Clean some PCI defines (Stefan Weil)
[qemu/mmix.git] / exec.c
blob86ab7de87bcff5537b37af7a2b142703261940cf
1 /*
2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
20 #include "config.h"
21 #ifdef _WIN32
22 #define WIN32_LEAN_AND_MEAN
23 #include <windows.h>
24 #else
25 #include <sys/types.h>
26 #include <sys/mman.h>
27 #endif
28 #include <stdlib.h>
29 #include <stdio.h>
30 #include <stdarg.h>
31 #include <string.h>
32 #include <errno.h>
33 #include <unistd.h>
34 #include <inttypes.h>
36 #include "cpu.h"
37 #include "exec-all.h"
38 #include "qemu-common.h"
39 #include "tcg.h"
40 #include "hw/hw.h"
41 #include "osdep.h"
42 #include "kvm.h"
43 #if defined(CONFIG_USER_ONLY)
44 #include <qemu.h>
45 #endif
47 //#define DEBUG_TB_INVALIDATE
48 //#define DEBUG_FLUSH
49 //#define DEBUG_TLB
50 //#define DEBUG_UNASSIGNED
52 /* make various TB consistency checks */
53 //#define DEBUG_TB_CHECK
54 //#define DEBUG_TLB_CHECK
56 //#define DEBUG_IOPORT
57 //#define DEBUG_SUBPAGE
59 #if !defined(CONFIG_USER_ONLY)
60 /* TB consistency checks only implemented for usermode emulation. */
61 #undef DEBUG_TB_CHECK
62 #endif
64 #define SMC_BITMAP_USE_THRESHOLD 10
66 #if defined(TARGET_SPARC64)
67 #define TARGET_PHYS_ADDR_SPACE_BITS 41
68 #elif defined(TARGET_SPARC)
69 #define TARGET_PHYS_ADDR_SPACE_BITS 36
70 #elif defined(TARGET_ALPHA)
71 #define TARGET_PHYS_ADDR_SPACE_BITS 42
72 #define TARGET_VIRT_ADDR_SPACE_BITS 42
73 #elif defined(TARGET_PPC64)
74 #define TARGET_PHYS_ADDR_SPACE_BITS 42
75 #elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
76 #define TARGET_PHYS_ADDR_SPACE_BITS 42
77 #elif defined(TARGET_I386) && !defined(USE_KQEMU)
78 #define TARGET_PHYS_ADDR_SPACE_BITS 36
79 #else
80 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
81 #define TARGET_PHYS_ADDR_SPACE_BITS 32
82 #endif
84 static TranslationBlock *tbs;
85 int code_gen_max_blocks;
86 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
87 static int nb_tbs;
88 /* any access to the tbs or the page table must use this lock */
89 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
91 #if defined(__arm__) || defined(__sparc_v9__)
92 /* The prologue must be reachable with a direct jump. ARM and Sparc64
93 have limited branch ranges (possibly also PPC) so place it in a
94 section close to code segment. */
95 #define code_gen_section \
96 __attribute__((__section__(".gen_code"))) \
97 __attribute__((aligned (32)))
98 #else
99 #define code_gen_section \
100 __attribute__((aligned (32)))
101 #endif
103 uint8_t code_gen_prologue[1024] code_gen_section;
104 static uint8_t *code_gen_buffer;
105 static unsigned long code_gen_buffer_size;
106 /* threshold to flush the translated code buffer */
107 static unsigned long code_gen_buffer_max_size;
108 uint8_t *code_gen_ptr;
110 #if !defined(CONFIG_USER_ONLY)
111 ram_addr_t phys_ram_size;
112 int phys_ram_fd;
113 uint8_t *phys_ram_base;
114 uint8_t *phys_ram_dirty;
115 static int in_migration;
116 static ram_addr_t phys_ram_alloc_offset = 0;
117 #endif
119 CPUState *first_cpu;
120 /* current CPU in the current thread. It is only valid inside
121 cpu_exec() */
122 CPUState *cpu_single_env;
123 /* 0 = Do not count executed instructions.
124 1 = Precise instruction counting.
125 2 = Adaptive rate instruction counting. */
126 int use_icount = 0;
127 /* Current instruction counter. While executing translated code this may
128 include some instructions that have not yet been executed. */
129 int64_t qemu_icount;
131 typedef struct PageDesc {
132 /* list of TBs intersecting this ram page */
133 TranslationBlock *first_tb;
134 /* in order to optimize self modifying code, we count the number
135 of lookups we do to a given page to use a bitmap */
136 unsigned int code_write_count;
137 uint8_t *code_bitmap;
138 #if defined(CONFIG_USER_ONLY)
139 unsigned long flags;
140 #endif
141 } PageDesc;
143 typedef struct PhysPageDesc {
144 /* offset in host memory of the page + io_index in the low bits */
145 ram_addr_t phys_offset;
146 ram_addr_t region_offset;
147 } PhysPageDesc;
149 #define L2_BITS 10
150 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
151 /* XXX: this is a temporary hack for alpha target.
152 * In the future, this is to be replaced by a multi-level table
153 * to actually be able to handle the complete 64 bits address space.
155 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
156 #else
157 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
158 #endif
160 #define L1_SIZE (1 << L1_BITS)
161 #define L2_SIZE (1 << L2_BITS)
163 unsigned long qemu_real_host_page_size;
164 unsigned long qemu_host_page_bits;
165 unsigned long qemu_host_page_size;
166 unsigned long qemu_host_page_mask;
168 /* XXX: for system emulation, it could just be an array */
169 static PageDesc *l1_map[L1_SIZE];
170 static PhysPageDesc **l1_phys_map;
172 #if !defined(CONFIG_USER_ONLY)
173 static void io_mem_init(void);
175 /* io memory support */
176 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
177 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
178 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
179 static char io_mem_used[IO_MEM_NB_ENTRIES];
180 static int io_mem_watch;
181 #endif
183 /* log support */
184 static const char *logfilename = "/tmp/qemu.log";
185 FILE *logfile;
186 int loglevel;
187 static int log_append = 0;
189 /* statistics */
190 static int tlb_flush_count;
191 static int tb_flush_count;
192 static int tb_phys_invalidate_count;
194 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
195 typedef struct subpage_t {
196 target_phys_addr_t base;
197 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
198 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
199 void *opaque[TARGET_PAGE_SIZE][2][4];
200 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
201 } subpage_t;
203 #ifdef _WIN32
204 static void map_exec(void *addr, long size)
206 DWORD old_protect;
207 VirtualProtect(addr, size,
208 PAGE_EXECUTE_READWRITE, &old_protect);
211 #else
212 static void map_exec(void *addr, long size)
214 unsigned long start, end, page_size;
216 page_size = getpagesize();
217 start = (unsigned long)addr;
218 start &= ~(page_size - 1);
220 end = (unsigned long)addr + size;
221 end += page_size - 1;
222 end &= ~(page_size - 1);
224 mprotect((void *)start, end - start,
225 PROT_READ | PROT_WRITE | PROT_EXEC);
227 #endif
229 static void page_init(void)
231 /* NOTE: we can always suppose that qemu_host_page_size >=
232 TARGET_PAGE_SIZE */
233 #ifdef _WIN32
235 SYSTEM_INFO system_info;
237 GetSystemInfo(&system_info);
238 qemu_real_host_page_size = system_info.dwPageSize;
240 #else
241 qemu_real_host_page_size = getpagesize();
242 #endif
243 if (qemu_host_page_size == 0)
244 qemu_host_page_size = qemu_real_host_page_size;
245 if (qemu_host_page_size < TARGET_PAGE_SIZE)
246 qemu_host_page_size = TARGET_PAGE_SIZE;
247 qemu_host_page_bits = 0;
248 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
249 qemu_host_page_bits++;
250 qemu_host_page_mask = ~(qemu_host_page_size - 1);
251 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
252 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
254 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
256 long long startaddr, endaddr;
257 FILE *f;
258 int n;
260 mmap_lock();
261 last_brk = (unsigned long)sbrk(0);
262 f = fopen("/proc/self/maps", "r");
263 if (f) {
264 do {
265 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
266 if (n == 2) {
267 startaddr = MIN(startaddr,
268 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
269 endaddr = MIN(endaddr,
270 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
271 page_set_flags(startaddr & TARGET_PAGE_MASK,
272 TARGET_PAGE_ALIGN(endaddr),
273 PAGE_RESERVED);
275 } while (!feof(f));
276 fclose(f);
278 mmap_unlock();
280 #endif
283 static inline PageDesc **page_l1_map(target_ulong index)
285 #if TARGET_LONG_BITS > 32
286 /* Host memory outside guest VM. For 32-bit targets we have already
287 excluded high addresses. */
288 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
289 return NULL;
290 #endif
291 return &l1_map[index >> L2_BITS];
294 static inline PageDesc *page_find_alloc(target_ulong index)
296 PageDesc **lp, *p;
297 lp = page_l1_map(index);
298 if (!lp)
299 return NULL;
301 p = *lp;
302 if (!p) {
303 /* allocate if not found */
304 #if defined(CONFIG_USER_ONLY)
305 size_t len = sizeof(PageDesc) * L2_SIZE;
306 /* Don't use qemu_malloc because it may recurse. */
307 p = mmap(0, len, PROT_READ | PROT_WRITE,
308 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
309 *lp = p;
310 if (h2g_valid(p)) {
311 unsigned long addr = h2g(p);
312 page_set_flags(addr & TARGET_PAGE_MASK,
313 TARGET_PAGE_ALIGN(addr + len),
314 PAGE_RESERVED);
316 #else
317 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
318 *lp = p;
319 #endif
321 return p + (index & (L2_SIZE - 1));
324 static inline PageDesc *page_find(target_ulong index)
326 PageDesc **lp, *p;
327 lp = page_l1_map(index);
328 if (!lp)
329 return NULL;
331 p = *lp;
332 if (!p)
333 return 0;
334 return p + (index & (L2_SIZE - 1));
337 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
339 void **lp, **p;
340 PhysPageDesc *pd;
342 p = (void **)l1_phys_map;
343 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
345 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
346 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
347 #endif
348 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
349 p = *lp;
350 if (!p) {
351 /* allocate if not found */
352 if (!alloc)
353 return NULL;
354 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
355 memset(p, 0, sizeof(void *) * L1_SIZE);
356 *lp = p;
358 #endif
359 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
360 pd = *lp;
361 if (!pd) {
362 int i;
363 /* allocate if not found */
364 if (!alloc)
365 return NULL;
366 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
367 *lp = pd;
368 for (i = 0; i < L2_SIZE; i++) {
369 pd[i].phys_offset = IO_MEM_UNASSIGNED;
370 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
373 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
376 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
378 return phys_page_find_alloc(index, 0);
381 #if !defined(CONFIG_USER_ONLY)
382 static void tlb_protect_code(ram_addr_t ram_addr);
383 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
384 target_ulong vaddr);
385 #define mmap_lock() do { } while(0)
386 #define mmap_unlock() do { } while(0)
387 #endif
389 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
391 #if defined(CONFIG_USER_ONLY)
392 /* Currently it is not recommanded to allocate big chunks of data in
393 user mode. It will change when a dedicated libc will be used */
394 #define USE_STATIC_CODE_GEN_BUFFER
395 #endif
397 #ifdef USE_STATIC_CODE_GEN_BUFFER
398 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
399 #endif
401 static void code_gen_alloc(unsigned long tb_size)
403 #ifdef USE_STATIC_CODE_GEN_BUFFER
404 code_gen_buffer = static_code_gen_buffer;
405 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
406 map_exec(code_gen_buffer, code_gen_buffer_size);
407 #else
408 code_gen_buffer_size = tb_size;
409 if (code_gen_buffer_size == 0) {
410 #if defined(CONFIG_USER_ONLY)
411 /* in user mode, phys_ram_size is not meaningful */
412 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
413 #else
414 /* XXX: needs ajustments */
415 code_gen_buffer_size = (unsigned long)(phys_ram_size / 4);
416 #endif
418 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
419 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
420 /* The code gen buffer location may have constraints depending on
421 the host cpu and OS */
422 #if defined(__linux__)
424 int flags;
425 void *start = NULL;
427 flags = MAP_PRIVATE | MAP_ANONYMOUS;
428 #if defined(__x86_64__)
429 flags |= MAP_32BIT;
430 /* Cannot map more than that */
431 if (code_gen_buffer_size > (800 * 1024 * 1024))
432 code_gen_buffer_size = (800 * 1024 * 1024);
433 #elif defined(__sparc_v9__)
434 // Map the buffer below 2G, so we can use direct calls and branches
435 flags |= MAP_FIXED;
436 start = (void *) 0x60000000UL;
437 if (code_gen_buffer_size > (512 * 1024 * 1024))
438 code_gen_buffer_size = (512 * 1024 * 1024);
439 #elif defined(__arm__)
440 /* Map the buffer below 32M, so we can use direct calls and branches */
441 flags |= MAP_FIXED;
442 start = (void *) 0x01000000UL;
443 if (code_gen_buffer_size > 16 * 1024 * 1024)
444 code_gen_buffer_size = 16 * 1024 * 1024;
445 #endif
446 code_gen_buffer = mmap(start, code_gen_buffer_size,
447 PROT_WRITE | PROT_READ | PROT_EXEC,
448 flags, -1, 0);
449 if (code_gen_buffer == MAP_FAILED) {
450 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
451 exit(1);
454 #elif defined(__FreeBSD__) || defined(__DragonFly__)
456 int flags;
457 void *addr = NULL;
458 flags = MAP_PRIVATE | MAP_ANONYMOUS;
459 #if defined(__x86_64__)
460 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
461 * 0x40000000 is free */
462 flags |= MAP_FIXED;
463 addr = (void *)0x40000000;
464 /* Cannot map more than that */
465 if (code_gen_buffer_size > (800 * 1024 * 1024))
466 code_gen_buffer_size = (800 * 1024 * 1024);
467 #endif
468 code_gen_buffer = mmap(addr, code_gen_buffer_size,
469 PROT_WRITE | PROT_READ | PROT_EXEC,
470 flags, -1, 0);
471 if (code_gen_buffer == MAP_FAILED) {
472 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
473 exit(1);
476 #else
477 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
478 map_exec(code_gen_buffer, code_gen_buffer_size);
479 #endif
480 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
481 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
482 code_gen_buffer_max_size = code_gen_buffer_size -
483 code_gen_max_block_size();
484 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
485 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
488 /* Must be called before using the QEMU cpus. 'tb_size' is the size
489 (in bytes) allocated to the translation buffer. Zero means default
490 size. */
491 void cpu_exec_init_all(unsigned long tb_size)
493 cpu_gen_init();
494 code_gen_alloc(tb_size);
495 code_gen_ptr = code_gen_buffer;
496 page_init();
497 #if !defined(CONFIG_USER_ONLY)
498 io_mem_init();
499 #endif
502 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
504 #define CPU_COMMON_SAVE_VERSION 1
506 static void cpu_common_save(QEMUFile *f, void *opaque)
508 CPUState *env = opaque;
510 qemu_put_be32s(f, &env->halted);
511 qemu_put_be32s(f, &env->interrupt_request);
514 static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
516 CPUState *env = opaque;
518 if (version_id != CPU_COMMON_SAVE_VERSION)
519 return -EINVAL;
521 qemu_get_be32s(f, &env->halted);
522 qemu_get_be32s(f, &env->interrupt_request);
523 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
524 version_id is increased. */
525 env->interrupt_request &= ~0x01;
526 tlb_flush(env, 1);
528 return 0;
530 #endif
532 void cpu_exec_init(CPUState *env)
534 CPUState **penv;
535 int cpu_index;
537 #if defined(CONFIG_USER_ONLY)
538 cpu_list_lock();
539 #endif
540 env->next_cpu = NULL;
541 penv = &first_cpu;
542 cpu_index = 0;
543 while (*penv != NULL) {
544 penv = (CPUState **)&(*penv)->next_cpu;
545 cpu_index++;
547 env->cpu_index = cpu_index;
548 TAILQ_INIT(&env->breakpoints);
549 TAILQ_INIT(&env->watchpoints);
550 *penv = env;
551 #if defined(CONFIG_USER_ONLY)
552 cpu_list_unlock();
553 #endif
554 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
555 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
556 cpu_common_save, cpu_common_load, env);
557 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
558 cpu_save, cpu_load, env);
559 #endif
562 static inline void invalidate_page_bitmap(PageDesc *p)
564 if (p->code_bitmap) {
565 qemu_free(p->code_bitmap);
566 p->code_bitmap = NULL;
568 p->code_write_count = 0;
571 /* set to NULL all the 'first_tb' fields in all PageDescs */
572 static void page_flush_tb(void)
574 int i, j;
575 PageDesc *p;
577 for(i = 0; i < L1_SIZE; i++) {
578 p = l1_map[i];
579 if (p) {
580 for(j = 0; j < L2_SIZE; j++) {
581 p->first_tb = NULL;
582 invalidate_page_bitmap(p);
583 p++;
589 /* flush all the translation blocks */
590 /* XXX: tb_flush is currently not thread safe */
591 void tb_flush(CPUState *env1)
593 CPUState *env;
594 #if defined(DEBUG_FLUSH)
595 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
596 (unsigned long)(code_gen_ptr - code_gen_buffer),
597 nb_tbs, nb_tbs > 0 ?
598 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
599 #endif
600 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
601 cpu_abort(env1, "Internal error: code buffer overflow\n");
603 nb_tbs = 0;
605 for(env = first_cpu; env != NULL; env = env->next_cpu) {
606 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
609 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
610 page_flush_tb();
612 code_gen_ptr = code_gen_buffer;
613 /* XXX: flush processor icache at this point if cache flush is
614 expensive */
615 tb_flush_count++;
618 #ifdef DEBUG_TB_CHECK
620 static void tb_invalidate_check(target_ulong address)
622 TranslationBlock *tb;
623 int i;
624 address &= TARGET_PAGE_MASK;
625 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
626 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
627 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
628 address >= tb->pc + tb->size)) {
629 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
630 address, (long)tb->pc, tb->size);
636 /* verify that all the pages have correct rights for code */
637 static void tb_page_check(void)
639 TranslationBlock *tb;
640 int i, flags1, flags2;
642 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
643 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
644 flags1 = page_get_flags(tb->pc);
645 flags2 = page_get_flags(tb->pc + tb->size - 1);
646 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
647 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
648 (long)tb->pc, tb->size, flags1, flags2);
654 static void tb_jmp_check(TranslationBlock *tb)
656 TranslationBlock *tb1;
657 unsigned int n1;
659 /* suppress any remaining jumps to this TB */
660 tb1 = tb->jmp_first;
661 for(;;) {
662 n1 = (long)tb1 & 3;
663 tb1 = (TranslationBlock *)((long)tb1 & ~3);
664 if (n1 == 2)
665 break;
666 tb1 = tb1->jmp_next[n1];
668 /* check end of list */
669 if (tb1 != tb) {
670 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
674 #endif
676 /* invalidate one TB */
677 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
678 int next_offset)
680 TranslationBlock *tb1;
681 for(;;) {
682 tb1 = *ptb;
683 if (tb1 == tb) {
684 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
685 break;
687 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
691 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
693 TranslationBlock *tb1;
694 unsigned int n1;
696 for(;;) {
697 tb1 = *ptb;
698 n1 = (long)tb1 & 3;
699 tb1 = (TranslationBlock *)((long)tb1 & ~3);
700 if (tb1 == tb) {
701 *ptb = tb1->page_next[n1];
702 break;
704 ptb = &tb1->page_next[n1];
708 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
710 TranslationBlock *tb1, **ptb;
711 unsigned int n1;
713 ptb = &tb->jmp_next[n];
714 tb1 = *ptb;
715 if (tb1) {
716 /* find tb(n) in circular list */
717 for(;;) {
718 tb1 = *ptb;
719 n1 = (long)tb1 & 3;
720 tb1 = (TranslationBlock *)((long)tb1 & ~3);
721 if (n1 == n && tb1 == tb)
722 break;
723 if (n1 == 2) {
724 ptb = &tb1->jmp_first;
725 } else {
726 ptb = &tb1->jmp_next[n1];
729 /* now we can suppress tb(n) from the list */
730 *ptb = tb->jmp_next[n];
732 tb->jmp_next[n] = NULL;
736 /* reset the jump entry 'n' of a TB so that it is not chained to
737 another TB */
738 static inline void tb_reset_jump(TranslationBlock *tb, int n)
740 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
743 void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
745 CPUState *env;
746 PageDesc *p;
747 unsigned int h, n1;
748 target_phys_addr_t phys_pc;
749 TranslationBlock *tb1, *tb2;
751 /* remove the TB from the hash list */
752 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
753 h = tb_phys_hash_func(phys_pc);
754 tb_remove(&tb_phys_hash[h], tb,
755 offsetof(TranslationBlock, phys_hash_next));
757 /* remove the TB from the page list */
758 if (tb->page_addr[0] != page_addr) {
759 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
760 tb_page_remove(&p->first_tb, tb);
761 invalidate_page_bitmap(p);
763 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
764 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
765 tb_page_remove(&p->first_tb, tb);
766 invalidate_page_bitmap(p);
769 tb_invalidated_flag = 1;
771 /* remove the TB from the hash list */
772 h = tb_jmp_cache_hash_func(tb->pc);
773 for(env = first_cpu; env != NULL; env = env->next_cpu) {
774 if (env->tb_jmp_cache[h] == tb)
775 env->tb_jmp_cache[h] = NULL;
778 /* suppress this TB from the two jump lists */
779 tb_jmp_remove(tb, 0);
780 tb_jmp_remove(tb, 1);
782 /* suppress any remaining jumps to this TB */
783 tb1 = tb->jmp_first;
784 for(;;) {
785 n1 = (long)tb1 & 3;
786 if (n1 == 2)
787 break;
788 tb1 = (TranslationBlock *)((long)tb1 & ~3);
789 tb2 = tb1->jmp_next[n1];
790 tb_reset_jump(tb1, n1);
791 tb1->jmp_next[n1] = NULL;
792 tb1 = tb2;
794 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
796 tb_phys_invalidate_count++;
799 static inline void set_bits(uint8_t *tab, int start, int len)
801 int end, mask, end1;
803 end = start + len;
804 tab += start >> 3;
805 mask = 0xff << (start & 7);
806 if ((start & ~7) == (end & ~7)) {
807 if (start < end) {
808 mask &= ~(0xff << (end & 7));
809 *tab |= mask;
811 } else {
812 *tab++ |= mask;
813 start = (start + 8) & ~7;
814 end1 = end & ~7;
815 while (start < end1) {
816 *tab++ = 0xff;
817 start += 8;
819 if (start < end) {
820 mask = ~(0xff << (end & 7));
821 *tab |= mask;
826 static void build_page_bitmap(PageDesc *p)
828 int n, tb_start, tb_end;
829 TranslationBlock *tb;
831 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
833 tb = p->first_tb;
834 while (tb != NULL) {
835 n = (long)tb & 3;
836 tb = (TranslationBlock *)((long)tb & ~3);
837 /* NOTE: this is subtle as a TB may span two physical pages */
838 if (n == 0) {
839 /* NOTE: tb_end may be after the end of the page, but
840 it is not a problem */
841 tb_start = tb->pc & ~TARGET_PAGE_MASK;
842 tb_end = tb_start + tb->size;
843 if (tb_end > TARGET_PAGE_SIZE)
844 tb_end = TARGET_PAGE_SIZE;
845 } else {
846 tb_start = 0;
847 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
849 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
850 tb = tb->page_next[n];
854 TranslationBlock *tb_gen_code(CPUState *env,
855 target_ulong pc, target_ulong cs_base,
856 int flags, int cflags)
858 TranslationBlock *tb;
859 uint8_t *tc_ptr;
860 target_ulong phys_pc, phys_page2, virt_page2;
861 int code_gen_size;
863 phys_pc = get_phys_addr_code(env, pc);
864 tb = tb_alloc(pc);
865 if (!tb) {
866 /* flush must be done */
867 tb_flush(env);
868 /* cannot fail at this point */
869 tb = tb_alloc(pc);
870 /* Don't forget to invalidate previous TB info. */
871 tb_invalidated_flag = 1;
873 tc_ptr = code_gen_ptr;
874 tb->tc_ptr = tc_ptr;
875 tb->cs_base = cs_base;
876 tb->flags = flags;
877 tb->cflags = cflags;
878 cpu_gen_code(env, tb, &code_gen_size);
879 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
881 /* check next page if needed */
882 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
883 phys_page2 = -1;
884 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
885 phys_page2 = get_phys_addr_code(env, virt_page2);
887 tb_link_phys(tb, phys_pc, phys_page2);
888 return tb;
891 /* invalidate all TBs which intersect with the target physical page
892 starting in range [start;end[. NOTE: start and end must refer to
893 the same physical page. 'is_cpu_write_access' should be true if called
894 from a real cpu write access: the virtual CPU will exit the current
895 TB if code is modified inside this TB. */
896 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
897 int is_cpu_write_access)
899 TranslationBlock *tb, *tb_next, *saved_tb;
900 CPUState *env = cpu_single_env;
901 target_ulong tb_start, tb_end;
902 PageDesc *p;
903 int n;
904 #ifdef TARGET_HAS_PRECISE_SMC
905 int current_tb_not_found = is_cpu_write_access;
906 TranslationBlock *current_tb = NULL;
907 int current_tb_modified = 0;
908 target_ulong current_pc = 0;
909 target_ulong current_cs_base = 0;
910 int current_flags = 0;
911 #endif /* TARGET_HAS_PRECISE_SMC */
913 p = page_find(start >> TARGET_PAGE_BITS);
914 if (!p)
915 return;
916 if (!p->code_bitmap &&
917 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
918 is_cpu_write_access) {
919 /* build code bitmap */
920 build_page_bitmap(p);
923 /* we remove all the TBs in the range [start, end[ */
924 /* XXX: see if in some cases it could be faster to invalidate all the code */
925 tb = p->first_tb;
926 while (tb != NULL) {
927 n = (long)tb & 3;
928 tb = (TranslationBlock *)((long)tb & ~3);
929 tb_next = tb->page_next[n];
930 /* NOTE: this is subtle as a TB may span two physical pages */
931 if (n == 0) {
932 /* NOTE: tb_end may be after the end of the page, but
933 it is not a problem */
934 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
935 tb_end = tb_start + tb->size;
936 } else {
937 tb_start = tb->page_addr[1];
938 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
940 if (!(tb_end <= start || tb_start >= end)) {
941 #ifdef TARGET_HAS_PRECISE_SMC
942 if (current_tb_not_found) {
943 current_tb_not_found = 0;
944 current_tb = NULL;
945 if (env->mem_io_pc) {
946 /* now we have a real cpu fault */
947 current_tb = tb_find_pc(env->mem_io_pc);
950 if (current_tb == tb &&
951 (current_tb->cflags & CF_COUNT_MASK) != 1) {
952 /* If we are modifying the current TB, we must stop
953 its execution. We could be more precise by checking
954 that the modification is after the current PC, but it
955 would require a specialized function to partially
956 restore the CPU state */
958 current_tb_modified = 1;
959 cpu_restore_state(current_tb, env,
960 env->mem_io_pc, NULL);
961 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
962 &current_flags);
964 #endif /* TARGET_HAS_PRECISE_SMC */
965 /* we need to do that to handle the case where a signal
966 occurs while doing tb_phys_invalidate() */
967 saved_tb = NULL;
968 if (env) {
969 saved_tb = env->current_tb;
970 env->current_tb = NULL;
972 tb_phys_invalidate(tb, -1);
973 if (env) {
974 env->current_tb = saved_tb;
975 if (env->interrupt_request && env->current_tb)
976 cpu_interrupt(env, env->interrupt_request);
979 tb = tb_next;
981 #if !defined(CONFIG_USER_ONLY)
982 /* if no code remaining, no need to continue to use slow writes */
983 if (!p->first_tb) {
984 invalidate_page_bitmap(p);
985 if (is_cpu_write_access) {
986 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
989 #endif
990 #ifdef TARGET_HAS_PRECISE_SMC
991 if (current_tb_modified) {
992 /* we generate a block containing just the instruction
993 modifying the memory. It will ensure that it cannot modify
994 itself */
995 env->current_tb = NULL;
996 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
997 cpu_resume_from_signal(env, NULL);
999 #endif
1002 /* len must be <= 8 and start must be a multiple of len */
1003 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
1005 PageDesc *p;
1006 int offset, b;
1007 #if 0
1008 if (1) {
1009 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1010 cpu_single_env->mem_io_vaddr, len,
1011 cpu_single_env->eip,
1012 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1014 #endif
1015 p = page_find(start >> TARGET_PAGE_BITS);
1016 if (!p)
1017 return;
1018 if (p->code_bitmap) {
1019 offset = start & ~TARGET_PAGE_MASK;
1020 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1021 if (b & ((1 << len) - 1))
1022 goto do_invalidate;
1023 } else {
1024 do_invalidate:
1025 tb_invalidate_phys_page_range(start, start + len, 1);
1029 #if !defined(CONFIG_SOFTMMU)
1030 static void tb_invalidate_phys_page(target_phys_addr_t addr,
1031 unsigned long pc, void *puc)
1033 TranslationBlock *tb;
1034 PageDesc *p;
1035 int n;
1036 #ifdef TARGET_HAS_PRECISE_SMC
1037 TranslationBlock *current_tb = NULL;
1038 CPUState *env = cpu_single_env;
1039 int current_tb_modified = 0;
1040 target_ulong current_pc = 0;
1041 target_ulong current_cs_base = 0;
1042 int current_flags = 0;
1043 #endif
1045 addr &= TARGET_PAGE_MASK;
1046 p = page_find(addr >> TARGET_PAGE_BITS);
1047 if (!p)
1048 return;
1049 tb = p->first_tb;
1050 #ifdef TARGET_HAS_PRECISE_SMC
1051 if (tb && pc != 0) {
1052 current_tb = tb_find_pc(pc);
1054 #endif
1055 while (tb != NULL) {
1056 n = (long)tb & 3;
1057 tb = (TranslationBlock *)((long)tb & ~3);
1058 #ifdef TARGET_HAS_PRECISE_SMC
1059 if (current_tb == tb &&
1060 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1061 /* If we are modifying the current TB, we must stop
1062 its execution. We could be more precise by checking
1063 that the modification is after the current PC, but it
1064 would require a specialized function to partially
1065 restore the CPU state */
1067 current_tb_modified = 1;
1068 cpu_restore_state(current_tb, env, pc, puc);
1069 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1070 &current_flags);
1072 #endif /* TARGET_HAS_PRECISE_SMC */
1073 tb_phys_invalidate(tb, addr);
1074 tb = tb->page_next[n];
1076 p->first_tb = NULL;
1077 #ifdef TARGET_HAS_PRECISE_SMC
1078 if (current_tb_modified) {
1079 /* we generate a block containing just the instruction
1080 modifying the memory. It will ensure that it cannot modify
1081 itself */
1082 env->current_tb = NULL;
1083 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1084 cpu_resume_from_signal(env, puc);
1086 #endif
1088 #endif
1090 /* add the tb in the target page and protect it if necessary */
1091 static inline void tb_alloc_page(TranslationBlock *tb,
1092 unsigned int n, target_ulong page_addr)
1094 PageDesc *p;
1095 TranslationBlock *last_first_tb;
1097 tb->page_addr[n] = page_addr;
1098 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
1099 tb->page_next[n] = p->first_tb;
1100 last_first_tb = p->first_tb;
1101 p->first_tb = (TranslationBlock *)((long)tb | n);
1102 invalidate_page_bitmap(p);
1104 #if defined(TARGET_HAS_SMC) || 1
1106 #if defined(CONFIG_USER_ONLY)
1107 if (p->flags & PAGE_WRITE) {
1108 target_ulong addr;
1109 PageDesc *p2;
1110 int prot;
1112 /* force the host page as non writable (writes will have a
1113 page fault + mprotect overhead) */
1114 page_addr &= qemu_host_page_mask;
1115 prot = 0;
1116 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1117 addr += TARGET_PAGE_SIZE) {
1119 p2 = page_find (addr >> TARGET_PAGE_BITS);
1120 if (!p2)
1121 continue;
1122 prot |= p2->flags;
1123 p2->flags &= ~PAGE_WRITE;
1124 page_get_flags(addr);
1126 mprotect(g2h(page_addr), qemu_host_page_size,
1127 (prot & PAGE_BITS) & ~PAGE_WRITE);
1128 #ifdef DEBUG_TB_INVALIDATE
1129 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1130 page_addr);
1131 #endif
1133 #else
1134 /* if some code is already present, then the pages are already
1135 protected. So we handle the case where only the first TB is
1136 allocated in a physical page */
1137 if (!last_first_tb) {
1138 tlb_protect_code(page_addr);
1140 #endif
1142 #endif /* TARGET_HAS_SMC */
1145 /* Allocate a new translation block. Flush the translation buffer if
1146 too many translation blocks or too much generated code. */
1147 TranslationBlock *tb_alloc(target_ulong pc)
1149 TranslationBlock *tb;
1151 if (nb_tbs >= code_gen_max_blocks ||
1152 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1153 return NULL;
1154 tb = &tbs[nb_tbs++];
1155 tb->pc = pc;
1156 tb->cflags = 0;
1157 return tb;
1160 void tb_free(TranslationBlock *tb)
1162 /* In practice this is mostly used for single use temporary TB
1163 Ignore the hard cases and just back up if this TB happens to
1164 be the last one generated. */
1165 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1166 code_gen_ptr = tb->tc_ptr;
1167 nb_tbs--;
1171 /* add a new TB and link it to the physical page tables. phys_page2 is
1172 (-1) to indicate that only one page contains the TB. */
1173 void tb_link_phys(TranslationBlock *tb,
1174 target_ulong phys_pc, target_ulong phys_page2)
1176 unsigned int h;
1177 TranslationBlock **ptb;
1179 /* Grab the mmap lock to stop another thread invalidating this TB
1180 before we are done. */
1181 mmap_lock();
1182 /* add in the physical hash table */
1183 h = tb_phys_hash_func(phys_pc);
1184 ptb = &tb_phys_hash[h];
1185 tb->phys_hash_next = *ptb;
1186 *ptb = tb;
1188 /* add in the page list */
1189 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1190 if (phys_page2 != -1)
1191 tb_alloc_page(tb, 1, phys_page2);
1192 else
1193 tb->page_addr[1] = -1;
1195 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1196 tb->jmp_next[0] = NULL;
1197 tb->jmp_next[1] = NULL;
1199 /* init original jump addresses */
1200 if (tb->tb_next_offset[0] != 0xffff)
1201 tb_reset_jump(tb, 0);
1202 if (tb->tb_next_offset[1] != 0xffff)
1203 tb_reset_jump(tb, 1);
1205 #ifdef DEBUG_TB_CHECK
1206 tb_page_check();
1207 #endif
1208 mmap_unlock();
1211 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1212 tb[1].tc_ptr. Return NULL if not found */
1213 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1215 int m_min, m_max, m;
1216 unsigned long v;
1217 TranslationBlock *tb;
1219 if (nb_tbs <= 0)
1220 return NULL;
1221 if (tc_ptr < (unsigned long)code_gen_buffer ||
1222 tc_ptr >= (unsigned long)code_gen_ptr)
1223 return NULL;
1224 /* binary search (cf Knuth) */
1225 m_min = 0;
1226 m_max = nb_tbs - 1;
1227 while (m_min <= m_max) {
1228 m = (m_min + m_max) >> 1;
1229 tb = &tbs[m];
1230 v = (unsigned long)tb->tc_ptr;
1231 if (v == tc_ptr)
1232 return tb;
1233 else if (tc_ptr < v) {
1234 m_max = m - 1;
1235 } else {
1236 m_min = m + 1;
1239 return &tbs[m_max];
1242 static void tb_reset_jump_recursive(TranslationBlock *tb);
1244 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1246 TranslationBlock *tb1, *tb_next, **ptb;
1247 unsigned int n1;
1249 tb1 = tb->jmp_next[n];
1250 if (tb1 != NULL) {
1251 /* find head of list */
1252 for(;;) {
1253 n1 = (long)tb1 & 3;
1254 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1255 if (n1 == 2)
1256 break;
1257 tb1 = tb1->jmp_next[n1];
1259 /* we are now sure now that tb jumps to tb1 */
1260 tb_next = tb1;
1262 /* remove tb from the jmp_first list */
1263 ptb = &tb_next->jmp_first;
1264 for(;;) {
1265 tb1 = *ptb;
1266 n1 = (long)tb1 & 3;
1267 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1268 if (n1 == n && tb1 == tb)
1269 break;
1270 ptb = &tb1->jmp_next[n1];
1272 *ptb = tb->jmp_next[n];
1273 tb->jmp_next[n] = NULL;
1275 /* suppress the jump to next tb in generated code */
1276 tb_reset_jump(tb, n);
1278 /* suppress jumps in the tb on which we could have jumped */
1279 tb_reset_jump_recursive(tb_next);
1283 static void tb_reset_jump_recursive(TranslationBlock *tb)
1285 tb_reset_jump_recursive2(tb, 0);
1286 tb_reset_jump_recursive2(tb, 1);
1289 #if defined(TARGET_HAS_ICE)
1290 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1292 target_phys_addr_t addr;
1293 target_ulong pd;
1294 ram_addr_t ram_addr;
1295 PhysPageDesc *p;
1297 addr = cpu_get_phys_page_debug(env, pc);
1298 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1299 if (!p) {
1300 pd = IO_MEM_UNASSIGNED;
1301 } else {
1302 pd = p->phys_offset;
1304 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1305 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1307 #endif
1309 /* Add a watchpoint. */
1310 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1311 int flags, CPUWatchpoint **watchpoint)
1313 target_ulong len_mask = ~(len - 1);
1314 CPUWatchpoint *wp;
1316 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1317 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1318 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1319 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1320 return -EINVAL;
1322 wp = qemu_malloc(sizeof(*wp));
1324 wp->vaddr = addr;
1325 wp->len_mask = len_mask;
1326 wp->flags = flags;
1328 /* keep all GDB-injected watchpoints in front */
1329 if (flags & BP_GDB)
1330 TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1331 else
1332 TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1334 tlb_flush_page(env, addr);
1336 if (watchpoint)
1337 *watchpoint = wp;
1338 return 0;
1341 /* Remove a specific watchpoint. */
1342 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1343 int flags)
1345 target_ulong len_mask = ~(len - 1);
1346 CPUWatchpoint *wp;
1348 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1349 if (addr == wp->vaddr && len_mask == wp->len_mask
1350 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1351 cpu_watchpoint_remove_by_ref(env, wp);
1352 return 0;
1355 return -ENOENT;
1358 /* Remove a specific watchpoint by reference. */
1359 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1361 TAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1363 tlb_flush_page(env, watchpoint->vaddr);
1365 qemu_free(watchpoint);
1368 /* Remove all matching watchpoints. */
1369 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1371 CPUWatchpoint *wp, *next;
1373 TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1374 if (wp->flags & mask)
1375 cpu_watchpoint_remove_by_ref(env, wp);
1379 /* Add a breakpoint. */
1380 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1381 CPUBreakpoint **breakpoint)
1383 #if defined(TARGET_HAS_ICE)
1384 CPUBreakpoint *bp;
1386 bp = qemu_malloc(sizeof(*bp));
1388 bp->pc = pc;
1389 bp->flags = flags;
1391 /* keep all GDB-injected breakpoints in front */
1392 if (flags & BP_GDB)
1393 TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1394 else
1395 TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1397 breakpoint_invalidate(env, pc);
1399 if (breakpoint)
1400 *breakpoint = bp;
1401 return 0;
1402 #else
1403 return -ENOSYS;
1404 #endif
1407 /* Remove a specific breakpoint. */
1408 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1410 #if defined(TARGET_HAS_ICE)
1411 CPUBreakpoint *bp;
1413 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1414 if (bp->pc == pc && bp->flags == flags) {
1415 cpu_breakpoint_remove_by_ref(env, bp);
1416 return 0;
1419 return -ENOENT;
1420 #else
1421 return -ENOSYS;
1422 #endif
1425 /* Remove a specific breakpoint by reference. */
1426 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1428 #if defined(TARGET_HAS_ICE)
1429 TAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1431 breakpoint_invalidate(env, breakpoint->pc);
1433 qemu_free(breakpoint);
1434 #endif
1437 /* Remove all matching breakpoints. */
1438 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1440 #if defined(TARGET_HAS_ICE)
1441 CPUBreakpoint *bp, *next;
1443 TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1444 if (bp->flags & mask)
1445 cpu_breakpoint_remove_by_ref(env, bp);
1447 #endif
1450 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1451 CPU loop after each instruction */
1452 void cpu_single_step(CPUState *env, int enabled)
1454 #if defined(TARGET_HAS_ICE)
1455 if (env->singlestep_enabled != enabled) {
1456 env->singlestep_enabled = enabled;
1457 if (kvm_enabled())
1458 kvm_update_guest_debug(env, 0);
1459 else {
1460 /* must flush all the translated code to avoid inconsistancies */
1461 /* XXX: only flush what is necessary */
1462 tb_flush(env);
1465 #endif
1468 /* enable or disable low levels log */
1469 void cpu_set_log(int log_flags)
1471 loglevel = log_flags;
1472 if (loglevel && !logfile) {
1473 logfile = fopen(logfilename, log_append ? "a" : "w");
1474 if (!logfile) {
1475 perror(logfilename);
1476 _exit(1);
1478 #if !defined(CONFIG_SOFTMMU)
1479 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1481 static char logfile_buf[4096];
1482 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1484 #else
1485 setvbuf(logfile, NULL, _IOLBF, 0);
1486 #endif
1487 log_append = 1;
1489 if (!loglevel && logfile) {
1490 fclose(logfile);
1491 logfile = NULL;
1495 void cpu_set_log_filename(const char *filename)
1497 logfilename = strdup(filename);
1498 if (logfile) {
1499 fclose(logfile);
1500 logfile = NULL;
1502 cpu_set_log(loglevel);
1505 static void cpu_unlink_tb(CPUState *env)
1507 #if defined(USE_NPTL)
1508 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1509 problem and hope the cpu will stop of its own accord. For userspace
1510 emulation this often isn't actually as bad as it sounds. Often
1511 signals are used primarily to interrupt blocking syscalls. */
1512 #else
1513 TranslationBlock *tb;
1514 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1516 tb = env->current_tb;
1517 /* if the cpu is currently executing code, we must unlink it and
1518 all the potentially executing TB */
1519 if (tb && !testandset(&interrupt_lock)) {
1520 env->current_tb = NULL;
1521 tb_reset_jump_recursive(tb);
1522 resetlock(&interrupt_lock);
1524 #endif
1527 /* mask must never be zero, except for A20 change call */
1528 void cpu_interrupt(CPUState *env, int mask)
1530 int old_mask;
1532 old_mask = env->interrupt_request;
1533 env->interrupt_request |= mask;
1535 if (use_icount) {
1536 env->icount_decr.u16.high = 0xffff;
1537 #ifndef CONFIG_USER_ONLY
1538 if (!can_do_io(env)
1539 && (mask & ~old_mask) != 0) {
1540 cpu_abort(env, "Raised interrupt while not in I/O function");
1542 #endif
1543 } else {
1544 cpu_unlink_tb(env);
1548 void cpu_reset_interrupt(CPUState *env, int mask)
1550 env->interrupt_request &= ~mask;
1553 void cpu_exit(CPUState *env)
1555 env->exit_request = 1;
1556 cpu_unlink_tb(env);
1559 const CPULogItem cpu_log_items[] = {
1560 { CPU_LOG_TB_OUT_ASM, "out_asm",
1561 "show generated host assembly code for each compiled TB" },
1562 { CPU_LOG_TB_IN_ASM, "in_asm",
1563 "show target assembly code for each compiled TB" },
1564 { CPU_LOG_TB_OP, "op",
1565 "show micro ops for each compiled TB" },
1566 { CPU_LOG_TB_OP_OPT, "op_opt",
1567 "show micro ops "
1568 #ifdef TARGET_I386
1569 "before eflags optimization and "
1570 #endif
1571 "after liveness analysis" },
1572 { CPU_LOG_INT, "int",
1573 "show interrupts/exceptions in short format" },
1574 { CPU_LOG_EXEC, "exec",
1575 "show trace before each executed TB (lots of logs)" },
1576 { CPU_LOG_TB_CPU, "cpu",
1577 "show CPU state before block translation" },
1578 #ifdef TARGET_I386
1579 { CPU_LOG_PCALL, "pcall",
1580 "show protected mode far calls/returns/exceptions" },
1581 { CPU_LOG_RESET, "cpu_reset",
1582 "show CPU state before CPU resets" },
1583 #endif
1584 #ifdef DEBUG_IOPORT
1585 { CPU_LOG_IOPORT, "ioport",
1586 "show all i/o ports accesses" },
1587 #endif
1588 { 0, NULL, NULL },
1591 static int cmp1(const char *s1, int n, const char *s2)
1593 if (strlen(s2) != n)
1594 return 0;
1595 return memcmp(s1, s2, n) == 0;
1598 /* takes a comma separated list of log masks. Return 0 if error. */
1599 int cpu_str_to_log_mask(const char *str)
1601 const CPULogItem *item;
1602 int mask;
1603 const char *p, *p1;
1605 p = str;
1606 mask = 0;
1607 for(;;) {
1608 p1 = strchr(p, ',');
1609 if (!p1)
1610 p1 = p + strlen(p);
1611 if(cmp1(p,p1-p,"all")) {
1612 for(item = cpu_log_items; item->mask != 0; item++) {
1613 mask |= item->mask;
1615 } else {
1616 for(item = cpu_log_items; item->mask != 0; item++) {
1617 if (cmp1(p, p1 - p, item->name))
1618 goto found;
1620 return 0;
1622 found:
1623 mask |= item->mask;
1624 if (*p1 != ',')
1625 break;
1626 p = p1 + 1;
1628 return mask;
1631 void cpu_abort(CPUState *env, const char *fmt, ...)
1633 va_list ap;
1634 va_list ap2;
1636 va_start(ap, fmt);
1637 va_copy(ap2, ap);
1638 fprintf(stderr, "qemu: fatal: ");
1639 vfprintf(stderr, fmt, ap);
1640 fprintf(stderr, "\n");
1641 #ifdef TARGET_I386
1642 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1643 #else
1644 cpu_dump_state(env, stderr, fprintf, 0);
1645 #endif
1646 if (qemu_log_enabled()) {
1647 qemu_log("qemu: fatal: ");
1648 qemu_log_vprintf(fmt, ap2);
1649 qemu_log("\n");
1650 #ifdef TARGET_I386
1651 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1652 #else
1653 log_cpu_state(env, 0);
1654 #endif
1655 qemu_log_flush();
1656 qemu_log_close();
1658 va_end(ap2);
1659 va_end(ap);
1660 abort();
1663 CPUState *cpu_copy(CPUState *env)
1665 CPUState *new_env = cpu_init(env->cpu_model_str);
1666 CPUState *next_cpu = new_env->next_cpu;
1667 int cpu_index = new_env->cpu_index;
1668 #if defined(TARGET_HAS_ICE)
1669 CPUBreakpoint *bp;
1670 CPUWatchpoint *wp;
1671 #endif
1673 memcpy(new_env, env, sizeof(CPUState));
1675 /* Preserve chaining and index. */
1676 new_env->next_cpu = next_cpu;
1677 new_env->cpu_index = cpu_index;
1679 /* Clone all break/watchpoints.
1680 Note: Once we support ptrace with hw-debug register access, make sure
1681 BP_CPU break/watchpoints are handled correctly on clone. */
1682 TAILQ_INIT(&env->breakpoints);
1683 TAILQ_INIT(&env->watchpoints);
1684 #if defined(TARGET_HAS_ICE)
1685 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1686 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1688 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1689 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1690 wp->flags, NULL);
1692 #endif
1694 return new_env;
1697 #if !defined(CONFIG_USER_ONLY)
1699 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1701 unsigned int i;
1703 /* Discard jump cache entries for any tb which might potentially
1704 overlap the flushed page. */
1705 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1706 memset (&env->tb_jmp_cache[i], 0,
1707 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1709 i = tb_jmp_cache_hash_page(addr);
1710 memset (&env->tb_jmp_cache[i], 0,
1711 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1714 /* NOTE: if flush_global is true, also flush global entries (not
1715 implemented yet) */
1716 void tlb_flush(CPUState *env, int flush_global)
1718 int i;
1720 #if defined(DEBUG_TLB)
1721 printf("tlb_flush:\n");
1722 #endif
1723 /* must reset current TB so that interrupts cannot modify the
1724 links while we are modifying them */
1725 env->current_tb = NULL;
1727 for(i = 0; i < CPU_TLB_SIZE; i++) {
1728 env->tlb_table[0][i].addr_read = -1;
1729 env->tlb_table[0][i].addr_write = -1;
1730 env->tlb_table[0][i].addr_code = -1;
1731 env->tlb_table[1][i].addr_read = -1;
1732 env->tlb_table[1][i].addr_write = -1;
1733 env->tlb_table[1][i].addr_code = -1;
1734 #if (NB_MMU_MODES >= 3)
1735 env->tlb_table[2][i].addr_read = -1;
1736 env->tlb_table[2][i].addr_write = -1;
1737 env->tlb_table[2][i].addr_code = -1;
1738 #if (NB_MMU_MODES == 4)
1739 env->tlb_table[3][i].addr_read = -1;
1740 env->tlb_table[3][i].addr_write = -1;
1741 env->tlb_table[3][i].addr_code = -1;
1742 #endif
1743 #endif
1746 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1748 #ifdef USE_KQEMU
1749 if (env->kqemu_enabled) {
1750 kqemu_flush(env, flush_global);
1752 #endif
1753 tlb_flush_count++;
1756 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1758 if (addr == (tlb_entry->addr_read &
1759 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1760 addr == (tlb_entry->addr_write &
1761 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1762 addr == (tlb_entry->addr_code &
1763 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1764 tlb_entry->addr_read = -1;
1765 tlb_entry->addr_write = -1;
1766 tlb_entry->addr_code = -1;
1770 void tlb_flush_page(CPUState *env, target_ulong addr)
1772 int i;
1774 #if defined(DEBUG_TLB)
1775 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1776 #endif
1777 /* must reset current TB so that interrupts cannot modify the
1778 links while we are modifying them */
1779 env->current_tb = NULL;
1781 addr &= TARGET_PAGE_MASK;
1782 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1783 tlb_flush_entry(&env->tlb_table[0][i], addr);
1784 tlb_flush_entry(&env->tlb_table[1][i], addr);
1785 #if (NB_MMU_MODES >= 3)
1786 tlb_flush_entry(&env->tlb_table[2][i], addr);
1787 #if (NB_MMU_MODES == 4)
1788 tlb_flush_entry(&env->tlb_table[3][i], addr);
1789 #endif
1790 #endif
1792 tlb_flush_jmp_cache(env, addr);
1794 #ifdef USE_KQEMU
1795 if (env->kqemu_enabled) {
1796 kqemu_flush_page(env, addr);
1798 #endif
1801 /* update the TLBs so that writes to code in the virtual page 'addr'
1802 can be detected */
1803 static void tlb_protect_code(ram_addr_t ram_addr)
1805 cpu_physical_memory_reset_dirty(ram_addr,
1806 ram_addr + TARGET_PAGE_SIZE,
1807 CODE_DIRTY_FLAG);
1810 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1811 tested for self modifying code */
1812 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1813 target_ulong vaddr)
1815 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1818 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1819 unsigned long start, unsigned long length)
1821 unsigned long addr;
1822 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1823 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1824 if ((addr - start) < length) {
1825 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1830 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1831 int dirty_flags)
1833 CPUState *env;
1834 unsigned long length, start1;
1835 int i, mask, len;
1836 uint8_t *p;
1838 start &= TARGET_PAGE_MASK;
1839 end = TARGET_PAGE_ALIGN(end);
1841 length = end - start;
1842 if (length == 0)
1843 return;
1844 len = length >> TARGET_PAGE_BITS;
1845 #ifdef USE_KQEMU
1846 /* XXX: should not depend on cpu context */
1847 env = first_cpu;
1848 if (env->kqemu_enabled) {
1849 ram_addr_t addr;
1850 addr = start;
1851 for(i = 0; i < len; i++) {
1852 kqemu_set_notdirty(env, addr);
1853 addr += TARGET_PAGE_SIZE;
1856 #endif
1857 mask = ~dirty_flags;
1858 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1859 for(i = 0; i < len; i++)
1860 p[i] &= mask;
1862 /* we modify the TLB cache so that the dirty bit will be set again
1863 when accessing the range */
1864 start1 = start + (unsigned long)phys_ram_base;
1865 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1866 for(i = 0; i < CPU_TLB_SIZE; i++)
1867 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
1868 for(i = 0; i < CPU_TLB_SIZE; i++)
1869 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
1870 #if (NB_MMU_MODES >= 3)
1871 for(i = 0; i < CPU_TLB_SIZE; i++)
1872 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1873 #if (NB_MMU_MODES == 4)
1874 for(i = 0; i < CPU_TLB_SIZE; i++)
1875 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1876 #endif
1877 #endif
1881 int cpu_physical_memory_set_dirty_tracking(int enable)
1883 in_migration = enable;
1884 return 0;
1887 int cpu_physical_memory_get_dirty_tracking(void)
1889 return in_migration;
1892 void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr)
1894 if (kvm_enabled())
1895 kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1898 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1900 ram_addr_t ram_addr;
1902 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1903 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
1904 tlb_entry->addend - (unsigned long)phys_ram_base;
1905 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1906 tlb_entry->addr_write |= TLB_NOTDIRTY;
1911 /* update the TLB according to the current state of the dirty bits */
1912 void cpu_tlb_update_dirty(CPUState *env)
1914 int i;
1915 for(i = 0; i < CPU_TLB_SIZE; i++)
1916 tlb_update_dirty(&env->tlb_table[0][i]);
1917 for(i = 0; i < CPU_TLB_SIZE; i++)
1918 tlb_update_dirty(&env->tlb_table[1][i]);
1919 #if (NB_MMU_MODES >= 3)
1920 for(i = 0; i < CPU_TLB_SIZE; i++)
1921 tlb_update_dirty(&env->tlb_table[2][i]);
1922 #if (NB_MMU_MODES == 4)
1923 for(i = 0; i < CPU_TLB_SIZE; i++)
1924 tlb_update_dirty(&env->tlb_table[3][i]);
1925 #endif
1926 #endif
1929 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1931 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1932 tlb_entry->addr_write = vaddr;
1935 /* update the TLB corresponding to virtual page vaddr
1936 so that it is no longer dirty */
1937 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1939 int i;
1941 vaddr &= TARGET_PAGE_MASK;
1942 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1943 tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
1944 tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
1945 #if (NB_MMU_MODES >= 3)
1946 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
1947 #if (NB_MMU_MODES == 4)
1948 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
1949 #endif
1950 #endif
1953 /* add a new TLB entry. At most one entry for a given virtual address
1954 is permitted. Return 0 if OK or 2 if the page could not be mapped
1955 (can only happen in non SOFTMMU mode for I/O pages or pages
1956 conflicting with the host address space). */
1957 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1958 target_phys_addr_t paddr, int prot,
1959 int mmu_idx, int is_softmmu)
1961 PhysPageDesc *p;
1962 unsigned long pd;
1963 unsigned int index;
1964 target_ulong address;
1965 target_ulong code_address;
1966 target_phys_addr_t addend;
1967 int ret;
1968 CPUTLBEntry *te;
1969 CPUWatchpoint *wp;
1970 target_phys_addr_t iotlb;
1972 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
1973 if (!p) {
1974 pd = IO_MEM_UNASSIGNED;
1975 } else {
1976 pd = p->phys_offset;
1978 #if defined(DEBUG_TLB)
1979 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1980 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
1981 #endif
1983 ret = 0;
1984 address = vaddr;
1985 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1986 /* IO memory case (romd handled later) */
1987 address |= TLB_MMIO;
1989 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1990 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1991 /* Normal RAM. */
1992 iotlb = pd & TARGET_PAGE_MASK;
1993 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
1994 iotlb |= IO_MEM_NOTDIRTY;
1995 else
1996 iotlb |= IO_MEM_ROM;
1997 } else {
1998 /* IO handlers are currently passed a phsical address.
1999 It would be nice to pass an offset from the base address
2000 of that region. This would avoid having to special case RAM,
2001 and avoid full address decoding in every device.
2002 We can't use the high bits of pd for this because
2003 IO_MEM_ROMD uses these as a ram address. */
2004 iotlb = (pd & ~TARGET_PAGE_MASK);
2005 if (p) {
2006 iotlb += p->region_offset;
2007 } else {
2008 iotlb += paddr;
2012 code_address = address;
2013 /* Make accesses to pages with watchpoints go via the
2014 watchpoint trap routines. */
2015 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
2016 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2017 iotlb = io_mem_watch + paddr;
2018 /* TODO: The memory case can be optimized by not trapping
2019 reads of pages with a write breakpoint. */
2020 address |= TLB_MMIO;
2024 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2025 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2026 te = &env->tlb_table[mmu_idx][index];
2027 te->addend = addend - vaddr;
2028 if (prot & PAGE_READ) {
2029 te->addr_read = address;
2030 } else {
2031 te->addr_read = -1;
2034 if (prot & PAGE_EXEC) {
2035 te->addr_code = code_address;
2036 } else {
2037 te->addr_code = -1;
2039 if (prot & PAGE_WRITE) {
2040 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2041 (pd & IO_MEM_ROMD)) {
2042 /* Write access calls the I/O callback. */
2043 te->addr_write = address | TLB_MMIO;
2044 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2045 !cpu_physical_memory_is_dirty(pd)) {
2046 te->addr_write = address | TLB_NOTDIRTY;
2047 } else {
2048 te->addr_write = address;
2050 } else {
2051 te->addr_write = -1;
2053 return ret;
2056 #else
2058 void tlb_flush(CPUState *env, int flush_global)
2062 void tlb_flush_page(CPUState *env, target_ulong addr)
2066 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2067 target_phys_addr_t paddr, int prot,
2068 int mmu_idx, int is_softmmu)
2070 return 0;
2073 /* dump memory mappings */
2074 void page_dump(FILE *f)
2076 unsigned long start, end;
2077 int i, j, prot, prot1;
2078 PageDesc *p;
2080 fprintf(f, "%-8s %-8s %-8s %s\n",
2081 "start", "end", "size", "prot");
2082 start = -1;
2083 end = -1;
2084 prot = 0;
2085 for(i = 0; i <= L1_SIZE; i++) {
2086 if (i < L1_SIZE)
2087 p = l1_map[i];
2088 else
2089 p = NULL;
2090 for(j = 0;j < L2_SIZE; j++) {
2091 if (!p)
2092 prot1 = 0;
2093 else
2094 prot1 = p[j].flags;
2095 if (prot1 != prot) {
2096 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2097 if (start != -1) {
2098 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2099 start, end, end - start,
2100 prot & PAGE_READ ? 'r' : '-',
2101 prot & PAGE_WRITE ? 'w' : '-',
2102 prot & PAGE_EXEC ? 'x' : '-');
2104 if (prot1 != 0)
2105 start = end;
2106 else
2107 start = -1;
2108 prot = prot1;
2110 if (!p)
2111 break;
2116 int page_get_flags(target_ulong address)
2118 PageDesc *p;
2120 p = page_find(address >> TARGET_PAGE_BITS);
2121 if (!p)
2122 return 0;
2123 return p->flags;
2126 /* modify the flags of a page and invalidate the code if
2127 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2128 depending on PAGE_WRITE */
2129 void page_set_flags(target_ulong start, target_ulong end, int flags)
2131 PageDesc *p;
2132 target_ulong addr;
2134 /* mmap_lock should already be held. */
2135 start = start & TARGET_PAGE_MASK;
2136 end = TARGET_PAGE_ALIGN(end);
2137 if (flags & PAGE_WRITE)
2138 flags |= PAGE_WRITE_ORG;
2139 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2140 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
2141 /* We may be called for host regions that are outside guest
2142 address space. */
2143 if (!p)
2144 return;
2145 /* if the write protection is set, then we invalidate the code
2146 inside */
2147 if (!(p->flags & PAGE_WRITE) &&
2148 (flags & PAGE_WRITE) &&
2149 p->first_tb) {
2150 tb_invalidate_phys_page(addr, 0, NULL);
2152 p->flags = flags;
2156 int page_check_range(target_ulong start, target_ulong len, int flags)
2158 PageDesc *p;
2159 target_ulong end;
2160 target_ulong addr;
2162 if (start + len < start)
2163 /* we've wrapped around */
2164 return -1;
2166 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2167 start = start & TARGET_PAGE_MASK;
2169 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2170 p = page_find(addr >> TARGET_PAGE_BITS);
2171 if( !p )
2172 return -1;
2173 if( !(p->flags & PAGE_VALID) )
2174 return -1;
2176 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2177 return -1;
2178 if (flags & PAGE_WRITE) {
2179 if (!(p->flags & PAGE_WRITE_ORG))
2180 return -1;
2181 /* unprotect the page if it was put read-only because it
2182 contains translated code */
2183 if (!(p->flags & PAGE_WRITE)) {
2184 if (!page_unprotect(addr, 0, NULL))
2185 return -1;
2187 return 0;
2190 return 0;
2193 /* called from signal handler: invalidate the code and unprotect the
2194 page. Return TRUE if the fault was succesfully handled. */
2195 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2197 unsigned int page_index, prot, pindex;
2198 PageDesc *p, *p1;
2199 target_ulong host_start, host_end, addr;
2201 /* Technically this isn't safe inside a signal handler. However we
2202 know this only ever happens in a synchronous SEGV handler, so in
2203 practice it seems to be ok. */
2204 mmap_lock();
2206 host_start = address & qemu_host_page_mask;
2207 page_index = host_start >> TARGET_PAGE_BITS;
2208 p1 = page_find(page_index);
2209 if (!p1) {
2210 mmap_unlock();
2211 return 0;
2213 host_end = host_start + qemu_host_page_size;
2214 p = p1;
2215 prot = 0;
2216 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2217 prot |= p->flags;
2218 p++;
2220 /* if the page was really writable, then we change its
2221 protection back to writable */
2222 if (prot & PAGE_WRITE_ORG) {
2223 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2224 if (!(p1[pindex].flags & PAGE_WRITE)) {
2225 mprotect((void *)g2h(host_start), qemu_host_page_size,
2226 (prot & PAGE_BITS) | PAGE_WRITE);
2227 p1[pindex].flags |= PAGE_WRITE;
2228 /* and since the content will be modified, we must invalidate
2229 the corresponding translated code. */
2230 tb_invalidate_phys_page(address, pc, puc);
2231 #ifdef DEBUG_TB_CHECK
2232 tb_invalidate_check(address);
2233 #endif
2234 mmap_unlock();
2235 return 1;
2238 mmap_unlock();
2239 return 0;
2242 static inline void tlb_set_dirty(CPUState *env,
2243 unsigned long addr, target_ulong vaddr)
2246 #endif /* defined(CONFIG_USER_ONLY) */
2248 #if !defined(CONFIG_USER_ONLY)
2250 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2251 ram_addr_t memory, ram_addr_t region_offset);
2252 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2253 ram_addr_t orig_memory, ram_addr_t region_offset);
2254 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2255 need_subpage) \
2256 do { \
2257 if (addr > start_addr) \
2258 start_addr2 = 0; \
2259 else { \
2260 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2261 if (start_addr2 > 0) \
2262 need_subpage = 1; \
2265 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2266 end_addr2 = TARGET_PAGE_SIZE - 1; \
2267 else { \
2268 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2269 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2270 need_subpage = 1; \
2272 } while (0)
2274 /* register physical memory. 'size' must be a multiple of the target
2275 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2276 io memory page. The address used when calling the IO function is
2277 the offset from the start of the region, plus region_offset. Both
2278 start_region and regon_offset are rounded down to a page boundary
2279 before calculating this offset. This should not be a problem unless
2280 the low bits of start_addr and region_offset differ. */
2281 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2282 ram_addr_t size,
2283 ram_addr_t phys_offset,
2284 ram_addr_t region_offset)
2286 target_phys_addr_t addr, end_addr;
2287 PhysPageDesc *p;
2288 CPUState *env;
2289 ram_addr_t orig_size = size;
2290 void *subpage;
2292 #ifdef USE_KQEMU
2293 /* XXX: should not depend on cpu context */
2294 env = first_cpu;
2295 if (env->kqemu_enabled) {
2296 kqemu_set_phys_mem(start_addr, size, phys_offset);
2298 #endif
2299 if (kvm_enabled())
2300 kvm_set_phys_mem(start_addr, size, phys_offset);
2302 if (phys_offset == IO_MEM_UNASSIGNED) {
2303 region_offset = start_addr;
2305 region_offset &= TARGET_PAGE_MASK;
2306 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2307 end_addr = start_addr + (target_phys_addr_t)size;
2308 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2309 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2310 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2311 ram_addr_t orig_memory = p->phys_offset;
2312 target_phys_addr_t start_addr2, end_addr2;
2313 int need_subpage = 0;
2315 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2316 need_subpage);
2317 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2318 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2319 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2320 &p->phys_offset, orig_memory,
2321 p->region_offset);
2322 } else {
2323 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2324 >> IO_MEM_SHIFT];
2326 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2327 region_offset);
2328 p->region_offset = 0;
2329 } else {
2330 p->phys_offset = phys_offset;
2331 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2332 (phys_offset & IO_MEM_ROMD))
2333 phys_offset += TARGET_PAGE_SIZE;
2335 } else {
2336 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2337 p->phys_offset = phys_offset;
2338 p->region_offset = region_offset;
2339 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2340 (phys_offset & IO_MEM_ROMD)) {
2341 phys_offset += TARGET_PAGE_SIZE;
2342 } else {
2343 target_phys_addr_t start_addr2, end_addr2;
2344 int need_subpage = 0;
2346 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2347 end_addr2, need_subpage);
2349 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2350 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2351 &p->phys_offset, IO_MEM_UNASSIGNED,
2352 addr & TARGET_PAGE_MASK);
2353 subpage_register(subpage, start_addr2, end_addr2,
2354 phys_offset, region_offset);
2355 p->region_offset = 0;
2359 region_offset += TARGET_PAGE_SIZE;
2362 /* since each CPU stores ram addresses in its TLB cache, we must
2363 reset the modified entries */
2364 /* XXX: slow ! */
2365 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2366 tlb_flush(env, 1);
2370 /* XXX: temporary until new memory mapping API */
2371 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2373 PhysPageDesc *p;
2375 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2376 if (!p)
2377 return IO_MEM_UNASSIGNED;
2378 return p->phys_offset;
2381 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2383 if (kvm_enabled())
2384 kvm_coalesce_mmio_region(addr, size);
2387 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2389 if (kvm_enabled())
2390 kvm_uncoalesce_mmio_region(addr, size);
2393 /* XXX: better than nothing */
2394 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2396 ram_addr_t addr;
2397 if ((phys_ram_alloc_offset + size) > phys_ram_size) {
2398 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
2399 (uint64_t)size, (uint64_t)phys_ram_size);
2400 abort();
2402 addr = phys_ram_alloc_offset;
2403 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2404 return addr;
2407 void qemu_ram_free(ram_addr_t addr)
2411 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2413 #ifdef DEBUG_UNASSIGNED
2414 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2415 #endif
2416 #if defined(TARGET_SPARC)
2417 do_unassigned_access(addr, 0, 0, 0, 1);
2418 #endif
2419 return 0;
2422 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2424 #ifdef DEBUG_UNASSIGNED
2425 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2426 #endif
2427 #if defined(TARGET_SPARC)
2428 do_unassigned_access(addr, 0, 0, 0, 2);
2429 #endif
2430 return 0;
2433 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2435 #ifdef DEBUG_UNASSIGNED
2436 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2437 #endif
2438 #if defined(TARGET_SPARC)
2439 do_unassigned_access(addr, 0, 0, 0, 4);
2440 #endif
2441 return 0;
2444 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2446 #ifdef DEBUG_UNASSIGNED
2447 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2448 #endif
2449 #if defined(TARGET_SPARC)
2450 do_unassigned_access(addr, 1, 0, 0, 1);
2451 #endif
2454 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2456 #ifdef DEBUG_UNASSIGNED
2457 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2458 #endif
2459 #if defined(TARGET_SPARC)
2460 do_unassigned_access(addr, 1, 0, 0, 2);
2461 #endif
2464 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2466 #ifdef DEBUG_UNASSIGNED
2467 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2468 #endif
2469 #if defined(TARGET_SPARC)
2470 do_unassigned_access(addr, 1, 0, 0, 4);
2471 #endif
2474 static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2475 unassigned_mem_readb,
2476 unassigned_mem_readw,
2477 unassigned_mem_readl,
2480 static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2481 unassigned_mem_writeb,
2482 unassigned_mem_writew,
2483 unassigned_mem_writel,
2486 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2487 uint32_t val)
2489 int dirty_flags;
2490 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2491 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2492 #if !defined(CONFIG_USER_ONLY)
2493 tb_invalidate_phys_page_fast(ram_addr, 1);
2494 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2495 #endif
2497 stb_p(phys_ram_base + ram_addr, val);
2498 #ifdef USE_KQEMU
2499 if (cpu_single_env->kqemu_enabled &&
2500 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2501 kqemu_modify_page(cpu_single_env, ram_addr);
2502 #endif
2503 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2504 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2505 /* we remove the notdirty callback only if the code has been
2506 flushed */
2507 if (dirty_flags == 0xff)
2508 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2511 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2512 uint32_t val)
2514 int dirty_flags;
2515 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2516 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2517 #if !defined(CONFIG_USER_ONLY)
2518 tb_invalidate_phys_page_fast(ram_addr, 2);
2519 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2520 #endif
2522 stw_p(phys_ram_base + ram_addr, val);
2523 #ifdef USE_KQEMU
2524 if (cpu_single_env->kqemu_enabled &&
2525 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2526 kqemu_modify_page(cpu_single_env, ram_addr);
2527 #endif
2528 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2529 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2530 /* we remove the notdirty callback only if the code has been
2531 flushed */
2532 if (dirty_flags == 0xff)
2533 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2536 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2537 uint32_t val)
2539 int dirty_flags;
2540 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2541 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2542 #if !defined(CONFIG_USER_ONLY)
2543 tb_invalidate_phys_page_fast(ram_addr, 4);
2544 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2545 #endif
2547 stl_p(phys_ram_base + ram_addr, val);
2548 #ifdef USE_KQEMU
2549 if (cpu_single_env->kqemu_enabled &&
2550 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2551 kqemu_modify_page(cpu_single_env, ram_addr);
2552 #endif
2553 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2554 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2555 /* we remove the notdirty callback only if the code has been
2556 flushed */
2557 if (dirty_flags == 0xff)
2558 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2561 static CPUReadMemoryFunc *error_mem_read[3] = {
2562 NULL, /* never used */
2563 NULL, /* never used */
2564 NULL, /* never used */
2567 static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2568 notdirty_mem_writeb,
2569 notdirty_mem_writew,
2570 notdirty_mem_writel,
2573 /* Generate a debug exception if a watchpoint has been hit. */
2574 static void check_watchpoint(int offset, int len_mask, int flags)
2576 CPUState *env = cpu_single_env;
2577 target_ulong pc, cs_base;
2578 TranslationBlock *tb;
2579 target_ulong vaddr;
2580 CPUWatchpoint *wp;
2581 int cpu_flags;
2583 if (env->watchpoint_hit) {
2584 /* We re-entered the check after replacing the TB. Now raise
2585 * the debug interrupt so that is will trigger after the
2586 * current instruction. */
2587 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2588 return;
2590 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2591 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
2592 if ((vaddr == (wp->vaddr & len_mask) ||
2593 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2594 wp->flags |= BP_WATCHPOINT_HIT;
2595 if (!env->watchpoint_hit) {
2596 env->watchpoint_hit = wp;
2597 tb = tb_find_pc(env->mem_io_pc);
2598 if (!tb) {
2599 cpu_abort(env, "check_watchpoint: could not find TB for "
2600 "pc=%p", (void *)env->mem_io_pc);
2602 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2603 tb_phys_invalidate(tb, -1);
2604 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2605 env->exception_index = EXCP_DEBUG;
2606 } else {
2607 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2608 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2610 cpu_resume_from_signal(env, NULL);
2612 } else {
2613 wp->flags &= ~BP_WATCHPOINT_HIT;
2618 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2619 so these check for a hit then pass through to the normal out-of-line
2620 phys routines. */
2621 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2623 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
2624 return ldub_phys(addr);
2627 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2629 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
2630 return lduw_phys(addr);
2633 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2635 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
2636 return ldl_phys(addr);
2639 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2640 uint32_t val)
2642 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
2643 stb_phys(addr, val);
2646 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2647 uint32_t val)
2649 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
2650 stw_phys(addr, val);
2653 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2654 uint32_t val)
2656 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
2657 stl_phys(addr, val);
2660 static CPUReadMemoryFunc *watch_mem_read[3] = {
2661 watch_mem_readb,
2662 watch_mem_readw,
2663 watch_mem_readl,
2666 static CPUWriteMemoryFunc *watch_mem_write[3] = {
2667 watch_mem_writeb,
2668 watch_mem_writew,
2669 watch_mem_writel,
2672 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2673 unsigned int len)
2675 uint32_t ret;
2676 unsigned int idx;
2678 idx = SUBPAGE_IDX(addr);
2679 #if defined(DEBUG_SUBPAGE)
2680 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2681 mmio, len, addr, idx);
2682 #endif
2683 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2684 addr + mmio->region_offset[idx][0][len]);
2686 return ret;
2689 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2690 uint32_t value, unsigned int len)
2692 unsigned int idx;
2694 idx = SUBPAGE_IDX(addr);
2695 #if defined(DEBUG_SUBPAGE)
2696 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2697 mmio, len, addr, idx, value);
2698 #endif
2699 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2700 addr + mmio->region_offset[idx][1][len],
2701 value);
2704 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2706 #if defined(DEBUG_SUBPAGE)
2707 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2708 #endif
2710 return subpage_readlen(opaque, addr, 0);
2713 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2714 uint32_t value)
2716 #if defined(DEBUG_SUBPAGE)
2717 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2718 #endif
2719 subpage_writelen(opaque, addr, value, 0);
2722 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2724 #if defined(DEBUG_SUBPAGE)
2725 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2726 #endif
2728 return subpage_readlen(opaque, addr, 1);
2731 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2732 uint32_t value)
2734 #if defined(DEBUG_SUBPAGE)
2735 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2736 #endif
2737 subpage_writelen(opaque, addr, value, 1);
2740 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2742 #if defined(DEBUG_SUBPAGE)
2743 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2744 #endif
2746 return subpage_readlen(opaque, addr, 2);
2749 static void subpage_writel (void *opaque,
2750 target_phys_addr_t addr, uint32_t value)
2752 #if defined(DEBUG_SUBPAGE)
2753 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2754 #endif
2755 subpage_writelen(opaque, addr, value, 2);
2758 static CPUReadMemoryFunc *subpage_read[] = {
2759 &subpage_readb,
2760 &subpage_readw,
2761 &subpage_readl,
2764 static CPUWriteMemoryFunc *subpage_write[] = {
2765 &subpage_writeb,
2766 &subpage_writew,
2767 &subpage_writel,
2770 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2771 ram_addr_t memory, ram_addr_t region_offset)
2773 int idx, eidx;
2774 unsigned int i;
2776 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2777 return -1;
2778 idx = SUBPAGE_IDX(start);
2779 eidx = SUBPAGE_IDX(end);
2780 #if defined(DEBUG_SUBPAGE)
2781 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2782 mmio, start, end, idx, eidx, memory);
2783 #endif
2784 memory >>= IO_MEM_SHIFT;
2785 for (; idx <= eidx; idx++) {
2786 for (i = 0; i < 4; i++) {
2787 if (io_mem_read[memory][i]) {
2788 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2789 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2790 mmio->region_offset[idx][0][i] = region_offset;
2792 if (io_mem_write[memory][i]) {
2793 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2794 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2795 mmio->region_offset[idx][1][i] = region_offset;
2800 return 0;
2803 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2804 ram_addr_t orig_memory, ram_addr_t region_offset)
2806 subpage_t *mmio;
2807 int subpage_memory;
2809 mmio = qemu_mallocz(sizeof(subpage_t));
2811 mmio->base = base;
2812 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2813 #if defined(DEBUG_SUBPAGE)
2814 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2815 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2816 #endif
2817 *phys = subpage_memory | IO_MEM_SUBPAGE;
2818 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
2819 region_offset);
2821 return mmio;
2824 static int get_free_io_mem_idx(void)
2826 int i;
2828 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
2829 if (!io_mem_used[i]) {
2830 io_mem_used[i] = 1;
2831 return i;
2834 return -1;
2837 static void io_mem_init(void)
2839 int i;
2841 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
2842 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
2843 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
2844 for (i=0; i<5; i++)
2845 io_mem_used[i] = 1;
2847 io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
2848 watch_mem_write, NULL);
2849 /* alloc dirty bits array */
2850 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
2851 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
2854 /* mem_read and mem_write are arrays of functions containing the
2855 function to access byte (index 0), word (index 1) and dword (index
2856 2). Functions can be omitted with a NULL function pointer. The
2857 registered functions may be modified dynamically later.
2858 If io_index is non zero, the corresponding io zone is
2859 modified. If it is zero, a new io zone is allocated. The return
2860 value can be used with cpu_register_physical_memory(). (-1) is
2861 returned if error. */
2862 int cpu_register_io_memory(int io_index,
2863 CPUReadMemoryFunc **mem_read,
2864 CPUWriteMemoryFunc **mem_write,
2865 void *opaque)
2867 int i, subwidth = 0;
2869 if (io_index <= 0) {
2870 io_index = get_free_io_mem_idx();
2871 if (io_index == -1)
2872 return io_index;
2873 } else {
2874 if (io_index >= IO_MEM_NB_ENTRIES)
2875 return -1;
2878 for(i = 0;i < 3; i++) {
2879 if (!mem_read[i] || !mem_write[i])
2880 subwidth = IO_MEM_SUBWIDTH;
2881 io_mem_read[io_index][i] = mem_read[i];
2882 io_mem_write[io_index][i] = mem_write[i];
2884 io_mem_opaque[io_index] = opaque;
2885 return (io_index << IO_MEM_SHIFT) | subwidth;
2888 void cpu_unregister_io_memory(int io_table_address)
2890 int i;
2891 int io_index = io_table_address >> IO_MEM_SHIFT;
2893 for (i=0;i < 3; i++) {
2894 io_mem_read[io_index][i] = unassigned_mem_read[i];
2895 io_mem_write[io_index][i] = unassigned_mem_write[i];
2897 io_mem_opaque[io_index] = NULL;
2898 io_mem_used[io_index] = 0;
2901 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2903 return io_mem_write[io_index >> IO_MEM_SHIFT];
2906 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2908 return io_mem_read[io_index >> IO_MEM_SHIFT];
2911 #endif /* !defined(CONFIG_USER_ONLY) */
2913 /* physical memory access (slow version, mainly for debug) */
2914 #if defined(CONFIG_USER_ONLY)
2915 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2916 int len, int is_write)
2918 int l, flags;
2919 target_ulong page;
2920 void * p;
2922 while (len > 0) {
2923 page = addr & TARGET_PAGE_MASK;
2924 l = (page + TARGET_PAGE_SIZE) - addr;
2925 if (l > len)
2926 l = len;
2927 flags = page_get_flags(page);
2928 if (!(flags & PAGE_VALID))
2929 return;
2930 if (is_write) {
2931 if (!(flags & PAGE_WRITE))
2932 return;
2933 /* XXX: this code should not depend on lock_user */
2934 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2935 /* FIXME - should this return an error rather than just fail? */
2936 return;
2937 memcpy(p, buf, l);
2938 unlock_user(p, addr, l);
2939 } else {
2940 if (!(flags & PAGE_READ))
2941 return;
2942 /* XXX: this code should not depend on lock_user */
2943 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2944 /* FIXME - should this return an error rather than just fail? */
2945 return;
2946 memcpy(buf, p, l);
2947 unlock_user(p, addr, 0);
2949 len -= l;
2950 buf += l;
2951 addr += l;
2955 #else
2956 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2957 int len, int is_write)
2959 int l, io_index;
2960 uint8_t *ptr;
2961 uint32_t val;
2962 target_phys_addr_t page;
2963 unsigned long pd;
2964 PhysPageDesc *p;
2966 while (len > 0) {
2967 page = addr & TARGET_PAGE_MASK;
2968 l = (page + TARGET_PAGE_SIZE) - addr;
2969 if (l > len)
2970 l = len;
2971 p = phys_page_find(page >> TARGET_PAGE_BITS);
2972 if (!p) {
2973 pd = IO_MEM_UNASSIGNED;
2974 } else {
2975 pd = p->phys_offset;
2978 if (is_write) {
2979 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2980 target_phys_addr_t addr1 = addr;
2981 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2982 if (p)
2983 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
2984 /* XXX: could force cpu_single_env to NULL to avoid
2985 potential bugs */
2986 if (l >= 4 && ((addr1 & 3) == 0)) {
2987 /* 32 bit write access */
2988 val = ldl_p(buf);
2989 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
2990 l = 4;
2991 } else if (l >= 2 && ((addr1 & 1) == 0)) {
2992 /* 16 bit write access */
2993 val = lduw_p(buf);
2994 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
2995 l = 2;
2996 } else {
2997 /* 8 bit write access */
2998 val = ldub_p(buf);
2999 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3000 l = 1;
3002 } else {
3003 unsigned long addr1;
3004 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3005 /* RAM case */
3006 ptr = phys_ram_base + addr1;
3007 memcpy(ptr, buf, l);
3008 if (!cpu_physical_memory_is_dirty(addr1)) {
3009 /* invalidate code */
3010 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3011 /* set dirty bit */
3012 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3013 (0xff & ~CODE_DIRTY_FLAG);
3016 } else {
3017 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3018 !(pd & IO_MEM_ROMD)) {
3019 target_phys_addr_t addr1 = addr;
3020 /* I/O case */
3021 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3022 if (p)
3023 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3024 if (l >= 4 && ((addr1 & 3) == 0)) {
3025 /* 32 bit read access */
3026 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3027 stl_p(buf, val);
3028 l = 4;
3029 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3030 /* 16 bit read access */
3031 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3032 stw_p(buf, val);
3033 l = 2;
3034 } else {
3035 /* 8 bit read access */
3036 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3037 stb_p(buf, val);
3038 l = 1;
3040 } else {
3041 /* RAM case */
3042 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3043 (addr & ~TARGET_PAGE_MASK);
3044 memcpy(buf, ptr, l);
3047 len -= l;
3048 buf += l;
3049 addr += l;
3053 /* used for ROM loading : can write in RAM and ROM */
3054 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3055 const uint8_t *buf, int len)
3057 int l;
3058 uint8_t *ptr;
3059 target_phys_addr_t page;
3060 unsigned long pd;
3061 PhysPageDesc *p;
3063 while (len > 0) {
3064 page = addr & TARGET_PAGE_MASK;
3065 l = (page + TARGET_PAGE_SIZE) - addr;
3066 if (l > len)
3067 l = len;
3068 p = phys_page_find(page >> TARGET_PAGE_BITS);
3069 if (!p) {
3070 pd = IO_MEM_UNASSIGNED;
3071 } else {
3072 pd = p->phys_offset;
3075 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3076 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3077 !(pd & IO_MEM_ROMD)) {
3078 /* do nothing */
3079 } else {
3080 unsigned long addr1;
3081 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3082 /* ROM/RAM case */
3083 ptr = phys_ram_base + addr1;
3084 memcpy(ptr, buf, l);
3086 len -= l;
3087 buf += l;
3088 addr += l;
3092 typedef struct {
3093 void *buffer;
3094 target_phys_addr_t addr;
3095 target_phys_addr_t len;
3096 } BounceBuffer;
3098 static BounceBuffer bounce;
3100 typedef struct MapClient {
3101 void *opaque;
3102 void (*callback)(void *opaque);
3103 LIST_ENTRY(MapClient) link;
3104 } MapClient;
3106 static LIST_HEAD(map_client_list, MapClient) map_client_list
3107 = LIST_HEAD_INITIALIZER(map_client_list);
3109 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3111 MapClient *client = qemu_malloc(sizeof(*client));
3113 client->opaque = opaque;
3114 client->callback = callback;
3115 LIST_INSERT_HEAD(&map_client_list, client, link);
3116 return client;
3119 void cpu_unregister_map_client(void *_client)
3121 MapClient *client = (MapClient *)_client;
3123 LIST_REMOVE(client, link);
3126 static void cpu_notify_map_clients(void)
3128 MapClient *client;
3130 while (!LIST_EMPTY(&map_client_list)) {
3131 client = LIST_FIRST(&map_client_list);
3132 client->callback(client->opaque);
3133 LIST_REMOVE(client, link);
3137 /* Map a physical memory region into a host virtual address.
3138 * May map a subset of the requested range, given by and returned in *plen.
3139 * May return NULL if resources needed to perform the mapping are exhausted.
3140 * Use only for reads OR writes - not for read-modify-write operations.
3141 * Use cpu_register_map_client() to know when retrying the map operation is
3142 * likely to succeed.
3144 void *cpu_physical_memory_map(target_phys_addr_t addr,
3145 target_phys_addr_t *plen,
3146 int is_write)
3148 target_phys_addr_t len = *plen;
3149 target_phys_addr_t done = 0;
3150 int l;
3151 uint8_t *ret = NULL;
3152 uint8_t *ptr;
3153 target_phys_addr_t page;
3154 unsigned long pd;
3155 PhysPageDesc *p;
3156 unsigned long addr1;
3158 while (len > 0) {
3159 page = addr & TARGET_PAGE_MASK;
3160 l = (page + TARGET_PAGE_SIZE) - addr;
3161 if (l > len)
3162 l = len;
3163 p = phys_page_find(page >> TARGET_PAGE_BITS);
3164 if (!p) {
3165 pd = IO_MEM_UNASSIGNED;
3166 } else {
3167 pd = p->phys_offset;
3170 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3171 if (done || bounce.buffer) {
3172 break;
3174 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3175 bounce.addr = addr;
3176 bounce.len = l;
3177 if (!is_write) {
3178 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3180 ptr = bounce.buffer;
3181 } else {
3182 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3183 ptr = phys_ram_base + addr1;
3185 if (!done) {
3186 ret = ptr;
3187 } else if (ret + done != ptr) {
3188 break;
3191 len -= l;
3192 addr += l;
3193 done += l;
3195 *plen = done;
3196 return ret;
3199 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3200 * Will also mark the memory as dirty if is_write == 1. access_len gives
3201 * the amount of memory that was actually read or written by the caller.
3203 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3204 int is_write, target_phys_addr_t access_len)
3206 if (buffer != bounce.buffer) {
3207 if (is_write) {
3208 unsigned long addr1 = (uint8_t *)buffer - phys_ram_base;
3209 while (access_len) {
3210 unsigned l;
3211 l = TARGET_PAGE_SIZE;
3212 if (l > access_len)
3213 l = access_len;
3214 if (!cpu_physical_memory_is_dirty(addr1)) {
3215 /* invalidate code */
3216 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3217 /* set dirty bit */
3218 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3219 (0xff & ~CODE_DIRTY_FLAG);
3221 addr1 += l;
3222 access_len -= l;
3225 return;
3227 if (is_write) {
3228 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3230 qemu_free(bounce.buffer);
3231 bounce.buffer = NULL;
3232 cpu_notify_map_clients();
3235 /* warning: addr must be aligned */
3236 uint32_t ldl_phys(target_phys_addr_t addr)
3238 int io_index;
3239 uint8_t *ptr;
3240 uint32_t val;
3241 unsigned long pd;
3242 PhysPageDesc *p;
3244 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3245 if (!p) {
3246 pd = IO_MEM_UNASSIGNED;
3247 } else {
3248 pd = p->phys_offset;
3251 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3252 !(pd & IO_MEM_ROMD)) {
3253 /* I/O case */
3254 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3255 if (p)
3256 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3257 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3258 } else {
3259 /* RAM case */
3260 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3261 (addr & ~TARGET_PAGE_MASK);
3262 val = ldl_p(ptr);
3264 return val;
3267 /* warning: addr must be aligned */
3268 uint64_t ldq_phys(target_phys_addr_t addr)
3270 int io_index;
3271 uint8_t *ptr;
3272 uint64_t val;
3273 unsigned long pd;
3274 PhysPageDesc *p;
3276 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3277 if (!p) {
3278 pd = IO_MEM_UNASSIGNED;
3279 } else {
3280 pd = p->phys_offset;
3283 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3284 !(pd & IO_MEM_ROMD)) {
3285 /* I/O case */
3286 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3287 if (p)
3288 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3289 #ifdef TARGET_WORDS_BIGENDIAN
3290 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3291 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3292 #else
3293 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3294 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3295 #endif
3296 } else {
3297 /* RAM case */
3298 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3299 (addr & ~TARGET_PAGE_MASK);
3300 val = ldq_p(ptr);
3302 return val;
3305 /* XXX: optimize */
3306 uint32_t ldub_phys(target_phys_addr_t addr)
3308 uint8_t val;
3309 cpu_physical_memory_read(addr, &val, 1);
3310 return val;
3313 /* XXX: optimize */
3314 uint32_t lduw_phys(target_phys_addr_t addr)
3316 uint16_t val;
3317 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3318 return tswap16(val);
3321 /* warning: addr must be aligned. The ram page is not masked as dirty
3322 and the code inside is not invalidated. It is useful if the dirty
3323 bits are used to track modified PTEs */
3324 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3326 int io_index;
3327 uint8_t *ptr;
3328 unsigned long pd;
3329 PhysPageDesc *p;
3331 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3332 if (!p) {
3333 pd = IO_MEM_UNASSIGNED;
3334 } else {
3335 pd = p->phys_offset;
3338 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3339 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3340 if (p)
3341 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3342 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3343 } else {
3344 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3345 ptr = phys_ram_base + addr1;
3346 stl_p(ptr, val);
3348 if (unlikely(in_migration)) {
3349 if (!cpu_physical_memory_is_dirty(addr1)) {
3350 /* invalidate code */
3351 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3352 /* set dirty bit */
3353 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3354 (0xff & ~CODE_DIRTY_FLAG);
3360 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3362 int io_index;
3363 uint8_t *ptr;
3364 unsigned long pd;
3365 PhysPageDesc *p;
3367 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3368 if (!p) {
3369 pd = IO_MEM_UNASSIGNED;
3370 } else {
3371 pd = p->phys_offset;
3374 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3375 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3376 if (p)
3377 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3378 #ifdef TARGET_WORDS_BIGENDIAN
3379 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3380 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3381 #else
3382 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3383 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3384 #endif
3385 } else {
3386 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3387 (addr & ~TARGET_PAGE_MASK);
3388 stq_p(ptr, val);
3392 /* warning: addr must be aligned */
3393 void stl_phys(target_phys_addr_t addr, uint32_t val)
3395 int io_index;
3396 uint8_t *ptr;
3397 unsigned long pd;
3398 PhysPageDesc *p;
3400 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3401 if (!p) {
3402 pd = IO_MEM_UNASSIGNED;
3403 } else {
3404 pd = p->phys_offset;
3407 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3408 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3409 if (p)
3410 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3411 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3412 } else {
3413 unsigned long addr1;
3414 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3415 /* RAM case */
3416 ptr = phys_ram_base + addr1;
3417 stl_p(ptr, val);
3418 if (!cpu_physical_memory_is_dirty(addr1)) {
3419 /* invalidate code */
3420 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3421 /* set dirty bit */
3422 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3423 (0xff & ~CODE_DIRTY_FLAG);
3428 /* XXX: optimize */
3429 void stb_phys(target_phys_addr_t addr, uint32_t val)
3431 uint8_t v = val;
3432 cpu_physical_memory_write(addr, &v, 1);
3435 /* XXX: optimize */
3436 void stw_phys(target_phys_addr_t addr, uint32_t val)
3438 uint16_t v = tswap16(val);
3439 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3442 /* XXX: optimize */
3443 void stq_phys(target_phys_addr_t addr, uint64_t val)
3445 val = tswap64(val);
3446 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3449 #endif
3451 /* virtual memory access for debug */
3452 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3453 uint8_t *buf, int len, int is_write)
3455 int l;
3456 target_phys_addr_t phys_addr;
3457 target_ulong page;
3459 while (len > 0) {
3460 page = addr & TARGET_PAGE_MASK;
3461 phys_addr = cpu_get_phys_page_debug(env, page);
3462 /* if no physical page mapped, return an error */
3463 if (phys_addr == -1)
3464 return -1;
3465 l = (page + TARGET_PAGE_SIZE) - addr;
3466 if (l > len)
3467 l = len;
3468 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
3469 buf, l, is_write);
3470 len -= l;
3471 buf += l;
3472 addr += l;
3474 return 0;
3477 /* in deterministic execution mode, instructions doing device I/Os
3478 must be at the end of the TB */
3479 void cpu_io_recompile(CPUState *env, void *retaddr)
3481 TranslationBlock *tb;
3482 uint32_t n, cflags;
3483 target_ulong pc, cs_base;
3484 uint64_t flags;
3486 tb = tb_find_pc((unsigned long)retaddr);
3487 if (!tb) {
3488 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3489 retaddr);
3491 n = env->icount_decr.u16.low + tb->icount;
3492 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3493 /* Calculate how many instructions had been executed before the fault
3494 occurred. */
3495 n = n - env->icount_decr.u16.low;
3496 /* Generate a new TB ending on the I/O insn. */
3497 n++;
3498 /* On MIPS and SH, delay slot instructions can only be restarted if
3499 they were already the first instruction in the TB. If this is not
3500 the first instruction in a TB then re-execute the preceding
3501 branch. */
3502 #if defined(TARGET_MIPS)
3503 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3504 env->active_tc.PC -= 4;
3505 env->icount_decr.u16.low++;
3506 env->hflags &= ~MIPS_HFLAG_BMASK;
3508 #elif defined(TARGET_SH4)
3509 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3510 && n > 1) {
3511 env->pc -= 2;
3512 env->icount_decr.u16.low++;
3513 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3515 #endif
3516 /* This should never happen. */
3517 if (n > CF_COUNT_MASK)
3518 cpu_abort(env, "TB too big during recompile");
3520 cflags = n | CF_LAST_IO;
3521 pc = tb->pc;
3522 cs_base = tb->cs_base;
3523 flags = tb->flags;
3524 tb_phys_invalidate(tb, -1);
3525 /* FIXME: In theory this could raise an exception. In practice
3526 we have already translated the block once so it's probably ok. */
3527 tb_gen_code(env, pc, cs_base, flags, cflags);
3528 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3529 the first in the TB) then we end up generating a whole new TB and
3530 repeating the fault, which is horribly inefficient.
3531 Better would be to execute just this insn uncached, or generate a
3532 second new TB. */
3533 cpu_resume_from_signal(env, NULL);
3536 void dump_exec_info(FILE *f,
3537 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3539 int i, target_code_size, max_target_code_size;
3540 int direct_jmp_count, direct_jmp2_count, cross_page;
3541 TranslationBlock *tb;
3543 target_code_size = 0;
3544 max_target_code_size = 0;
3545 cross_page = 0;
3546 direct_jmp_count = 0;
3547 direct_jmp2_count = 0;
3548 for(i = 0; i < nb_tbs; i++) {
3549 tb = &tbs[i];
3550 target_code_size += tb->size;
3551 if (tb->size > max_target_code_size)
3552 max_target_code_size = tb->size;
3553 if (tb->page_addr[1] != -1)
3554 cross_page++;
3555 if (tb->tb_next_offset[0] != 0xffff) {
3556 direct_jmp_count++;
3557 if (tb->tb_next_offset[1] != 0xffff) {
3558 direct_jmp2_count++;
3562 /* XXX: avoid using doubles ? */
3563 cpu_fprintf(f, "Translation buffer state:\n");
3564 cpu_fprintf(f, "gen code size %ld/%ld\n",
3565 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3566 cpu_fprintf(f, "TB count %d/%d\n",
3567 nb_tbs, code_gen_max_blocks);
3568 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3569 nb_tbs ? target_code_size / nb_tbs : 0,
3570 max_target_code_size);
3571 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3572 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3573 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3574 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3575 cross_page,
3576 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3577 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3578 direct_jmp_count,
3579 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3580 direct_jmp2_count,
3581 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3582 cpu_fprintf(f, "\nStatistics:\n");
3583 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3584 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3585 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3586 tcg_dump_info(f, cpu_fprintf);
3589 #if !defined(CONFIG_USER_ONLY)
3591 #define MMUSUFFIX _cmmu
3592 #define GETPC() NULL
3593 #define env cpu_single_env
3594 #define SOFTMMU_CODE_ACCESS
3596 #define SHIFT 0
3597 #include "softmmu_template.h"
3599 #define SHIFT 1
3600 #include "softmmu_template.h"
3602 #define SHIFT 2
3603 #include "softmmu_template.h"
3605 #define SHIFT 3
3606 #include "softmmu_template.h"
3608 #undef env
3610 #endif