate a fake exception
268 which will be handled outside the cpu execution
270 #if defined(TARGET_I386)
271 do_interrupt_user(env
->exception_index
,
272 env
->exception_is_int
,
274 env
->exception_next_eip
);
275 /* successfully delivered */
276 env
->old_exception
= -1;
278 ret
= env
->exception_index
;
281 #if defined(TARGET_I386)
282 /* simulate a real cpu exception. On i386, it can
283 trigger new exceptions, but we do not handle
284 double or triple faults yet. */
285 do_interrupt(env
->exception_index
,
286 env
->exception_is_int
,
288 env
->exception_next_eip
, 0);
289 /* successfully delivered */
290 env
->old_exception
= -1;
291 #elif defined(TARGET_PPC)
293 #elif defined(TARGET_LM32)
295 #elif defined(TARGET_MICROBLAZE)
297 #elif defined(TARGET_MIPS)
299 #elif defined(TARGET_SPARC)
301 #elif defined(TARGET_ARM)
303 #elif defined(TARGET_UNICORE32)
305 #elif defined(TARGET_SH4)
307 #elif defined(TARGET_ALPHA)
309 #elif defined(TARGET_CRIS)
311 #elif defined(TARGET_M68K)
313 #elif defined(TARGET_OPENRISC)
316 #elif defined(TARGET_S390X)
319 env
->exception_index
= -1;
324 next_tb
= 0; /* force lookup of first TB */
326 interrupt_request
= env
->interrupt_request
;
327 if (unlikely(interrupt_request
)) {
328 if (unlikely(env
->singlestep_enabled
& SSTEP_NOIRQ
)) {
329 /* Mask out external interrupts for this step. */
330 interrupt_request
&= ~CPU_INTERRUPT_SSTEP_MASK
;
332 if (interrupt_request
& CPU_INTERRUPT_DEBUG
) {
333 env
->interrupt_request
&= ~CPU_INTERRUPT_DEBUG
;
334 env
->exception_index
= EXCP_DEBUG
;
337 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
338 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
339 defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || defined(TARGET_UNICORE32)
340 if (interrupt_request
& CPU_INTERRUPT_HALT
) {
341 env
->interrupt_request
&= ~CPU_INTERRUPT_HALT
;
343 env
->exception_index
= EXCP_HLT
;
347 #if defined(TARGET_I386)
348 if (interrupt_request
& CPU_INTERRUPT_INIT
) {
349 svm_check_intercept(SVM_EXIT_INIT
);
351 env
->exception_index
= EXCP_HALTED
;
353 } else if (interrupt_request
& CPU_INTERRUPT_SIPI
) {
355 } else if (env
->hflags2
& HF2_GIF_MASK
) {
356 if ((interrupt_request
& CPU_INTERRUPT_SMI
) &&
357 !(env
->hflags
& HF_SMM_MASK
)) {
358 svm_check_intercept(SVM_EXIT_SMI
);
359 env
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
362 } else if ((interrupt_request
& CPU_INTERRUPT_NMI
) &&
363 !(env
->hflags2
& HF2_NMI_MASK
)) {
364 env
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
365 env
->hflags2
|= HF2_NMI_MASK
;
366 do_interrupt(EXCP02_NMI
, 0, 0, 0, 1);
368 } else if (interrupt_request
& CPU_INTERRUPT_MCE
) {
369 env
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
370 do_interrupt(EXCP12_MCHK
, 0, 0, 0, 0);
372 } else if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
373 (((env
->hflags2
& HF2_VINTR_MASK
) &&
374 (env
->hflags2
& HF2_HIF_MASK
)) ||
375 (!(env
->hflags2
& HF2_VINTR_MASK
) &&
376 (env
->eflags
& IF_MASK
&&
377 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
))))) {
379 svm_check_intercept(SVM_EXIT_INTR
);
380 env
->interrupt_request
&= ~(CPU_INTERRUPT_HARD
| CPU_INTERRUPT_VIRQ
);
381 intno
= cpu_get_pic_interrupt(env
);
382 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing hardware INT=0x%02x\n", intno
);
383 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
385 env
= cpu_single_env
;
386 #define env cpu_single_env
388 do_interrupt(intno
, 0, 0, 0, 1);
389 /* ensure that no TB jump will be modified as
390 the program flow was changed */
392 #if !defined(CONFIG_USER_ONLY)
393 } else if ((interrupt_request
& CPU_INTERRUPT_VIRQ
) &&
394 (env
->eflags
& IF_MASK
) &&
395 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
)) {
397 /* FIXME: this should respect TPR */
398 svm_check_intercept(SVM_EXIT_VINTR
);
399 intno
= ldl_phys(env
->vm_vmcb
+ offsetof(struct vmcb
, control
.int_vector
));
400 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing virtual hardware INT=0x%02x\n", intno
);
401 do_interrupt(intno
, 0, 0, 0, 1);
402 env
->interrupt_request
&= ~CPU_INTERRUPT_VIRQ
;
407 #elif defined(TARGET_PPC)
409 if ((interrupt_request
& CPU_INTERRUPT_RESET
)) {
413 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
414 ppc_hw_interrupt(env
);
415 if (env
->pending_interrupts
== 0)
416 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
419 #elif defined(TARGET_LM32)
420 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
421 && (env
->ie
& IE_IE
)) {
422 env
->exception_index
= EXCP_IRQ
;
426 #elif defined(TARGET_MICROBLAZE)
427 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
428 && (env
->sregs
[SR_MSR
] & MSR_IE
)
429 && !(env
->sregs
[SR_MSR
] & (MSR_EIP
| MSR_BIP
))
430 && !(env
->iflags
& (D_FLAG
| IMM_FLAG
))) {
431 env
->exception_index
= EXCP_IRQ
;
435 #elif defined(TARGET_MIPS)
436 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
437 cpu_mips_hw_interrupts_pending(env
)) {
439 env
->exception_index
= EXCP_EXT_INTERRUPT
;
444 #elif defined(TARGET_SPARC)
445 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
446 if (cpu_interrupts_enabled(env
) &&
447 env
->interrupt_index
> 0) {
448 int pil
= env
->interrupt_index
& 0xf;
449 int type
= env
->interrupt_index
& 0xf0;
451 if (((type
== TT_EXTINT
) &&
452 cpu_pil_allowed(env
, pil
)) ||
454 env
->exception_index
= env
->interrupt_index
;
460 #elif defined(TARGET_ARM)
461 if (interrupt_request
& CPU_INTERRUPT_FIQ
462 && !(env
->uncached_cpsr
& CPSR_F
)) {
463 env
->exception_index
= EXCP_FIQ
;
467 /* ARMv7-M interrupt return works by loading a magic value
468 into the PC. On real hardware the load causes the
469 return to occur. The qemu implementation performs the
470 jump normally, then does the exception return when the
471 CPU tries to execute code at the magic address.
472 This will cause the magic PC value to be pushed to
473 the stack if an interrupt occurred at the wrong time.
474 We avoid this by disabling interrupts when
475 pc contains a magic address. */
476 if (interrupt_request
& CPU_INTERRUPT_HARD
477 && ((IS_M(env
) && env
->regs
[15] < 0xfffffff0)
478 || !(env
->uncached_cpsr
& CPSR_I
))) {
479 env
->exception_index
= EXCP_IRQ
;
483 #elif defined(TARGET_UNICORE32)
484 if (interrupt_request
& CPU_INTERRUPT_HARD
485 && !(env
->uncached_asr
& ASR_I
)) {
489 #elif defined(TARGET_SH4)
490 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
494 #elif defined(TARGET_ALPHA)
495 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
499 #elif defined(TARGET_CRIS)
500 if (interrupt_request
& CPU_INTERRUPT_HARD
501 && (env
->pregs
[PR_CCS
] & I_FLAG
)
502 && !env
->locked_irq
) {
503 env
->exception_index
= EXCP_IRQ
;
507 if (interrupt_request
& CPU_INTERRUPT_NMI
508 && (env
->pregs
[PR_CCS
] & M_FLAG
)) {
509 env
->exception_index
= EXCP_NMI
;
513 #elif defined(TARGET_M68K)
514 if (interrupt_request
& CPU_INTERRUPT_HARD
515 && ((env
->sr
& SR_I
) >> SR_I_SHIFT
)
516 < env
->pending_level
) {
517 /* Real hardware gets the interrupt vector via an
518 IACK cycle at this point. Current emulated
519 hardware doesn't rely on this, so we
520 provide/save the vector when the interrupt is
522 env
->exception_index
= env
->pending_vector
;
526 #elif defined(TARGET_OPENRISC)
527 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
531 #elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY)
532 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
533 (env
->psw
.mask
& PSW_MASK_EXT
)) {
538 /* Don't use the cached interrupt_request value,
539 do_interrupt may have updated the EXITTB flag. */
540 if (env
->interrupt_request
& CPU_INTERRUPT_EXITTB
) {
541 env
->interrupt_request
&= ~CPU_INTERRUPT_EXITTB
;
542 /* ensure that no TB jump will be modified as
543 the program flow was changed */
547 if (unlikely(env
->exit_request
)) {
548 env
->exit_request
= 0;
549 env
->exception_index
= EXCP_INTERRUPT
;
552 #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
553 if (qemu_loglevel_mask(CPU_LOG_TB_CPU
)) {
554 /* restore flags in standard format */
555 #if defined(TARGET_I386)
556 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
557 log_cpu_state(env
, X86_DUMP_CCOP
);
558 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
559 #elif defined(TARGET_M68K)
560 cpu_m68k_flush_flags(env
, env
->cc_op
);
561 env
->cc_op
= CC_OP_FLAGS
;
562 env
->sr
= (env
->sr
& 0xffe0)
563 | env
->cc_dest
| (env
->cc_x
<< 4);
564 log_cpu_state(env
, 0);
565 #elif defined(TARGET_OPENRISC)
567 log_cpu_state(env
, 0);
569 log_cpu_state(env
, 0);
572 #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
575 /* Note: we do it here to avoid a gcc bug on Mac OS X when
576 doing it in tb_find_slow */
577 if (tb_invalidated_flag
) {
578 /* as some TB could have been invalidated because
579 of memory exceptions while generating the code, we
580 must recompute the hash index here */
582 tb_invalidated_flag
= 0;
584 #ifdef CONFIG_DEBUG_EXEC
585 qemu_log_mask(CPU_LOG_EXEC
, "Trace 0x%08lx [" TARGET_FMT_lx
"] %s\n",
586 (long)tb
->tc_ptr
, tb
->pc
,
587 lookup_symbol(tb
->pc
));
589 /* see if we can patch the calling TB. When the TB
590 spans two pages, we cannot safely do a direct
592 if (next_tb
!= 0 && tb
->page_addr
[1] == -1) {
593 tb_add_jump((TranslationBlock
*)(next_tb
& ~3), next_tb
& 3, tb
);
595 spin_unlock(&tb_lock
);
597 /* cpu_interrupt might be called while translating the
598 TB, but before it is linked into a potentially
599 infinite loop and becomes env->current_tb. Avoid
600 starting execution if there is a pending interrupt. */
601 env
->current_tb
= tb
;
603 if (likely(!env
->exit_request
)) {
605 /* execute the generated code */
606 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
608 env
= cpu_single_env
;
609 #define env cpu_single_env
611 next_tb
= tcg_qemu_tb_exec(tc_ptr
);
612 if ((next_tb
& 3) == 2) {
613 /* Instruction counter expired. */
615 tb
= (TranslationBlock
*)(long)(next_tb
& ~3);
617 cpu_pc_from_tb(env
, tb
);
618 insns_left
= env
->icount_decr
.u32
;
619 if (env
->icount_extra
&& insns_left
>= 0) {
620 /* Refill decrementer and continue execution. */
621 env
->icount_extra
+= insns_left
;
622 if (env
->icount_extra
> 0xffff) {
625 insns_left
= env
->icount_extra
;
627 env
->icount_extra
-= insns_left
;
628 env
->icount_decr
.u16
.low
= insns_left
;
630 if (insns_left
> 0) {
631 /* Execute remaining instructions. */
632 cpu_exec_nocache(insns_left
, tb
);
634 env
->exception_index
= EXCP_INTERRUPT
;
640 env
->current_tb
= NULL
;
641 /* reset soft MMU for next block (it can currently
642 only be set by a memory fault) */
648 #if defined(TARGET_I386)
649 /* restore flags in standard format */
650 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
651 #elif defined(TARGET_ARM)
652 /* XXX: Save/restore host fpu exception state?. */
653 #elif defined(TARGET_UNICORE32)
654 #elif defined(TARGET_SPARC)
655 #elif defined(TARGET_PPC)
656 #elif defined(TARGET_LM32)
657 #elif defined(TARGET_M68K)
658 cpu_m68k_flush_flags(env
, env
->cc_op
);
659 env
->cc_op
= CC_OP_FLAGS
;
660 env
->sr
= (env
->sr
& 0xffe0)
661 | env
->cc_dest
| (env
->cc_x
<< 4);
662 #elif defined(TARGET_MICROBLAZE)
663 #elif defined(TARGET_MIPS)
664 #elif defined(TARGET_SH4)
665 #elif defined(TARGET_ALPHA)
666 #elif defined(TARGET_CRIS)
667 #elif defined(TARGET_OPENRISC)
668 #elif defined(TARGET_S390X)
671 #error unsupported target CPU
674 /* restore global registers */
676 env
= (void *) saved_env_reg
;
678 /* fail safe : never use cpu_single_env outside cpu_exec() */
679 cpu_single_env
= NULL
;