qemu: Add prototype and make qemu_uuid_parse() non-static (Alex Williamson)
[qemu/mmix.git] / vl.c
blob1515e7af58be845aa87e255e4507f643d5b52fed
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
35 #ifndef _WIN32
36 #include <pwd.h>
37 #include <sys/times.h>
38 #include <sys/wait.h>
39 #include <termios.h>
40 #include <sys/mman.h>
41 #include <sys/ioctl.h>
42 #include <sys/resource.h>
43 #include <sys/socket.h>
44 #include <netinet/in.h>
45 #include <net/if.h>
46 #if defined(__NetBSD__)
47 #include <net/if_tap.h>
48 #endif
49 #ifdef __linux__
50 #include <linux/if_tun.h>
51 #endif
52 #include <arpa/inet.h>
53 #include <dirent.h>
54 #include <netdb.h>
55 #include <sys/select.h>
56 #ifdef HOST_BSD
57 #include <sys/stat.h>
58 #if defined(__FreeBSD__) || defined(__DragonFly__)
59 #include <libutil.h>
60 #else
61 #include <util.h>
62 #endif
63 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
64 #include <freebsd/stdlib.h>
65 #else
66 #ifdef __linux__
67 #include <pty.h>
68 #include <malloc.h>
69 #include <linux/rtc.h>
71 /* For the benefit of older linux systems which don't supply it,
72 we use a local copy of hpet.h. */
73 /* #include <linux/hpet.h> */
74 #include "hpet.h"
76 #include <linux/ppdev.h>
77 #include <linux/parport.h>
78 #endif
79 #ifdef __sun__
80 #include <sys/stat.h>
81 #include <sys/ethernet.h>
82 #include <sys/sockio.h>
83 #include <netinet/arp.h>
84 #include <netinet/in.h>
85 #include <netinet/in_systm.h>
86 #include <netinet/ip.h>
87 #include <netinet/ip_icmp.h> // must come after ip.h
88 #include <netinet/udp.h>
89 #include <netinet/tcp.h>
90 #include <net/if.h>
91 #include <syslog.h>
92 #include <stropts.h>
93 #endif
94 #endif
95 #endif
97 #if defined(__OpenBSD__)
98 #include <util.h>
99 #endif
101 #if defined(CONFIG_VDE)
102 #include <libvdeplug.h>
103 #endif
105 #ifdef _WIN32
106 #include <windows.h>
107 #include <malloc.h>
108 #include <sys/timeb.h>
109 #include <mmsystem.h>
110 #define getopt_long_only getopt_long
111 #define memalign(align, size) malloc(size)
112 #endif
114 #ifdef CONFIG_SDL
115 #ifdef __APPLE__
116 #include <SDL/SDL.h>
117 int qemu_main(int argc, char **argv, char **envp);
118 int main(int argc, char **argv)
120 qemu_main(argc, argv, NULL);
122 #undef main
123 #define main qemu_main
124 #endif
125 #endif /* CONFIG_SDL */
127 #ifdef CONFIG_COCOA
128 #undef main
129 #define main qemu_main
130 #endif /* CONFIG_COCOA */
132 #include "hw/hw.h"
133 #include "hw/boards.h"
134 #include "hw/usb.h"
135 #include "hw/pcmcia.h"
136 #include "hw/pc.h"
137 #include "hw/audiodev.h"
138 #include "hw/isa.h"
139 #include "hw/baum.h"
140 #include "hw/bt.h"
141 #include "bt-host.h"
142 #include "net.h"
143 #include "monitor.h"
144 #include "console.h"
145 #include "sysemu.h"
146 #include "gdbstub.h"
147 #include "qemu-timer.h"
148 #include "qemu-char.h"
149 #include "cache-utils.h"
150 #include "block.h"
151 #include "dma.h"
152 #include "audio/audio.h"
153 #include "migration.h"
154 #include "kvm.h"
155 #include "balloon.h"
157 #include "disas.h"
159 #include "exec-all.h"
161 #include "qemu_socket.h"
163 #if defined(CONFIG_SLIRP)
164 #include "libslirp.h"
165 #endif
167 //#define DEBUG_UNUSED_IOPORT
168 //#define DEBUG_IOPORT
169 //#define DEBUG_NET
170 //#define DEBUG_SLIRP
173 #ifdef DEBUG_IOPORT
174 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
175 #else
176 # define LOG_IOPORT(...) do { } while (0)
177 #endif
179 #define DEFAULT_RAM_SIZE 128
181 /* Max number of USB devices that can be specified on the commandline. */
182 #define MAX_USB_CMDLINE 8
184 /* Max number of bluetooth switches on the commandline. */
185 #define MAX_BT_CMDLINE 10
187 /* XXX: use a two level table to limit memory usage */
188 #define MAX_IOPORTS 65536
190 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
191 const char *bios_name = NULL;
192 static void *ioport_opaque[MAX_IOPORTS];
193 static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
194 static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
195 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
196 to store the VM snapshots */
197 DriveInfo drives_table[MAX_DRIVES+1];
198 int nb_drives;
199 static int vga_ram_size;
200 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
201 static DisplayState *display_state;
202 int nographic;
203 static int curses;
204 static int sdl;
205 const char* keyboard_layout = NULL;
206 int64_t ticks_per_sec;
207 ram_addr_t ram_size;
208 int nb_nics;
209 NICInfo nd_table[MAX_NICS];
210 int vm_running;
211 static int autostart;
212 static int rtc_utc = 1;
213 static int rtc_date_offset = -1; /* -1 means no change */
214 int cirrus_vga_enabled = 1;
215 int std_vga_enabled = 0;
216 int vmsvga_enabled = 0;
217 #ifdef TARGET_SPARC
218 int graphic_width = 1024;
219 int graphic_height = 768;
220 int graphic_depth = 8;
221 #else
222 int graphic_width = 800;
223 int graphic_height = 600;
224 int graphic_depth = 15;
225 #endif
226 static int full_screen = 0;
227 #ifdef CONFIG_SDL
228 static int no_frame = 0;
229 #endif
230 int no_quit = 0;
231 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
232 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
233 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
234 #ifdef TARGET_I386
235 int win2k_install_hack = 0;
236 int rtc_td_hack = 0;
237 #endif
238 int usb_enabled = 0;
239 int singlestep = 0;
240 int smp_cpus = 1;
241 const char *vnc_display;
242 int acpi_enabled = 1;
243 int no_hpet = 0;
244 int fd_bootchk = 1;
245 int no_reboot = 0;
246 int no_shutdown = 0;
247 int cursor_hide = 1;
248 int graphic_rotate = 0;
249 #ifndef _WIN32
250 int daemonize = 0;
251 #endif
252 const char *option_rom[MAX_OPTION_ROMS];
253 int nb_option_roms;
254 int semihosting_enabled = 0;
255 #ifdef TARGET_ARM
256 int old_param = 0;
257 #endif
258 const char *qemu_name;
259 int alt_grab = 0;
260 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
261 unsigned int nb_prom_envs = 0;
262 const char *prom_envs[MAX_PROM_ENVS];
263 #endif
264 int nb_drives_opt;
265 struct drive_opt drives_opt[MAX_DRIVES];
267 static CPUState *cur_cpu;
268 static CPUState *next_cpu;
269 static int event_pending = 1;
270 /* Conversion factor from emulated instructions to virtual clock ticks. */
271 static int icount_time_shift;
272 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
273 #define MAX_ICOUNT_SHIFT 10
274 /* Compensate for varying guest execution speed. */
275 static int64_t qemu_icount_bias;
276 static QEMUTimer *icount_rt_timer;
277 static QEMUTimer *icount_vm_timer;
278 static QEMUTimer *nographic_timer;
280 uint8_t qemu_uuid[16];
282 /***********************************************************/
283 /* x86 ISA bus support */
285 target_phys_addr_t isa_mem_base = 0;
286 PicState2 *isa_pic;
288 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
289 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
291 static uint32_t ioport_read(int index, uint32_t address)
293 static IOPortReadFunc *default_func[3] = {
294 default_ioport_readb,
295 default_ioport_readw,
296 default_ioport_readl
298 IOPortReadFunc *func = ioport_read_table[index][address];
299 if (!func)
300 func = default_func[index];
301 return func(ioport_opaque[address], address);
304 static void ioport_write(int index, uint32_t address, uint32_t data)
306 static IOPortWriteFunc *default_func[3] = {
307 default_ioport_writeb,
308 default_ioport_writew,
309 default_ioport_writel
311 IOPortWriteFunc *func = ioport_write_table[index][address];
312 if (!func)
313 func = default_func[index];
314 func(ioport_opaque[address], address, data);
317 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
319 #ifdef DEBUG_UNUSED_IOPORT
320 fprintf(stderr, "unused inb: port=0x%04x\n", address);
321 #endif
322 return 0xff;
325 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
327 #ifdef DEBUG_UNUSED_IOPORT
328 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
329 #endif
332 /* default is to make two byte accesses */
333 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
335 uint32_t data;
336 data = ioport_read(0, address);
337 address = (address + 1) & (MAX_IOPORTS - 1);
338 data |= ioport_read(0, address) << 8;
339 return data;
342 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
344 ioport_write(0, address, data & 0xff);
345 address = (address + 1) & (MAX_IOPORTS - 1);
346 ioport_write(0, address, (data >> 8) & 0xff);
349 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
351 #ifdef DEBUG_UNUSED_IOPORT
352 fprintf(stderr, "unused inl: port=0x%04x\n", address);
353 #endif
354 return 0xffffffff;
357 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
359 #ifdef DEBUG_UNUSED_IOPORT
360 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
361 #endif
364 /* size is the word size in byte */
365 int register_ioport_read(int start, int length, int size,
366 IOPortReadFunc *func, void *opaque)
368 int i, bsize;
370 if (size == 1) {
371 bsize = 0;
372 } else if (size == 2) {
373 bsize = 1;
374 } else if (size == 4) {
375 bsize = 2;
376 } else {
377 hw_error("register_ioport_read: invalid size");
378 return -1;
380 for(i = start; i < start + length; i += size) {
381 ioport_read_table[bsize][i] = func;
382 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
383 hw_error("register_ioport_read: invalid opaque");
384 ioport_opaque[i] = opaque;
386 return 0;
389 /* size is the word size in byte */
390 int register_ioport_write(int start, int length, int size,
391 IOPortWriteFunc *func, void *opaque)
393 int i, bsize;
395 if (size == 1) {
396 bsize = 0;
397 } else if (size == 2) {
398 bsize = 1;
399 } else if (size == 4) {
400 bsize = 2;
401 } else {
402 hw_error("register_ioport_write: invalid size");
403 return -1;
405 for(i = start; i < start + length; i += size) {
406 ioport_write_table[bsize][i] = func;
407 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
408 hw_error("register_ioport_write: invalid opaque");
409 ioport_opaque[i] = opaque;
411 return 0;
414 void isa_unassign_ioport(int start, int length)
416 int i;
418 for(i = start; i < start + length; i++) {
419 ioport_read_table[0][i] = default_ioport_readb;
420 ioport_read_table[1][i] = default_ioport_readw;
421 ioport_read_table[2][i] = default_ioport_readl;
423 ioport_write_table[0][i] = default_ioport_writeb;
424 ioport_write_table[1][i] = default_ioport_writew;
425 ioport_write_table[2][i] = default_ioport_writel;
427 ioport_opaque[i] = NULL;
431 /***********************************************************/
433 void cpu_outb(CPUState *env, int addr, int val)
435 LOG_IOPORT("outb: %04x %02x\n", addr, val);
436 ioport_write(0, addr, val);
437 #ifdef USE_KQEMU
438 if (env)
439 env->last_io_time = cpu_get_time_fast();
440 #endif
443 void cpu_outw(CPUState *env, int addr, int val)
445 LOG_IOPORT("outw: %04x %04x\n", addr, val);
446 ioport_write(1, addr, val);
447 #ifdef USE_KQEMU
448 if (env)
449 env->last_io_time = cpu_get_time_fast();
450 #endif
453 void cpu_outl(CPUState *env, int addr, int val)
455 LOG_IOPORT("outl: %04x %08x\n", addr, val);
456 ioport_write(2, addr, val);
457 #ifdef USE_KQEMU
458 if (env)
459 env->last_io_time = cpu_get_time_fast();
460 #endif
463 int cpu_inb(CPUState *env, int addr)
465 int val;
466 val = ioport_read(0, addr);
467 LOG_IOPORT("inb : %04x %02x\n", addr, val);
468 #ifdef USE_KQEMU
469 if (env)
470 env->last_io_time = cpu_get_time_fast();
471 #endif
472 return val;
475 int cpu_inw(CPUState *env, int addr)
477 int val;
478 val = ioport_read(1, addr);
479 LOG_IOPORT("inw : %04x %04x\n", addr, val);
480 #ifdef USE_KQEMU
481 if (env)
482 env->last_io_time = cpu_get_time_fast();
483 #endif
484 return val;
487 int cpu_inl(CPUState *env, int addr)
489 int val;
490 val = ioport_read(2, addr);
491 LOG_IOPORT("inl : %04x %08x\n", addr, val);
492 #ifdef USE_KQEMU
493 if (env)
494 env->last_io_time = cpu_get_time_fast();
495 #endif
496 return val;
499 /***********************************************************/
500 void hw_error(const char *fmt, ...)
502 va_list ap;
503 CPUState *env;
505 va_start(ap, fmt);
506 fprintf(stderr, "qemu: hardware error: ");
507 vfprintf(stderr, fmt, ap);
508 fprintf(stderr, "\n");
509 for(env = first_cpu; env != NULL; env = env->next_cpu) {
510 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
511 #ifdef TARGET_I386
512 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
513 #else
514 cpu_dump_state(env, stderr, fprintf, 0);
515 #endif
517 va_end(ap);
518 abort();
521 /***************/
522 /* ballooning */
524 static QEMUBalloonEvent *qemu_balloon_event;
525 void *qemu_balloon_event_opaque;
527 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
529 qemu_balloon_event = func;
530 qemu_balloon_event_opaque = opaque;
533 void qemu_balloon(ram_addr_t target)
535 if (qemu_balloon_event)
536 qemu_balloon_event(qemu_balloon_event_opaque, target);
539 ram_addr_t qemu_balloon_status(void)
541 if (qemu_balloon_event)
542 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
543 return 0;
546 /***********************************************************/
547 /* keyboard/mouse */
549 static QEMUPutKBDEvent *qemu_put_kbd_event;
550 static void *qemu_put_kbd_event_opaque;
551 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
552 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
554 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
556 qemu_put_kbd_event_opaque = opaque;
557 qemu_put_kbd_event = func;
560 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
561 void *opaque, int absolute,
562 const char *name)
564 QEMUPutMouseEntry *s, *cursor;
566 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
568 s->qemu_put_mouse_event = func;
569 s->qemu_put_mouse_event_opaque = opaque;
570 s->qemu_put_mouse_event_absolute = absolute;
571 s->qemu_put_mouse_event_name = qemu_strdup(name);
572 s->next = NULL;
574 if (!qemu_put_mouse_event_head) {
575 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
576 return s;
579 cursor = qemu_put_mouse_event_head;
580 while (cursor->next != NULL)
581 cursor = cursor->next;
583 cursor->next = s;
584 qemu_put_mouse_event_current = s;
586 return s;
589 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
591 QEMUPutMouseEntry *prev = NULL, *cursor;
593 if (!qemu_put_mouse_event_head || entry == NULL)
594 return;
596 cursor = qemu_put_mouse_event_head;
597 while (cursor != NULL && cursor != entry) {
598 prev = cursor;
599 cursor = cursor->next;
602 if (cursor == NULL) // does not exist or list empty
603 return;
604 else if (prev == NULL) { // entry is head
605 qemu_put_mouse_event_head = cursor->next;
606 if (qemu_put_mouse_event_current == entry)
607 qemu_put_mouse_event_current = cursor->next;
608 qemu_free(entry->qemu_put_mouse_event_name);
609 qemu_free(entry);
610 return;
613 prev->next = entry->next;
615 if (qemu_put_mouse_event_current == entry)
616 qemu_put_mouse_event_current = prev;
618 qemu_free(entry->qemu_put_mouse_event_name);
619 qemu_free(entry);
622 void kbd_put_keycode(int keycode)
624 if (qemu_put_kbd_event) {
625 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
629 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
631 QEMUPutMouseEvent *mouse_event;
632 void *mouse_event_opaque;
633 int width;
635 if (!qemu_put_mouse_event_current) {
636 return;
639 mouse_event =
640 qemu_put_mouse_event_current->qemu_put_mouse_event;
641 mouse_event_opaque =
642 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
644 if (mouse_event) {
645 if (graphic_rotate) {
646 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
647 width = 0x7fff;
648 else
649 width = graphic_width - 1;
650 mouse_event(mouse_event_opaque,
651 width - dy, dx, dz, buttons_state);
652 } else
653 mouse_event(mouse_event_opaque,
654 dx, dy, dz, buttons_state);
658 int kbd_mouse_is_absolute(void)
660 if (!qemu_put_mouse_event_current)
661 return 0;
663 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
666 void do_info_mice(Monitor *mon)
668 QEMUPutMouseEntry *cursor;
669 int index = 0;
671 if (!qemu_put_mouse_event_head) {
672 monitor_printf(mon, "No mouse devices connected\n");
673 return;
676 monitor_printf(mon, "Mouse devices available:\n");
677 cursor = qemu_put_mouse_event_head;
678 while (cursor != NULL) {
679 monitor_printf(mon, "%c Mouse #%d: %s\n",
680 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
681 index, cursor->qemu_put_mouse_event_name);
682 index++;
683 cursor = cursor->next;
687 void do_mouse_set(Monitor *mon, int index)
689 QEMUPutMouseEntry *cursor;
690 int i = 0;
692 if (!qemu_put_mouse_event_head) {
693 monitor_printf(mon, "No mouse devices connected\n");
694 return;
697 cursor = qemu_put_mouse_event_head;
698 while (cursor != NULL && index != i) {
699 i++;
700 cursor = cursor->next;
703 if (cursor != NULL)
704 qemu_put_mouse_event_current = cursor;
705 else
706 monitor_printf(mon, "Mouse at given index not found\n");
709 /* compute with 96 bit intermediate result: (a*b)/c */
710 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
712 union {
713 uint64_t ll;
714 struct {
715 #ifdef WORDS_BIGENDIAN
716 uint32_t high, low;
717 #else
718 uint32_t low, high;
719 #endif
720 } l;
721 } u, res;
722 uint64_t rl, rh;
724 u.ll = a;
725 rl = (uint64_t)u.l.low * (uint64_t)b;
726 rh = (uint64_t)u.l.high * (uint64_t)b;
727 rh += (rl >> 32);
728 res.l.high = rh / c;
729 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
730 return res.ll;
733 /***********************************************************/
734 /* real time host monotonic timer */
736 #define QEMU_TIMER_BASE 1000000000LL
738 #ifdef WIN32
740 static int64_t clock_freq;
742 static void init_get_clock(void)
744 LARGE_INTEGER freq;
745 int ret;
746 ret = QueryPerformanceFrequency(&freq);
747 if (ret == 0) {
748 fprintf(stderr, "Could not calibrate ticks\n");
749 exit(1);
751 clock_freq = freq.QuadPart;
754 static int64_t get_clock(void)
756 LARGE_INTEGER ti;
757 QueryPerformanceCounter(&ti);
758 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
761 #else
763 static int use_rt_clock;
765 static void init_get_clock(void)
767 use_rt_clock = 0;
768 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
769 || defined(__DragonFly__)
771 struct timespec ts;
772 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
773 use_rt_clock = 1;
776 #endif
779 static int64_t get_clock(void)
781 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
782 || defined(__DragonFly__)
783 if (use_rt_clock) {
784 struct timespec ts;
785 clock_gettime(CLOCK_MONOTONIC, &ts);
786 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
787 } else
788 #endif
790 /* XXX: using gettimeofday leads to problems if the date
791 changes, so it should be avoided. */
792 struct timeval tv;
793 gettimeofday(&tv, NULL);
794 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
797 #endif
799 /* Return the virtual CPU time, based on the instruction counter. */
800 static int64_t cpu_get_icount(void)
802 int64_t icount;
803 CPUState *env = cpu_single_env;;
804 icount = qemu_icount;
805 if (env) {
806 if (!can_do_io(env))
807 fprintf(stderr, "Bad clock read\n");
808 icount -= (env->icount_decr.u16.low + env->icount_extra);
810 return qemu_icount_bias + (icount << icount_time_shift);
813 /***********************************************************/
814 /* guest cycle counter */
816 static int64_t cpu_ticks_prev;
817 static int64_t cpu_ticks_offset;
818 static int64_t cpu_clock_offset;
819 static int cpu_ticks_enabled;
821 /* return the host CPU cycle counter and handle stop/restart */
822 int64_t cpu_get_ticks(void)
824 if (use_icount) {
825 return cpu_get_icount();
827 if (!cpu_ticks_enabled) {
828 return cpu_ticks_offset;
829 } else {
830 int64_t ticks;
831 ticks = cpu_get_real_ticks();
832 if (cpu_ticks_prev > ticks) {
833 /* Note: non increasing ticks may happen if the host uses
834 software suspend */
835 cpu_ticks_offset += cpu_ticks_prev - ticks;
837 cpu_ticks_prev = ticks;
838 return ticks + cpu_ticks_offset;
842 /* return the host CPU monotonic timer and handle stop/restart */
843 static int64_t cpu_get_clock(void)
845 int64_t ti;
846 if (!cpu_ticks_enabled) {
847 return cpu_clock_offset;
848 } else {
849 ti = get_clock();
850 return ti + cpu_clock_offset;
854 /* enable cpu_get_ticks() */
855 void cpu_enable_ticks(void)
857 if (!cpu_ticks_enabled) {
858 cpu_ticks_offset -= cpu_get_real_ticks();
859 cpu_clock_offset -= get_clock();
860 cpu_ticks_enabled = 1;
864 /* disable cpu_get_ticks() : the clock is stopped. You must not call
865 cpu_get_ticks() after that. */
866 void cpu_disable_ticks(void)
868 if (cpu_ticks_enabled) {
869 cpu_ticks_offset = cpu_get_ticks();
870 cpu_clock_offset = cpu_get_clock();
871 cpu_ticks_enabled = 0;
875 /***********************************************************/
876 /* timers */
878 #define QEMU_TIMER_REALTIME 0
879 #define QEMU_TIMER_VIRTUAL 1
881 struct QEMUClock {
882 int type;
883 /* XXX: add frequency */
886 struct QEMUTimer {
887 QEMUClock *clock;
888 int64_t expire_time;
889 QEMUTimerCB *cb;
890 void *opaque;
891 struct QEMUTimer *next;
894 struct qemu_alarm_timer {
895 char const *name;
896 unsigned int flags;
898 int (*start)(struct qemu_alarm_timer *t);
899 void (*stop)(struct qemu_alarm_timer *t);
900 void (*rearm)(struct qemu_alarm_timer *t);
901 void *priv;
904 #define ALARM_FLAG_DYNTICKS 0x1
905 #define ALARM_FLAG_EXPIRED 0x2
907 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
909 return t->flags & ALARM_FLAG_DYNTICKS;
912 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
914 if (!alarm_has_dynticks(t))
915 return;
917 t->rearm(t);
920 /* TODO: MIN_TIMER_REARM_US should be optimized */
921 #define MIN_TIMER_REARM_US 250
923 static struct qemu_alarm_timer *alarm_timer;
924 #ifndef _WIN32
925 static int alarm_timer_rfd, alarm_timer_wfd;
926 #endif
928 #ifdef _WIN32
930 struct qemu_alarm_win32 {
931 MMRESULT timerId;
932 HANDLE host_alarm;
933 unsigned int period;
934 } alarm_win32_data = {0, NULL, -1};
936 static int win32_start_timer(struct qemu_alarm_timer *t);
937 static void win32_stop_timer(struct qemu_alarm_timer *t);
938 static void win32_rearm_timer(struct qemu_alarm_timer *t);
940 #else
942 static int unix_start_timer(struct qemu_alarm_timer *t);
943 static void unix_stop_timer(struct qemu_alarm_timer *t);
945 #ifdef __linux__
947 static int dynticks_start_timer(struct qemu_alarm_timer *t);
948 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
949 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
951 static int hpet_start_timer(struct qemu_alarm_timer *t);
952 static void hpet_stop_timer(struct qemu_alarm_timer *t);
954 static int rtc_start_timer(struct qemu_alarm_timer *t);
955 static void rtc_stop_timer(struct qemu_alarm_timer *t);
957 #endif /* __linux__ */
959 #endif /* _WIN32 */
961 /* Correlation between real and virtual time is always going to be
962 fairly approximate, so ignore small variation.
963 When the guest is idle real and virtual time will be aligned in
964 the IO wait loop. */
965 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
967 static void icount_adjust(void)
969 int64_t cur_time;
970 int64_t cur_icount;
971 int64_t delta;
972 static int64_t last_delta;
973 /* If the VM is not running, then do nothing. */
974 if (!vm_running)
975 return;
977 cur_time = cpu_get_clock();
978 cur_icount = qemu_get_clock(vm_clock);
979 delta = cur_icount - cur_time;
980 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
981 if (delta > 0
982 && last_delta + ICOUNT_WOBBLE < delta * 2
983 && icount_time_shift > 0) {
984 /* The guest is getting too far ahead. Slow time down. */
985 icount_time_shift--;
987 if (delta < 0
988 && last_delta - ICOUNT_WOBBLE > delta * 2
989 && icount_time_shift < MAX_ICOUNT_SHIFT) {
990 /* The guest is getting too far behind. Speed time up. */
991 icount_time_shift++;
993 last_delta = delta;
994 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
997 static void icount_adjust_rt(void * opaque)
999 qemu_mod_timer(icount_rt_timer,
1000 qemu_get_clock(rt_clock) + 1000);
1001 icount_adjust();
1004 static void icount_adjust_vm(void * opaque)
1006 qemu_mod_timer(icount_vm_timer,
1007 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1008 icount_adjust();
1011 static void init_icount_adjust(void)
1013 /* Have both realtime and virtual time triggers for speed adjustment.
1014 The realtime trigger catches emulated time passing too slowly,
1015 the virtual time trigger catches emulated time passing too fast.
1016 Realtime triggers occur even when idle, so use them less frequently
1017 than VM triggers. */
1018 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1019 qemu_mod_timer(icount_rt_timer,
1020 qemu_get_clock(rt_clock) + 1000);
1021 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1022 qemu_mod_timer(icount_vm_timer,
1023 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1026 static struct qemu_alarm_timer alarm_timers[] = {
1027 #ifndef _WIN32
1028 #ifdef __linux__
1029 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1030 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1031 /* HPET - if available - is preferred */
1032 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1033 /* ...otherwise try RTC */
1034 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1035 #endif
1036 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1037 #else
1038 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1039 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1040 {"win32", 0, win32_start_timer,
1041 win32_stop_timer, NULL, &alarm_win32_data},
1042 #endif
1043 {NULL, }
1046 static void show_available_alarms(void)
1048 int i;
1050 printf("Available alarm timers, in order of precedence:\n");
1051 for (i = 0; alarm_timers[i].name; i++)
1052 printf("%s\n", alarm_timers[i].name);
1055 static void configure_alarms(char const *opt)
1057 int i;
1058 int cur = 0;
1059 int count = ARRAY_SIZE(alarm_timers) - 1;
1060 char *arg;
1061 char *name;
1062 struct qemu_alarm_timer tmp;
1064 if (!strcmp(opt, "?")) {
1065 show_available_alarms();
1066 exit(0);
1069 arg = strdup(opt);
1071 /* Reorder the array */
1072 name = strtok(arg, ",");
1073 while (name) {
1074 for (i = 0; i < count && alarm_timers[i].name; i++) {
1075 if (!strcmp(alarm_timers[i].name, name))
1076 break;
1079 if (i == count) {
1080 fprintf(stderr, "Unknown clock %s\n", name);
1081 goto next;
1084 if (i < cur)
1085 /* Ignore */
1086 goto next;
1088 /* Swap */
1089 tmp = alarm_timers[i];
1090 alarm_timers[i] = alarm_timers[cur];
1091 alarm_timers[cur] = tmp;
1093 cur++;
1094 next:
1095 name = strtok(NULL, ",");
1098 free(arg);
1100 if (cur) {
1101 /* Disable remaining timers */
1102 for (i = cur; i < count; i++)
1103 alarm_timers[i].name = NULL;
1104 } else {
1105 show_available_alarms();
1106 exit(1);
1110 QEMUClock *rt_clock;
1111 QEMUClock *vm_clock;
1113 static QEMUTimer *active_timers[2];
1115 static QEMUClock *qemu_new_clock(int type)
1117 QEMUClock *clock;
1118 clock = qemu_mallocz(sizeof(QEMUClock));
1119 clock->type = type;
1120 return clock;
1123 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1125 QEMUTimer *ts;
1127 ts = qemu_mallocz(sizeof(QEMUTimer));
1128 ts->clock = clock;
1129 ts->cb = cb;
1130 ts->opaque = opaque;
1131 return ts;
1134 void qemu_free_timer(QEMUTimer *ts)
1136 qemu_free(ts);
1139 /* stop a timer, but do not dealloc it */
1140 void qemu_del_timer(QEMUTimer *ts)
1142 QEMUTimer **pt, *t;
1144 /* NOTE: this code must be signal safe because
1145 qemu_timer_expired() can be called from a signal. */
1146 pt = &active_timers[ts->clock->type];
1147 for(;;) {
1148 t = *pt;
1149 if (!t)
1150 break;
1151 if (t == ts) {
1152 *pt = t->next;
1153 break;
1155 pt = &t->next;
1159 /* modify the current timer so that it will be fired when current_time
1160 >= expire_time. The corresponding callback will be called. */
1161 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1163 QEMUTimer **pt, *t;
1165 qemu_del_timer(ts);
1167 /* add the timer in the sorted list */
1168 /* NOTE: this code must be signal safe because
1169 qemu_timer_expired() can be called from a signal. */
1170 pt = &active_timers[ts->clock->type];
1171 for(;;) {
1172 t = *pt;
1173 if (!t)
1174 break;
1175 if (t->expire_time > expire_time)
1176 break;
1177 pt = &t->next;
1179 ts->expire_time = expire_time;
1180 ts->next = *pt;
1181 *pt = ts;
1183 /* Rearm if necessary */
1184 if (pt == &active_timers[ts->clock->type]) {
1185 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1186 qemu_rearm_alarm_timer(alarm_timer);
1188 /* Interrupt execution to force deadline recalculation. */
1189 if (use_icount && cpu_single_env) {
1190 cpu_exit(cpu_single_env);
1195 int qemu_timer_pending(QEMUTimer *ts)
1197 QEMUTimer *t;
1198 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1199 if (t == ts)
1200 return 1;
1202 return 0;
1205 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1207 if (!timer_head)
1208 return 0;
1209 return (timer_head->expire_time <= current_time);
1212 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1214 QEMUTimer *ts;
1216 for(;;) {
1217 ts = *ptimer_head;
1218 if (!ts || ts->expire_time > current_time)
1219 break;
1220 /* remove timer from the list before calling the callback */
1221 *ptimer_head = ts->next;
1222 ts->next = NULL;
1224 /* run the callback (the timer list can be modified) */
1225 ts->cb(ts->opaque);
1229 int64_t qemu_get_clock(QEMUClock *clock)
1231 switch(clock->type) {
1232 case QEMU_TIMER_REALTIME:
1233 return get_clock() / 1000000;
1234 default:
1235 case QEMU_TIMER_VIRTUAL:
1236 if (use_icount) {
1237 return cpu_get_icount();
1238 } else {
1239 return cpu_get_clock();
1244 static void init_timers(void)
1246 init_get_clock();
1247 ticks_per_sec = QEMU_TIMER_BASE;
1248 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1249 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1252 /* save a timer */
1253 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1255 uint64_t expire_time;
1257 if (qemu_timer_pending(ts)) {
1258 expire_time = ts->expire_time;
1259 } else {
1260 expire_time = -1;
1262 qemu_put_be64(f, expire_time);
1265 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1267 uint64_t expire_time;
1269 expire_time = qemu_get_be64(f);
1270 if (expire_time != -1) {
1271 qemu_mod_timer(ts, expire_time);
1272 } else {
1273 qemu_del_timer(ts);
1277 static void timer_save(QEMUFile *f, void *opaque)
1279 if (cpu_ticks_enabled) {
1280 hw_error("cannot save state if virtual timers are running");
1282 qemu_put_be64(f, cpu_ticks_offset);
1283 qemu_put_be64(f, ticks_per_sec);
1284 qemu_put_be64(f, cpu_clock_offset);
1287 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1289 if (version_id != 1 && version_id != 2)
1290 return -EINVAL;
1291 if (cpu_ticks_enabled) {
1292 return -EINVAL;
1294 cpu_ticks_offset=qemu_get_be64(f);
1295 ticks_per_sec=qemu_get_be64(f);
1296 if (version_id == 2) {
1297 cpu_clock_offset=qemu_get_be64(f);
1299 return 0;
1302 #ifdef _WIN32
1303 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1304 DWORD_PTR dwUser, DWORD_PTR dw1,
1305 DWORD_PTR dw2)
1306 #else
1307 static void host_alarm_handler(int host_signum)
1308 #endif
1310 #if 0
1311 #define DISP_FREQ 1000
1313 static int64_t delta_min = INT64_MAX;
1314 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1315 static int count;
1316 ti = qemu_get_clock(vm_clock);
1317 if (last_clock != 0) {
1318 delta = ti - last_clock;
1319 if (delta < delta_min)
1320 delta_min = delta;
1321 if (delta > delta_max)
1322 delta_max = delta;
1323 delta_cum += delta;
1324 if (++count == DISP_FREQ) {
1325 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1326 muldiv64(delta_min, 1000000, ticks_per_sec),
1327 muldiv64(delta_max, 1000000, ticks_per_sec),
1328 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1329 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1330 count = 0;
1331 delta_min = INT64_MAX;
1332 delta_max = 0;
1333 delta_cum = 0;
1336 last_clock = ti;
1338 #endif
1339 if (alarm_has_dynticks(alarm_timer) ||
1340 (!use_icount &&
1341 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1342 qemu_get_clock(vm_clock))) ||
1343 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1344 qemu_get_clock(rt_clock))) {
1345 CPUState *env = next_cpu;
1347 #ifdef _WIN32
1348 struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1349 SetEvent(data->host_alarm);
1350 #else
1351 static const char byte = 0;
1352 write(alarm_timer_wfd, &byte, sizeof(byte));
1353 #endif
1354 alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1356 if (env) {
1357 /* stop the currently executing cpu because a timer occured */
1358 cpu_exit(env);
1359 #ifdef USE_KQEMU
1360 if (env->kqemu_enabled) {
1361 kqemu_cpu_interrupt(env);
1363 #endif
1365 event_pending = 1;
1369 static int64_t qemu_next_deadline(void)
1371 int64_t delta;
1373 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1374 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1375 qemu_get_clock(vm_clock);
1376 } else {
1377 /* To avoid problems with overflow limit this to 2^32. */
1378 delta = INT32_MAX;
1381 if (delta < 0)
1382 delta = 0;
1384 return delta;
1387 #if defined(__linux__) || defined(_WIN32)
1388 static uint64_t qemu_next_deadline_dyntick(void)
1390 int64_t delta;
1391 int64_t rtdelta;
1393 if (use_icount)
1394 delta = INT32_MAX;
1395 else
1396 delta = (qemu_next_deadline() + 999) / 1000;
1398 if (active_timers[QEMU_TIMER_REALTIME]) {
1399 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1400 qemu_get_clock(rt_clock))*1000;
1401 if (rtdelta < delta)
1402 delta = rtdelta;
1405 if (delta < MIN_TIMER_REARM_US)
1406 delta = MIN_TIMER_REARM_US;
1408 return delta;
1410 #endif
1412 #ifndef _WIN32
1414 /* Sets a specific flag */
1415 static int fcntl_setfl(int fd, int flag)
1417 int flags;
1419 flags = fcntl(fd, F_GETFL);
1420 if (flags == -1)
1421 return -errno;
1423 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1424 return -errno;
1426 return 0;
1429 #if defined(__linux__)
1431 #define RTC_FREQ 1024
1433 static void enable_sigio_timer(int fd)
1435 struct sigaction act;
1437 /* timer signal */
1438 sigfillset(&act.sa_mask);
1439 act.sa_flags = 0;
1440 act.sa_handler = host_alarm_handler;
1442 sigaction(SIGIO, &act, NULL);
1443 fcntl_setfl(fd, O_ASYNC);
1444 fcntl(fd, F_SETOWN, getpid());
1447 static int hpet_start_timer(struct qemu_alarm_timer *t)
1449 struct hpet_info info;
1450 int r, fd;
1452 fd = open("/dev/hpet", O_RDONLY);
1453 if (fd < 0)
1454 return -1;
1456 /* Set frequency */
1457 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1458 if (r < 0) {
1459 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1460 "error, but for better emulation accuracy type:\n"
1461 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1462 goto fail;
1465 /* Check capabilities */
1466 r = ioctl(fd, HPET_INFO, &info);
1467 if (r < 0)
1468 goto fail;
1470 /* Enable periodic mode */
1471 r = ioctl(fd, HPET_EPI, 0);
1472 if (info.hi_flags && (r < 0))
1473 goto fail;
1475 /* Enable interrupt */
1476 r = ioctl(fd, HPET_IE_ON, 0);
1477 if (r < 0)
1478 goto fail;
1480 enable_sigio_timer(fd);
1481 t->priv = (void *)(long)fd;
1483 return 0;
1484 fail:
1485 close(fd);
1486 return -1;
1489 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1491 int fd = (long)t->priv;
1493 close(fd);
1496 static int rtc_start_timer(struct qemu_alarm_timer *t)
1498 int rtc_fd;
1499 unsigned long current_rtc_freq = 0;
1501 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1502 if (rtc_fd < 0)
1503 return -1;
1504 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1505 if (current_rtc_freq != RTC_FREQ &&
1506 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1507 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1508 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1509 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1510 goto fail;
1512 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1513 fail:
1514 close(rtc_fd);
1515 return -1;
1518 enable_sigio_timer(rtc_fd);
1520 t->priv = (void *)(long)rtc_fd;
1522 return 0;
1525 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1527 int rtc_fd = (long)t->priv;
1529 close(rtc_fd);
1532 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1534 struct sigevent ev;
1535 timer_t host_timer;
1536 struct sigaction act;
1538 sigfillset(&act.sa_mask);
1539 act.sa_flags = 0;
1540 act.sa_handler = host_alarm_handler;
1542 sigaction(SIGALRM, &act, NULL);
1544 ev.sigev_value.sival_int = 0;
1545 ev.sigev_notify = SIGEV_SIGNAL;
1546 ev.sigev_signo = SIGALRM;
1548 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1549 perror("timer_create");
1551 /* disable dynticks */
1552 fprintf(stderr, "Dynamic Ticks disabled\n");
1554 return -1;
1557 t->priv = (void *)(long)host_timer;
1559 return 0;
1562 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1564 timer_t host_timer = (timer_t)(long)t->priv;
1566 timer_delete(host_timer);
1569 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1571 timer_t host_timer = (timer_t)(long)t->priv;
1572 struct itimerspec timeout;
1573 int64_t nearest_delta_us = INT64_MAX;
1574 int64_t current_us;
1576 if (!active_timers[QEMU_TIMER_REALTIME] &&
1577 !active_timers[QEMU_TIMER_VIRTUAL])
1578 return;
1580 nearest_delta_us = qemu_next_deadline_dyntick();
1582 /* check whether a timer is already running */
1583 if (timer_gettime(host_timer, &timeout)) {
1584 perror("gettime");
1585 fprintf(stderr, "Internal timer error: aborting\n");
1586 exit(1);
1588 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1589 if (current_us && current_us <= nearest_delta_us)
1590 return;
1592 timeout.it_interval.tv_sec = 0;
1593 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1594 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1595 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1596 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1597 perror("settime");
1598 fprintf(stderr, "Internal timer error: aborting\n");
1599 exit(1);
1603 #endif /* defined(__linux__) */
1605 static int unix_start_timer(struct qemu_alarm_timer *t)
1607 struct sigaction act;
1608 struct itimerval itv;
1609 int err;
1611 /* timer signal */
1612 sigfillset(&act.sa_mask);
1613 act.sa_flags = 0;
1614 act.sa_handler = host_alarm_handler;
1616 sigaction(SIGALRM, &act, NULL);
1618 itv.it_interval.tv_sec = 0;
1619 /* for i386 kernel 2.6 to get 1 ms */
1620 itv.it_interval.tv_usec = 999;
1621 itv.it_value.tv_sec = 0;
1622 itv.it_value.tv_usec = 10 * 1000;
1624 err = setitimer(ITIMER_REAL, &itv, NULL);
1625 if (err)
1626 return -1;
1628 return 0;
1631 static void unix_stop_timer(struct qemu_alarm_timer *t)
1633 struct itimerval itv;
1635 memset(&itv, 0, sizeof(itv));
1636 setitimer(ITIMER_REAL, &itv, NULL);
1639 #endif /* !defined(_WIN32) */
1641 static void try_to_rearm_timer(void *opaque)
1643 struct qemu_alarm_timer *t = opaque;
1644 #ifndef _WIN32
1645 ssize_t len;
1647 /* Drain the notify pipe */
1648 do {
1649 char buffer[512];
1650 len = read(alarm_timer_rfd, buffer, sizeof(buffer));
1651 } while ((len == -1 && errno == EINTR) || len > 0);
1652 #endif
1654 if (t->flags & ALARM_FLAG_EXPIRED) {
1655 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
1656 qemu_rearm_alarm_timer(alarm_timer);
1660 #ifdef _WIN32
1662 static int win32_start_timer(struct qemu_alarm_timer *t)
1664 TIMECAPS tc;
1665 struct qemu_alarm_win32 *data = t->priv;
1666 UINT flags;
1668 data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1669 if (!data->host_alarm) {
1670 perror("Failed CreateEvent");
1671 return -1;
1674 memset(&tc, 0, sizeof(tc));
1675 timeGetDevCaps(&tc, sizeof(tc));
1677 if (data->period < tc.wPeriodMin)
1678 data->period = tc.wPeriodMin;
1680 timeBeginPeriod(data->period);
1682 flags = TIME_CALLBACK_FUNCTION;
1683 if (alarm_has_dynticks(t))
1684 flags |= TIME_ONESHOT;
1685 else
1686 flags |= TIME_PERIODIC;
1688 data->timerId = timeSetEvent(1, // interval (ms)
1689 data->period, // resolution
1690 host_alarm_handler, // function
1691 (DWORD)t, // parameter
1692 flags);
1694 if (!data->timerId) {
1695 perror("Failed to initialize win32 alarm timer");
1697 timeEndPeriod(data->period);
1698 CloseHandle(data->host_alarm);
1699 return -1;
1702 qemu_add_wait_object(data->host_alarm, try_to_rearm_timer, t);
1704 return 0;
1707 static void win32_stop_timer(struct qemu_alarm_timer *t)
1709 struct qemu_alarm_win32 *data = t->priv;
1711 timeKillEvent(data->timerId);
1712 timeEndPeriod(data->period);
1714 CloseHandle(data->host_alarm);
1717 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1719 struct qemu_alarm_win32 *data = t->priv;
1720 uint64_t nearest_delta_us;
1722 if (!active_timers[QEMU_TIMER_REALTIME] &&
1723 !active_timers[QEMU_TIMER_VIRTUAL])
1724 return;
1726 nearest_delta_us = qemu_next_deadline_dyntick();
1727 nearest_delta_us /= 1000;
1729 timeKillEvent(data->timerId);
1731 data->timerId = timeSetEvent(1,
1732 data->period,
1733 host_alarm_handler,
1734 (DWORD)t,
1735 TIME_ONESHOT | TIME_PERIODIC);
1737 if (!data->timerId) {
1738 perror("Failed to re-arm win32 alarm timer");
1740 timeEndPeriod(data->period);
1741 CloseHandle(data->host_alarm);
1742 exit(1);
1746 #endif /* _WIN32 */
1748 static int init_timer_alarm(void)
1750 struct qemu_alarm_timer *t = NULL;
1751 int i, err = -1;
1753 #ifndef _WIN32
1754 int fds[2];
1756 err = pipe(fds);
1757 if (err == -1)
1758 return -errno;
1760 err = fcntl_setfl(fds[0], O_NONBLOCK);
1761 if (err < 0)
1762 goto fail;
1764 err = fcntl_setfl(fds[1], O_NONBLOCK);
1765 if (err < 0)
1766 goto fail;
1768 alarm_timer_rfd = fds[0];
1769 alarm_timer_wfd = fds[1];
1770 #endif
1772 for (i = 0; alarm_timers[i].name; i++) {
1773 t = &alarm_timers[i];
1775 err = t->start(t);
1776 if (!err)
1777 break;
1780 if (err) {
1781 err = -ENOENT;
1782 goto fail;
1785 #ifndef _WIN32
1786 qemu_set_fd_handler2(alarm_timer_rfd, NULL,
1787 try_to_rearm_timer, NULL, t);
1788 #endif
1790 alarm_timer = t;
1792 return 0;
1794 fail:
1795 #ifndef _WIN32
1796 close(fds[0]);
1797 close(fds[1]);
1798 #endif
1799 return err;
1802 static void quit_timers(void)
1804 alarm_timer->stop(alarm_timer);
1805 alarm_timer = NULL;
1808 /***********************************************************/
1809 /* host time/date access */
1810 void qemu_get_timedate(struct tm *tm, int offset)
1812 time_t ti;
1813 struct tm *ret;
1815 time(&ti);
1816 ti += offset;
1817 if (rtc_date_offset == -1) {
1818 if (rtc_utc)
1819 ret = gmtime(&ti);
1820 else
1821 ret = localtime(&ti);
1822 } else {
1823 ti -= rtc_date_offset;
1824 ret = gmtime(&ti);
1827 memcpy(tm, ret, sizeof(struct tm));
1830 int qemu_timedate_diff(struct tm *tm)
1832 time_t seconds;
1834 if (rtc_date_offset == -1)
1835 if (rtc_utc)
1836 seconds = mktimegm(tm);
1837 else
1838 seconds = mktime(tm);
1839 else
1840 seconds = mktimegm(tm) + rtc_date_offset;
1842 return seconds - time(NULL);
1845 #ifdef _WIN32
1846 static void socket_cleanup(void)
1848 WSACleanup();
1851 static int socket_init(void)
1853 WSADATA Data;
1854 int ret, err;
1856 ret = WSAStartup(MAKEWORD(2,2), &Data);
1857 if (ret != 0) {
1858 err = WSAGetLastError();
1859 fprintf(stderr, "WSAStartup: %d\n", err);
1860 return -1;
1862 atexit(socket_cleanup);
1863 return 0;
1865 #endif
1867 const char *get_opt_name(char *buf, int buf_size, const char *p)
1869 char *q;
1871 q = buf;
1872 while (*p != '\0' && *p != '=') {
1873 if (q && (q - buf) < buf_size - 1)
1874 *q++ = *p;
1875 p++;
1877 if (q)
1878 *q = '\0';
1880 return p;
1883 const char *get_opt_value(char *buf, int buf_size, const char *p)
1885 char *q;
1887 q = buf;
1888 while (*p != '\0') {
1889 if (*p == ',') {
1890 if (*(p + 1) != ',')
1891 break;
1892 p++;
1894 if (q && (q - buf) < buf_size - 1)
1895 *q++ = *p;
1896 p++;
1898 if (q)
1899 *q = '\0';
1901 return p;
1904 int get_param_value(char *buf, int buf_size,
1905 const char *tag, const char *str)
1907 const char *p;
1908 char option[128];
1910 p = str;
1911 for(;;) {
1912 p = get_opt_name(option, sizeof(option), p);
1913 if (*p != '=')
1914 break;
1915 p++;
1916 if (!strcmp(tag, option)) {
1917 (void)get_opt_value(buf, buf_size, p);
1918 return strlen(buf);
1919 } else {
1920 p = get_opt_value(NULL, 0, p);
1922 if (*p != ',')
1923 break;
1924 p++;
1926 return 0;
1929 int check_params(char *buf, int buf_size,
1930 const char * const *params, const char *str)
1932 const char *p;
1933 int i;
1935 p = str;
1936 for(;;) {
1937 p = get_opt_name(buf, buf_size, p);
1938 if (*p != '=')
1939 return -1;
1940 p++;
1941 for(i = 0; params[i] != NULL; i++)
1942 if (!strcmp(params[i], buf))
1943 break;
1944 if (params[i] == NULL)
1945 return -1;
1946 p = get_opt_value(NULL, 0, p);
1947 if (*p != ',')
1948 break;
1949 p++;
1951 return 0;
1954 /***********************************************************/
1955 /* Bluetooth support */
1956 static int nb_hcis;
1957 static int cur_hci;
1958 static struct HCIInfo *hci_table[MAX_NICS];
1960 static struct bt_vlan_s {
1961 struct bt_scatternet_s net;
1962 int id;
1963 struct bt_vlan_s *next;
1964 } *first_bt_vlan;
1966 /* find or alloc a new bluetooth "VLAN" */
1967 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1969 struct bt_vlan_s **pvlan, *vlan;
1970 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1971 if (vlan->id == id)
1972 return &vlan->net;
1974 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1975 vlan->id = id;
1976 pvlan = &first_bt_vlan;
1977 while (*pvlan != NULL)
1978 pvlan = &(*pvlan)->next;
1979 *pvlan = vlan;
1980 return &vlan->net;
1983 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1987 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1989 return -ENOTSUP;
1992 static struct HCIInfo null_hci = {
1993 .cmd_send = null_hci_send,
1994 .sco_send = null_hci_send,
1995 .acl_send = null_hci_send,
1996 .bdaddr_set = null_hci_addr_set,
1999 struct HCIInfo *qemu_next_hci(void)
2001 if (cur_hci == nb_hcis)
2002 return &null_hci;
2004 return hci_table[cur_hci++];
2007 static struct HCIInfo *hci_init(const char *str)
2009 char *endp;
2010 struct bt_scatternet_s *vlan = 0;
2012 if (!strcmp(str, "null"))
2013 /* null */
2014 return &null_hci;
2015 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
2016 /* host[:hciN] */
2017 return bt_host_hci(str[4] ? str + 5 : "hci0");
2018 else if (!strncmp(str, "hci", 3)) {
2019 /* hci[,vlan=n] */
2020 if (str[3]) {
2021 if (!strncmp(str + 3, ",vlan=", 6)) {
2022 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
2023 if (*endp)
2024 vlan = 0;
2026 } else
2027 vlan = qemu_find_bt_vlan(0);
2028 if (vlan)
2029 return bt_new_hci(vlan);
2032 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
2034 return 0;
2037 static int bt_hci_parse(const char *str)
2039 struct HCIInfo *hci;
2040 bdaddr_t bdaddr;
2042 if (nb_hcis >= MAX_NICS) {
2043 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
2044 return -1;
2047 hci = hci_init(str);
2048 if (!hci)
2049 return -1;
2051 bdaddr.b[0] = 0x52;
2052 bdaddr.b[1] = 0x54;
2053 bdaddr.b[2] = 0x00;
2054 bdaddr.b[3] = 0x12;
2055 bdaddr.b[4] = 0x34;
2056 bdaddr.b[5] = 0x56 + nb_hcis;
2057 hci->bdaddr_set(hci, bdaddr.b);
2059 hci_table[nb_hcis++] = hci;
2061 return 0;
2064 static void bt_vhci_add(int vlan_id)
2066 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
2068 if (!vlan->slave)
2069 fprintf(stderr, "qemu: warning: adding a VHCI to "
2070 "an empty scatternet %i\n", vlan_id);
2072 bt_vhci_init(bt_new_hci(vlan));
2075 static struct bt_device_s *bt_device_add(const char *opt)
2077 struct bt_scatternet_s *vlan;
2078 int vlan_id = 0;
2079 char *endp = strstr(opt, ",vlan=");
2080 int len = (endp ? endp - opt : strlen(opt)) + 1;
2081 char devname[10];
2083 pstrcpy(devname, MIN(sizeof(devname), len), opt);
2085 if (endp) {
2086 vlan_id = strtol(endp + 6, &endp, 0);
2087 if (*endp) {
2088 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2089 return 0;
2093 vlan = qemu_find_bt_vlan(vlan_id);
2095 if (!vlan->slave)
2096 fprintf(stderr, "qemu: warning: adding a slave device to "
2097 "an empty scatternet %i\n", vlan_id);
2099 if (!strcmp(devname, "keyboard"))
2100 return bt_keyboard_init(vlan);
2102 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2103 return 0;
2106 static int bt_parse(const char *opt)
2108 const char *endp, *p;
2109 int vlan;
2111 if (strstart(opt, "hci", &endp)) {
2112 if (!*endp || *endp == ',') {
2113 if (*endp)
2114 if (!strstart(endp, ",vlan=", 0))
2115 opt = endp + 1;
2117 return bt_hci_parse(opt);
2119 } else if (strstart(opt, "vhci", &endp)) {
2120 if (!*endp || *endp == ',') {
2121 if (*endp) {
2122 if (strstart(endp, ",vlan=", &p)) {
2123 vlan = strtol(p, (char **) &endp, 0);
2124 if (*endp) {
2125 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2126 return 1;
2128 } else {
2129 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2130 return 1;
2132 } else
2133 vlan = 0;
2135 bt_vhci_add(vlan);
2136 return 0;
2138 } else if (strstart(opt, "device:", &endp))
2139 return !bt_device_add(endp);
2141 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2142 return 1;
2145 /***********************************************************/
2146 /* QEMU Block devices */
2148 #define HD_ALIAS "index=%d,media=disk"
2149 #define CDROM_ALIAS "index=2,media=cdrom"
2150 #define FD_ALIAS "index=%d,if=floppy"
2151 #define PFLASH_ALIAS "if=pflash"
2152 #define MTD_ALIAS "if=mtd"
2153 #define SD_ALIAS "index=0,if=sd"
2155 static int drive_opt_get_free_idx(void)
2157 int index;
2159 for (index = 0; index < MAX_DRIVES; index++)
2160 if (!drives_opt[index].used) {
2161 drives_opt[index].used = 1;
2162 return index;
2165 return -1;
2168 static int drive_get_free_idx(void)
2170 int index;
2172 for (index = 0; index < MAX_DRIVES; index++)
2173 if (!drives_table[index].used) {
2174 drives_table[index].used = 1;
2175 return index;
2178 return -1;
2181 int drive_add(const char *file, const char *fmt, ...)
2183 va_list ap;
2184 int index = drive_opt_get_free_idx();
2186 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2187 fprintf(stderr, "qemu: too many drives\n");
2188 return -1;
2191 drives_opt[index].file = file;
2192 va_start(ap, fmt);
2193 vsnprintf(drives_opt[index].opt,
2194 sizeof(drives_opt[0].opt), fmt, ap);
2195 va_end(ap);
2197 nb_drives_opt++;
2198 return index;
2201 void drive_remove(int index)
2203 drives_opt[index].used = 0;
2204 nb_drives_opt--;
2207 int drive_get_index(BlockInterfaceType type, int bus, int unit)
2209 int index;
2211 /* seek interface, bus and unit */
2213 for (index = 0; index < MAX_DRIVES; index++)
2214 if (drives_table[index].type == type &&
2215 drives_table[index].bus == bus &&
2216 drives_table[index].unit == unit &&
2217 drives_table[index].used)
2218 return index;
2220 return -1;
2223 int drive_get_max_bus(BlockInterfaceType type)
2225 int max_bus;
2226 int index;
2228 max_bus = -1;
2229 for (index = 0; index < nb_drives; index++) {
2230 if(drives_table[index].type == type &&
2231 drives_table[index].bus > max_bus)
2232 max_bus = drives_table[index].bus;
2234 return max_bus;
2237 const char *drive_get_serial(BlockDriverState *bdrv)
2239 int index;
2241 for (index = 0; index < nb_drives; index++)
2242 if (drives_table[index].bdrv == bdrv)
2243 return drives_table[index].serial;
2245 return "\0";
2248 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2250 int index;
2252 for (index = 0; index < nb_drives; index++)
2253 if (drives_table[index].bdrv == bdrv)
2254 return drives_table[index].onerror;
2256 return BLOCK_ERR_STOP_ENOSPC;
2259 static void bdrv_format_print(void *opaque, const char *name)
2261 fprintf(stderr, " %s", name);
2264 void drive_uninit(BlockDriverState *bdrv)
2266 int i;
2268 for (i = 0; i < MAX_DRIVES; i++)
2269 if (drives_table[i].bdrv == bdrv) {
2270 drives_table[i].bdrv = NULL;
2271 drives_table[i].used = 0;
2272 drive_remove(drives_table[i].drive_opt_idx);
2273 nb_drives--;
2274 break;
2278 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2280 char buf[128];
2281 char file[1024];
2282 char devname[128];
2283 char serial[21];
2284 const char *mediastr = "";
2285 BlockInterfaceType type;
2286 enum { MEDIA_DISK, MEDIA_CDROM } media;
2287 int bus_id, unit_id;
2288 int cyls, heads, secs, translation;
2289 BlockDriverState *bdrv;
2290 BlockDriver *drv = NULL;
2291 QEMUMachine *machine = opaque;
2292 int max_devs;
2293 int index;
2294 int cache;
2295 int bdrv_flags, onerror;
2296 int drives_table_idx;
2297 char *str = arg->opt;
2298 static const char * const params[] = { "bus", "unit", "if", "index",
2299 "cyls", "heads", "secs", "trans",
2300 "media", "snapshot", "file",
2301 "cache", "format", "serial", "werror",
2302 NULL };
2304 if (check_params(buf, sizeof(buf), params, str) < 0) {
2305 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2306 buf, str);
2307 return -1;
2310 file[0] = 0;
2311 cyls = heads = secs = 0;
2312 bus_id = 0;
2313 unit_id = -1;
2314 translation = BIOS_ATA_TRANSLATION_AUTO;
2315 index = -1;
2316 cache = 3;
2318 if (machine->use_scsi) {
2319 type = IF_SCSI;
2320 max_devs = MAX_SCSI_DEVS;
2321 pstrcpy(devname, sizeof(devname), "scsi");
2322 } else {
2323 type = IF_IDE;
2324 max_devs = MAX_IDE_DEVS;
2325 pstrcpy(devname, sizeof(devname), "ide");
2327 media = MEDIA_DISK;
2329 /* extract parameters */
2331 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2332 bus_id = strtol(buf, NULL, 0);
2333 if (bus_id < 0) {
2334 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2335 return -1;
2339 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2340 unit_id = strtol(buf, NULL, 0);
2341 if (unit_id < 0) {
2342 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2343 return -1;
2347 if (get_param_value(buf, sizeof(buf), "if", str)) {
2348 pstrcpy(devname, sizeof(devname), buf);
2349 if (!strcmp(buf, "ide")) {
2350 type = IF_IDE;
2351 max_devs = MAX_IDE_DEVS;
2352 } else if (!strcmp(buf, "scsi")) {
2353 type = IF_SCSI;
2354 max_devs = MAX_SCSI_DEVS;
2355 } else if (!strcmp(buf, "floppy")) {
2356 type = IF_FLOPPY;
2357 max_devs = 0;
2358 } else if (!strcmp(buf, "pflash")) {
2359 type = IF_PFLASH;
2360 max_devs = 0;
2361 } else if (!strcmp(buf, "mtd")) {
2362 type = IF_MTD;
2363 max_devs = 0;
2364 } else if (!strcmp(buf, "sd")) {
2365 type = IF_SD;
2366 max_devs = 0;
2367 } else if (!strcmp(buf, "virtio")) {
2368 type = IF_VIRTIO;
2369 max_devs = 0;
2370 } else {
2371 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2372 return -1;
2376 if (get_param_value(buf, sizeof(buf), "index", str)) {
2377 index = strtol(buf, NULL, 0);
2378 if (index < 0) {
2379 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2380 return -1;
2384 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2385 cyls = strtol(buf, NULL, 0);
2388 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2389 heads = strtol(buf, NULL, 0);
2392 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2393 secs = strtol(buf, NULL, 0);
2396 if (cyls || heads || secs) {
2397 if (cyls < 1 || cyls > 16383) {
2398 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2399 return -1;
2401 if (heads < 1 || heads > 16) {
2402 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2403 return -1;
2405 if (secs < 1 || secs > 63) {
2406 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2407 return -1;
2411 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2412 if (!cyls) {
2413 fprintf(stderr,
2414 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2415 str);
2416 return -1;
2418 if (!strcmp(buf, "none"))
2419 translation = BIOS_ATA_TRANSLATION_NONE;
2420 else if (!strcmp(buf, "lba"))
2421 translation = BIOS_ATA_TRANSLATION_LBA;
2422 else if (!strcmp(buf, "auto"))
2423 translation = BIOS_ATA_TRANSLATION_AUTO;
2424 else {
2425 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2426 return -1;
2430 if (get_param_value(buf, sizeof(buf), "media", str)) {
2431 if (!strcmp(buf, "disk")) {
2432 media = MEDIA_DISK;
2433 } else if (!strcmp(buf, "cdrom")) {
2434 if (cyls || secs || heads) {
2435 fprintf(stderr,
2436 "qemu: '%s' invalid physical CHS format\n", str);
2437 return -1;
2439 media = MEDIA_CDROM;
2440 } else {
2441 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2442 return -1;
2446 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2447 if (!strcmp(buf, "on"))
2448 snapshot = 1;
2449 else if (!strcmp(buf, "off"))
2450 snapshot = 0;
2451 else {
2452 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2453 return -1;
2457 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2458 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2459 cache = 0;
2460 else if (!strcmp(buf, "writethrough"))
2461 cache = 1;
2462 else if (!strcmp(buf, "writeback"))
2463 cache = 2;
2464 else {
2465 fprintf(stderr, "qemu: invalid cache option\n");
2466 return -1;
2470 if (get_param_value(buf, sizeof(buf), "format", str)) {
2471 if (strcmp(buf, "?") == 0) {
2472 fprintf(stderr, "qemu: Supported formats:");
2473 bdrv_iterate_format(bdrv_format_print, NULL);
2474 fprintf(stderr, "\n");
2475 return -1;
2477 drv = bdrv_find_format(buf);
2478 if (!drv) {
2479 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2480 return -1;
2484 if (arg->file == NULL)
2485 get_param_value(file, sizeof(file), "file", str);
2486 else
2487 pstrcpy(file, sizeof(file), arg->file);
2489 if (!get_param_value(serial, sizeof(serial), "serial", str))
2490 memset(serial, 0, sizeof(serial));
2492 onerror = BLOCK_ERR_STOP_ENOSPC;
2493 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2494 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2495 fprintf(stderr, "werror is no supported by this format\n");
2496 return -1;
2498 if (!strcmp(buf, "ignore"))
2499 onerror = BLOCK_ERR_IGNORE;
2500 else if (!strcmp(buf, "enospc"))
2501 onerror = BLOCK_ERR_STOP_ENOSPC;
2502 else if (!strcmp(buf, "stop"))
2503 onerror = BLOCK_ERR_STOP_ANY;
2504 else if (!strcmp(buf, "report"))
2505 onerror = BLOCK_ERR_REPORT;
2506 else {
2507 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2508 return -1;
2512 /* compute bus and unit according index */
2514 if (index != -1) {
2515 if (bus_id != 0 || unit_id != -1) {
2516 fprintf(stderr,
2517 "qemu: '%s' index cannot be used with bus and unit\n", str);
2518 return -1;
2520 if (max_devs == 0)
2522 unit_id = index;
2523 bus_id = 0;
2524 } else {
2525 unit_id = index % max_devs;
2526 bus_id = index / max_devs;
2530 /* if user doesn't specify a unit_id,
2531 * try to find the first free
2534 if (unit_id == -1) {
2535 unit_id = 0;
2536 while (drive_get_index(type, bus_id, unit_id) != -1) {
2537 unit_id++;
2538 if (max_devs && unit_id >= max_devs) {
2539 unit_id -= max_devs;
2540 bus_id++;
2545 /* check unit id */
2547 if (max_devs && unit_id >= max_devs) {
2548 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2549 str, unit_id, max_devs - 1);
2550 return -1;
2554 * ignore multiple definitions
2557 if (drive_get_index(type, bus_id, unit_id) != -1)
2558 return -2;
2560 /* init */
2562 if (type == IF_IDE || type == IF_SCSI)
2563 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2564 if (max_devs)
2565 snprintf(buf, sizeof(buf), "%s%i%s%i",
2566 devname, bus_id, mediastr, unit_id);
2567 else
2568 snprintf(buf, sizeof(buf), "%s%s%i",
2569 devname, mediastr, unit_id);
2570 bdrv = bdrv_new(buf);
2571 drives_table_idx = drive_get_free_idx();
2572 drives_table[drives_table_idx].bdrv = bdrv;
2573 drives_table[drives_table_idx].type = type;
2574 drives_table[drives_table_idx].bus = bus_id;
2575 drives_table[drives_table_idx].unit = unit_id;
2576 drives_table[drives_table_idx].onerror = onerror;
2577 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2578 strncpy(drives_table[nb_drives].serial, serial, sizeof(serial));
2579 nb_drives++;
2581 switch(type) {
2582 case IF_IDE:
2583 case IF_SCSI:
2584 switch(media) {
2585 case MEDIA_DISK:
2586 if (cyls != 0) {
2587 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2588 bdrv_set_translation_hint(bdrv, translation);
2590 break;
2591 case MEDIA_CDROM:
2592 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2593 break;
2595 break;
2596 case IF_SD:
2597 /* FIXME: This isn't really a floppy, but it's a reasonable
2598 approximation. */
2599 case IF_FLOPPY:
2600 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2601 break;
2602 case IF_PFLASH:
2603 case IF_MTD:
2604 case IF_VIRTIO:
2605 break;
2607 if (!file[0])
2608 return -2;
2609 bdrv_flags = 0;
2610 if (snapshot) {
2611 bdrv_flags |= BDRV_O_SNAPSHOT;
2612 cache = 2; /* always use write-back with snapshot */
2614 if (cache == 0) /* no caching */
2615 bdrv_flags |= BDRV_O_NOCACHE;
2616 else if (cache == 2) /* write-back */
2617 bdrv_flags |= BDRV_O_CACHE_WB;
2618 else if (cache == 3) /* not specified */
2619 bdrv_flags |= BDRV_O_CACHE_DEF;
2620 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2621 fprintf(stderr, "qemu: could not open disk image %s\n",
2622 file);
2623 return -1;
2625 if (bdrv_key_required(bdrv))
2626 autostart = 0;
2627 return drives_table_idx;
2630 /***********************************************************/
2631 /* USB devices */
2633 static USBPort *used_usb_ports;
2634 static USBPort *free_usb_ports;
2636 /* ??? Maybe change this to register a hub to keep track of the topology. */
2637 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2638 usb_attachfn attach)
2640 port->opaque = opaque;
2641 port->index = index;
2642 port->attach = attach;
2643 port->next = free_usb_ports;
2644 free_usb_ports = port;
2647 int usb_device_add_dev(USBDevice *dev)
2649 USBPort *port;
2651 /* Find a USB port to add the device to. */
2652 port = free_usb_ports;
2653 if (!port->next) {
2654 USBDevice *hub;
2656 /* Create a new hub and chain it on. */
2657 free_usb_ports = NULL;
2658 port->next = used_usb_ports;
2659 used_usb_ports = port;
2661 hub = usb_hub_init(VM_USB_HUB_SIZE);
2662 usb_attach(port, hub);
2663 port = free_usb_ports;
2666 free_usb_ports = port->next;
2667 port->next = used_usb_ports;
2668 used_usb_ports = port;
2669 usb_attach(port, dev);
2670 return 0;
2673 static void usb_msd_password_cb(void *opaque, int err)
2675 USBDevice *dev = opaque;
2677 if (!err)
2678 usb_device_add_dev(dev);
2679 else
2680 dev->handle_destroy(dev);
2683 static int usb_device_add(const char *devname, int is_hotplug)
2685 const char *p;
2686 USBDevice *dev;
2688 if (!free_usb_ports)
2689 return -1;
2691 if (strstart(devname, "host:", &p)) {
2692 dev = usb_host_device_open(p);
2693 } else if (!strcmp(devname, "mouse")) {
2694 dev = usb_mouse_init();
2695 } else if (!strcmp(devname, "tablet")) {
2696 dev = usb_tablet_init();
2697 } else if (!strcmp(devname, "keyboard")) {
2698 dev = usb_keyboard_init();
2699 } else if (strstart(devname, "disk:", &p)) {
2700 BlockDriverState *bs;
2702 dev = usb_msd_init(p);
2703 if (!dev)
2704 return -1;
2705 bs = usb_msd_get_bdrv(dev);
2706 if (bdrv_key_required(bs)) {
2707 autostart = 0;
2708 if (is_hotplug) {
2709 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2710 dev);
2711 return 0;
2714 } else if (!strcmp(devname, "wacom-tablet")) {
2715 dev = usb_wacom_init();
2716 } else if (strstart(devname, "serial:", &p)) {
2717 dev = usb_serial_init(p);
2718 #ifdef CONFIG_BRLAPI
2719 } else if (!strcmp(devname, "braille")) {
2720 dev = usb_baum_init();
2721 #endif
2722 } else if (strstart(devname, "net:", &p)) {
2723 int nic = nb_nics;
2725 if (net_client_init("nic", p) < 0)
2726 return -1;
2727 nd_table[nic].model = "usb";
2728 dev = usb_net_init(&nd_table[nic]);
2729 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2730 dev = usb_bt_init(devname[2] ? hci_init(p) :
2731 bt_new_hci(qemu_find_bt_vlan(0)));
2732 } else {
2733 return -1;
2735 if (!dev)
2736 return -1;
2738 return usb_device_add_dev(dev);
2741 int usb_device_del_addr(int bus_num, int addr)
2743 USBPort *port;
2744 USBPort **lastp;
2745 USBDevice *dev;
2747 if (!used_usb_ports)
2748 return -1;
2750 if (bus_num != 0)
2751 return -1;
2753 lastp = &used_usb_ports;
2754 port = used_usb_ports;
2755 while (port && port->dev->addr != addr) {
2756 lastp = &port->next;
2757 port = port->next;
2760 if (!port)
2761 return -1;
2763 dev = port->dev;
2764 *lastp = port->next;
2765 usb_attach(port, NULL);
2766 dev->handle_destroy(dev);
2767 port->next = free_usb_ports;
2768 free_usb_ports = port;
2769 return 0;
2772 static int usb_device_del(const char *devname)
2774 int bus_num, addr;
2775 const char *p;
2777 if (strstart(devname, "host:", &p))
2778 return usb_host_device_close(p);
2780 if (!used_usb_ports)
2781 return -1;
2783 p = strchr(devname, '.');
2784 if (!p)
2785 return -1;
2786 bus_num = strtoul(devname, NULL, 0);
2787 addr = strtoul(p + 1, NULL, 0);
2789 return usb_device_del_addr(bus_num, addr);
2792 void do_usb_add(Monitor *mon, const char *devname)
2794 usb_device_add(devname, 1);
2797 void do_usb_del(Monitor *mon, const char *devname)
2799 usb_device_del(devname);
2802 void usb_info(Monitor *mon)
2804 USBDevice *dev;
2805 USBPort *port;
2806 const char *speed_str;
2808 if (!usb_enabled) {
2809 monitor_printf(mon, "USB support not enabled\n");
2810 return;
2813 for (port = used_usb_ports; port; port = port->next) {
2814 dev = port->dev;
2815 if (!dev)
2816 continue;
2817 switch(dev->speed) {
2818 case USB_SPEED_LOW:
2819 speed_str = "1.5";
2820 break;
2821 case USB_SPEED_FULL:
2822 speed_str = "12";
2823 break;
2824 case USB_SPEED_HIGH:
2825 speed_str = "480";
2826 break;
2827 default:
2828 speed_str = "?";
2829 break;
2831 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2832 0, dev->addr, speed_str, dev->devname);
2836 /***********************************************************/
2837 /* PCMCIA/Cardbus */
2839 static struct pcmcia_socket_entry_s {
2840 struct pcmcia_socket_s *socket;
2841 struct pcmcia_socket_entry_s *next;
2842 } *pcmcia_sockets = 0;
2844 void pcmcia_socket_register(struct pcmcia_socket_s *socket)
2846 struct pcmcia_socket_entry_s *entry;
2848 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2849 entry->socket = socket;
2850 entry->next = pcmcia_sockets;
2851 pcmcia_sockets = entry;
2854 void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
2856 struct pcmcia_socket_entry_s *entry, **ptr;
2858 ptr = &pcmcia_sockets;
2859 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2860 if (entry->socket == socket) {
2861 *ptr = entry->next;
2862 qemu_free(entry);
2866 void pcmcia_info(Monitor *mon)
2868 struct pcmcia_socket_entry_s *iter;
2870 if (!pcmcia_sockets)
2871 monitor_printf(mon, "No PCMCIA sockets\n");
2873 for (iter = pcmcia_sockets; iter; iter = iter->next)
2874 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2875 iter->socket->attached ? iter->socket->card_string :
2876 "Empty");
2879 /***********************************************************/
2880 /* register display */
2882 struct DisplayAllocator default_allocator = {
2883 defaultallocator_create_displaysurface,
2884 defaultallocator_resize_displaysurface,
2885 defaultallocator_free_displaysurface
2888 void register_displaystate(DisplayState *ds)
2890 DisplayState **s;
2891 s = &display_state;
2892 while (*s != NULL)
2893 s = &(*s)->next;
2894 ds->next = NULL;
2895 *s = ds;
2898 DisplayState *get_displaystate(void)
2900 return display_state;
2903 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2905 if(ds->allocator == &default_allocator) ds->allocator = da;
2906 return ds->allocator;
2909 /* dumb display */
2911 static void dumb_display_init(void)
2913 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2914 ds->allocator = &default_allocator;
2915 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2916 register_displaystate(ds);
2919 /***********************************************************/
2920 /* I/O handling */
2922 typedef struct IOHandlerRecord {
2923 int fd;
2924 IOCanRWHandler *fd_read_poll;
2925 IOHandler *fd_read;
2926 IOHandler *fd_write;
2927 int deleted;
2928 void *opaque;
2929 /* temporary data */
2930 struct pollfd *ufd;
2931 struct IOHandlerRecord *next;
2932 } IOHandlerRecord;
2934 static IOHandlerRecord *first_io_handler;
2936 /* XXX: fd_read_poll should be suppressed, but an API change is
2937 necessary in the character devices to suppress fd_can_read(). */
2938 int qemu_set_fd_handler2(int fd,
2939 IOCanRWHandler *fd_read_poll,
2940 IOHandler *fd_read,
2941 IOHandler *fd_write,
2942 void *opaque)
2944 IOHandlerRecord **pioh, *ioh;
2946 if (!fd_read && !fd_write) {
2947 pioh = &first_io_handler;
2948 for(;;) {
2949 ioh = *pioh;
2950 if (ioh == NULL)
2951 break;
2952 if (ioh->fd == fd) {
2953 ioh->deleted = 1;
2954 break;
2956 pioh = &ioh->next;
2958 } else {
2959 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2960 if (ioh->fd == fd)
2961 goto found;
2963 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2964 ioh->next = first_io_handler;
2965 first_io_handler = ioh;
2966 found:
2967 ioh->fd = fd;
2968 ioh->fd_read_poll = fd_read_poll;
2969 ioh->fd_read = fd_read;
2970 ioh->fd_write = fd_write;
2971 ioh->opaque = opaque;
2972 ioh->deleted = 0;
2974 return 0;
2977 int qemu_set_fd_handler(int fd,
2978 IOHandler *fd_read,
2979 IOHandler *fd_write,
2980 void *opaque)
2982 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2985 #ifdef _WIN32
2986 /***********************************************************/
2987 /* Polling handling */
2989 typedef struct PollingEntry {
2990 PollingFunc *func;
2991 void *opaque;
2992 struct PollingEntry *next;
2993 } PollingEntry;
2995 static PollingEntry *first_polling_entry;
2997 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2999 PollingEntry **ppe, *pe;
3000 pe = qemu_mallocz(sizeof(PollingEntry));
3001 pe->func = func;
3002 pe->opaque = opaque;
3003 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
3004 *ppe = pe;
3005 return 0;
3008 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
3010 PollingEntry **ppe, *pe;
3011 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
3012 pe = *ppe;
3013 if (pe->func == func && pe->opaque == opaque) {
3014 *ppe = pe->next;
3015 qemu_free(pe);
3016 break;
3021 /***********************************************************/
3022 /* Wait objects support */
3023 typedef struct WaitObjects {
3024 int num;
3025 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
3026 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
3027 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
3028 } WaitObjects;
3030 static WaitObjects wait_objects = {0};
3032 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3034 WaitObjects *w = &wait_objects;
3036 if (w->num >= MAXIMUM_WAIT_OBJECTS)
3037 return -1;
3038 w->events[w->num] = handle;
3039 w->func[w->num] = func;
3040 w->opaque[w->num] = opaque;
3041 w->num++;
3042 return 0;
3045 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3047 int i, found;
3048 WaitObjects *w = &wait_objects;
3050 found = 0;
3051 for (i = 0; i < w->num; i++) {
3052 if (w->events[i] == handle)
3053 found = 1;
3054 if (found) {
3055 w->events[i] = w->events[i + 1];
3056 w->func[i] = w->func[i + 1];
3057 w->opaque[i] = w->opaque[i + 1];
3060 if (found)
3061 w->num--;
3063 #endif
3065 /***********************************************************/
3066 /* ram save/restore */
3068 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3070 int v;
3072 v = qemu_get_byte(f);
3073 switch(v) {
3074 case 0:
3075 if (qemu_get_buffer(f, buf, len) != len)
3076 return -EIO;
3077 break;
3078 case 1:
3079 v = qemu_get_byte(f);
3080 memset(buf, v, len);
3081 break;
3082 default:
3083 return -EINVAL;
3086 if (qemu_file_has_error(f))
3087 return -EIO;
3089 return 0;
3092 static int ram_load_v1(QEMUFile *f, void *opaque)
3094 int ret;
3095 ram_addr_t i;
3097 if (qemu_get_be32(f) != last_ram_offset)
3098 return -EINVAL;
3099 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
3100 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
3101 if (ret)
3102 return ret;
3104 return 0;
3107 #define BDRV_HASH_BLOCK_SIZE 1024
3108 #define IOBUF_SIZE 4096
3109 #define RAM_CBLOCK_MAGIC 0xfabe
3111 typedef struct RamDecompressState {
3112 z_stream zstream;
3113 QEMUFile *f;
3114 uint8_t buf[IOBUF_SIZE];
3115 } RamDecompressState;
3117 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3119 int ret;
3120 memset(s, 0, sizeof(*s));
3121 s->f = f;
3122 ret = inflateInit(&s->zstream);
3123 if (ret != Z_OK)
3124 return -1;
3125 return 0;
3128 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3130 int ret, clen;
3132 s->zstream.avail_out = len;
3133 s->zstream.next_out = buf;
3134 while (s->zstream.avail_out > 0) {
3135 if (s->zstream.avail_in == 0) {
3136 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3137 return -1;
3138 clen = qemu_get_be16(s->f);
3139 if (clen > IOBUF_SIZE)
3140 return -1;
3141 qemu_get_buffer(s->f, s->buf, clen);
3142 s->zstream.avail_in = clen;
3143 s->zstream.next_in = s->buf;
3145 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3146 if (ret != Z_OK && ret != Z_STREAM_END) {
3147 return -1;
3150 return 0;
3153 static void ram_decompress_close(RamDecompressState *s)
3155 inflateEnd(&s->zstream);
3158 #define RAM_SAVE_FLAG_FULL 0x01
3159 #define RAM_SAVE_FLAG_COMPRESS 0x02
3160 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3161 #define RAM_SAVE_FLAG_PAGE 0x08
3162 #define RAM_SAVE_FLAG_EOS 0x10
3164 static int is_dup_page(uint8_t *page, uint8_t ch)
3166 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3167 uint32_t *array = (uint32_t *)page;
3168 int i;
3170 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3171 if (array[i] != val)
3172 return 0;
3175 return 1;
3178 static int ram_save_block(QEMUFile *f)
3180 static ram_addr_t current_addr = 0;
3181 ram_addr_t saved_addr = current_addr;
3182 ram_addr_t addr = 0;
3183 int found = 0;
3185 while (addr < last_ram_offset) {
3186 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3187 uint8_t *p;
3189 cpu_physical_memory_reset_dirty(current_addr,
3190 current_addr + TARGET_PAGE_SIZE,
3191 MIGRATION_DIRTY_FLAG);
3193 p = qemu_get_ram_ptr(current_addr);
3195 if (is_dup_page(p, *p)) {
3196 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3197 qemu_put_byte(f, *p);
3198 } else {
3199 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3200 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3203 found = 1;
3204 break;
3206 addr += TARGET_PAGE_SIZE;
3207 current_addr = (saved_addr + addr) % last_ram_offset;
3210 return found;
3213 static ram_addr_t ram_save_threshold = 10;
3215 static ram_addr_t ram_save_remaining(void)
3217 ram_addr_t addr;
3218 ram_addr_t count = 0;
3220 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3221 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3222 count++;
3225 return count;
3228 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3230 ram_addr_t addr;
3232 if (stage == 1) {
3233 /* Make sure all dirty bits are set */
3234 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3235 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3236 cpu_physical_memory_set_dirty(addr);
3239 /* Enable dirty memory tracking */
3240 cpu_physical_memory_set_dirty_tracking(1);
3242 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3245 while (!qemu_file_rate_limit(f)) {
3246 int ret;
3248 ret = ram_save_block(f);
3249 if (ret == 0) /* no more blocks */
3250 break;
3253 /* try transferring iterative blocks of memory */
3255 if (stage == 3) {
3257 /* flush all remaining blocks regardless of rate limiting */
3258 while (ram_save_block(f) != 0);
3259 cpu_physical_memory_set_dirty_tracking(0);
3262 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3264 return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3267 static int ram_load_dead(QEMUFile *f, void *opaque)
3269 RamDecompressState s1, *s = &s1;
3270 uint8_t buf[10];
3271 ram_addr_t i;
3273 if (ram_decompress_open(s, f) < 0)
3274 return -EINVAL;
3275 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3276 if (ram_decompress_buf(s, buf, 1) < 0) {
3277 fprintf(stderr, "Error while reading ram block header\n");
3278 goto error;
3280 if (buf[0] == 0) {
3281 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3282 BDRV_HASH_BLOCK_SIZE) < 0) {
3283 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3284 goto error;
3286 } else {
3287 error:
3288 printf("Error block header\n");
3289 return -EINVAL;
3292 ram_decompress_close(s);
3294 return 0;
3297 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3299 ram_addr_t addr;
3300 int flags;
3302 if (version_id == 1)
3303 return ram_load_v1(f, opaque);
3305 if (version_id == 2) {
3306 if (qemu_get_be32(f) != last_ram_offset)
3307 return -EINVAL;
3308 return ram_load_dead(f, opaque);
3311 if (version_id != 3)
3312 return -EINVAL;
3314 do {
3315 addr = qemu_get_be64(f);
3317 flags = addr & ~TARGET_PAGE_MASK;
3318 addr &= TARGET_PAGE_MASK;
3320 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3321 if (addr != last_ram_offset)
3322 return -EINVAL;
3325 if (flags & RAM_SAVE_FLAG_FULL) {
3326 if (ram_load_dead(f, opaque) < 0)
3327 return -EINVAL;
3330 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3331 uint8_t ch = qemu_get_byte(f);
3332 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3333 } else if (flags & RAM_SAVE_FLAG_PAGE)
3334 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3335 } while (!(flags & RAM_SAVE_FLAG_EOS));
3337 return 0;
3340 void qemu_service_io(void)
3342 CPUState *env = cpu_single_env;
3343 if (env) {
3344 cpu_exit(env);
3345 #ifdef USE_KQEMU
3346 if (env->kqemu_enabled) {
3347 kqemu_cpu_interrupt(env);
3349 #endif
3353 /***********************************************************/
3354 /* bottom halves (can be seen as timers which expire ASAP) */
3356 struct QEMUBH {
3357 QEMUBHFunc *cb;
3358 void *opaque;
3359 int scheduled;
3360 int idle;
3361 int deleted;
3362 QEMUBH *next;
3365 static QEMUBH *first_bh = NULL;
3367 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3369 QEMUBH *bh;
3370 bh = qemu_mallocz(sizeof(QEMUBH));
3371 bh->cb = cb;
3372 bh->opaque = opaque;
3373 bh->next = first_bh;
3374 first_bh = bh;
3375 return bh;
3378 int qemu_bh_poll(void)
3380 QEMUBH *bh, **bhp;
3381 int ret;
3383 ret = 0;
3384 for (bh = first_bh; bh; bh = bh->next) {
3385 if (!bh->deleted && bh->scheduled) {
3386 bh->scheduled = 0;
3387 if (!bh->idle)
3388 ret = 1;
3389 bh->idle = 0;
3390 bh->cb(bh->opaque);
3394 /* remove deleted bhs */
3395 bhp = &first_bh;
3396 while (*bhp) {
3397 bh = *bhp;
3398 if (bh->deleted) {
3399 *bhp = bh->next;
3400 qemu_free(bh);
3401 } else
3402 bhp = &bh->next;
3405 return ret;
3408 void qemu_bh_schedule_idle(QEMUBH *bh)
3410 if (bh->scheduled)
3411 return;
3412 bh->scheduled = 1;
3413 bh->idle = 1;
3416 void qemu_bh_schedule(QEMUBH *bh)
3418 CPUState *env = cpu_single_env;
3419 if (bh->scheduled)
3420 return;
3421 bh->scheduled = 1;
3422 bh->idle = 0;
3423 /* stop the currently executing CPU to execute the BH ASAP */
3424 if (env) {
3425 cpu_exit(env);
3429 void qemu_bh_cancel(QEMUBH *bh)
3431 bh->scheduled = 0;
3434 void qemu_bh_delete(QEMUBH *bh)
3436 bh->scheduled = 0;
3437 bh->deleted = 1;
3440 static void qemu_bh_update_timeout(int *timeout)
3442 QEMUBH *bh;
3444 for (bh = first_bh; bh; bh = bh->next) {
3445 if (!bh->deleted && bh->scheduled) {
3446 if (bh->idle) {
3447 /* idle bottom halves will be polled at least
3448 * every 10ms */
3449 *timeout = MIN(10, *timeout);
3450 } else {
3451 /* non-idle bottom halves will be executed
3452 * immediately */
3453 *timeout = 0;
3454 break;
3460 /***********************************************************/
3461 /* machine registration */
3463 static QEMUMachine *first_machine = NULL;
3464 QEMUMachine *current_machine = NULL;
3466 int qemu_register_machine(QEMUMachine *m)
3468 QEMUMachine **pm;
3469 pm = &first_machine;
3470 while (*pm != NULL)
3471 pm = &(*pm)->next;
3472 m->next = NULL;
3473 *pm = m;
3474 return 0;
3477 static QEMUMachine *find_machine(const char *name)
3479 QEMUMachine *m;
3481 for(m = first_machine; m != NULL; m = m->next) {
3482 if (!strcmp(m->name, name))
3483 return m;
3485 return NULL;
3488 /***********************************************************/
3489 /* main execution loop */
3491 static void gui_update(void *opaque)
3493 uint64_t interval = GUI_REFRESH_INTERVAL;
3494 DisplayState *ds = opaque;
3495 DisplayChangeListener *dcl = ds->listeners;
3497 dpy_refresh(ds);
3499 while (dcl != NULL) {
3500 if (dcl->gui_timer_interval &&
3501 dcl->gui_timer_interval < interval)
3502 interval = dcl->gui_timer_interval;
3503 dcl = dcl->next;
3505 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3508 static void nographic_update(void *opaque)
3510 uint64_t interval = GUI_REFRESH_INTERVAL;
3512 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3515 struct vm_change_state_entry {
3516 VMChangeStateHandler *cb;
3517 void *opaque;
3518 LIST_ENTRY (vm_change_state_entry) entries;
3521 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3523 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3524 void *opaque)
3526 VMChangeStateEntry *e;
3528 e = qemu_mallocz(sizeof (*e));
3530 e->cb = cb;
3531 e->opaque = opaque;
3532 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3533 return e;
3536 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3538 LIST_REMOVE (e, entries);
3539 qemu_free (e);
3542 static void vm_state_notify(int running, int reason)
3544 VMChangeStateEntry *e;
3546 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3547 e->cb(e->opaque, running, reason);
3551 void vm_start(void)
3553 if (!vm_running) {
3554 cpu_enable_ticks();
3555 vm_running = 1;
3556 vm_state_notify(1, 0);
3557 qemu_rearm_alarm_timer(alarm_timer);
3561 void vm_stop(int reason)
3563 if (vm_running) {
3564 cpu_disable_ticks();
3565 vm_running = 0;
3566 vm_state_notify(0, reason);
3570 /* reset/shutdown handler */
3572 typedef struct QEMUResetEntry {
3573 QEMUResetHandler *func;
3574 void *opaque;
3575 struct QEMUResetEntry *next;
3576 } QEMUResetEntry;
3578 static QEMUResetEntry *first_reset_entry;
3579 static int reset_requested;
3580 static int shutdown_requested;
3581 static int powerdown_requested;
3583 int qemu_shutdown_requested(void)
3585 int r = shutdown_requested;
3586 shutdown_requested = 0;
3587 return r;
3590 int qemu_reset_requested(void)
3592 int r = reset_requested;
3593 reset_requested = 0;
3594 return r;
3597 int qemu_powerdown_requested(void)
3599 int r = powerdown_requested;
3600 powerdown_requested = 0;
3601 return r;
3604 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3606 QEMUResetEntry **pre, *re;
3608 pre = &first_reset_entry;
3609 while (*pre != NULL)
3610 pre = &(*pre)->next;
3611 re = qemu_mallocz(sizeof(QEMUResetEntry));
3612 re->func = func;
3613 re->opaque = opaque;
3614 re->next = NULL;
3615 *pre = re;
3618 void qemu_system_reset(void)
3620 QEMUResetEntry *re;
3622 /* reset all devices */
3623 for(re = first_reset_entry; re != NULL; re = re->next) {
3624 re->func(re->opaque);
3626 if (kvm_enabled())
3627 kvm_sync_vcpus();
3630 void qemu_system_reset_request(void)
3632 if (no_reboot) {
3633 shutdown_requested = 1;
3634 } else {
3635 reset_requested = 1;
3637 if (cpu_single_env)
3638 cpu_exit(cpu_single_env);
3641 void qemu_system_shutdown_request(void)
3643 shutdown_requested = 1;
3644 if (cpu_single_env)
3645 cpu_exit(cpu_single_env);
3648 void qemu_system_powerdown_request(void)
3650 powerdown_requested = 1;
3651 if (cpu_single_env)
3652 cpu_exit(cpu_single_env);
3655 #ifdef _WIN32
3656 static void host_main_loop_wait(int *timeout)
3658 int ret, ret2, i;
3659 PollingEntry *pe;
3662 /* XXX: need to suppress polling by better using win32 events */
3663 ret = 0;
3664 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3665 ret |= pe->func(pe->opaque);
3667 if (ret == 0) {
3668 int err;
3669 WaitObjects *w = &wait_objects;
3671 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3672 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3673 if (w->func[ret - WAIT_OBJECT_0])
3674 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3676 /* Check for additional signaled events */
3677 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3679 /* Check if event is signaled */
3680 ret2 = WaitForSingleObject(w->events[i], 0);
3681 if(ret2 == WAIT_OBJECT_0) {
3682 if (w->func[i])
3683 w->func[i](w->opaque[i]);
3684 } else if (ret2 == WAIT_TIMEOUT) {
3685 } else {
3686 err = GetLastError();
3687 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3690 } else if (ret == WAIT_TIMEOUT) {
3691 } else {
3692 err = GetLastError();
3693 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3697 *timeout = 0;
3699 #else
3700 static void host_main_loop_wait(int *timeout)
3703 #endif
3705 void main_loop_wait(int timeout)
3707 IOHandlerRecord *ioh;
3708 fd_set rfds, wfds, xfds;
3709 int ret, nfds;
3710 struct timeval tv;
3712 qemu_bh_update_timeout(&timeout);
3714 host_main_loop_wait(&timeout);
3716 /* poll any events */
3717 /* XXX: separate device handlers from system ones */
3718 nfds = -1;
3719 FD_ZERO(&rfds);
3720 FD_ZERO(&wfds);
3721 FD_ZERO(&xfds);
3722 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3723 if (ioh->deleted)
3724 continue;
3725 if (ioh->fd_read &&
3726 (!ioh->fd_read_poll ||
3727 ioh->fd_read_poll(ioh->opaque) != 0)) {
3728 FD_SET(ioh->fd, &rfds);
3729 if (ioh->fd > nfds)
3730 nfds = ioh->fd;
3732 if (ioh->fd_write) {
3733 FD_SET(ioh->fd, &wfds);
3734 if (ioh->fd > nfds)
3735 nfds = ioh->fd;
3739 tv.tv_sec = timeout / 1000;
3740 tv.tv_usec = (timeout % 1000) * 1000;
3742 #if defined(CONFIG_SLIRP)
3743 if (slirp_is_inited()) {
3744 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3746 #endif
3747 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3748 if (ret > 0) {
3749 IOHandlerRecord **pioh;
3751 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3752 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3753 ioh->fd_read(ioh->opaque);
3755 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3756 ioh->fd_write(ioh->opaque);
3760 /* remove deleted IO handlers */
3761 pioh = &first_io_handler;
3762 while (*pioh) {
3763 ioh = *pioh;
3764 if (ioh->deleted) {
3765 *pioh = ioh->next;
3766 qemu_free(ioh);
3767 } else
3768 pioh = &ioh->next;
3771 #if defined(CONFIG_SLIRP)
3772 if (slirp_is_inited()) {
3773 if (ret < 0) {
3774 FD_ZERO(&rfds);
3775 FD_ZERO(&wfds);
3776 FD_ZERO(&xfds);
3778 slirp_select_poll(&rfds, &wfds, &xfds);
3780 #endif
3782 /* vm time timers */
3783 if (vm_running && likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
3784 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
3785 qemu_get_clock(vm_clock));
3787 /* real time timers */
3788 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
3789 qemu_get_clock(rt_clock));
3791 /* Check bottom-halves last in case any of the earlier events triggered
3792 them. */
3793 qemu_bh_poll();
3797 static int main_loop(void)
3799 int ret, timeout;
3800 #ifdef CONFIG_PROFILER
3801 int64_t ti;
3802 #endif
3803 CPUState *env;
3805 cur_cpu = first_cpu;
3806 next_cpu = cur_cpu->next_cpu ?: first_cpu;
3807 for(;;) {
3808 if (vm_running) {
3810 for(;;) {
3811 /* get next cpu */
3812 env = next_cpu;
3813 #ifdef CONFIG_PROFILER
3814 ti = profile_getclock();
3815 #endif
3816 if (use_icount) {
3817 int64_t count;
3818 int decr;
3819 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
3820 env->icount_decr.u16.low = 0;
3821 env->icount_extra = 0;
3822 count = qemu_next_deadline();
3823 count = (count + (1 << icount_time_shift) - 1)
3824 >> icount_time_shift;
3825 qemu_icount += count;
3826 decr = (count > 0xffff) ? 0xffff : count;
3827 count -= decr;
3828 env->icount_decr.u16.low = decr;
3829 env->icount_extra = count;
3831 ret = cpu_exec(env);
3832 #ifdef CONFIG_PROFILER
3833 qemu_time += profile_getclock() - ti;
3834 #endif
3835 if (use_icount) {
3836 /* Fold pending instructions back into the
3837 instruction counter, and clear the interrupt flag. */
3838 qemu_icount -= (env->icount_decr.u16.low
3839 + env->icount_extra);
3840 env->icount_decr.u32 = 0;
3841 env->icount_extra = 0;
3843 next_cpu = env->next_cpu ?: first_cpu;
3844 if (event_pending && likely(ret != EXCP_DEBUG)) {
3845 ret = EXCP_INTERRUPT;
3846 event_pending = 0;
3847 break;
3849 if (ret == EXCP_HLT) {
3850 /* Give the next CPU a chance to run. */
3851 cur_cpu = env;
3852 continue;
3854 if (ret != EXCP_HALTED)
3855 break;
3856 /* all CPUs are halted ? */
3857 if (env == cur_cpu)
3858 break;
3860 cur_cpu = env;
3862 if (shutdown_requested) {
3863 ret = EXCP_INTERRUPT;
3864 if (no_shutdown) {
3865 vm_stop(0);
3866 no_shutdown = 0;
3868 else
3869 break;
3871 if (reset_requested) {
3872 reset_requested = 0;
3873 qemu_system_reset();
3874 ret = EXCP_INTERRUPT;
3876 if (powerdown_requested) {
3877 powerdown_requested = 0;
3878 qemu_system_powerdown();
3879 ret = EXCP_INTERRUPT;
3881 if (unlikely(ret == EXCP_DEBUG)) {
3882 gdb_set_stop_cpu(cur_cpu);
3883 vm_stop(EXCP_DEBUG);
3885 /* If all cpus are halted then wait until the next IRQ */
3886 /* XXX: use timeout computed from timers */
3887 if (ret == EXCP_HALTED) {
3888 if (use_icount) {
3889 int64_t add;
3890 int64_t delta;
3891 /* Advance virtual time to the next event. */
3892 if (use_icount == 1) {
3893 /* When not using an adaptive execution frequency
3894 we tend to get badly out of sync with real time,
3895 so just delay for a reasonable amount of time. */
3896 delta = 0;
3897 } else {
3898 delta = cpu_get_icount() - cpu_get_clock();
3900 if (delta > 0) {
3901 /* If virtual time is ahead of real time then just
3902 wait for IO. */
3903 timeout = (delta / 1000000) + 1;
3904 } else {
3905 /* Wait for either IO to occur or the next
3906 timer event. */
3907 add = qemu_next_deadline();
3908 /* We advance the timer before checking for IO.
3909 Limit the amount we advance so that early IO
3910 activity won't get the guest too far ahead. */
3911 if (add > 10000000)
3912 add = 10000000;
3913 delta += add;
3914 add = (add + (1 << icount_time_shift) - 1)
3915 >> icount_time_shift;
3916 qemu_icount += add;
3917 timeout = delta / 1000000;
3918 if (timeout < 0)
3919 timeout = 0;
3921 } else {
3922 timeout = 5000;
3924 } else {
3925 timeout = 0;
3927 } else {
3928 if (shutdown_requested) {
3929 ret = EXCP_INTERRUPT;
3930 break;
3932 timeout = 5000;
3934 #ifdef CONFIG_PROFILER
3935 ti = profile_getclock();
3936 #endif
3937 main_loop_wait(timeout);
3938 #ifdef CONFIG_PROFILER
3939 dev_time += profile_getclock() - ti;
3940 #endif
3942 cpu_disable_ticks();
3943 return ret;
3946 static void version(void)
3948 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
3951 static void help(int exitcode)
3953 version();
3954 printf("usage: %s [options] [disk_image]\n"
3955 "\n"
3956 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
3957 "\n"
3958 #define DEF(option, opt_arg, opt_enum, opt_help) \
3959 opt_help
3960 #define DEFHEADING(text) stringify(text) "\n"
3961 #include "qemu-options.h"
3962 #undef DEF
3963 #undef DEFHEADING
3964 #undef GEN_DOCS
3965 "\n"
3966 "During emulation, the following keys are useful:\n"
3967 "ctrl-alt-f toggle full screen\n"
3968 "ctrl-alt-n switch to virtual console 'n'\n"
3969 "ctrl-alt toggle mouse and keyboard grab\n"
3970 "\n"
3971 "When using -nographic, press 'ctrl-a h' to get some help.\n"
3973 "qemu",
3974 DEFAULT_RAM_SIZE,
3975 #ifndef _WIN32
3976 DEFAULT_NETWORK_SCRIPT,
3977 DEFAULT_NETWORK_DOWN_SCRIPT,
3978 #endif
3979 DEFAULT_GDBSTUB_PORT,
3980 "/tmp/qemu.log");
3981 exit(exitcode);
3984 #define HAS_ARG 0x0001
3986 enum {
3987 #define DEF(option, opt_arg, opt_enum, opt_help) \
3988 opt_enum,
3989 #define DEFHEADING(text)
3990 #include "qemu-options.h"
3991 #undef DEF
3992 #undef DEFHEADING
3993 #undef GEN_DOCS
3996 typedef struct QEMUOption {
3997 const char *name;
3998 int flags;
3999 int index;
4000 } QEMUOption;
4002 static const QEMUOption qemu_options[] = {
4003 { "h", 0, QEMU_OPTION_h },
4004 #define DEF(option, opt_arg, opt_enum, opt_help) \
4005 { option, opt_arg, opt_enum },
4006 #define DEFHEADING(text)
4007 #include "qemu-options.h"
4008 #undef DEF
4009 #undef DEFHEADING
4010 #undef GEN_DOCS
4011 { NULL },
4014 #ifdef HAS_AUDIO
4015 struct soundhw soundhw[] = {
4016 #ifdef HAS_AUDIO_CHOICE
4017 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4019 "pcspk",
4020 "PC speaker",
4023 { .init_isa = pcspk_audio_init }
4025 #endif
4027 #ifdef CONFIG_SB16
4029 "sb16",
4030 "Creative Sound Blaster 16",
4033 { .init_isa = SB16_init }
4035 #endif
4037 #ifdef CONFIG_CS4231A
4039 "cs4231a",
4040 "CS4231A",
4043 { .init_isa = cs4231a_init }
4045 #endif
4047 #ifdef CONFIG_ADLIB
4049 "adlib",
4050 #ifdef HAS_YMF262
4051 "Yamaha YMF262 (OPL3)",
4052 #else
4053 "Yamaha YM3812 (OPL2)",
4054 #endif
4057 { .init_isa = Adlib_init }
4059 #endif
4061 #ifdef CONFIG_GUS
4063 "gus",
4064 "Gravis Ultrasound GF1",
4067 { .init_isa = GUS_init }
4069 #endif
4071 #ifdef CONFIG_AC97
4073 "ac97",
4074 "Intel 82801AA AC97 Audio",
4077 { .init_pci = ac97_init }
4079 #endif
4081 #ifdef CONFIG_ES1370
4083 "es1370",
4084 "ENSONIQ AudioPCI ES1370",
4087 { .init_pci = es1370_init }
4089 #endif
4091 #endif /* HAS_AUDIO_CHOICE */
4093 { NULL, NULL, 0, 0, { NULL } }
4096 static void select_soundhw (const char *optarg)
4098 struct soundhw *c;
4100 if (*optarg == '?') {
4101 show_valid_cards:
4103 printf ("Valid sound card names (comma separated):\n");
4104 for (c = soundhw; c->name; ++c) {
4105 printf ("%-11s %s\n", c->name, c->descr);
4107 printf ("\n-soundhw all will enable all of the above\n");
4108 exit (*optarg != '?');
4110 else {
4111 size_t l;
4112 const char *p;
4113 char *e;
4114 int bad_card = 0;
4116 if (!strcmp (optarg, "all")) {
4117 for (c = soundhw; c->name; ++c) {
4118 c->enabled = 1;
4120 return;
4123 p = optarg;
4124 while (*p) {
4125 e = strchr (p, ',');
4126 l = !e ? strlen (p) : (size_t) (e - p);
4128 for (c = soundhw; c->name; ++c) {
4129 if (!strncmp (c->name, p, l)) {
4130 c->enabled = 1;
4131 break;
4135 if (!c->name) {
4136 if (l > 80) {
4137 fprintf (stderr,
4138 "Unknown sound card name (too big to show)\n");
4140 else {
4141 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4142 (int) l, p);
4144 bad_card = 1;
4146 p += l + (e != NULL);
4149 if (bad_card)
4150 goto show_valid_cards;
4153 #endif
4155 static void select_vgahw (const char *p)
4157 const char *opts;
4159 if (strstart(p, "std", &opts)) {
4160 std_vga_enabled = 1;
4161 cirrus_vga_enabled = 0;
4162 vmsvga_enabled = 0;
4163 } else if (strstart(p, "cirrus", &opts)) {
4164 cirrus_vga_enabled = 1;
4165 std_vga_enabled = 0;
4166 vmsvga_enabled = 0;
4167 } else if (strstart(p, "vmware", &opts)) {
4168 cirrus_vga_enabled = 0;
4169 std_vga_enabled = 0;
4170 vmsvga_enabled = 1;
4171 } else if (strstart(p, "none", &opts)) {
4172 cirrus_vga_enabled = 0;
4173 std_vga_enabled = 0;
4174 vmsvga_enabled = 0;
4175 } else {
4176 invalid_vga:
4177 fprintf(stderr, "Unknown vga type: %s\n", p);
4178 exit(1);
4180 while (*opts) {
4181 const char *nextopt;
4183 if (strstart(opts, ",retrace=", &nextopt)) {
4184 opts = nextopt;
4185 if (strstart(opts, "dumb", &nextopt))
4186 vga_retrace_method = VGA_RETRACE_DUMB;
4187 else if (strstart(opts, "precise", &nextopt))
4188 vga_retrace_method = VGA_RETRACE_PRECISE;
4189 else goto invalid_vga;
4190 } else goto invalid_vga;
4191 opts = nextopt;
4195 #ifdef _WIN32
4196 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4198 exit(STATUS_CONTROL_C_EXIT);
4199 return TRUE;
4201 #endif
4203 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4205 int ret;
4207 if(strlen(str) != 36)
4208 return -1;
4210 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4211 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4212 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4214 if(ret != 16)
4215 return -1;
4217 return 0;
4220 #define MAX_NET_CLIENTS 32
4222 #ifndef _WIN32
4224 static void termsig_handler(int signal)
4226 qemu_system_shutdown_request();
4229 static void termsig_setup(void)
4231 struct sigaction act;
4233 memset(&act, 0, sizeof(act));
4234 act.sa_handler = termsig_handler;
4235 sigaction(SIGINT, &act, NULL);
4236 sigaction(SIGHUP, &act, NULL);
4237 sigaction(SIGTERM, &act, NULL);
4240 #endif
4242 int main(int argc, char **argv, char **envp)
4244 #ifdef CONFIG_GDBSTUB
4245 const char *gdbstub_dev = NULL;
4246 #endif
4247 uint32_t boot_devices_bitmap = 0;
4248 int i;
4249 int snapshot, linux_boot, net_boot;
4250 const char *initrd_filename;
4251 const char *kernel_filename, *kernel_cmdline;
4252 const char *boot_devices = "";
4253 DisplayState *ds;
4254 DisplayChangeListener *dcl;
4255 int cyls, heads, secs, translation;
4256 const char *net_clients[MAX_NET_CLIENTS];
4257 int nb_net_clients;
4258 const char *bt_opts[MAX_BT_CMDLINE];
4259 int nb_bt_opts;
4260 int hda_index;
4261 int optind;
4262 const char *r, *optarg;
4263 CharDriverState *monitor_hd = NULL;
4264 const char *monitor_device;
4265 const char *serial_devices[MAX_SERIAL_PORTS];
4266 int serial_device_index;
4267 const char *parallel_devices[MAX_PARALLEL_PORTS];
4268 int parallel_device_index;
4269 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4270 int virtio_console_index;
4271 const char *loadvm = NULL;
4272 QEMUMachine *machine;
4273 const char *cpu_model;
4274 const char *usb_devices[MAX_USB_CMDLINE];
4275 int usb_devices_index;
4276 #ifndef _WIN32
4277 int fds[2];
4278 #endif
4279 int tb_size;
4280 const char *pid_file = NULL;
4281 const char *incoming = NULL;
4282 #ifndef _WIN32
4283 int fd = 0;
4284 struct passwd *pwd = NULL;
4285 const char *chroot_dir = NULL;
4286 const char *run_as = NULL;
4287 #endif
4289 qemu_cache_utils_init(envp);
4291 LIST_INIT (&vm_change_state_head);
4292 #ifndef _WIN32
4294 struct sigaction act;
4295 sigfillset(&act.sa_mask);
4296 act.sa_flags = 0;
4297 act.sa_handler = SIG_IGN;
4298 sigaction(SIGPIPE, &act, NULL);
4300 #else
4301 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4302 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4303 QEMU to run on a single CPU */
4305 HANDLE h;
4306 DWORD mask, smask;
4307 int i;
4308 h = GetCurrentProcess();
4309 if (GetProcessAffinityMask(h, &mask, &smask)) {
4310 for(i = 0; i < 32; i++) {
4311 if (mask & (1 << i))
4312 break;
4314 if (i != 32) {
4315 mask = 1 << i;
4316 SetProcessAffinityMask(h, mask);
4320 #endif
4322 register_machines();
4323 machine = first_machine;
4324 cpu_model = NULL;
4325 initrd_filename = NULL;
4326 ram_size = 0;
4327 vga_ram_size = VGA_RAM_SIZE;
4328 snapshot = 0;
4329 nographic = 0;
4330 curses = 0;
4331 kernel_filename = NULL;
4332 kernel_cmdline = "";
4333 cyls = heads = secs = 0;
4334 translation = BIOS_ATA_TRANSLATION_AUTO;
4335 monitor_device = "vc:80Cx24C";
4337 serial_devices[0] = "vc:80Cx24C";
4338 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4339 serial_devices[i] = NULL;
4340 serial_device_index = 0;
4342 parallel_devices[0] = "vc:80Cx24C";
4343 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4344 parallel_devices[i] = NULL;
4345 parallel_device_index = 0;
4347 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4348 virtio_consoles[i] = NULL;
4349 virtio_console_index = 0;
4351 usb_devices_index = 0;
4353 nb_net_clients = 0;
4354 nb_bt_opts = 0;
4355 nb_drives = 0;
4356 nb_drives_opt = 0;
4357 hda_index = -1;
4359 nb_nics = 0;
4361 tb_size = 0;
4362 autostart= 1;
4364 optind = 1;
4365 for(;;) {
4366 if (optind >= argc)
4367 break;
4368 r = argv[optind];
4369 if (r[0] != '-') {
4370 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4371 } else {
4372 const QEMUOption *popt;
4374 optind++;
4375 /* Treat --foo the same as -foo. */
4376 if (r[1] == '-')
4377 r++;
4378 popt = qemu_options;
4379 for(;;) {
4380 if (!popt->name) {
4381 fprintf(stderr, "%s: invalid option -- '%s'\n",
4382 argv[0], r);
4383 exit(1);
4385 if (!strcmp(popt->name, r + 1))
4386 break;
4387 popt++;
4389 if (popt->flags & HAS_ARG) {
4390 if (optind >= argc) {
4391 fprintf(stderr, "%s: option '%s' requires an argument\n",
4392 argv[0], r);
4393 exit(1);
4395 optarg = argv[optind++];
4396 } else {
4397 optarg = NULL;
4400 switch(popt->index) {
4401 case QEMU_OPTION_M:
4402 machine = find_machine(optarg);
4403 if (!machine) {
4404 QEMUMachine *m;
4405 printf("Supported machines are:\n");
4406 for(m = first_machine; m != NULL; m = m->next) {
4407 printf("%-10s %s%s\n",
4408 m->name, m->desc,
4409 m == first_machine ? " (default)" : "");
4411 exit(*optarg != '?');
4413 break;
4414 case QEMU_OPTION_cpu:
4415 /* hw initialization will check this */
4416 if (*optarg == '?') {
4417 /* XXX: implement xxx_cpu_list for targets that still miss it */
4418 #if defined(cpu_list)
4419 cpu_list(stdout, &fprintf);
4420 #endif
4421 exit(0);
4422 } else {
4423 cpu_model = optarg;
4425 break;
4426 case QEMU_OPTION_initrd:
4427 initrd_filename = optarg;
4428 break;
4429 case QEMU_OPTION_hda:
4430 if (cyls == 0)
4431 hda_index = drive_add(optarg, HD_ALIAS, 0);
4432 else
4433 hda_index = drive_add(optarg, HD_ALIAS
4434 ",cyls=%d,heads=%d,secs=%d%s",
4435 0, cyls, heads, secs,
4436 translation == BIOS_ATA_TRANSLATION_LBA ?
4437 ",trans=lba" :
4438 translation == BIOS_ATA_TRANSLATION_NONE ?
4439 ",trans=none" : "");
4440 break;
4441 case QEMU_OPTION_hdb:
4442 case QEMU_OPTION_hdc:
4443 case QEMU_OPTION_hdd:
4444 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4445 break;
4446 case QEMU_OPTION_drive:
4447 drive_add(NULL, "%s", optarg);
4448 break;
4449 case QEMU_OPTION_mtdblock:
4450 drive_add(optarg, MTD_ALIAS);
4451 break;
4452 case QEMU_OPTION_sd:
4453 drive_add(optarg, SD_ALIAS);
4454 break;
4455 case QEMU_OPTION_pflash:
4456 drive_add(optarg, PFLASH_ALIAS);
4457 break;
4458 case QEMU_OPTION_snapshot:
4459 snapshot = 1;
4460 break;
4461 case QEMU_OPTION_hdachs:
4463 const char *p;
4464 p = optarg;
4465 cyls = strtol(p, (char **)&p, 0);
4466 if (cyls < 1 || cyls > 16383)
4467 goto chs_fail;
4468 if (*p != ',')
4469 goto chs_fail;
4470 p++;
4471 heads = strtol(p, (char **)&p, 0);
4472 if (heads < 1 || heads > 16)
4473 goto chs_fail;
4474 if (*p != ',')
4475 goto chs_fail;
4476 p++;
4477 secs = strtol(p, (char **)&p, 0);
4478 if (secs < 1 || secs > 63)
4479 goto chs_fail;
4480 if (*p == ',') {
4481 p++;
4482 if (!strcmp(p, "none"))
4483 translation = BIOS_ATA_TRANSLATION_NONE;
4484 else if (!strcmp(p, "lba"))
4485 translation = BIOS_ATA_TRANSLATION_LBA;
4486 else if (!strcmp(p, "auto"))
4487 translation = BIOS_ATA_TRANSLATION_AUTO;
4488 else
4489 goto chs_fail;
4490 } else if (*p != '\0') {
4491 chs_fail:
4492 fprintf(stderr, "qemu: invalid physical CHS format\n");
4493 exit(1);
4495 if (hda_index != -1)
4496 snprintf(drives_opt[hda_index].opt,
4497 sizeof(drives_opt[hda_index].opt),
4498 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
4499 0, cyls, heads, secs,
4500 translation == BIOS_ATA_TRANSLATION_LBA ?
4501 ",trans=lba" :
4502 translation == BIOS_ATA_TRANSLATION_NONE ?
4503 ",trans=none" : "");
4505 break;
4506 case QEMU_OPTION_nographic:
4507 nographic = 1;
4508 break;
4509 #ifdef CONFIG_CURSES
4510 case QEMU_OPTION_curses:
4511 curses = 1;
4512 break;
4513 #endif
4514 case QEMU_OPTION_portrait:
4515 graphic_rotate = 1;
4516 break;
4517 case QEMU_OPTION_kernel:
4518 kernel_filename = optarg;
4519 break;
4520 case QEMU_OPTION_append:
4521 kernel_cmdline = optarg;
4522 break;
4523 case QEMU_OPTION_cdrom:
4524 drive_add(optarg, CDROM_ALIAS);
4525 break;
4526 case QEMU_OPTION_boot:
4527 boot_devices = optarg;
4528 /* We just do some generic consistency checks */
4530 /* Could easily be extended to 64 devices if needed */
4531 const char *p;
4533 boot_devices_bitmap = 0;
4534 for (p = boot_devices; *p != '\0'; p++) {
4535 /* Allowed boot devices are:
4536 * a b : floppy disk drives
4537 * c ... f : IDE disk drives
4538 * g ... m : machine implementation dependant drives
4539 * n ... p : network devices
4540 * It's up to each machine implementation to check
4541 * if the given boot devices match the actual hardware
4542 * implementation and firmware features.
4544 if (*p < 'a' || *p > 'q') {
4545 fprintf(stderr, "Invalid boot device '%c'\n", *p);
4546 exit(1);
4548 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
4549 fprintf(stderr,
4550 "Boot device '%c' was given twice\n",*p);
4551 exit(1);
4553 boot_devices_bitmap |= 1 << (*p - 'a');
4556 break;
4557 case QEMU_OPTION_fda:
4558 case QEMU_OPTION_fdb:
4559 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
4560 break;
4561 #ifdef TARGET_I386
4562 case QEMU_OPTION_no_fd_bootchk:
4563 fd_bootchk = 0;
4564 break;
4565 #endif
4566 case QEMU_OPTION_net:
4567 if (nb_net_clients >= MAX_NET_CLIENTS) {
4568 fprintf(stderr, "qemu: too many network clients\n");
4569 exit(1);
4571 net_clients[nb_net_clients] = optarg;
4572 nb_net_clients++;
4573 break;
4574 #ifdef CONFIG_SLIRP
4575 case QEMU_OPTION_tftp:
4576 tftp_prefix = optarg;
4577 break;
4578 case QEMU_OPTION_bootp:
4579 bootp_filename = optarg;
4580 break;
4581 #ifndef _WIN32
4582 case QEMU_OPTION_smb:
4583 net_slirp_smb(optarg);
4584 break;
4585 #endif
4586 case QEMU_OPTION_redir:
4587 net_slirp_redir(optarg);
4588 break;
4589 #endif
4590 case QEMU_OPTION_bt:
4591 if (nb_bt_opts >= MAX_BT_CMDLINE) {
4592 fprintf(stderr, "qemu: too many bluetooth options\n");
4593 exit(1);
4595 bt_opts[nb_bt_opts++] = optarg;
4596 break;
4597 #ifdef HAS_AUDIO
4598 case QEMU_OPTION_audio_help:
4599 AUD_help ();
4600 exit (0);
4601 break;
4602 case QEMU_OPTION_soundhw:
4603 select_soundhw (optarg);
4604 break;
4605 #endif
4606 case QEMU_OPTION_h:
4607 help(0);
4608 break;
4609 case QEMU_OPTION_version:
4610 version();
4611 exit(0);
4612 break;
4613 case QEMU_OPTION_m: {
4614 uint64_t value;
4615 char *ptr;
4617 value = strtoul(optarg, &ptr, 10);
4618 switch (*ptr) {
4619 case 0: case 'M': case 'm':
4620 value <<= 20;
4621 break;
4622 case 'G': case 'g':
4623 value <<= 30;
4624 break;
4625 default:
4626 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
4627 exit(1);
4630 /* On 32-bit hosts, QEMU is limited by virtual address space */
4631 if (value > (2047 << 20)
4632 #ifndef USE_KQEMU
4633 && HOST_LONG_BITS == 32
4634 #endif
4636 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
4637 exit(1);
4639 if (value != (uint64_t)(ram_addr_t)value) {
4640 fprintf(stderr, "qemu: ram size too large\n");
4641 exit(1);
4643 ram_size = value;
4644 break;
4646 case QEMU_OPTION_d:
4648 int mask;
4649 const CPULogItem *item;
4651 mask = cpu_str_to_log_mask(optarg);
4652 if (!mask) {
4653 printf("Log items (comma separated):\n");
4654 for(item = cpu_log_items; item->mask != 0; item++) {
4655 printf("%-10s %s\n", item->name, item->help);
4657 exit(1);
4659 cpu_set_log(mask);
4661 break;
4662 #ifdef CONFIG_GDBSTUB
4663 case QEMU_OPTION_s:
4664 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
4665 break;
4666 case QEMU_OPTION_gdb:
4667 gdbstub_dev = optarg;
4668 break;
4669 #endif
4670 case QEMU_OPTION_L:
4671 bios_dir = optarg;
4672 break;
4673 case QEMU_OPTION_bios:
4674 bios_name = optarg;
4675 break;
4676 case QEMU_OPTION_singlestep:
4677 singlestep = 1;
4678 break;
4679 case QEMU_OPTION_S:
4680 autostart = 0;
4681 break;
4682 #ifndef _WIN32
4683 case QEMU_OPTION_k:
4684 keyboard_layout = optarg;
4685 break;
4686 #endif
4687 case QEMU_OPTION_localtime:
4688 rtc_utc = 0;
4689 break;
4690 case QEMU_OPTION_vga:
4691 select_vgahw (optarg);
4692 break;
4693 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
4694 case QEMU_OPTION_g:
4696 const char *p;
4697 int w, h, depth;
4698 p = optarg;
4699 w = strtol(p, (char **)&p, 10);
4700 if (w <= 0) {
4701 graphic_error:
4702 fprintf(stderr, "qemu: invalid resolution or depth\n");
4703 exit(1);
4705 if (*p != 'x')
4706 goto graphic_error;
4707 p++;
4708 h = strtol(p, (char **)&p, 10);
4709 if (h <= 0)
4710 goto graphic_error;
4711 if (*p == 'x') {
4712 p++;
4713 depth = strtol(p, (char **)&p, 10);
4714 if (depth != 8 && depth != 15 && depth != 16 &&
4715 depth != 24 && depth != 32)
4716 goto graphic_error;
4717 } else if (*p == '\0') {
4718 depth = graphic_depth;
4719 } else {
4720 goto graphic_error;
4723 graphic_width = w;
4724 graphic_height = h;
4725 graphic_depth = depth;
4727 break;
4728 #endif
4729 case QEMU_OPTION_echr:
4731 char *r;
4732 term_escape_char = strtol(optarg, &r, 0);
4733 if (r == optarg)
4734 printf("Bad argument to echr\n");
4735 break;
4737 case QEMU_OPTION_monitor:
4738 monitor_device = optarg;
4739 break;
4740 case QEMU_OPTION_serial:
4741 if (serial_device_index >= MAX_SERIAL_PORTS) {
4742 fprintf(stderr, "qemu: too many serial ports\n");
4743 exit(1);
4745 serial_devices[serial_device_index] = optarg;
4746 serial_device_index++;
4747 break;
4748 case QEMU_OPTION_virtiocon:
4749 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
4750 fprintf(stderr, "qemu: too many virtio consoles\n");
4751 exit(1);
4753 virtio_consoles[virtio_console_index] = optarg;
4754 virtio_console_index++;
4755 break;
4756 case QEMU_OPTION_parallel:
4757 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
4758 fprintf(stderr, "qemu: too many parallel ports\n");
4759 exit(1);
4761 parallel_devices[parallel_device_index] = optarg;
4762 parallel_device_index++;
4763 break;
4764 case QEMU_OPTION_loadvm:
4765 loadvm = optarg;
4766 break;
4767 case QEMU_OPTION_full_screen:
4768 full_screen = 1;
4769 break;
4770 #ifdef CONFIG_SDL
4771 case QEMU_OPTION_no_frame:
4772 no_frame = 1;
4773 break;
4774 case QEMU_OPTION_alt_grab:
4775 alt_grab = 1;
4776 break;
4777 case QEMU_OPTION_no_quit:
4778 no_quit = 1;
4779 break;
4780 case QEMU_OPTION_sdl:
4781 sdl = 1;
4782 break;
4783 #endif
4784 case QEMU_OPTION_pidfile:
4785 pid_file = optarg;
4786 break;
4787 #ifdef TARGET_I386
4788 case QEMU_OPTION_win2k_hack:
4789 win2k_install_hack = 1;
4790 break;
4791 case QEMU_OPTION_rtc_td_hack:
4792 rtc_td_hack = 1;
4793 break;
4794 case QEMU_OPTION_acpitable:
4795 if(acpi_table_add(optarg) < 0) {
4796 fprintf(stderr, "Wrong acpi table provided\n");
4797 exit(1);
4799 break;
4800 #endif
4801 #ifdef USE_KQEMU
4802 case QEMU_OPTION_no_kqemu:
4803 kqemu_allowed = 0;
4804 break;
4805 case QEMU_OPTION_kernel_kqemu:
4806 kqemu_allowed = 2;
4807 break;
4808 #endif
4809 #ifdef CONFIG_KVM
4810 case QEMU_OPTION_enable_kvm:
4811 kvm_allowed = 1;
4812 #ifdef USE_KQEMU
4813 kqemu_allowed = 0;
4814 #endif
4815 break;
4816 #endif
4817 case QEMU_OPTION_usb:
4818 usb_enabled = 1;
4819 break;
4820 case QEMU_OPTION_usbdevice:
4821 usb_enabled = 1;
4822 if (usb_devices_index >= MAX_USB_CMDLINE) {
4823 fprintf(stderr, "Too many USB devices\n");
4824 exit(1);
4826 usb_devices[usb_devices_index] = optarg;
4827 usb_devices_index++;
4828 break;
4829 case QEMU_OPTION_smp:
4830 smp_cpus = atoi(optarg);
4831 if (smp_cpus < 1) {
4832 fprintf(stderr, "Invalid number of CPUs\n");
4833 exit(1);
4835 break;
4836 case QEMU_OPTION_vnc:
4837 vnc_display = optarg;
4838 break;
4839 #ifdef TARGET_I386
4840 case QEMU_OPTION_no_acpi:
4841 acpi_enabled = 0;
4842 break;
4843 case QEMU_OPTION_no_hpet:
4844 no_hpet = 1;
4845 break;
4846 #endif
4847 case QEMU_OPTION_no_reboot:
4848 no_reboot = 1;
4849 break;
4850 case QEMU_OPTION_no_shutdown:
4851 no_shutdown = 1;
4852 break;
4853 case QEMU_OPTION_show_cursor:
4854 cursor_hide = 0;
4855 break;
4856 case QEMU_OPTION_uuid:
4857 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
4858 fprintf(stderr, "Fail to parse UUID string."
4859 " Wrong format.\n");
4860 exit(1);
4862 break;
4863 #ifndef _WIN32
4864 case QEMU_OPTION_daemonize:
4865 daemonize = 1;
4866 break;
4867 #endif
4868 case QEMU_OPTION_option_rom:
4869 if (nb_option_roms >= MAX_OPTION_ROMS) {
4870 fprintf(stderr, "Too many option ROMs\n");
4871 exit(1);
4873 option_rom[nb_option_roms] = optarg;
4874 nb_option_roms++;
4875 break;
4876 #if defined(TARGET_ARM) || defined(TARGET_M68K)
4877 case QEMU_OPTION_semihosting:
4878 semihosting_enabled = 1;
4879 break;
4880 #endif
4881 case QEMU_OPTION_name:
4882 qemu_name = optarg;
4883 break;
4884 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
4885 case QEMU_OPTION_prom_env:
4886 if (nb_prom_envs >= MAX_PROM_ENVS) {
4887 fprintf(stderr, "Too many prom variables\n");
4888 exit(1);
4890 prom_envs[nb_prom_envs] = optarg;
4891 nb_prom_envs++;
4892 break;
4893 #endif
4894 #ifdef TARGET_ARM
4895 case QEMU_OPTION_old_param:
4896 old_param = 1;
4897 break;
4898 #endif
4899 case QEMU_OPTION_clock:
4900 configure_alarms(optarg);
4901 break;
4902 case QEMU_OPTION_startdate:
4904 struct tm tm;
4905 time_t rtc_start_date;
4906 if (!strcmp(optarg, "now")) {
4907 rtc_date_offset = -1;
4908 } else {
4909 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
4910 &tm.tm_year,
4911 &tm.tm_mon,
4912 &tm.tm_mday,
4913 &tm.tm_hour,
4914 &tm.tm_min,
4915 &tm.tm_sec) == 6) {
4916 /* OK */
4917 } else if (sscanf(optarg, "%d-%d-%d",
4918 &tm.tm_year,
4919 &tm.tm_mon,
4920 &tm.tm_mday) == 3) {
4921 tm.tm_hour = 0;
4922 tm.tm_min = 0;
4923 tm.tm_sec = 0;
4924 } else {
4925 goto date_fail;
4927 tm.tm_year -= 1900;
4928 tm.tm_mon--;
4929 rtc_start_date = mktimegm(&tm);
4930 if (rtc_start_date == -1) {
4931 date_fail:
4932 fprintf(stderr, "Invalid date format. Valid format are:\n"
4933 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
4934 exit(1);
4936 rtc_date_offset = time(NULL) - rtc_start_date;
4939 break;
4940 case QEMU_OPTION_tb_size:
4941 tb_size = strtol(optarg, NULL, 0);
4942 if (tb_size < 0)
4943 tb_size = 0;
4944 break;
4945 case QEMU_OPTION_icount:
4946 use_icount = 1;
4947 if (strcmp(optarg, "auto") == 0) {
4948 icount_time_shift = -1;
4949 } else {
4950 icount_time_shift = strtol(optarg, NULL, 0);
4952 break;
4953 case QEMU_OPTION_incoming:
4954 incoming = optarg;
4955 break;
4956 #ifndef _WIN32
4957 case QEMU_OPTION_chroot:
4958 chroot_dir = optarg;
4959 break;
4960 case QEMU_OPTION_runas:
4961 run_as = optarg;
4962 break;
4963 #endif
4968 #if defined(CONFIG_KVM) && defined(USE_KQEMU)
4969 if (kvm_allowed && kqemu_allowed) {
4970 fprintf(stderr,
4971 "You can not enable both KVM and kqemu at the same time\n");
4972 exit(1);
4974 #endif
4976 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
4977 if (smp_cpus > machine->max_cpus) {
4978 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
4979 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
4980 machine->max_cpus);
4981 exit(1);
4984 if (nographic) {
4985 if (serial_device_index == 0)
4986 serial_devices[0] = "stdio";
4987 if (parallel_device_index == 0)
4988 parallel_devices[0] = "null";
4989 if (strncmp(monitor_device, "vc", 2) == 0)
4990 monitor_device = "stdio";
4993 #ifndef _WIN32
4994 if (daemonize) {
4995 pid_t pid;
4997 if (pipe(fds) == -1)
4998 exit(1);
5000 pid = fork();
5001 if (pid > 0) {
5002 uint8_t status;
5003 ssize_t len;
5005 close(fds[1]);
5007 again:
5008 len = read(fds[0], &status, 1);
5009 if (len == -1 && (errno == EINTR))
5010 goto again;
5012 if (len != 1)
5013 exit(1);
5014 else if (status == 1) {
5015 fprintf(stderr, "Could not acquire pidfile\n");
5016 exit(1);
5017 } else
5018 exit(0);
5019 } else if (pid < 0)
5020 exit(1);
5022 setsid();
5024 pid = fork();
5025 if (pid > 0)
5026 exit(0);
5027 else if (pid < 0)
5028 exit(1);
5030 umask(027);
5032 signal(SIGTSTP, SIG_IGN);
5033 signal(SIGTTOU, SIG_IGN);
5034 signal(SIGTTIN, SIG_IGN);
5037 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5038 if (daemonize) {
5039 uint8_t status = 1;
5040 write(fds[1], &status, 1);
5041 } else
5042 fprintf(stderr, "Could not acquire pid file\n");
5043 exit(1);
5045 #endif
5047 #ifdef USE_KQEMU
5048 if (smp_cpus > 1)
5049 kqemu_allowed = 0;
5050 #endif
5051 linux_boot = (kernel_filename != NULL);
5052 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5054 if (!linux_boot && *kernel_cmdline != '\0') {
5055 fprintf(stderr, "-append only allowed with -kernel option\n");
5056 exit(1);
5059 if (!linux_boot && initrd_filename != NULL) {
5060 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5061 exit(1);
5064 /* boot to floppy or the default cd if no hard disk defined yet */
5065 if (!boot_devices[0]) {
5066 boot_devices = "cad";
5068 setvbuf(stdout, NULL, _IOLBF, 0);
5070 init_timers();
5071 if (init_timer_alarm() < 0) {
5072 fprintf(stderr, "could not initialize alarm timer\n");
5073 exit(1);
5075 if (use_icount && icount_time_shift < 0) {
5076 use_icount = 2;
5077 /* 125MIPS seems a reasonable initial guess at the guest speed.
5078 It will be corrected fairly quickly anyway. */
5079 icount_time_shift = 3;
5080 init_icount_adjust();
5083 #ifdef _WIN32
5084 socket_init();
5085 #endif
5087 /* init network clients */
5088 if (nb_net_clients == 0) {
5089 /* if no clients, we use a default config */
5090 net_clients[nb_net_clients++] = "nic";
5091 #ifdef CONFIG_SLIRP
5092 net_clients[nb_net_clients++] = "user";
5093 #endif
5096 for(i = 0;i < nb_net_clients; i++) {
5097 if (net_client_parse(net_clients[i]) < 0)
5098 exit(1);
5100 net_client_check();
5102 #ifdef TARGET_I386
5103 /* XXX: this should be moved in the PC machine instantiation code */
5104 if (net_boot != 0) {
5105 int netroms = 0;
5106 for (i = 0; i < nb_nics && i < 4; i++) {
5107 const char *model = nd_table[i].model;
5108 char buf[1024];
5109 if (net_boot & (1 << i)) {
5110 if (model == NULL)
5111 model = "ne2k_pci";
5112 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
5113 if (get_image_size(buf) > 0) {
5114 if (nb_option_roms >= MAX_OPTION_ROMS) {
5115 fprintf(stderr, "Too many option ROMs\n");
5116 exit(1);
5118 option_rom[nb_option_roms] = strdup(buf);
5119 nb_option_roms++;
5120 netroms++;
5124 if (netroms == 0) {
5125 fprintf(stderr, "No valid PXE rom found for network device\n");
5126 exit(1);
5129 #endif
5131 /* init the bluetooth world */
5132 for (i = 0; i < nb_bt_opts; i++)
5133 if (bt_parse(bt_opts[i]))
5134 exit(1);
5136 /* init the memory */
5137 if (ram_size == 0)
5138 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5140 #ifdef USE_KQEMU
5141 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5142 guest ram allocation. It needs to go away. */
5143 if (kqemu_allowed) {
5144 kqemu_phys_ram_size = ram_size + VGA_RAM_SIZE + 4 * 1024 * 1024;
5145 kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
5146 if (!kqemu_phys_ram_base) {
5147 fprintf(stderr, "Could not allocate physical memory\n");
5148 exit(1);
5151 #endif
5153 /* init the dynamic translator */
5154 cpu_exec_init_all(tb_size * 1024 * 1024);
5156 bdrv_init();
5157 dma_helper_init();
5159 /* we always create the cdrom drive, even if no disk is there */
5161 if (nb_drives_opt < MAX_DRIVES)
5162 drive_add(NULL, CDROM_ALIAS);
5164 /* we always create at least one floppy */
5166 if (nb_drives_opt < MAX_DRIVES)
5167 drive_add(NULL, FD_ALIAS, 0);
5169 /* we always create one sd slot, even if no card is in it */
5171 if (nb_drives_opt < MAX_DRIVES)
5172 drive_add(NULL, SD_ALIAS);
5174 /* open the virtual block devices */
5176 for(i = 0; i < nb_drives_opt; i++)
5177 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5178 exit(1);
5180 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5181 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5183 #ifndef _WIN32
5184 /* must be after terminal init, SDL library changes signal handlers */
5185 termsig_setup();
5186 #endif
5188 /* Maintain compatibility with multiple stdio monitors */
5189 if (!strcmp(monitor_device,"stdio")) {
5190 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5191 const char *devname = serial_devices[i];
5192 if (devname && !strcmp(devname,"mon:stdio")) {
5193 monitor_device = NULL;
5194 break;
5195 } else if (devname && !strcmp(devname,"stdio")) {
5196 monitor_device = NULL;
5197 serial_devices[i] = "mon:stdio";
5198 break;
5203 if (kvm_enabled()) {
5204 int ret;
5206 ret = kvm_init(smp_cpus);
5207 if (ret < 0) {
5208 fprintf(stderr, "failed to initialize KVM\n");
5209 exit(1);
5213 if (monitor_device) {
5214 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5215 if (!monitor_hd) {
5216 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5217 exit(1);
5221 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5222 const char *devname = serial_devices[i];
5223 if (devname && strcmp(devname, "none")) {
5224 char label[32];
5225 snprintf(label, sizeof(label), "serial%d", i);
5226 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5227 if (!serial_hds[i]) {
5228 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5229 devname);
5230 exit(1);
5235 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5236 const char *devname = parallel_devices[i];
5237 if (devname && strcmp(devname, "none")) {
5238 char label[32];
5239 snprintf(label, sizeof(label), "parallel%d", i);
5240 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5241 if (!parallel_hds[i]) {
5242 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5243 devname);
5244 exit(1);
5249 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5250 const char *devname = virtio_consoles[i];
5251 if (devname && strcmp(devname, "none")) {
5252 char label[32];
5253 snprintf(label, sizeof(label), "virtcon%d", i);
5254 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5255 if (!virtcon_hds[i]) {
5256 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5257 devname);
5258 exit(1);
5263 machine->init(ram_size, vga_ram_size, boot_devices,
5264 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5266 current_machine = machine;
5268 /* Set KVM's vcpu state to qemu's initial CPUState. */
5269 if (kvm_enabled()) {
5270 int ret;
5272 ret = kvm_sync_vcpus();
5273 if (ret < 0) {
5274 fprintf(stderr, "failed to initialize vcpus\n");
5275 exit(1);
5279 /* init USB devices */
5280 if (usb_enabled) {
5281 for(i = 0; i < usb_devices_index; i++) {
5282 if (usb_device_add(usb_devices[i], 0) < 0) {
5283 fprintf(stderr, "Warning: could not add USB device %s\n",
5284 usb_devices[i]);
5289 if (!display_state)
5290 dumb_display_init();
5291 /* just use the first displaystate for the moment */
5292 ds = display_state;
5293 /* terminal init */
5294 if (nographic) {
5295 if (curses) {
5296 fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
5297 exit(1);
5299 } else {
5300 #if defined(CONFIG_CURSES)
5301 if (curses) {
5302 /* At the moment curses cannot be used with other displays */
5303 curses_display_init(ds, full_screen);
5304 } else
5305 #endif
5307 if (vnc_display != NULL) {
5308 vnc_display_init(ds);
5309 if (vnc_display_open(ds, vnc_display) < 0)
5310 exit(1);
5312 #if defined(CONFIG_SDL)
5313 if (sdl || !vnc_display)
5314 sdl_display_init(ds, full_screen, no_frame);
5315 #elif defined(CONFIG_COCOA)
5316 if (sdl || !vnc_display)
5317 cocoa_display_init(ds, full_screen);
5318 #endif
5321 dpy_resize(ds);
5323 dcl = ds->listeners;
5324 while (dcl != NULL) {
5325 if (dcl->dpy_refresh != NULL) {
5326 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5327 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5329 dcl = dcl->next;
5332 if (nographic || (vnc_display && !sdl)) {
5333 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5334 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5337 text_consoles_set_display(display_state);
5338 qemu_chr_initial_reset();
5340 if (monitor_device && monitor_hd)
5341 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
5343 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5344 const char *devname = serial_devices[i];
5345 if (devname && strcmp(devname, "none")) {
5346 char label[32];
5347 snprintf(label, sizeof(label), "serial%d", i);
5348 if (strstart(devname, "vc", 0))
5349 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5353 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5354 const char *devname = parallel_devices[i];
5355 if (devname && strcmp(devname, "none")) {
5356 char label[32];
5357 snprintf(label, sizeof(label), "parallel%d", i);
5358 if (strstart(devname, "vc", 0))
5359 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5363 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5364 const char *devname = virtio_consoles[i];
5365 if (virtcon_hds[i] && devname) {
5366 char label[32];
5367 snprintf(label, sizeof(label), "virtcon%d", i);
5368 if (strstart(devname, "vc", 0))
5369 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
5373 #ifdef CONFIG_GDBSTUB
5374 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
5375 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
5376 gdbstub_dev);
5377 exit(1);
5379 #endif
5381 if (loadvm)
5382 do_loadvm(cur_mon, loadvm);
5384 if (incoming) {
5385 autostart = 0; /* fixme how to deal with -daemonize */
5386 qemu_start_incoming_migration(incoming);
5389 if (autostart)
5390 vm_start();
5392 #ifndef _WIN32
5393 if (daemonize) {
5394 uint8_t status = 0;
5395 ssize_t len;
5397 again1:
5398 len = write(fds[1], &status, 1);
5399 if (len == -1 && (errno == EINTR))
5400 goto again1;
5402 if (len != 1)
5403 exit(1);
5405 chdir("/");
5406 TFR(fd = open("/dev/null", O_RDWR));
5407 if (fd == -1)
5408 exit(1);
5411 if (run_as) {
5412 pwd = getpwnam(run_as);
5413 if (!pwd) {
5414 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
5415 exit(1);
5419 if (chroot_dir) {
5420 if (chroot(chroot_dir) < 0) {
5421 fprintf(stderr, "chroot failed\n");
5422 exit(1);
5424 chdir("/");
5427 if (run_as) {
5428 if (setgid(pwd->pw_gid) < 0) {
5429 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
5430 exit(1);
5432 if (setuid(pwd->pw_uid) < 0) {
5433 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
5434 exit(1);
5436 if (setuid(0) != -1) {
5437 fprintf(stderr, "Dropping privileges failed\n");
5438 exit(1);
5442 if (daemonize) {
5443 dup2(fd, 0);
5444 dup2(fd, 1);
5445 dup2(fd, 2);
5447 close(fd);
5449 #endif
5451 main_loop();
5452 quit_timers();
5453 net_cleanup();
5455 return 0;