qemu: introduce qemu_cpu_kick (Marcelo Tosatti)
[qemu/mmix.git] / vl.c
blob92f30144186bd9d637add4ca8d3c7134e0c8aa0a
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
35 #ifndef _WIN32
36 #include <pwd.h>
37 #include <sys/times.h>
38 #include <sys/wait.h>
39 #include <termios.h>
40 #include <sys/mman.h>
41 #include <sys/ioctl.h>
42 #include <sys/resource.h>
43 #include <sys/socket.h>
44 #include <netinet/in.h>
45 #include <net/if.h>
46 #if defined(__NetBSD__)
47 #include <net/if_tap.h>
48 #endif
49 #ifdef __linux__
50 #include <linux/if_tun.h>
51 #endif
52 #include <arpa/inet.h>
53 #include <dirent.h>
54 #include <netdb.h>
55 #include <sys/select.h>
56 #ifdef HOST_BSD
57 #include <sys/stat.h>
58 #if defined(__FreeBSD__) || defined(__DragonFly__)
59 #include <libutil.h>
60 #else
61 #include <util.h>
62 #endif
63 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
64 #include <freebsd/stdlib.h>
65 #else
66 #ifdef __linux__
67 #include <pty.h>
68 #include <malloc.h>
69 #include <linux/rtc.h>
71 /* For the benefit of older linux systems which don't supply it,
72 we use a local copy of hpet.h. */
73 /* #include <linux/hpet.h> */
74 #include "hpet.h"
76 #include <linux/ppdev.h>
77 #include <linux/parport.h>
78 #endif
79 #ifdef __sun__
80 #include <sys/stat.h>
81 #include <sys/ethernet.h>
82 #include <sys/sockio.h>
83 #include <netinet/arp.h>
84 #include <netinet/in.h>
85 #include <netinet/in_systm.h>
86 #include <netinet/ip.h>
87 #include <netinet/ip_icmp.h> // must come after ip.h
88 #include <netinet/udp.h>
89 #include <netinet/tcp.h>
90 #include <net/if.h>
91 #include <syslog.h>
92 #include <stropts.h>
93 #endif
94 #endif
95 #endif
97 #if defined(__OpenBSD__)
98 #include <util.h>
99 #endif
101 #if defined(CONFIG_VDE)
102 #include <libvdeplug.h>
103 #endif
105 #ifdef _WIN32
106 #include <windows.h>
107 #include <malloc.h>
108 #include <sys/timeb.h>
109 #include <mmsystem.h>
110 #define getopt_long_only getopt_long
111 #define memalign(align, size) malloc(size)
112 #endif
114 #ifdef CONFIG_SDL
115 #ifdef __APPLE__
116 #include <SDL/SDL.h>
117 int qemu_main(int argc, char **argv, char **envp);
118 int main(int argc, char **argv)
120 qemu_main(argc, argv, NULL);
122 #undef main
123 #define main qemu_main
124 #endif
125 #endif /* CONFIG_SDL */
127 #ifdef CONFIG_COCOA
128 #undef main
129 #define main qemu_main
130 #endif /* CONFIG_COCOA */
132 #include "hw/hw.h"
133 #include "hw/boards.h"
134 #include "hw/usb.h"
135 #include "hw/pcmcia.h"
136 #include "hw/pc.h"
137 #include "hw/audiodev.h"
138 #include "hw/isa.h"
139 #include "hw/baum.h"
140 #include "hw/bt.h"
141 #include "hw/smbios.h"
142 #include "hw/xen.h"
143 #include "bt-host.h"
144 #include "net.h"
145 #include "monitor.h"
146 #include "console.h"
147 #include "sysemu.h"
148 #include "gdbstub.h"
149 #include "qemu-timer.h"
150 #include "qemu-char.h"
151 #include "cache-utils.h"
152 #include "block.h"
153 #include "dma.h"
154 #include "audio/audio.h"
155 #include "migration.h"
156 #include "kvm.h"
157 #include "balloon.h"
159 #include "disas.h"
161 #include "exec-all.h"
163 #include "qemu_socket.h"
165 #if defined(CONFIG_SLIRP)
166 #include "libslirp.h"
167 #endif
169 //#define DEBUG_UNUSED_IOPORT
170 //#define DEBUG_IOPORT
171 //#define DEBUG_NET
172 //#define DEBUG_SLIRP
175 #ifdef DEBUG_IOPORT
176 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
177 #else
178 # define LOG_IOPORT(...) do { } while (0)
179 #endif
181 #define DEFAULT_RAM_SIZE 128
183 /* Max number of USB devices that can be specified on the commandline. */
184 #define MAX_USB_CMDLINE 8
186 /* Max number of bluetooth switches on the commandline. */
187 #define MAX_BT_CMDLINE 10
189 /* XXX: use a two level table to limit memory usage */
190 #define MAX_IOPORTS 65536
192 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
193 const char *bios_name = NULL;
194 static void *ioport_opaque[MAX_IOPORTS];
195 static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
196 static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
197 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
198 to store the VM snapshots */
199 DriveInfo drives_table[MAX_DRIVES+1];
200 int nb_drives;
201 static int vga_ram_size;
202 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
203 static DisplayState *display_state;
204 int nographic;
205 static int curses;
206 static int sdl;
207 const char* keyboard_layout = NULL;
208 int64_t ticks_per_sec;
209 ram_addr_t ram_size;
210 int nb_nics;
211 NICInfo nd_table[MAX_NICS];
212 int vm_running;
213 static int autostart;
214 static int rtc_utc = 1;
215 static int rtc_date_offset = -1; /* -1 means no change */
216 int cirrus_vga_enabled = 1;
217 int std_vga_enabled = 0;
218 int vmsvga_enabled = 0;
219 int xenfb_enabled = 0;
220 #ifdef TARGET_SPARC
221 int graphic_width = 1024;
222 int graphic_height = 768;
223 int graphic_depth = 8;
224 #else
225 int graphic_width = 800;
226 int graphic_height = 600;
227 int graphic_depth = 15;
228 #endif
229 static int full_screen = 0;
230 #ifdef CONFIG_SDL
231 static int no_frame = 0;
232 #endif
233 int no_quit = 0;
234 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
235 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
236 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
237 #ifdef TARGET_I386
238 int win2k_install_hack = 0;
239 int rtc_td_hack = 0;
240 #endif
241 int usb_enabled = 0;
242 int singlestep = 0;
243 int smp_cpus = 1;
244 const char *vnc_display;
245 int acpi_enabled = 1;
246 int no_hpet = 0;
247 int fd_bootchk = 1;
248 int no_reboot = 0;
249 int no_shutdown = 0;
250 int cursor_hide = 1;
251 int graphic_rotate = 0;
252 #ifndef _WIN32
253 int daemonize = 0;
254 #endif
255 const char *option_rom[MAX_OPTION_ROMS];
256 int nb_option_roms;
257 int semihosting_enabled = 0;
258 #ifdef TARGET_ARM
259 int old_param = 0;
260 #endif
261 const char *qemu_name;
262 int alt_grab = 0;
263 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
264 unsigned int nb_prom_envs = 0;
265 const char *prom_envs[MAX_PROM_ENVS];
266 #endif
267 int nb_drives_opt;
268 struct drive_opt drives_opt[MAX_DRIVES];
270 int nb_numa_nodes;
271 uint64_t node_mem[MAX_NODES];
272 uint64_t node_cpumask[MAX_NODES];
274 static CPUState *cur_cpu;
275 static CPUState *next_cpu;
276 static int timer_alarm_pending = 1;
277 /* Conversion factor from emulated instructions to virtual clock ticks. */
278 static int icount_time_shift;
279 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
280 #define MAX_ICOUNT_SHIFT 10
281 /* Compensate for varying guest execution speed. */
282 static int64_t qemu_icount_bias;
283 static QEMUTimer *icount_rt_timer;
284 static QEMUTimer *icount_vm_timer;
285 static QEMUTimer *nographic_timer;
287 uint8_t qemu_uuid[16];
289 /***********************************************************/
290 /* x86 ISA bus support */
292 target_phys_addr_t isa_mem_base = 0;
293 PicState2 *isa_pic;
295 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
296 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
298 static uint32_t ioport_read(int index, uint32_t address)
300 static IOPortReadFunc *default_func[3] = {
301 default_ioport_readb,
302 default_ioport_readw,
303 default_ioport_readl
305 IOPortReadFunc *func = ioport_read_table[index][address];
306 if (!func)
307 func = default_func[index];
308 return func(ioport_opaque[address], address);
311 static void ioport_write(int index, uint32_t address, uint32_t data)
313 static IOPortWriteFunc *default_func[3] = {
314 default_ioport_writeb,
315 default_ioport_writew,
316 default_ioport_writel
318 IOPortWriteFunc *func = ioport_write_table[index][address];
319 if (!func)
320 func = default_func[index];
321 func(ioport_opaque[address], address, data);
324 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
326 #ifdef DEBUG_UNUSED_IOPORT
327 fprintf(stderr, "unused inb: port=0x%04x\n", address);
328 #endif
329 return 0xff;
332 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
334 #ifdef DEBUG_UNUSED_IOPORT
335 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
336 #endif
339 /* default is to make two byte accesses */
340 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
342 uint32_t data;
343 data = ioport_read(0, address);
344 address = (address + 1) & (MAX_IOPORTS - 1);
345 data |= ioport_read(0, address) << 8;
346 return data;
349 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
351 ioport_write(0, address, data & 0xff);
352 address = (address + 1) & (MAX_IOPORTS - 1);
353 ioport_write(0, address, (data >> 8) & 0xff);
356 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
358 #ifdef DEBUG_UNUSED_IOPORT
359 fprintf(stderr, "unused inl: port=0x%04x\n", address);
360 #endif
361 return 0xffffffff;
364 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
366 #ifdef DEBUG_UNUSED_IOPORT
367 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
368 #endif
371 /* size is the word size in byte */
372 int register_ioport_read(int start, int length, int size,
373 IOPortReadFunc *func, void *opaque)
375 int i, bsize;
377 if (size == 1) {
378 bsize = 0;
379 } else if (size == 2) {
380 bsize = 1;
381 } else if (size == 4) {
382 bsize = 2;
383 } else {
384 hw_error("register_ioport_read: invalid size");
385 return -1;
387 for(i = start; i < start + length; i += size) {
388 ioport_read_table[bsize][i] = func;
389 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
390 hw_error("register_ioport_read: invalid opaque");
391 ioport_opaque[i] = opaque;
393 return 0;
396 /* size is the word size in byte */
397 int register_ioport_write(int start, int length, int size,
398 IOPortWriteFunc *func, void *opaque)
400 int i, bsize;
402 if (size == 1) {
403 bsize = 0;
404 } else if (size == 2) {
405 bsize = 1;
406 } else if (size == 4) {
407 bsize = 2;
408 } else {
409 hw_error("register_ioport_write: invalid size");
410 return -1;
412 for(i = start; i < start + length; i += size) {
413 ioport_write_table[bsize][i] = func;
414 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
415 hw_error("register_ioport_write: invalid opaque");
416 ioport_opaque[i] = opaque;
418 return 0;
421 void isa_unassign_ioport(int start, int length)
423 int i;
425 for(i = start; i < start + length; i++) {
426 ioport_read_table[0][i] = default_ioport_readb;
427 ioport_read_table[1][i] = default_ioport_readw;
428 ioport_read_table[2][i] = default_ioport_readl;
430 ioport_write_table[0][i] = default_ioport_writeb;
431 ioport_write_table[1][i] = default_ioport_writew;
432 ioport_write_table[2][i] = default_ioport_writel;
434 ioport_opaque[i] = NULL;
438 /***********************************************************/
440 void cpu_outb(CPUState *env, int addr, int val)
442 LOG_IOPORT("outb: %04x %02x\n", addr, val);
443 ioport_write(0, addr, val);
444 #ifdef CONFIG_KQEMU
445 if (env)
446 env->last_io_time = cpu_get_time_fast();
447 #endif
450 void cpu_outw(CPUState *env, int addr, int val)
452 LOG_IOPORT("outw: %04x %04x\n", addr, val);
453 ioport_write(1, addr, val);
454 #ifdef CONFIG_KQEMU
455 if (env)
456 env->last_io_time = cpu_get_time_fast();
457 #endif
460 void cpu_outl(CPUState *env, int addr, int val)
462 LOG_IOPORT("outl: %04x %08x\n", addr, val);
463 ioport_write(2, addr, val);
464 #ifdef CONFIG_KQEMU
465 if (env)
466 env->last_io_time = cpu_get_time_fast();
467 #endif
470 int cpu_inb(CPUState *env, int addr)
472 int val;
473 val = ioport_read(0, addr);
474 LOG_IOPORT("inb : %04x %02x\n", addr, val);
475 #ifdef CONFIG_KQEMU
476 if (env)
477 env->last_io_time = cpu_get_time_fast();
478 #endif
479 return val;
482 int cpu_inw(CPUState *env, int addr)
484 int val;
485 val = ioport_read(1, addr);
486 LOG_IOPORT("inw : %04x %04x\n", addr, val);
487 #ifdef CONFIG_KQEMU
488 if (env)
489 env->last_io_time = cpu_get_time_fast();
490 #endif
491 return val;
494 int cpu_inl(CPUState *env, int addr)
496 int val;
497 val = ioport_read(2, addr);
498 LOG_IOPORT("inl : %04x %08x\n", addr, val);
499 #ifdef CONFIG_KQEMU
500 if (env)
501 env->last_io_time = cpu_get_time_fast();
502 #endif
503 return val;
506 /***********************************************************/
507 void hw_error(const char *fmt, ...)
509 va_list ap;
510 CPUState *env;
512 va_start(ap, fmt);
513 fprintf(stderr, "qemu: hardware error: ");
514 vfprintf(stderr, fmt, ap);
515 fprintf(stderr, "\n");
516 for(env = first_cpu; env != NULL; env = env->next_cpu) {
517 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
518 #ifdef TARGET_I386
519 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
520 #else
521 cpu_dump_state(env, stderr, fprintf, 0);
522 #endif
524 va_end(ap);
525 abort();
528 /***************/
529 /* ballooning */
531 static QEMUBalloonEvent *qemu_balloon_event;
532 void *qemu_balloon_event_opaque;
534 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
536 qemu_balloon_event = func;
537 qemu_balloon_event_opaque = opaque;
540 void qemu_balloon(ram_addr_t target)
542 if (qemu_balloon_event)
543 qemu_balloon_event(qemu_balloon_event_opaque, target);
546 ram_addr_t qemu_balloon_status(void)
548 if (qemu_balloon_event)
549 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
550 return 0;
553 /***********************************************************/
554 /* keyboard/mouse */
556 static QEMUPutKBDEvent *qemu_put_kbd_event;
557 static void *qemu_put_kbd_event_opaque;
558 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
559 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
561 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
563 qemu_put_kbd_event_opaque = opaque;
564 qemu_put_kbd_event = func;
567 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
568 void *opaque, int absolute,
569 const char *name)
571 QEMUPutMouseEntry *s, *cursor;
573 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
575 s->qemu_put_mouse_event = func;
576 s->qemu_put_mouse_event_opaque = opaque;
577 s->qemu_put_mouse_event_absolute = absolute;
578 s->qemu_put_mouse_event_name = qemu_strdup(name);
579 s->next = NULL;
581 if (!qemu_put_mouse_event_head) {
582 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
583 return s;
586 cursor = qemu_put_mouse_event_head;
587 while (cursor->next != NULL)
588 cursor = cursor->next;
590 cursor->next = s;
591 qemu_put_mouse_event_current = s;
593 return s;
596 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
598 QEMUPutMouseEntry *prev = NULL, *cursor;
600 if (!qemu_put_mouse_event_head || entry == NULL)
601 return;
603 cursor = qemu_put_mouse_event_head;
604 while (cursor != NULL && cursor != entry) {
605 prev = cursor;
606 cursor = cursor->next;
609 if (cursor == NULL) // does not exist or list empty
610 return;
611 else if (prev == NULL) { // entry is head
612 qemu_put_mouse_event_head = cursor->next;
613 if (qemu_put_mouse_event_current == entry)
614 qemu_put_mouse_event_current = cursor->next;
615 qemu_free(entry->qemu_put_mouse_event_name);
616 qemu_free(entry);
617 return;
620 prev->next = entry->next;
622 if (qemu_put_mouse_event_current == entry)
623 qemu_put_mouse_event_current = prev;
625 qemu_free(entry->qemu_put_mouse_event_name);
626 qemu_free(entry);
629 void kbd_put_keycode(int keycode)
631 if (qemu_put_kbd_event) {
632 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
636 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
638 QEMUPutMouseEvent *mouse_event;
639 void *mouse_event_opaque;
640 int width;
642 if (!qemu_put_mouse_event_current) {
643 return;
646 mouse_event =
647 qemu_put_mouse_event_current->qemu_put_mouse_event;
648 mouse_event_opaque =
649 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
651 if (mouse_event) {
652 if (graphic_rotate) {
653 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
654 width = 0x7fff;
655 else
656 width = graphic_width - 1;
657 mouse_event(mouse_event_opaque,
658 width - dy, dx, dz, buttons_state);
659 } else
660 mouse_event(mouse_event_opaque,
661 dx, dy, dz, buttons_state);
665 int kbd_mouse_is_absolute(void)
667 if (!qemu_put_mouse_event_current)
668 return 0;
670 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
673 void do_info_mice(Monitor *mon)
675 QEMUPutMouseEntry *cursor;
676 int index = 0;
678 if (!qemu_put_mouse_event_head) {
679 monitor_printf(mon, "No mouse devices connected\n");
680 return;
683 monitor_printf(mon, "Mouse devices available:\n");
684 cursor = qemu_put_mouse_event_head;
685 while (cursor != NULL) {
686 monitor_printf(mon, "%c Mouse #%d: %s\n",
687 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
688 index, cursor->qemu_put_mouse_event_name);
689 index++;
690 cursor = cursor->next;
694 void do_mouse_set(Monitor *mon, int index)
696 QEMUPutMouseEntry *cursor;
697 int i = 0;
699 if (!qemu_put_mouse_event_head) {
700 monitor_printf(mon, "No mouse devices connected\n");
701 return;
704 cursor = qemu_put_mouse_event_head;
705 while (cursor != NULL && index != i) {
706 i++;
707 cursor = cursor->next;
710 if (cursor != NULL)
711 qemu_put_mouse_event_current = cursor;
712 else
713 monitor_printf(mon, "Mouse at given index not found\n");
716 /* compute with 96 bit intermediate result: (a*b)/c */
717 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
719 union {
720 uint64_t ll;
721 struct {
722 #ifdef WORDS_BIGENDIAN
723 uint32_t high, low;
724 #else
725 uint32_t low, high;
726 #endif
727 } l;
728 } u, res;
729 uint64_t rl, rh;
731 u.ll = a;
732 rl = (uint64_t)u.l.low * (uint64_t)b;
733 rh = (uint64_t)u.l.high * (uint64_t)b;
734 rh += (rl >> 32);
735 res.l.high = rh / c;
736 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
737 return res.ll;
740 /***********************************************************/
741 /* real time host monotonic timer */
743 #define QEMU_TIMER_BASE 1000000000LL
745 #ifdef WIN32
747 static int64_t clock_freq;
749 static void init_get_clock(void)
751 LARGE_INTEGER freq;
752 int ret;
753 ret = QueryPerformanceFrequency(&freq);
754 if (ret == 0) {
755 fprintf(stderr, "Could not calibrate ticks\n");
756 exit(1);
758 clock_freq = freq.QuadPart;
761 static int64_t get_clock(void)
763 LARGE_INTEGER ti;
764 QueryPerformanceCounter(&ti);
765 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
768 #else
770 static int use_rt_clock;
772 static void init_get_clock(void)
774 use_rt_clock = 0;
775 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
776 || defined(__DragonFly__)
778 struct timespec ts;
779 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
780 use_rt_clock = 1;
783 #endif
786 static int64_t get_clock(void)
788 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
789 || defined(__DragonFly__)
790 if (use_rt_clock) {
791 struct timespec ts;
792 clock_gettime(CLOCK_MONOTONIC, &ts);
793 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
794 } else
795 #endif
797 /* XXX: using gettimeofday leads to problems if the date
798 changes, so it should be avoided. */
799 struct timeval tv;
800 gettimeofday(&tv, NULL);
801 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
804 #endif
806 /* Return the virtual CPU time, based on the instruction counter. */
807 static int64_t cpu_get_icount(void)
809 int64_t icount;
810 CPUState *env = cpu_single_env;;
811 icount = qemu_icount;
812 if (env) {
813 if (!can_do_io(env))
814 fprintf(stderr, "Bad clock read\n");
815 icount -= (env->icount_decr.u16.low + env->icount_extra);
817 return qemu_icount_bias + (icount << icount_time_shift);
820 /***********************************************************/
821 /* guest cycle counter */
823 static int64_t cpu_ticks_prev;
824 static int64_t cpu_ticks_offset;
825 static int64_t cpu_clock_offset;
826 static int cpu_ticks_enabled;
828 /* return the host CPU cycle counter and handle stop/restart */
829 int64_t cpu_get_ticks(void)
831 if (use_icount) {
832 return cpu_get_icount();
834 if (!cpu_ticks_enabled) {
835 return cpu_ticks_offset;
836 } else {
837 int64_t ticks;
838 ticks = cpu_get_real_ticks();
839 if (cpu_ticks_prev > ticks) {
840 /* Note: non increasing ticks may happen if the host uses
841 software suspend */
842 cpu_ticks_offset += cpu_ticks_prev - ticks;
844 cpu_ticks_prev = ticks;
845 return ticks + cpu_ticks_offset;
849 /* return the host CPU monotonic timer and handle stop/restart */
850 static int64_t cpu_get_clock(void)
852 int64_t ti;
853 if (!cpu_ticks_enabled) {
854 return cpu_clock_offset;
855 } else {
856 ti = get_clock();
857 return ti + cpu_clock_offset;
861 /* enable cpu_get_ticks() */
862 void cpu_enable_ticks(void)
864 if (!cpu_ticks_enabled) {
865 cpu_ticks_offset -= cpu_get_real_ticks();
866 cpu_clock_offset -= get_clock();
867 cpu_ticks_enabled = 1;
871 /* disable cpu_get_ticks() : the clock is stopped. You must not call
872 cpu_get_ticks() after that. */
873 void cpu_disable_ticks(void)
875 if (cpu_ticks_enabled) {
876 cpu_ticks_offset = cpu_get_ticks();
877 cpu_clock_offset = cpu_get_clock();
878 cpu_ticks_enabled = 0;
882 /***********************************************************/
883 /* timers */
885 #define QEMU_TIMER_REALTIME 0
886 #define QEMU_TIMER_VIRTUAL 1
888 struct QEMUClock {
889 int type;
890 /* XXX: add frequency */
893 struct QEMUTimer {
894 QEMUClock *clock;
895 int64_t expire_time;
896 QEMUTimerCB *cb;
897 void *opaque;
898 struct QEMUTimer *next;
901 struct qemu_alarm_timer {
902 char const *name;
903 unsigned int flags;
905 int (*start)(struct qemu_alarm_timer *t);
906 void (*stop)(struct qemu_alarm_timer *t);
907 void (*rearm)(struct qemu_alarm_timer *t);
908 void *priv;
911 #define ALARM_FLAG_DYNTICKS 0x1
912 #define ALARM_FLAG_EXPIRED 0x2
914 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
916 return t->flags & ALARM_FLAG_DYNTICKS;
919 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
921 if (!alarm_has_dynticks(t))
922 return;
924 t->rearm(t);
927 /* TODO: MIN_TIMER_REARM_US should be optimized */
928 #define MIN_TIMER_REARM_US 250
930 static struct qemu_alarm_timer *alarm_timer;
932 #ifdef _WIN32
934 struct qemu_alarm_win32 {
935 MMRESULT timerId;
936 unsigned int period;
937 } alarm_win32_data = {0, NULL, -1};
939 static int win32_start_timer(struct qemu_alarm_timer *t);
940 static void win32_stop_timer(struct qemu_alarm_timer *t);
941 static void win32_rearm_timer(struct qemu_alarm_timer *t);
943 #else
945 static int unix_start_timer(struct qemu_alarm_timer *t);
946 static void unix_stop_timer(struct qemu_alarm_timer *t);
948 #ifdef __linux__
950 static int dynticks_start_timer(struct qemu_alarm_timer *t);
951 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
952 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
954 static int hpet_start_timer(struct qemu_alarm_timer *t);
955 static void hpet_stop_timer(struct qemu_alarm_timer *t);
957 static int rtc_start_timer(struct qemu_alarm_timer *t);
958 static void rtc_stop_timer(struct qemu_alarm_timer *t);
960 #endif /* __linux__ */
962 #endif /* _WIN32 */
964 /* Correlation between real and virtual time is always going to be
965 fairly approximate, so ignore small variation.
966 When the guest is idle real and virtual time will be aligned in
967 the IO wait loop. */
968 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
970 static void icount_adjust(void)
972 int64_t cur_time;
973 int64_t cur_icount;
974 int64_t delta;
975 static int64_t last_delta;
976 /* If the VM is not running, then do nothing. */
977 if (!vm_running)
978 return;
980 cur_time = cpu_get_clock();
981 cur_icount = qemu_get_clock(vm_clock);
982 delta = cur_icount - cur_time;
983 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
984 if (delta > 0
985 && last_delta + ICOUNT_WOBBLE < delta * 2
986 && icount_time_shift > 0) {
987 /* The guest is getting too far ahead. Slow time down. */
988 icount_time_shift--;
990 if (delta < 0
991 && last_delta - ICOUNT_WOBBLE > delta * 2
992 && icount_time_shift < MAX_ICOUNT_SHIFT) {
993 /* The guest is getting too far behind. Speed time up. */
994 icount_time_shift++;
996 last_delta = delta;
997 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
1000 static void icount_adjust_rt(void * opaque)
1002 qemu_mod_timer(icount_rt_timer,
1003 qemu_get_clock(rt_clock) + 1000);
1004 icount_adjust();
1007 static void icount_adjust_vm(void * opaque)
1009 qemu_mod_timer(icount_vm_timer,
1010 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1011 icount_adjust();
1014 static void init_icount_adjust(void)
1016 /* Have both realtime and virtual time triggers for speed adjustment.
1017 The realtime trigger catches emulated time passing too slowly,
1018 the virtual time trigger catches emulated time passing too fast.
1019 Realtime triggers occur even when idle, so use them less frequently
1020 than VM triggers. */
1021 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1022 qemu_mod_timer(icount_rt_timer,
1023 qemu_get_clock(rt_clock) + 1000);
1024 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1025 qemu_mod_timer(icount_vm_timer,
1026 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1029 static struct qemu_alarm_timer alarm_timers[] = {
1030 #ifndef _WIN32
1031 #ifdef __linux__
1032 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1033 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1034 /* HPET - if available - is preferred */
1035 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1036 /* ...otherwise try RTC */
1037 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1038 #endif
1039 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1040 #else
1041 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1042 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1043 {"win32", 0, win32_start_timer,
1044 win32_stop_timer, NULL, &alarm_win32_data},
1045 #endif
1046 {NULL, }
1049 static void show_available_alarms(void)
1051 int i;
1053 printf("Available alarm timers, in order of precedence:\n");
1054 for (i = 0; alarm_timers[i].name; i++)
1055 printf("%s\n", alarm_timers[i].name);
1058 static void configure_alarms(char const *opt)
1060 int i;
1061 int cur = 0;
1062 int count = ARRAY_SIZE(alarm_timers) - 1;
1063 char *arg;
1064 char *name;
1065 struct qemu_alarm_timer tmp;
1067 if (!strcmp(opt, "?")) {
1068 show_available_alarms();
1069 exit(0);
1072 arg = strdup(opt);
1074 /* Reorder the array */
1075 name = strtok(arg, ",");
1076 while (name) {
1077 for (i = 0; i < count && alarm_timers[i].name; i++) {
1078 if (!strcmp(alarm_timers[i].name, name))
1079 break;
1082 if (i == count) {
1083 fprintf(stderr, "Unknown clock %s\n", name);
1084 goto next;
1087 if (i < cur)
1088 /* Ignore */
1089 goto next;
1091 /* Swap */
1092 tmp = alarm_timers[i];
1093 alarm_timers[i] = alarm_timers[cur];
1094 alarm_timers[cur] = tmp;
1096 cur++;
1097 next:
1098 name = strtok(NULL, ",");
1101 free(arg);
1103 if (cur) {
1104 /* Disable remaining timers */
1105 for (i = cur; i < count; i++)
1106 alarm_timers[i].name = NULL;
1107 } else {
1108 show_available_alarms();
1109 exit(1);
1113 QEMUClock *rt_clock;
1114 QEMUClock *vm_clock;
1116 static QEMUTimer *active_timers[2];
1118 static QEMUClock *qemu_new_clock(int type)
1120 QEMUClock *clock;
1121 clock = qemu_mallocz(sizeof(QEMUClock));
1122 clock->type = type;
1123 return clock;
1126 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1128 QEMUTimer *ts;
1130 ts = qemu_mallocz(sizeof(QEMUTimer));
1131 ts->clock = clock;
1132 ts->cb = cb;
1133 ts->opaque = opaque;
1134 return ts;
1137 void qemu_free_timer(QEMUTimer *ts)
1139 qemu_free(ts);
1142 /* stop a timer, but do not dealloc it */
1143 void qemu_del_timer(QEMUTimer *ts)
1145 QEMUTimer **pt, *t;
1147 /* NOTE: this code must be signal safe because
1148 qemu_timer_expired() can be called from a signal. */
1149 pt = &active_timers[ts->clock->type];
1150 for(;;) {
1151 t = *pt;
1152 if (!t)
1153 break;
1154 if (t == ts) {
1155 *pt = t->next;
1156 break;
1158 pt = &t->next;
1162 /* modify the current timer so that it will be fired when current_time
1163 >= expire_time. The corresponding callback will be called. */
1164 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1166 QEMUTimer **pt, *t;
1168 qemu_del_timer(ts);
1170 /* add the timer in the sorted list */
1171 /* NOTE: this code must be signal safe because
1172 qemu_timer_expired() can be called from a signal. */
1173 pt = &active_timers[ts->clock->type];
1174 for(;;) {
1175 t = *pt;
1176 if (!t)
1177 break;
1178 if (t->expire_time > expire_time)
1179 break;
1180 pt = &t->next;
1182 ts->expire_time = expire_time;
1183 ts->next = *pt;
1184 *pt = ts;
1186 /* Rearm if necessary */
1187 if (pt == &active_timers[ts->clock->type]) {
1188 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1189 qemu_rearm_alarm_timer(alarm_timer);
1191 /* Interrupt execution to force deadline recalculation. */
1192 if (use_icount)
1193 qemu_notify_event();
1197 int qemu_timer_pending(QEMUTimer *ts)
1199 QEMUTimer *t;
1200 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1201 if (t == ts)
1202 return 1;
1204 return 0;
1207 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1209 if (!timer_head)
1210 return 0;
1211 return (timer_head->expire_time <= current_time);
1214 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1216 QEMUTimer *ts;
1218 for(;;) {
1219 ts = *ptimer_head;
1220 if (!ts || ts->expire_time > current_time)
1221 break;
1222 /* remove timer from the list before calling the callback */
1223 *ptimer_head = ts->next;
1224 ts->next = NULL;
1226 /* run the callback (the timer list can be modified) */
1227 ts->cb(ts->opaque);
1231 int64_t qemu_get_clock(QEMUClock *clock)
1233 switch(clock->type) {
1234 case QEMU_TIMER_REALTIME:
1235 return get_clock() / 1000000;
1236 default:
1237 case QEMU_TIMER_VIRTUAL:
1238 if (use_icount) {
1239 return cpu_get_icount();
1240 } else {
1241 return cpu_get_clock();
1246 static void init_timers(void)
1248 init_get_clock();
1249 ticks_per_sec = QEMU_TIMER_BASE;
1250 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1251 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1254 /* save a timer */
1255 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1257 uint64_t expire_time;
1259 if (qemu_timer_pending(ts)) {
1260 expire_time = ts->expire_time;
1261 } else {
1262 expire_time = -1;
1264 qemu_put_be64(f, expire_time);
1267 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1269 uint64_t expire_time;
1271 expire_time = qemu_get_be64(f);
1272 if (expire_time != -1) {
1273 qemu_mod_timer(ts, expire_time);
1274 } else {
1275 qemu_del_timer(ts);
1279 static void timer_save(QEMUFile *f, void *opaque)
1281 if (cpu_ticks_enabled) {
1282 hw_error("cannot save state if virtual timers are running");
1284 qemu_put_be64(f, cpu_ticks_offset);
1285 qemu_put_be64(f, ticks_per_sec);
1286 qemu_put_be64(f, cpu_clock_offset);
1289 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1291 if (version_id != 1 && version_id != 2)
1292 return -EINVAL;
1293 if (cpu_ticks_enabled) {
1294 return -EINVAL;
1296 cpu_ticks_offset=qemu_get_be64(f);
1297 ticks_per_sec=qemu_get_be64(f);
1298 if (version_id == 2) {
1299 cpu_clock_offset=qemu_get_be64(f);
1301 return 0;
1304 static void qemu_event_increment(void);
1306 #ifdef _WIN32
1307 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1308 DWORD_PTR dwUser, DWORD_PTR dw1,
1309 DWORD_PTR dw2)
1310 #else
1311 static void host_alarm_handler(int host_signum)
1312 #endif
1314 #if 0
1315 #define DISP_FREQ 1000
1317 static int64_t delta_min = INT64_MAX;
1318 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1319 static int count;
1320 ti = qemu_get_clock(vm_clock);
1321 if (last_clock != 0) {
1322 delta = ti - last_clock;
1323 if (delta < delta_min)
1324 delta_min = delta;
1325 if (delta > delta_max)
1326 delta_max = delta;
1327 delta_cum += delta;
1328 if (++count == DISP_FREQ) {
1329 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1330 muldiv64(delta_min, 1000000, ticks_per_sec),
1331 muldiv64(delta_max, 1000000, ticks_per_sec),
1332 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1333 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1334 count = 0;
1335 delta_min = INT64_MAX;
1336 delta_max = 0;
1337 delta_cum = 0;
1340 last_clock = ti;
1342 #endif
1343 if (alarm_has_dynticks(alarm_timer) ||
1344 (!use_icount &&
1345 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1346 qemu_get_clock(vm_clock))) ||
1347 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1348 qemu_get_clock(rt_clock))) {
1349 CPUState *env = next_cpu;
1351 qemu_event_increment();
1352 alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1354 if (env) {
1355 /* stop the currently executing cpu because a timer occured */
1356 cpu_exit(env);
1357 #ifdef CONFIG_KQEMU
1358 if (env->kqemu_enabled) {
1359 kqemu_cpu_interrupt(env);
1361 #endif
1363 timer_alarm_pending = 1;
1364 qemu_notify_event();
1368 static int64_t qemu_next_deadline(void)
1370 int64_t delta;
1372 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1373 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1374 qemu_get_clock(vm_clock);
1375 } else {
1376 /* To avoid problems with overflow limit this to 2^32. */
1377 delta = INT32_MAX;
1380 if (delta < 0)
1381 delta = 0;
1383 return delta;
1386 #if defined(__linux__) || defined(_WIN32)
1387 static uint64_t qemu_next_deadline_dyntick(void)
1389 int64_t delta;
1390 int64_t rtdelta;
1392 if (use_icount)
1393 delta = INT32_MAX;
1394 else
1395 delta = (qemu_next_deadline() + 999) / 1000;
1397 if (active_timers[QEMU_TIMER_REALTIME]) {
1398 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1399 qemu_get_clock(rt_clock))*1000;
1400 if (rtdelta < delta)
1401 delta = rtdelta;
1404 if (delta < MIN_TIMER_REARM_US)
1405 delta = MIN_TIMER_REARM_US;
1407 return delta;
1409 #endif
1411 #ifndef _WIN32
1413 /* Sets a specific flag */
1414 static int fcntl_setfl(int fd, int flag)
1416 int flags;
1418 flags = fcntl(fd, F_GETFL);
1419 if (flags == -1)
1420 return -errno;
1422 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1423 return -errno;
1425 return 0;
1428 #if defined(__linux__)
1430 #define RTC_FREQ 1024
1432 static void enable_sigio_timer(int fd)
1434 struct sigaction act;
1436 /* timer signal */
1437 sigfillset(&act.sa_mask);
1438 act.sa_flags = 0;
1439 act.sa_handler = host_alarm_handler;
1441 sigaction(SIGIO, &act, NULL);
1442 fcntl_setfl(fd, O_ASYNC);
1443 fcntl(fd, F_SETOWN, getpid());
1446 static int hpet_start_timer(struct qemu_alarm_timer *t)
1448 struct hpet_info info;
1449 int r, fd;
1451 fd = open("/dev/hpet", O_RDONLY);
1452 if (fd < 0)
1453 return -1;
1455 /* Set frequency */
1456 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1457 if (r < 0) {
1458 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1459 "error, but for better emulation accuracy type:\n"
1460 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1461 goto fail;
1464 /* Check capabilities */
1465 r = ioctl(fd, HPET_INFO, &info);
1466 if (r < 0)
1467 goto fail;
1469 /* Enable periodic mode */
1470 r = ioctl(fd, HPET_EPI, 0);
1471 if (info.hi_flags && (r < 0))
1472 goto fail;
1474 /* Enable interrupt */
1475 r = ioctl(fd, HPET_IE_ON, 0);
1476 if (r < 0)
1477 goto fail;
1479 enable_sigio_timer(fd);
1480 t->priv = (void *)(long)fd;
1482 return 0;
1483 fail:
1484 close(fd);
1485 return -1;
1488 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1490 int fd = (long)t->priv;
1492 close(fd);
1495 static int rtc_start_timer(struct qemu_alarm_timer *t)
1497 int rtc_fd;
1498 unsigned long current_rtc_freq = 0;
1500 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1501 if (rtc_fd < 0)
1502 return -1;
1503 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1504 if (current_rtc_freq != RTC_FREQ &&
1505 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1506 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1507 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1508 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1509 goto fail;
1511 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1512 fail:
1513 close(rtc_fd);
1514 return -1;
1517 enable_sigio_timer(rtc_fd);
1519 t->priv = (void *)(long)rtc_fd;
1521 return 0;
1524 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1526 int rtc_fd = (long)t->priv;
1528 close(rtc_fd);
1531 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1533 struct sigevent ev;
1534 timer_t host_timer;
1535 struct sigaction act;
1537 sigfillset(&act.sa_mask);
1538 act.sa_flags = 0;
1539 act.sa_handler = host_alarm_handler;
1541 sigaction(SIGALRM, &act, NULL);
1543 ev.sigev_value.sival_int = 0;
1544 ev.sigev_notify = SIGEV_SIGNAL;
1545 ev.sigev_signo = SIGALRM;
1547 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1548 perror("timer_create");
1550 /* disable dynticks */
1551 fprintf(stderr, "Dynamic Ticks disabled\n");
1553 return -1;
1556 t->priv = (void *)(long)host_timer;
1558 return 0;
1561 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1563 timer_t host_timer = (timer_t)(long)t->priv;
1565 timer_delete(host_timer);
1568 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1570 timer_t host_timer = (timer_t)(long)t->priv;
1571 struct itimerspec timeout;
1572 int64_t nearest_delta_us = INT64_MAX;
1573 int64_t current_us;
1575 if (!active_timers[QEMU_TIMER_REALTIME] &&
1576 !active_timers[QEMU_TIMER_VIRTUAL])
1577 return;
1579 nearest_delta_us = qemu_next_deadline_dyntick();
1581 /* check whether a timer is already running */
1582 if (timer_gettime(host_timer, &timeout)) {
1583 perror("gettime");
1584 fprintf(stderr, "Internal timer error: aborting\n");
1585 exit(1);
1587 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1588 if (current_us && current_us <= nearest_delta_us)
1589 return;
1591 timeout.it_interval.tv_sec = 0;
1592 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1593 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1594 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1595 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1596 perror("settime");
1597 fprintf(stderr, "Internal timer error: aborting\n");
1598 exit(1);
1602 #endif /* defined(__linux__) */
1604 static int unix_start_timer(struct qemu_alarm_timer *t)
1606 struct sigaction act;
1607 struct itimerval itv;
1608 int err;
1610 /* timer signal */
1611 sigfillset(&act.sa_mask);
1612 act.sa_flags = 0;
1613 act.sa_handler = host_alarm_handler;
1615 sigaction(SIGALRM, &act, NULL);
1617 itv.it_interval.tv_sec = 0;
1618 /* for i386 kernel 2.6 to get 1 ms */
1619 itv.it_interval.tv_usec = 999;
1620 itv.it_value.tv_sec = 0;
1621 itv.it_value.tv_usec = 10 * 1000;
1623 err = setitimer(ITIMER_REAL, &itv, NULL);
1624 if (err)
1625 return -1;
1627 return 0;
1630 static void unix_stop_timer(struct qemu_alarm_timer *t)
1632 struct itimerval itv;
1634 memset(&itv, 0, sizeof(itv));
1635 setitimer(ITIMER_REAL, &itv, NULL);
1638 #endif /* !defined(_WIN32) */
1641 #ifdef _WIN32
1643 static int win32_start_timer(struct qemu_alarm_timer *t)
1645 TIMECAPS tc;
1646 struct qemu_alarm_win32 *data = t->priv;
1647 UINT flags;
1649 memset(&tc, 0, sizeof(tc));
1650 timeGetDevCaps(&tc, sizeof(tc));
1652 if (data->period < tc.wPeriodMin)
1653 data->period = tc.wPeriodMin;
1655 timeBeginPeriod(data->period);
1657 flags = TIME_CALLBACK_FUNCTION;
1658 if (alarm_has_dynticks(t))
1659 flags |= TIME_ONESHOT;
1660 else
1661 flags |= TIME_PERIODIC;
1663 data->timerId = timeSetEvent(1, // interval (ms)
1664 data->period, // resolution
1665 host_alarm_handler, // function
1666 (DWORD)t, // parameter
1667 flags);
1669 if (!data->timerId) {
1670 perror("Failed to initialize win32 alarm timer");
1671 timeEndPeriod(data->period);
1672 return -1;
1675 return 0;
1678 static void win32_stop_timer(struct qemu_alarm_timer *t)
1680 struct qemu_alarm_win32 *data = t->priv;
1682 timeKillEvent(data->timerId);
1683 timeEndPeriod(data->period);
1686 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1688 struct qemu_alarm_win32 *data = t->priv;
1689 uint64_t nearest_delta_us;
1691 if (!active_timers[QEMU_TIMER_REALTIME] &&
1692 !active_timers[QEMU_TIMER_VIRTUAL])
1693 return;
1695 nearest_delta_us = qemu_next_deadline_dyntick();
1696 nearest_delta_us /= 1000;
1698 timeKillEvent(data->timerId);
1700 data->timerId = timeSetEvent(1,
1701 data->period,
1702 host_alarm_handler,
1703 (DWORD)t,
1704 TIME_ONESHOT | TIME_PERIODIC);
1706 if (!data->timerId) {
1707 perror("Failed to re-arm win32 alarm timer");
1709 timeEndPeriod(data->period);
1710 exit(1);
1714 #endif /* _WIN32 */
1716 static int init_timer_alarm(void)
1718 struct qemu_alarm_timer *t = NULL;
1719 int i, err = -1;
1721 for (i = 0; alarm_timers[i].name; i++) {
1722 t = &alarm_timers[i];
1724 err = t->start(t);
1725 if (!err)
1726 break;
1729 if (err) {
1730 err = -ENOENT;
1731 goto fail;
1734 alarm_timer = t;
1736 return 0;
1738 fail:
1739 return err;
1742 static void quit_timers(void)
1744 alarm_timer->stop(alarm_timer);
1745 alarm_timer = NULL;
1748 /***********************************************************/
1749 /* host time/date access */
1750 void qemu_get_timedate(struct tm *tm, int offset)
1752 time_t ti;
1753 struct tm *ret;
1755 time(&ti);
1756 ti += offset;
1757 if (rtc_date_offset == -1) {
1758 if (rtc_utc)
1759 ret = gmtime(&ti);
1760 else
1761 ret = localtime(&ti);
1762 } else {
1763 ti -= rtc_date_offset;
1764 ret = gmtime(&ti);
1767 memcpy(tm, ret, sizeof(struct tm));
1770 int qemu_timedate_diff(struct tm *tm)
1772 time_t seconds;
1774 if (rtc_date_offset == -1)
1775 if (rtc_utc)
1776 seconds = mktimegm(tm);
1777 else
1778 seconds = mktime(tm);
1779 else
1780 seconds = mktimegm(tm) + rtc_date_offset;
1782 return seconds - time(NULL);
1785 #ifdef _WIN32
1786 static void socket_cleanup(void)
1788 WSACleanup();
1791 static int socket_init(void)
1793 WSADATA Data;
1794 int ret, err;
1796 ret = WSAStartup(MAKEWORD(2,2), &Data);
1797 if (ret != 0) {
1798 err = WSAGetLastError();
1799 fprintf(stderr, "WSAStartup: %d\n", err);
1800 return -1;
1802 atexit(socket_cleanup);
1803 return 0;
1805 #endif
1807 const char *get_opt_name(char *buf, int buf_size, const char *p, char delim)
1809 char *q;
1811 q = buf;
1812 while (*p != '\0' && *p != delim) {
1813 if (q && (q - buf) < buf_size - 1)
1814 *q++ = *p;
1815 p++;
1817 if (q)
1818 *q = '\0';
1820 return p;
1823 const char *get_opt_value(char *buf, int buf_size, const char *p)
1825 char *q;
1827 q = buf;
1828 while (*p != '\0') {
1829 if (*p == ',') {
1830 if (*(p + 1) != ',')
1831 break;
1832 p++;
1834 if (q && (q - buf) < buf_size - 1)
1835 *q++ = *p;
1836 p++;
1838 if (q)
1839 *q = '\0';
1841 return p;
1844 int get_param_value(char *buf, int buf_size,
1845 const char *tag, const char *str)
1847 const char *p;
1848 char option[128];
1850 p = str;
1851 for(;;) {
1852 p = get_opt_name(option, sizeof(option), p, '=');
1853 if (*p != '=')
1854 break;
1855 p++;
1856 if (!strcmp(tag, option)) {
1857 (void)get_opt_value(buf, buf_size, p);
1858 return strlen(buf);
1859 } else {
1860 p = get_opt_value(NULL, 0, p);
1862 if (*p != ',')
1863 break;
1864 p++;
1866 return 0;
1869 int check_params(char *buf, int buf_size,
1870 const char * const *params, const char *str)
1872 const char *p;
1873 int i;
1875 p = str;
1876 while (*p != '\0') {
1877 p = get_opt_name(buf, buf_size, p, '=');
1878 if (*p != '=')
1879 return -1;
1880 p++;
1881 for(i = 0; params[i] != NULL; i++)
1882 if (!strcmp(params[i], buf))
1883 break;
1884 if (params[i] == NULL)
1885 return -1;
1886 p = get_opt_value(NULL, 0, p);
1887 if (*p != ',')
1888 break;
1889 p++;
1891 return 0;
1894 /***********************************************************/
1895 /* Bluetooth support */
1896 static int nb_hcis;
1897 static int cur_hci;
1898 static struct HCIInfo *hci_table[MAX_NICS];
1900 static struct bt_vlan_s {
1901 struct bt_scatternet_s net;
1902 int id;
1903 struct bt_vlan_s *next;
1904 } *first_bt_vlan;
1906 /* find or alloc a new bluetooth "VLAN" */
1907 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1909 struct bt_vlan_s **pvlan, *vlan;
1910 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1911 if (vlan->id == id)
1912 return &vlan->net;
1914 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1915 vlan->id = id;
1916 pvlan = &first_bt_vlan;
1917 while (*pvlan != NULL)
1918 pvlan = &(*pvlan)->next;
1919 *pvlan = vlan;
1920 return &vlan->net;
1923 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1927 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1929 return -ENOTSUP;
1932 static struct HCIInfo null_hci = {
1933 .cmd_send = null_hci_send,
1934 .sco_send = null_hci_send,
1935 .acl_send = null_hci_send,
1936 .bdaddr_set = null_hci_addr_set,
1939 struct HCIInfo *qemu_next_hci(void)
1941 if (cur_hci == nb_hcis)
1942 return &null_hci;
1944 return hci_table[cur_hci++];
1947 static struct HCIInfo *hci_init(const char *str)
1949 char *endp;
1950 struct bt_scatternet_s *vlan = 0;
1952 if (!strcmp(str, "null"))
1953 /* null */
1954 return &null_hci;
1955 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1956 /* host[:hciN] */
1957 return bt_host_hci(str[4] ? str + 5 : "hci0");
1958 else if (!strncmp(str, "hci", 3)) {
1959 /* hci[,vlan=n] */
1960 if (str[3]) {
1961 if (!strncmp(str + 3, ",vlan=", 6)) {
1962 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1963 if (*endp)
1964 vlan = 0;
1966 } else
1967 vlan = qemu_find_bt_vlan(0);
1968 if (vlan)
1969 return bt_new_hci(vlan);
1972 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1974 return 0;
1977 static int bt_hci_parse(const char *str)
1979 struct HCIInfo *hci;
1980 bdaddr_t bdaddr;
1982 if (nb_hcis >= MAX_NICS) {
1983 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1984 return -1;
1987 hci = hci_init(str);
1988 if (!hci)
1989 return -1;
1991 bdaddr.b[0] = 0x52;
1992 bdaddr.b[1] = 0x54;
1993 bdaddr.b[2] = 0x00;
1994 bdaddr.b[3] = 0x12;
1995 bdaddr.b[4] = 0x34;
1996 bdaddr.b[5] = 0x56 + nb_hcis;
1997 hci->bdaddr_set(hci, bdaddr.b);
1999 hci_table[nb_hcis++] = hci;
2001 return 0;
2004 static void bt_vhci_add(int vlan_id)
2006 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
2008 if (!vlan->slave)
2009 fprintf(stderr, "qemu: warning: adding a VHCI to "
2010 "an empty scatternet %i\n", vlan_id);
2012 bt_vhci_init(bt_new_hci(vlan));
2015 static struct bt_device_s *bt_device_add(const char *opt)
2017 struct bt_scatternet_s *vlan;
2018 int vlan_id = 0;
2019 char *endp = strstr(opt, ",vlan=");
2020 int len = (endp ? endp - opt : strlen(opt)) + 1;
2021 char devname[10];
2023 pstrcpy(devname, MIN(sizeof(devname), len), opt);
2025 if (endp) {
2026 vlan_id = strtol(endp + 6, &endp, 0);
2027 if (*endp) {
2028 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2029 return 0;
2033 vlan = qemu_find_bt_vlan(vlan_id);
2035 if (!vlan->slave)
2036 fprintf(stderr, "qemu: warning: adding a slave device to "
2037 "an empty scatternet %i\n", vlan_id);
2039 if (!strcmp(devname, "keyboard"))
2040 return bt_keyboard_init(vlan);
2042 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2043 return 0;
2046 static int bt_parse(const char *opt)
2048 const char *endp, *p;
2049 int vlan;
2051 if (strstart(opt, "hci", &endp)) {
2052 if (!*endp || *endp == ',') {
2053 if (*endp)
2054 if (!strstart(endp, ",vlan=", 0))
2055 opt = endp + 1;
2057 return bt_hci_parse(opt);
2059 } else if (strstart(opt, "vhci", &endp)) {
2060 if (!*endp || *endp == ',') {
2061 if (*endp) {
2062 if (strstart(endp, ",vlan=", &p)) {
2063 vlan = strtol(p, (char **) &endp, 0);
2064 if (*endp) {
2065 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2066 return 1;
2068 } else {
2069 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2070 return 1;
2072 } else
2073 vlan = 0;
2075 bt_vhci_add(vlan);
2076 return 0;
2078 } else if (strstart(opt, "device:", &endp))
2079 return !bt_device_add(endp);
2081 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2082 return 1;
2085 /***********************************************************/
2086 /* QEMU Block devices */
2088 #define HD_ALIAS "index=%d,media=disk"
2089 #define CDROM_ALIAS "index=2,media=cdrom"
2090 #define FD_ALIAS "index=%d,if=floppy"
2091 #define PFLASH_ALIAS "if=pflash"
2092 #define MTD_ALIAS "if=mtd"
2093 #define SD_ALIAS "index=0,if=sd"
2095 static int drive_opt_get_free_idx(void)
2097 int index;
2099 for (index = 0; index < MAX_DRIVES; index++)
2100 if (!drives_opt[index].used) {
2101 drives_opt[index].used = 1;
2102 return index;
2105 return -1;
2108 static int drive_get_free_idx(void)
2110 int index;
2112 for (index = 0; index < MAX_DRIVES; index++)
2113 if (!drives_table[index].used) {
2114 drives_table[index].used = 1;
2115 return index;
2118 return -1;
2121 int drive_add(const char *file, const char *fmt, ...)
2123 va_list ap;
2124 int index = drive_opt_get_free_idx();
2126 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2127 fprintf(stderr, "qemu: too many drives\n");
2128 return -1;
2131 drives_opt[index].file = file;
2132 va_start(ap, fmt);
2133 vsnprintf(drives_opt[index].opt,
2134 sizeof(drives_opt[0].opt), fmt, ap);
2135 va_end(ap);
2137 nb_drives_opt++;
2138 return index;
2141 void drive_remove(int index)
2143 drives_opt[index].used = 0;
2144 nb_drives_opt--;
2147 int drive_get_index(BlockInterfaceType type, int bus, int unit)
2149 int index;
2151 /* seek interface, bus and unit */
2153 for (index = 0; index < MAX_DRIVES; index++)
2154 if (drives_table[index].type == type &&
2155 drives_table[index].bus == bus &&
2156 drives_table[index].unit == unit &&
2157 drives_table[index].used)
2158 return index;
2160 return -1;
2163 int drive_get_max_bus(BlockInterfaceType type)
2165 int max_bus;
2166 int index;
2168 max_bus = -1;
2169 for (index = 0; index < nb_drives; index++) {
2170 if(drives_table[index].type == type &&
2171 drives_table[index].bus > max_bus)
2172 max_bus = drives_table[index].bus;
2174 return max_bus;
2177 const char *drive_get_serial(BlockDriverState *bdrv)
2179 int index;
2181 for (index = 0; index < nb_drives; index++)
2182 if (drives_table[index].bdrv == bdrv)
2183 return drives_table[index].serial;
2185 return "\0";
2188 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2190 int index;
2192 for (index = 0; index < nb_drives; index++)
2193 if (drives_table[index].bdrv == bdrv)
2194 return drives_table[index].onerror;
2196 return BLOCK_ERR_STOP_ENOSPC;
2199 static void bdrv_format_print(void *opaque, const char *name)
2201 fprintf(stderr, " %s", name);
2204 void drive_uninit(BlockDriverState *bdrv)
2206 int i;
2208 for (i = 0; i < MAX_DRIVES; i++)
2209 if (drives_table[i].bdrv == bdrv) {
2210 drives_table[i].bdrv = NULL;
2211 drives_table[i].used = 0;
2212 drive_remove(drives_table[i].drive_opt_idx);
2213 nb_drives--;
2214 break;
2218 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2220 char buf[128];
2221 char file[1024];
2222 char devname[128];
2223 char serial[21];
2224 const char *mediastr = "";
2225 BlockInterfaceType type;
2226 enum { MEDIA_DISK, MEDIA_CDROM } media;
2227 int bus_id, unit_id;
2228 int cyls, heads, secs, translation;
2229 BlockDriverState *bdrv;
2230 BlockDriver *drv = NULL;
2231 QEMUMachine *machine = opaque;
2232 int max_devs;
2233 int index;
2234 int cache;
2235 int bdrv_flags, onerror;
2236 int drives_table_idx;
2237 char *str = arg->opt;
2238 static const char * const params[] = { "bus", "unit", "if", "index",
2239 "cyls", "heads", "secs", "trans",
2240 "media", "snapshot", "file",
2241 "cache", "format", "serial", "werror",
2242 NULL };
2244 if (check_params(buf, sizeof(buf), params, str) < 0) {
2245 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2246 buf, str);
2247 return -1;
2250 file[0] = 0;
2251 cyls = heads = secs = 0;
2252 bus_id = 0;
2253 unit_id = -1;
2254 translation = BIOS_ATA_TRANSLATION_AUTO;
2255 index = -1;
2256 cache = 3;
2258 if (machine->use_scsi) {
2259 type = IF_SCSI;
2260 max_devs = MAX_SCSI_DEVS;
2261 pstrcpy(devname, sizeof(devname), "scsi");
2262 } else {
2263 type = IF_IDE;
2264 max_devs = MAX_IDE_DEVS;
2265 pstrcpy(devname, sizeof(devname), "ide");
2267 media = MEDIA_DISK;
2269 /* extract parameters */
2271 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2272 bus_id = strtol(buf, NULL, 0);
2273 if (bus_id < 0) {
2274 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2275 return -1;
2279 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2280 unit_id = strtol(buf, NULL, 0);
2281 if (unit_id < 0) {
2282 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2283 return -1;
2287 if (get_param_value(buf, sizeof(buf), "if", str)) {
2288 pstrcpy(devname, sizeof(devname), buf);
2289 if (!strcmp(buf, "ide")) {
2290 type = IF_IDE;
2291 max_devs = MAX_IDE_DEVS;
2292 } else if (!strcmp(buf, "scsi")) {
2293 type = IF_SCSI;
2294 max_devs = MAX_SCSI_DEVS;
2295 } else if (!strcmp(buf, "floppy")) {
2296 type = IF_FLOPPY;
2297 max_devs = 0;
2298 } else if (!strcmp(buf, "pflash")) {
2299 type = IF_PFLASH;
2300 max_devs = 0;
2301 } else if (!strcmp(buf, "mtd")) {
2302 type = IF_MTD;
2303 max_devs = 0;
2304 } else if (!strcmp(buf, "sd")) {
2305 type = IF_SD;
2306 max_devs = 0;
2307 } else if (!strcmp(buf, "virtio")) {
2308 type = IF_VIRTIO;
2309 max_devs = 0;
2310 } else if (!strcmp(buf, "xen")) {
2311 type = IF_XEN;
2312 max_devs = 0;
2313 } else {
2314 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2315 return -1;
2319 if (get_param_value(buf, sizeof(buf), "index", str)) {
2320 index = strtol(buf, NULL, 0);
2321 if (index < 0) {
2322 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2323 return -1;
2327 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2328 cyls = strtol(buf, NULL, 0);
2331 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2332 heads = strtol(buf, NULL, 0);
2335 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2336 secs = strtol(buf, NULL, 0);
2339 if (cyls || heads || secs) {
2340 if (cyls < 1 || cyls > 16383) {
2341 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2342 return -1;
2344 if (heads < 1 || heads > 16) {
2345 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2346 return -1;
2348 if (secs < 1 || secs > 63) {
2349 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2350 return -1;
2354 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2355 if (!cyls) {
2356 fprintf(stderr,
2357 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2358 str);
2359 return -1;
2361 if (!strcmp(buf, "none"))
2362 translation = BIOS_ATA_TRANSLATION_NONE;
2363 else if (!strcmp(buf, "lba"))
2364 translation = BIOS_ATA_TRANSLATION_LBA;
2365 else if (!strcmp(buf, "auto"))
2366 translation = BIOS_ATA_TRANSLATION_AUTO;
2367 else {
2368 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2369 return -1;
2373 if (get_param_value(buf, sizeof(buf), "media", str)) {
2374 if (!strcmp(buf, "disk")) {
2375 media = MEDIA_DISK;
2376 } else if (!strcmp(buf, "cdrom")) {
2377 if (cyls || secs || heads) {
2378 fprintf(stderr,
2379 "qemu: '%s' invalid physical CHS format\n", str);
2380 return -1;
2382 media = MEDIA_CDROM;
2383 } else {
2384 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2385 return -1;
2389 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2390 if (!strcmp(buf, "on"))
2391 snapshot = 1;
2392 else if (!strcmp(buf, "off"))
2393 snapshot = 0;
2394 else {
2395 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2396 return -1;
2400 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2401 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2402 cache = 0;
2403 else if (!strcmp(buf, "writethrough"))
2404 cache = 1;
2405 else if (!strcmp(buf, "writeback"))
2406 cache = 2;
2407 else {
2408 fprintf(stderr, "qemu: invalid cache option\n");
2409 return -1;
2413 if (get_param_value(buf, sizeof(buf), "format", str)) {
2414 if (strcmp(buf, "?") == 0) {
2415 fprintf(stderr, "qemu: Supported formats:");
2416 bdrv_iterate_format(bdrv_format_print, NULL);
2417 fprintf(stderr, "\n");
2418 return -1;
2420 drv = bdrv_find_format(buf);
2421 if (!drv) {
2422 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2423 return -1;
2427 if (arg->file == NULL)
2428 get_param_value(file, sizeof(file), "file", str);
2429 else
2430 pstrcpy(file, sizeof(file), arg->file);
2432 if (!get_param_value(serial, sizeof(serial), "serial", str))
2433 memset(serial, 0, sizeof(serial));
2435 onerror = BLOCK_ERR_STOP_ENOSPC;
2436 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2437 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2438 fprintf(stderr, "werror is no supported by this format\n");
2439 return -1;
2441 if (!strcmp(buf, "ignore"))
2442 onerror = BLOCK_ERR_IGNORE;
2443 else if (!strcmp(buf, "enospc"))
2444 onerror = BLOCK_ERR_STOP_ENOSPC;
2445 else if (!strcmp(buf, "stop"))
2446 onerror = BLOCK_ERR_STOP_ANY;
2447 else if (!strcmp(buf, "report"))
2448 onerror = BLOCK_ERR_REPORT;
2449 else {
2450 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2451 return -1;
2455 /* compute bus and unit according index */
2457 if (index != -1) {
2458 if (bus_id != 0 || unit_id != -1) {
2459 fprintf(stderr,
2460 "qemu: '%s' index cannot be used with bus and unit\n", str);
2461 return -1;
2463 if (max_devs == 0)
2465 unit_id = index;
2466 bus_id = 0;
2467 } else {
2468 unit_id = index % max_devs;
2469 bus_id = index / max_devs;
2473 /* if user doesn't specify a unit_id,
2474 * try to find the first free
2477 if (unit_id == -1) {
2478 unit_id = 0;
2479 while (drive_get_index(type, bus_id, unit_id) != -1) {
2480 unit_id++;
2481 if (max_devs && unit_id >= max_devs) {
2482 unit_id -= max_devs;
2483 bus_id++;
2488 /* check unit id */
2490 if (max_devs && unit_id >= max_devs) {
2491 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2492 str, unit_id, max_devs - 1);
2493 return -1;
2497 * ignore multiple definitions
2500 if (drive_get_index(type, bus_id, unit_id) != -1)
2501 return -2;
2503 /* init */
2505 if (type == IF_IDE || type == IF_SCSI)
2506 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2507 if (max_devs)
2508 snprintf(buf, sizeof(buf), "%s%i%s%i",
2509 devname, bus_id, mediastr, unit_id);
2510 else
2511 snprintf(buf, sizeof(buf), "%s%s%i",
2512 devname, mediastr, unit_id);
2513 bdrv = bdrv_new(buf);
2514 drives_table_idx = drive_get_free_idx();
2515 drives_table[drives_table_idx].bdrv = bdrv;
2516 drives_table[drives_table_idx].type = type;
2517 drives_table[drives_table_idx].bus = bus_id;
2518 drives_table[drives_table_idx].unit = unit_id;
2519 drives_table[drives_table_idx].onerror = onerror;
2520 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2521 strncpy(drives_table[nb_drives].serial, serial, sizeof(serial));
2522 nb_drives++;
2524 switch(type) {
2525 case IF_IDE:
2526 case IF_SCSI:
2527 case IF_XEN:
2528 switch(media) {
2529 case MEDIA_DISK:
2530 if (cyls != 0) {
2531 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2532 bdrv_set_translation_hint(bdrv, translation);
2534 break;
2535 case MEDIA_CDROM:
2536 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2537 break;
2539 break;
2540 case IF_SD:
2541 /* FIXME: This isn't really a floppy, but it's a reasonable
2542 approximation. */
2543 case IF_FLOPPY:
2544 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2545 break;
2546 case IF_PFLASH:
2547 case IF_MTD:
2548 case IF_VIRTIO:
2549 break;
2551 if (!file[0])
2552 return -2;
2553 bdrv_flags = 0;
2554 if (snapshot) {
2555 bdrv_flags |= BDRV_O_SNAPSHOT;
2556 cache = 2; /* always use write-back with snapshot */
2558 if (cache == 0) /* no caching */
2559 bdrv_flags |= BDRV_O_NOCACHE;
2560 else if (cache == 2) /* write-back */
2561 bdrv_flags |= BDRV_O_CACHE_WB;
2562 else if (cache == 3) /* not specified */
2563 bdrv_flags |= BDRV_O_CACHE_DEF;
2564 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2565 fprintf(stderr, "qemu: could not open disk image %s\n",
2566 file);
2567 return -1;
2569 if (bdrv_key_required(bdrv))
2570 autostart = 0;
2571 return drives_table_idx;
2574 static void numa_add(const char *optarg)
2576 char option[128];
2577 char *endptr;
2578 unsigned long long value, endvalue;
2579 int nodenr;
2581 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2582 if (!strcmp(option, "node")) {
2583 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2584 nodenr = nb_numa_nodes;
2585 } else {
2586 nodenr = strtoull(option, NULL, 10);
2589 if (get_param_value(option, 128, "mem", optarg) == 0) {
2590 node_mem[nodenr] = 0;
2591 } else {
2592 value = strtoull(option, &endptr, 0);
2593 switch (*endptr) {
2594 case 0: case 'M': case 'm':
2595 value <<= 20;
2596 break;
2597 case 'G': case 'g':
2598 value <<= 30;
2599 break;
2601 node_mem[nodenr] = value;
2603 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2604 node_cpumask[nodenr] = 0;
2605 } else {
2606 value = strtoull(option, &endptr, 10);
2607 if (value >= 64) {
2608 value = 63;
2609 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2610 } else {
2611 if (*endptr == '-') {
2612 endvalue = strtoull(endptr+1, &endptr, 10);
2613 if (endvalue >= 63) {
2614 endvalue = 62;
2615 fprintf(stderr,
2616 "only 63 CPUs in NUMA mode supported.\n");
2618 value = (1 << (endvalue + 1)) - (1 << value);
2619 } else {
2620 value = 1 << value;
2623 node_cpumask[nodenr] = value;
2625 nb_numa_nodes++;
2627 return;
2630 /***********************************************************/
2631 /* USB devices */
2633 static USBPort *used_usb_ports;
2634 static USBPort *free_usb_ports;
2636 /* ??? Maybe change this to register a hub to keep track of the topology. */
2637 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2638 usb_attachfn attach)
2640 port->opaque = opaque;
2641 port->index = index;
2642 port->attach = attach;
2643 port->next = free_usb_ports;
2644 free_usb_ports = port;
2647 int usb_device_add_dev(USBDevice *dev)
2649 USBPort *port;
2651 /* Find a USB port to add the device to. */
2652 port = free_usb_ports;
2653 if (!port->next) {
2654 USBDevice *hub;
2656 /* Create a new hub and chain it on. */
2657 free_usb_ports = NULL;
2658 port->next = used_usb_ports;
2659 used_usb_ports = port;
2661 hub = usb_hub_init(VM_USB_HUB_SIZE);
2662 usb_attach(port, hub);
2663 port = free_usb_ports;
2666 free_usb_ports = port->next;
2667 port->next = used_usb_ports;
2668 used_usb_ports = port;
2669 usb_attach(port, dev);
2670 return 0;
2673 static void usb_msd_password_cb(void *opaque, int err)
2675 USBDevice *dev = opaque;
2677 if (!err)
2678 usb_device_add_dev(dev);
2679 else
2680 dev->handle_destroy(dev);
2683 static int usb_device_add(const char *devname, int is_hotplug)
2685 const char *p;
2686 USBDevice *dev;
2688 if (!free_usb_ports)
2689 return -1;
2691 if (strstart(devname, "host:", &p)) {
2692 dev = usb_host_device_open(p);
2693 } else if (!strcmp(devname, "mouse")) {
2694 dev = usb_mouse_init();
2695 } else if (!strcmp(devname, "tablet")) {
2696 dev = usb_tablet_init();
2697 } else if (!strcmp(devname, "keyboard")) {
2698 dev = usb_keyboard_init();
2699 } else if (strstart(devname, "disk:", &p)) {
2700 BlockDriverState *bs;
2702 dev = usb_msd_init(p);
2703 if (!dev)
2704 return -1;
2705 bs = usb_msd_get_bdrv(dev);
2706 if (bdrv_key_required(bs)) {
2707 autostart = 0;
2708 if (is_hotplug) {
2709 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2710 dev);
2711 return 0;
2714 } else if (!strcmp(devname, "wacom-tablet")) {
2715 dev = usb_wacom_init();
2716 } else if (strstart(devname, "serial:", &p)) {
2717 dev = usb_serial_init(p);
2718 #ifdef CONFIG_BRLAPI
2719 } else if (!strcmp(devname, "braille")) {
2720 dev = usb_baum_init();
2721 #endif
2722 } else if (strstart(devname, "net:", &p)) {
2723 int nic = nb_nics;
2725 if (net_client_init("nic", p) < 0)
2726 return -1;
2727 nd_table[nic].model = "usb";
2728 dev = usb_net_init(&nd_table[nic]);
2729 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2730 dev = usb_bt_init(devname[2] ? hci_init(p) :
2731 bt_new_hci(qemu_find_bt_vlan(0)));
2732 } else {
2733 return -1;
2735 if (!dev)
2736 return -1;
2738 return usb_device_add_dev(dev);
2741 int usb_device_del_addr(int bus_num, int addr)
2743 USBPort *port;
2744 USBPort **lastp;
2745 USBDevice *dev;
2747 if (!used_usb_ports)
2748 return -1;
2750 if (bus_num != 0)
2751 return -1;
2753 lastp = &used_usb_ports;
2754 port = used_usb_ports;
2755 while (port && port->dev->addr != addr) {
2756 lastp = &port->next;
2757 port = port->next;
2760 if (!port)
2761 return -1;
2763 dev = port->dev;
2764 *lastp = port->next;
2765 usb_attach(port, NULL);
2766 dev->handle_destroy(dev);
2767 port->next = free_usb_ports;
2768 free_usb_ports = port;
2769 return 0;
2772 static int usb_device_del(const char *devname)
2774 int bus_num, addr;
2775 const char *p;
2777 if (strstart(devname, "host:", &p))
2778 return usb_host_device_close(p);
2780 if (!used_usb_ports)
2781 return -1;
2783 p = strchr(devname, '.');
2784 if (!p)
2785 return -1;
2786 bus_num = strtoul(devname, NULL, 0);
2787 addr = strtoul(p + 1, NULL, 0);
2789 return usb_device_del_addr(bus_num, addr);
2792 void do_usb_add(Monitor *mon, const char *devname)
2794 usb_device_add(devname, 1);
2797 void do_usb_del(Monitor *mon, const char *devname)
2799 usb_device_del(devname);
2802 void usb_info(Monitor *mon)
2804 USBDevice *dev;
2805 USBPort *port;
2806 const char *speed_str;
2808 if (!usb_enabled) {
2809 monitor_printf(mon, "USB support not enabled\n");
2810 return;
2813 for (port = used_usb_ports; port; port = port->next) {
2814 dev = port->dev;
2815 if (!dev)
2816 continue;
2817 switch(dev->speed) {
2818 case USB_SPEED_LOW:
2819 speed_str = "1.5";
2820 break;
2821 case USB_SPEED_FULL:
2822 speed_str = "12";
2823 break;
2824 case USB_SPEED_HIGH:
2825 speed_str = "480";
2826 break;
2827 default:
2828 speed_str = "?";
2829 break;
2831 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2832 0, dev->addr, speed_str, dev->devname);
2836 /***********************************************************/
2837 /* PCMCIA/Cardbus */
2839 static struct pcmcia_socket_entry_s {
2840 struct pcmcia_socket_s *socket;
2841 struct pcmcia_socket_entry_s *next;
2842 } *pcmcia_sockets = 0;
2844 void pcmcia_socket_register(struct pcmcia_socket_s *socket)
2846 struct pcmcia_socket_entry_s *entry;
2848 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2849 entry->socket = socket;
2850 entry->next = pcmcia_sockets;
2851 pcmcia_sockets = entry;
2854 void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
2856 struct pcmcia_socket_entry_s *entry, **ptr;
2858 ptr = &pcmcia_sockets;
2859 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2860 if (entry->socket == socket) {
2861 *ptr = entry->next;
2862 qemu_free(entry);
2866 void pcmcia_info(Monitor *mon)
2868 struct pcmcia_socket_entry_s *iter;
2870 if (!pcmcia_sockets)
2871 monitor_printf(mon, "No PCMCIA sockets\n");
2873 for (iter = pcmcia_sockets; iter; iter = iter->next)
2874 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2875 iter->socket->attached ? iter->socket->card_string :
2876 "Empty");
2879 /***********************************************************/
2880 /* register display */
2882 struct DisplayAllocator default_allocator = {
2883 defaultallocator_create_displaysurface,
2884 defaultallocator_resize_displaysurface,
2885 defaultallocator_free_displaysurface
2888 void register_displaystate(DisplayState *ds)
2890 DisplayState **s;
2891 s = &display_state;
2892 while (*s != NULL)
2893 s = &(*s)->next;
2894 ds->next = NULL;
2895 *s = ds;
2898 DisplayState *get_displaystate(void)
2900 return display_state;
2903 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2905 if(ds->allocator == &default_allocator) ds->allocator = da;
2906 return ds->allocator;
2909 /* dumb display */
2911 static void dumb_display_init(void)
2913 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2914 ds->allocator = &default_allocator;
2915 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2916 register_displaystate(ds);
2919 /***********************************************************/
2920 /* I/O handling */
2922 typedef struct IOHandlerRecord {
2923 int fd;
2924 IOCanRWHandler *fd_read_poll;
2925 IOHandler *fd_read;
2926 IOHandler *fd_write;
2927 int deleted;
2928 void *opaque;
2929 /* temporary data */
2930 struct pollfd *ufd;
2931 struct IOHandlerRecord *next;
2932 } IOHandlerRecord;
2934 static IOHandlerRecord *first_io_handler;
2936 /* XXX: fd_read_poll should be suppressed, but an API change is
2937 necessary in the character devices to suppress fd_can_read(). */
2938 int qemu_set_fd_handler2(int fd,
2939 IOCanRWHandler *fd_read_poll,
2940 IOHandler *fd_read,
2941 IOHandler *fd_write,
2942 void *opaque)
2944 IOHandlerRecord **pioh, *ioh;
2946 if (!fd_read && !fd_write) {
2947 pioh = &first_io_handler;
2948 for(;;) {
2949 ioh = *pioh;
2950 if (ioh == NULL)
2951 break;
2952 if (ioh->fd == fd) {
2953 ioh->deleted = 1;
2954 break;
2956 pioh = &ioh->next;
2958 } else {
2959 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2960 if (ioh->fd == fd)
2961 goto found;
2963 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2964 ioh->next = first_io_handler;
2965 first_io_handler = ioh;
2966 found:
2967 ioh->fd = fd;
2968 ioh->fd_read_poll = fd_read_poll;
2969 ioh->fd_read = fd_read;
2970 ioh->fd_write = fd_write;
2971 ioh->opaque = opaque;
2972 ioh->deleted = 0;
2974 return 0;
2977 int qemu_set_fd_handler(int fd,
2978 IOHandler *fd_read,
2979 IOHandler *fd_write,
2980 void *opaque)
2982 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2985 #ifdef _WIN32
2986 /***********************************************************/
2987 /* Polling handling */
2989 typedef struct PollingEntry {
2990 PollingFunc *func;
2991 void *opaque;
2992 struct PollingEntry *next;
2993 } PollingEntry;
2995 static PollingEntry *first_polling_entry;
2997 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2999 PollingEntry **ppe, *pe;
3000 pe = qemu_mallocz(sizeof(PollingEntry));
3001 pe->func = func;
3002 pe->opaque = opaque;
3003 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
3004 *ppe = pe;
3005 return 0;
3008 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
3010 PollingEntry **ppe, *pe;
3011 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
3012 pe = *ppe;
3013 if (pe->func == func && pe->opaque == opaque) {
3014 *ppe = pe->next;
3015 qemu_free(pe);
3016 break;
3021 /***********************************************************/
3022 /* Wait objects support */
3023 typedef struct WaitObjects {
3024 int num;
3025 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
3026 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
3027 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
3028 } WaitObjects;
3030 static WaitObjects wait_objects = {0};
3032 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3034 WaitObjects *w = &wait_objects;
3036 if (w->num >= MAXIMUM_WAIT_OBJECTS)
3037 return -1;
3038 w->events[w->num] = handle;
3039 w->func[w->num] = func;
3040 w->opaque[w->num] = opaque;
3041 w->num++;
3042 return 0;
3045 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3047 int i, found;
3048 WaitObjects *w = &wait_objects;
3050 found = 0;
3051 for (i = 0; i < w->num; i++) {
3052 if (w->events[i] == handle)
3053 found = 1;
3054 if (found) {
3055 w->events[i] = w->events[i + 1];
3056 w->func[i] = w->func[i + 1];
3057 w->opaque[i] = w->opaque[i + 1];
3060 if (found)
3061 w->num--;
3063 #endif
3065 /***********************************************************/
3066 /* ram save/restore */
3068 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3070 int v;
3072 v = qemu_get_byte(f);
3073 switch(v) {
3074 case 0:
3075 if (qemu_get_buffer(f, buf, len) != len)
3076 return -EIO;
3077 break;
3078 case 1:
3079 v = qemu_get_byte(f);
3080 memset(buf, v, len);
3081 break;
3082 default:
3083 return -EINVAL;
3086 if (qemu_file_has_error(f))
3087 return -EIO;
3089 return 0;
3092 static int ram_load_v1(QEMUFile *f, void *opaque)
3094 int ret;
3095 ram_addr_t i;
3097 if (qemu_get_be32(f) != last_ram_offset)
3098 return -EINVAL;
3099 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
3100 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
3101 if (ret)
3102 return ret;
3104 return 0;
3107 #define BDRV_HASH_BLOCK_SIZE 1024
3108 #define IOBUF_SIZE 4096
3109 #define RAM_CBLOCK_MAGIC 0xfabe
3111 typedef struct RamDecompressState {
3112 z_stream zstream;
3113 QEMUFile *f;
3114 uint8_t buf[IOBUF_SIZE];
3115 } RamDecompressState;
3117 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3119 int ret;
3120 memset(s, 0, sizeof(*s));
3121 s->f = f;
3122 ret = inflateInit(&s->zstream);
3123 if (ret != Z_OK)
3124 return -1;
3125 return 0;
3128 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3130 int ret, clen;
3132 s->zstream.avail_out = len;
3133 s->zstream.next_out = buf;
3134 while (s->zstream.avail_out > 0) {
3135 if (s->zstream.avail_in == 0) {
3136 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3137 return -1;
3138 clen = qemu_get_be16(s->f);
3139 if (clen > IOBUF_SIZE)
3140 return -1;
3141 qemu_get_buffer(s->f, s->buf, clen);
3142 s->zstream.avail_in = clen;
3143 s->zstream.next_in = s->buf;
3145 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3146 if (ret != Z_OK && ret != Z_STREAM_END) {
3147 return -1;
3150 return 0;
3153 static void ram_decompress_close(RamDecompressState *s)
3155 inflateEnd(&s->zstream);
3158 #define RAM_SAVE_FLAG_FULL 0x01
3159 #define RAM_SAVE_FLAG_COMPRESS 0x02
3160 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3161 #define RAM_SAVE_FLAG_PAGE 0x08
3162 #define RAM_SAVE_FLAG_EOS 0x10
3164 static int is_dup_page(uint8_t *page, uint8_t ch)
3166 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3167 uint32_t *array = (uint32_t *)page;
3168 int i;
3170 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3171 if (array[i] != val)
3172 return 0;
3175 return 1;
3178 static int ram_save_block(QEMUFile *f)
3180 static ram_addr_t current_addr = 0;
3181 ram_addr_t saved_addr = current_addr;
3182 ram_addr_t addr = 0;
3183 int found = 0;
3185 while (addr < last_ram_offset) {
3186 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3187 uint8_t *p;
3189 cpu_physical_memory_reset_dirty(current_addr,
3190 current_addr + TARGET_PAGE_SIZE,
3191 MIGRATION_DIRTY_FLAG);
3193 p = qemu_get_ram_ptr(current_addr);
3195 if (is_dup_page(p, *p)) {
3196 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3197 qemu_put_byte(f, *p);
3198 } else {
3199 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3200 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3203 found = 1;
3204 break;
3206 addr += TARGET_PAGE_SIZE;
3207 current_addr = (saved_addr + addr) % last_ram_offset;
3210 return found;
3213 static ram_addr_t ram_save_threshold = 10;
3215 static ram_addr_t ram_save_remaining(void)
3217 ram_addr_t addr;
3218 ram_addr_t count = 0;
3220 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3221 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3222 count++;
3225 return count;
3228 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3230 ram_addr_t addr;
3232 if (stage == 1) {
3233 /* Make sure all dirty bits are set */
3234 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3235 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3236 cpu_physical_memory_set_dirty(addr);
3239 /* Enable dirty memory tracking */
3240 cpu_physical_memory_set_dirty_tracking(1);
3242 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3245 while (!qemu_file_rate_limit(f)) {
3246 int ret;
3248 ret = ram_save_block(f);
3249 if (ret == 0) /* no more blocks */
3250 break;
3253 /* try transferring iterative blocks of memory */
3255 if (stage == 3) {
3257 /* flush all remaining blocks regardless of rate limiting */
3258 while (ram_save_block(f) != 0);
3259 cpu_physical_memory_set_dirty_tracking(0);
3262 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3264 return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3267 static int ram_load_dead(QEMUFile *f, void *opaque)
3269 RamDecompressState s1, *s = &s1;
3270 uint8_t buf[10];
3271 ram_addr_t i;
3273 if (ram_decompress_open(s, f) < 0)
3274 return -EINVAL;
3275 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3276 if (ram_decompress_buf(s, buf, 1) < 0) {
3277 fprintf(stderr, "Error while reading ram block header\n");
3278 goto error;
3280 if (buf[0] == 0) {
3281 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3282 BDRV_HASH_BLOCK_SIZE) < 0) {
3283 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3284 goto error;
3286 } else {
3287 error:
3288 printf("Error block header\n");
3289 return -EINVAL;
3292 ram_decompress_close(s);
3294 return 0;
3297 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3299 ram_addr_t addr;
3300 int flags;
3302 if (version_id == 1)
3303 return ram_load_v1(f, opaque);
3305 if (version_id == 2) {
3306 if (qemu_get_be32(f) != last_ram_offset)
3307 return -EINVAL;
3308 return ram_load_dead(f, opaque);
3311 if (version_id != 3)
3312 return -EINVAL;
3314 do {
3315 addr = qemu_get_be64(f);
3317 flags = addr & ~TARGET_PAGE_MASK;
3318 addr &= TARGET_PAGE_MASK;
3320 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3321 if (addr != last_ram_offset)
3322 return -EINVAL;
3325 if (flags & RAM_SAVE_FLAG_FULL) {
3326 if (ram_load_dead(f, opaque) < 0)
3327 return -EINVAL;
3330 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3331 uint8_t ch = qemu_get_byte(f);
3332 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3333 } else if (flags & RAM_SAVE_FLAG_PAGE)
3334 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3335 } while (!(flags & RAM_SAVE_FLAG_EOS));
3337 return 0;
3340 void qemu_service_io(void)
3342 qemu_notify_event();
3345 /***********************************************************/
3346 /* bottom halves (can be seen as timers which expire ASAP) */
3348 struct QEMUBH {
3349 QEMUBHFunc *cb;
3350 void *opaque;
3351 int scheduled;
3352 int idle;
3353 int deleted;
3354 QEMUBH *next;
3357 static QEMUBH *first_bh = NULL;
3359 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3361 QEMUBH *bh;
3362 bh = qemu_mallocz(sizeof(QEMUBH));
3363 bh->cb = cb;
3364 bh->opaque = opaque;
3365 bh->next = first_bh;
3366 first_bh = bh;
3367 return bh;
3370 int qemu_bh_poll(void)
3372 QEMUBH *bh, **bhp;
3373 int ret;
3375 ret = 0;
3376 for (bh = first_bh; bh; bh = bh->next) {
3377 if (!bh->deleted && bh->scheduled) {
3378 bh->scheduled = 0;
3379 if (!bh->idle)
3380 ret = 1;
3381 bh->idle = 0;
3382 bh->cb(bh->opaque);
3386 /* remove deleted bhs */
3387 bhp = &first_bh;
3388 while (*bhp) {
3389 bh = *bhp;
3390 if (bh->deleted) {
3391 *bhp = bh->next;
3392 qemu_free(bh);
3393 } else
3394 bhp = &bh->next;
3397 return ret;
3400 void qemu_bh_schedule_idle(QEMUBH *bh)
3402 if (bh->scheduled)
3403 return;
3404 bh->scheduled = 1;
3405 bh->idle = 1;
3408 void qemu_bh_schedule(QEMUBH *bh)
3410 if (bh->scheduled)
3411 return;
3412 bh->scheduled = 1;
3413 bh->idle = 0;
3414 /* stop the currently executing CPU to execute the BH ASAP */
3415 qemu_notify_event();
3418 void qemu_bh_cancel(QEMUBH *bh)
3420 bh->scheduled = 0;
3423 void qemu_bh_delete(QEMUBH *bh)
3425 bh->scheduled = 0;
3426 bh->deleted = 1;
3429 static void qemu_bh_update_timeout(int *timeout)
3431 QEMUBH *bh;
3433 for (bh = first_bh; bh; bh = bh->next) {
3434 if (!bh->deleted && bh->scheduled) {
3435 if (bh->idle) {
3436 /* idle bottom halves will be polled at least
3437 * every 10ms */
3438 *timeout = MIN(10, *timeout);
3439 } else {
3440 /* non-idle bottom halves will be executed
3441 * immediately */
3442 *timeout = 0;
3443 break;
3449 /***********************************************************/
3450 /* machine registration */
3452 static QEMUMachine *first_machine = NULL;
3453 QEMUMachine *current_machine = NULL;
3455 int qemu_register_machine(QEMUMachine *m)
3457 QEMUMachine **pm;
3458 pm = &first_machine;
3459 while (*pm != NULL)
3460 pm = &(*pm)->next;
3461 m->next = NULL;
3462 *pm = m;
3463 return 0;
3466 static QEMUMachine *find_machine(const char *name)
3468 QEMUMachine *m;
3470 for(m = first_machine; m != NULL; m = m->next) {
3471 if (!strcmp(m->name, name))
3472 return m;
3474 return NULL;
3477 /***********************************************************/
3478 /* main execution loop */
3480 static void gui_update(void *opaque)
3482 uint64_t interval = GUI_REFRESH_INTERVAL;
3483 DisplayState *ds = opaque;
3484 DisplayChangeListener *dcl = ds->listeners;
3486 dpy_refresh(ds);
3488 while (dcl != NULL) {
3489 if (dcl->gui_timer_interval &&
3490 dcl->gui_timer_interval < interval)
3491 interval = dcl->gui_timer_interval;
3492 dcl = dcl->next;
3494 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3497 static void nographic_update(void *opaque)
3499 uint64_t interval = GUI_REFRESH_INTERVAL;
3501 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3504 struct vm_change_state_entry {
3505 VMChangeStateHandler *cb;
3506 void *opaque;
3507 LIST_ENTRY (vm_change_state_entry) entries;
3510 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3512 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3513 void *opaque)
3515 VMChangeStateEntry *e;
3517 e = qemu_mallocz(sizeof (*e));
3519 e->cb = cb;
3520 e->opaque = opaque;
3521 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3522 return e;
3525 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3527 LIST_REMOVE (e, entries);
3528 qemu_free (e);
3531 static void vm_state_notify(int running, int reason)
3533 VMChangeStateEntry *e;
3535 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3536 e->cb(e->opaque, running, reason);
3540 void vm_start(void)
3542 if (!vm_running) {
3543 cpu_enable_ticks();
3544 vm_running = 1;
3545 vm_state_notify(1, 0);
3546 qemu_rearm_alarm_timer(alarm_timer);
3550 void vm_stop(int reason)
3552 if (vm_running) {
3553 cpu_disable_ticks();
3554 vm_running = 0;
3555 vm_state_notify(0, reason);
3559 /* reset/shutdown handler */
3561 typedef struct QEMUResetEntry {
3562 QEMUResetHandler *func;
3563 void *opaque;
3564 struct QEMUResetEntry *next;
3565 } QEMUResetEntry;
3567 static QEMUResetEntry *first_reset_entry;
3568 static int reset_requested;
3569 static int shutdown_requested;
3570 static int powerdown_requested;
3572 int qemu_shutdown_requested(void)
3574 int r = shutdown_requested;
3575 shutdown_requested = 0;
3576 return r;
3579 int qemu_reset_requested(void)
3581 int r = reset_requested;
3582 reset_requested = 0;
3583 return r;
3586 int qemu_powerdown_requested(void)
3588 int r = powerdown_requested;
3589 powerdown_requested = 0;
3590 return r;
3593 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3595 QEMUResetEntry **pre, *re;
3597 pre = &first_reset_entry;
3598 while (*pre != NULL)
3599 pre = &(*pre)->next;
3600 re = qemu_mallocz(sizeof(QEMUResetEntry));
3601 re->func = func;
3602 re->opaque = opaque;
3603 re->next = NULL;
3604 *pre = re;
3607 void qemu_system_reset(void)
3609 QEMUResetEntry *re;
3611 /* reset all devices */
3612 for(re = first_reset_entry; re != NULL; re = re->next) {
3613 re->func(re->opaque);
3615 if (kvm_enabled())
3616 kvm_sync_vcpus();
3619 void qemu_system_reset_request(void)
3621 if (no_reboot) {
3622 shutdown_requested = 1;
3623 } else {
3624 reset_requested = 1;
3626 qemu_notify_event();
3629 void qemu_system_shutdown_request(void)
3631 shutdown_requested = 1;
3632 qemu_notify_event();
3635 void qemu_system_powerdown_request(void)
3637 powerdown_requested = 1;
3638 qemu_notify_event();
3641 void qemu_notify_event(void)
3643 CPUState *env = cpu_single_env;
3645 if (env) {
3646 cpu_exit(env);
3647 #ifdef USE_KQEMU
3648 if (env->kqemu_enabled)
3649 kqemu_cpu_interrupt(env);
3650 #endif
3654 #ifndef _WIN32
3655 static int io_thread_fd = -1;
3657 static void qemu_event_increment(void)
3659 static const char byte = 0;
3661 if (io_thread_fd == -1)
3662 return;
3664 write(io_thread_fd, &byte, sizeof(byte));
3667 static void qemu_event_read(void *opaque)
3669 int fd = (unsigned long)opaque;
3670 ssize_t len;
3672 /* Drain the notify pipe */
3673 do {
3674 char buffer[512];
3675 len = read(fd, buffer, sizeof(buffer));
3676 } while ((len == -1 && errno == EINTR) || len > 0);
3679 static int qemu_event_init(void)
3681 int err;
3682 int fds[2];
3684 err = pipe(fds);
3685 if (err == -1)
3686 return -errno;
3688 err = fcntl_setfl(fds[0], O_NONBLOCK);
3689 if (err < 0)
3690 goto fail;
3692 err = fcntl_setfl(fds[1], O_NONBLOCK);
3693 if (err < 0)
3694 goto fail;
3696 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3697 (void *)(unsigned long)fds[0]);
3699 io_thread_fd = fds[1];
3700 fail:
3701 close(fds[0]);
3702 close(fds[1]);
3703 return err;
3705 #else
3706 HANDLE qemu_event_handle;
3708 static void dummy_event_handler(void *opaque)
3712 static int qemu_event_init(void)
3714 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3715 if (!qemu_event_handle) {
3716 perror("Failed CreateEvent");
3717 return -1;
3719 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3720 return 0;
3723 static void qemu_event_increment(void)
3725 SetEvent(qemu_event_handle);
3727 #endif
3729 static int qemu_init_main_loop(void)
3731 return qemu_event_init();
3734 void qemu_init_vcpu(void *_env)
3736 CPUState *env = _env;
3738 if (kvm_enabled())
3739 kvm_init_vcpu(env);
3740 return;
3743 int qemu_cpu_self(void *env)
3745 return 1;
3748 void qemu_cpu_kick(void *env)
3750 return;
3753 #ifdef _WIN32
3754 static void host_main_loop_wait(int *timeout)
3756 int ret, ret2, i;
3757 PollingEntry *pe;
3760 /* XXX: need to suppress polling by better using win32 events */
3761 ret = 0;
3762 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3763 ret |= pe->func(pe->opaque);
3765 if (ret == 0) {
3766 int err;
3767 WaitObjects *w = &wait_objects;
3769 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3770 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3771 if (w->func[ret - WAIT_OBJECT_0])
3772 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3774 /* Check for additional signaled events */
3775 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3777 /* Check if event is signaled */
3778 ret2 = WaitForSingleObject(w->events[i], 0);
3779 if(ret2 == WAIT_OBJECT_0) {
3780 if (w->func[i])
3781 w->func[i](w->opaque[i]);
3782 } else if (ret2 == WAIT_TIMEOUT) {
3783 } else {
3784 err = GetLastError();
3785 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3788 } else if (ret == WAIT_TIMEOUT) {
3789 } else {
3790 err = GetLastError();
3791 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3795 *timeout = 0;
3797 #else
3798 static void host_main_loop_wait(int *timeout)
3801 #endif
3803 void main_loop_wait(int timeout)
3805 IOHandlerRecord *ioh;
3806 fd_set rfds, wfds, xfds;
3807 int ret, nfds;
3808 struct timeval tv;
3810 qemu_bh_update_timeout(&timeout);
3812 host_main_loop_wait(&timeout);
3814 /* poll any events */
3815 /* XXX: separate device handlers from system ones */
3816 nfds = -1;
3817 FD_ZERO(&rfds);
3818 FD_ZERO(&wfds);
3819 FD_ZERO(&xfds);
3820 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3821 if (ioh->deleted)
3822 continue;
3823 if (ioh->fd_read &&
3824 (!ioh->fd_read_poll ||
3825 ioh->fd_read_poll(ioh->opaque) != 0)) {
3826 FD_SET(ioh->fd, &rfds);
3827 if (ioh->fd > nfds)
3828 nfds = ioh->fd;
3830 if (ioh->fd_write) {
3831 FD_SET(ioh->fd, &wfds);
3832 if (ioh->fd > nfds)
3833 nfds = ioh->fd;
3837 tv.tv_sec = timeout / 1000;
3838 tv.tv_usec = (timeout % 1000) * 1000;
3840 #if defined(CONFIG_SLIRP)
3841 if (slirp_is_inited()) {
3842 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3844 #endif
3845 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3846 if (ret > 0) {
3847 IOHandlerRecord **pioh;
3849 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3850 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3851 ioh->fd_read(ioh->opaque);
3853 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3854 ioh->fd_write(ioh->opaque);
3858 /* remove deleted IO handlers */
3859 pioh = &first_io_handler;
3860 while (*pioh) {
3861 ioh = *pioh;
3862 if (ioh->deleted) {
3863 *pioh = ioh->next;
3864 qemu_free(ioh);
3865 } else
3866 pioh = &ioh->next;
3869 #if defined(CONFIG_SLIRP)
3870 if (slirp_is_inited()) {
3871 if (ret < 0) {
3872 FD_ZERO(&rfds);
3873 FD_ZERO(&wfds);
3874 FD_ZERO(&xfds);
3876 slirp_select_poll(&rfds, &wfds, &xfds);
3878 #endif
3880 /* rearm timer, if not periodic */
3881 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
3882 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
3883 qemu_rearm_alarm_timer(alarm_timer);
3886 /* vm time timers */
3887 if (vm_running && likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
3888 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
3889 qemu_get_clock(vm_clock));
3891 /* real time timers */
3892 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
3893 qemu_get_clock(rt_clock));
3895 /* Check bottom-halves last in case any of the earlier events triggered
3896 them. */
3897 qemu_bh_poll();
3901 static int qemu_cpu_exec(CPUState *env)
3903 int ret;
3904 #ifdef CONFIG_PROFILER
3905 int64_t ti;
3906 #endif
3908 #ifdef CONFIG_PROFILER
3909 ti = profile_getclock();
3910 #endif
3911 if (use_icount) {
3912 int64_t count;
3913 int decr;
3914 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
3915 env->icount_decr.u16.low = 0;
3916 env->icount_extra = 0;
3917 count = qemu_next_deadline();
3918 count = (count + (1 << icount_time_shift) - 1)
3919 >> icount_time_shift;
3920 qemu_icount += count;
3921 decr = (count > 0xffff) ? 0xffff : count;
3922 count -= decr;
3923 env->icount_decr.u16.low = decr;
3924 env->icount_extra = count;
3926 ret = cpu_exec(env);
3927 #ifdef CONFIG_PROFILER
3928 qemu_time += profile_getclock() - ti;
3929 #endif
3930 if (use_icount) {
3931 /* Fold pending instructions back into the
3932 instruction counter, and clear the interrupt flag. */
3933 qemu_icount -= (env->icount_decr.u16.low
3934 + env->icount_extra);
3935 env->icount_decr.u32 = 0;
3936 env->icount_extra = 0;
3938 return ret;
3941 static int cpu_has_work(CPUState *env)
3943 if (!env->halted)
3944 return 1;
3945 if (qemu_cpu_has_work(env))
3946 return 1;
3947 return 0;
3950 static int tcg_has_work(void)
3952 CPUState *env;
3954 for (env = first_cpu; env != NULL; env = env->next_cpu)
3955 if (cpu_has_work(env))
3956 return 1;
3957 return 0;
3960 static int qemu_calculate_timeout(void)
3962 int timeout;
3964 if (!vm_running)
3965 timeout = 5000;
3966 else if (tcg_has_work())
3967 timeout = 0;
3968 else if (!use_icount)
3969 timeout = 5000;
3970 else {
3971 /* XXX: use timeout computed from timers */
3972 int64_t add;
3973 int64_t delta;
3974 /* Advance virtual time to the next event. */
3975 if (use_icount == 1) {
3976 /* When not using an adaptive execution frequency
3977 we tend to get badly out of sync with real time,
3978 so just delay for a reasonable amount of time. */
3979 delta = 0;
3980 } else {
3981 delta = cpu_get_icount() - cpu_get_clock();
3983 if (delta > 0) {
3984 /* If virtual time is ahead of real time then just
3985 wait for IO. */
3986 timeout = (delta / 1000000) + 1;
3987 } else {
3988 /* Wait for either IO to occur or the next
3989 timer event. */
3990 add = qemu_next_deadline();
3991 /* We advance the timer before checking for IO.
3992 Limit the amount we advance so that early IO
3993 activity won't get the guest too far ahead. */
3994 if (add > 10000000)
3995 add = 10000000;
3996 delta += add;
3997 add = (add + (1 << icount_time_shift) - 1)
3998 >> icount_time_shift;
3999 qemu_icount += add;
4000 timeout = delta / 1000000;
4001 if (timeout < 0)
4002 timeout = 0;
4006 return timeout;
4009 static int vm_can_run(void)
4011 if (powerdown_requested)
4012 return 0;
4013 if (reset_requested)
4014 return 0;
4015 if (shutdown_requested)
4016 return 0;
4017 return 1;
4020 static void main_loop(void)
4022 int ret = 0;
4023 #ifdef CONFIG_PROFILER
4024 int64_t ti;
4025 #endif
4027 for (;;) {
4028 do {
4029 if (next_cpu == NULL)
4030 next_cpu = first_cpu;
4031 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4032 CPUState *env = cur_cpu = next_cpu;
4034 if (!vm_running)
4035 break;
4036 if (timer_alarm_pending) {
4037 timer_alarm_pending = 0;
4038 break;
4040 ret = qemu_cpu_exec(env);
4041 if (ret == EXCP_DEBUG) {
4042 gdb_set_stop_cpu(env);
4043 break;
4046 #ifdef CONFIG_PROFILER
4047 ti = profile_getclock();
4048 #endif
4049 main_loop_wait(qemu_calculate_timeout());
4050 #ifdef CONFIG_PROFILER
4051 dev_time += profile_getclock() - ti;
4052 #endif
4053 } while (ret != EXCP_DEBUG && vm_can_run());
4055 if (ret == EXCP_DEBUG)
4056 vm_stop(EXCP_DEBUG);
4058 if (qemu_shutdown_requested()) {
4059 if (no_shutdown) {
4060 vm_stop(0);
4061 no_shutdown = 0;
4062 } else
4063 break;
4065 if (qemu_reset_requested())
4066 qemu_system_reset();
4067 if (qemu_powerdown_requested())
4068 qemu_system_powerdown();
4072 static void version(void)
4074 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4077 static void help(int exitcode)
4079 version();
4080 printf("usage: %s [options] [disk_image]\n"
4081 "\n"
4082 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4083 "\n"
4084 #define DEF(option, opt_arg, opt_enum, opt_help) \
4085 opt_help
4086 #define DEFHEADING(text) stringify(text) "\n"
4087 #include "qemu-options.h"
4088 #undef DEF
4089 #undef DEFHEADING
4090 #undef GEN_DOCS
4091 "\n"
4092 "During emulation, the following keys are useful:\n"
4093 "ctrl-alt-f toggle full screen\n"
4094 "ctrl-alt-n switch to virtual console 'n'\n"
4095 "ctrl-alt toggle mouse and keyboard grab\n"
4096 "\n"
4097 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4099 "qemu",
4100 DEFAULT_RAM_SIZE,
4101 #ifndef _WIN32
4102 DEFAULT_NETWORK_SCRIPT,
4103 DEFAULT_NETWORK_DOWN_SCRIPT,
4104 #endif
4105 DEFAULT_GDBSTUB_PORT,
4106 "/tmp/qemu.log");
4107 exit(exitcode);
4110 #define HAS_ARG 0x0001
4112 enum {
4113 #define DEF(option, opt_arg, opt_enum, opt_help) \
4114 opt_enum,
4115 #define DEFHEADING(text)
4116 #include "qemu-options.h"
4117 #undef DEF
4118 #undef DEFHEADING
4119 #undef GEN_DOCS
4122 typedef struct QEMUOption {
4123 const char *name;
4124 int flags;
4125 int index;
4126 } QEMUOption;
4128 static const QEMUOption qemu_options[] = {
4129 { "h", 0, QEMU_OPTION_h },
4130 #define DEF(option, opt_arg, opt_enum, opt_help) \
4131 { option, opt_arg, opt_enum },
4132 #define DEFHEADING(text)
4133 #include "qemu-options.h"
4134 #undef DEF
4135 #undef DEFHEADING
4136 #undef GEN_DOCS
4137 { NULL },
4140 #ifdef HAS_AUDIO
4141 struct soundhw soundhw[] = {
4142 #ifdef HAS_AUDIO_CHOICE
4143 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4145 "pcspk",
4146 "PC speaker",
4149 { .init_isa = pcspk_audio_init }
4151 #endif
4153 #ifdef CONFIG_SB16
4155 "sb16",
4156 "Creative Sound Blaster 16",
4159 { .init_isa = SB16_init }
4161 #endif
4163 #ifdef CONFIG_CS4231A
4165 "cs4231a",
4166 "CS4231A",
4169 { .init_isa = cs4231a_init }
4171 #endif
4173 #ifdef CONFIG_ADLIB
4175 "adlib",
4176 #ifdef HAS_YMF262
4177 "Yamaha YMF262 (OPL3)",
4178 #else
4179 "Yamaha YM3812 (OPL2)",
4180 #endif
4183 { .init_isa = Adlib_init }
4185 #endif
4187 #ifdef CONFIG_GUS
4189 "gus",
4190 "Gravis Ultrasound GF1",
4193 { .init_isa = GUS_init }
4195 #endif
4197 #ifdef CONFIG_AC97
4199 "ac97",
4200 "Intel 82801AA AC97 Audio",
4203 { .init_pci = ac97_init }
4205 #endif
4207 #ifdef CONFIG_ES1370
4209 "es1370",
4210 "ENSONIQ AudioPCI ES1370",
4213 { .init_pci = es1370_init }
4215 #endif
4217 #endif /* HAS_AUDIO_CHOICE */
4219 { NULL, NULL, 0, 0, { NULL } }
4222 static void select_soundhw (const char *optarg)
4224 struct soundhw *c;
4226 if (*optarg == '?') {
4227 show_valid_cards:
4229 printf ("Valid sound card names (comma separated):\n");
4230 for (c = soundhw; c->name; ++c) {
4231 printf ("%-11s %s\n", c->name, c->descr);
4233 printf ("\n-soundhw all will enable all of the above\n");
4234 exit (*optarg != '?');
4236 else {
4237 size_t l;
4238 const char *p;
4239 char *e;
4240 int bad_card = 0;
4242 if (!strcmp (optarg, "all")) {
4243 for (c = soundhw; c->name; ++c) {
4244 c->enabled = 1;
4246 return;
4249 p = optarg;
4250 while (*p) {
4251 e = strchr (p, ',');
4252 l = !e ? strlen (p) : (size_t) (e - p);
4254 for (c = soundhw; c->name; ++c) {
4255 if (!strncmp (c->name, p, l)) {
4256 c->enabled = 1;
4257 break;
4261 if (!c->name) {
4262 if (l > 80) {
4263 fprintf (stderr,
4264 "Unknown sound card name (too big to show)\n");
4266 else {
4267 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4268 (int) l, p);
4270 bad_card = 1;
4272 p += l + (e != NULL);
4275 if (bad_card)
4276 goto show_valid_cards;
4279 #endif
4281 static void select_vgahw (const char *p)
4283 const char *opts;
4285 cirrus_vga_enabled = 0;
4286 std_vga_enabled = 0;
4287 vmsvga_enabled = 0;
4288 xenfb_enabled = 0;
4289 if (strstart(p, "std", &opts)) {
4290 std_vga_enabled = 1;
4291 } else if (strstart(p, "cirrus", &opts)) {
4292 cirrus_vga_enabled = 1;
4293 } else if (strstart(p, "vmware", &opts)) {
4294 vmsvga_enabled = 1;
4295 } else if (strstart(p, "xenfb", &opts)) {
4296 xenfb_enabled = 1;
4297 } else if (!strstart(p, "none", &opts)) {
4298 invalid_vga:
4299 fprintf(stderr, "Unknown vga type: %s\n", p);
4300 exit(1);
4302 while (*opts) {
4303 const char *nextopt;
4305 if (strstart(opts, ",retrace=", &nextopt)) {
4306 opts = nextopt;
4307 if (strstart(opts, "dumb", &nextopt))
4308 vga_retrace_method = VGA_RETRACE_DUMB;
4309 else if (strstart(opts, "precise", &nextopt))
4310 vga_retrace_method = VGA_RETRACE_PRECISE;
4311 else goto invalid_vga;
4312 } else goto invalid_vga;
4313 opts = nextopt;
4317 #ifdef _WIN32
4318 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4320 exit(STATUS_CONTROL_C_EXIT);
4321 return TRUE;
4323 #endif
4325 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4327 int ret;
4329 if(strlen(str) != 36)
4330 return -1;
4332 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4333 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4334 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4336 if(ret != 16)
4337 return -1;
4339 #ifdef TARGET_I386
4340 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4341 #endif
4343 return 0;
4346 #define MAX_NET_CLIENTS 32
4348 #ifndef _WIN32
4350 static void termsig_handler(int signal)
4352 qemu_system_shutdown_request();
4355 static void termsig_setup(void)
4357 struct sigaction act;
4359 memset(&act, 0, sizeof(act));
4360 act.sa_handler = termsig_handler;
4361 sigaction(SIGINT, &act, NULL);
4362 sigaction(SIGHUP, &act, NULL);
4363 sigaction(SIGTERM, &act, NULL);
4366 #endif
4368 int main(int argc, char **argv, char **envp)
4370 #ifdef CONFIG_GDBSTUB
4371 const char *gdbstub_dev = NULL;
4372 #endif
4373 uint32_t boot_devices_bitmap = 0;
4374 int i;
4375 int snapshot, linux_boot, net_boot;
4376 const char *initrd_filename;
4377 const char *kernel_filename, *kernel_cmdline;
4378 const char *boot_devices = "";
4379 DisplayState *ds;
4380 DisplayChangeListener *dcl;
4381 int cyls, heads, secs, translation;
4382 const char *net_clients[MAX_NET_CLIENTS];
4383 int nb_net_clients;
4384 const char *bt_opts[MAX_BT_CMDLINE];
4385 int nb_bt_opts;
4386 int hda_index;
4387 int optind;
4388 const char *r, *optarg;
4389 CharDriverState *monitor_hd = NULL;
4390 const char *monitor_device;
4391 const char *serial_devices[MAX_SERIAL_PORTS];
4392 int serial_device_index;
4393 const char *parallel_devices[MAX_PARALLEL_PORTS];
4394 int parallel_device_index;
4395 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4396 int virtio_console_index;
4397 const char *loadvm = NULL;
4398 QEMUMachine *machine;
4399 const char *cpu_model;
4400 const char *usb_devices[MAX_USB_CMDLINE];
4401 int usb_devices_index;
4402 #ifndef _WIN32
4403 int fds[2];
4404 #endif
4405 int tb_size;
4406 const char *pid_file = NULL;
4407 const char *incoming = NULL;
4408 #ifndef _WIN32
4409 int fd = 0;
4410 struct passwd *pwd = NULL;
4411 const char *chroot_dir = NULL;
4412 const char *run_as = NULL;
4413 #endif
4414 CPUState *env;
4416 qemu_cache_utils_init(envp);
4418 LIST_INIT (&vm_change_state_head);
4419 #ifndef _WIN32
4421 struct sigaction act;
4422 sigfillset(&act.sa_mask);
4423 act.sa_flags = 0;
4424 act.sa_handler = SIG_IGN;
4425 sigaction(SIGPIPE, &act, NULL);
4427 #else
4428 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4429 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4430 QEMU to run on a single CPU */
4432 HANDLE h;
4433 DWORD mask, smask;
4434 int i;
4435 h = GetCurrentProcess();
4436 if (GetProcessAffinityMask(h, &mask, &smask)) {
4437 for(i = 0; i < 32; i++) {
4438 if (mask & (1 << i))
4439 break;
4441 if (i != 32) {
4442 mask = 1 << i;
4443 SetProcessAffinityMask(h, mask);
4447 #endif
4449 register_machines();
4450 machine = first_machine;
4451 cpu_model = NULL;
4452 initrd_filename = NULL;
4453 ram_size = 0;
4454 vga_ram_size = VGA_RAM_SIZE;
4455 snapshot = 0;
4456 nographic = 0;
4457 curses = 0;
4458 kernel_filename = NULL;
4459 kernel_cmdline = "";
4460 cyls = heads = secs = 0;
4461 translation = BIOS_ATA_TRANSLATION_AUTO;
4462 monitor_device = "vc:80Cx24C";
4464 serial_devices[0] = "vc:80Cx24C";
4465 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4466 serial_devices[i] = NULL;
4467 serial_device_index = 0;
4469 parallel_devices[0] = "vc:80Cx24C";
4470 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4471 parallel_devices[i] = NULL;
4472 parallel_device_index = 0;
4474 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4475 virtio_consoles[i] = NULL;
4476 virtio_console_index = 0;
4478 for (i = 0; i < MAX_NODES; i++) {
4479 node_mem[i] = 0;
4480 node_cpumask[i] = 0;
4483 usb_devices_index = 0;
4485 nb_net_clients = 0;
4486 nb_bt_opts = 0;
4487 nb_drives = 0;
4488 nb_drives_opt = 0;
4489 nb_numa_nodes = 0;
4490 hda_index = -1;
4492 nb_nics = 0;
4494 tb_size = 0;
4495 autostart= 1;
4497 optind = 1;
4498 for(;;) {
4499 if (optind >= argc)
4500 break;
4501 r = argv[optind];
4502 if (r[0] != '-') {
4503 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4504 } else {
4505 const QEMUOption *popt;
4507 optind++;
4508 /* Treat --foo the same as -foo. */
4509 if (r[1] == '-')
4510 r++;
4511 popt = qemu_options;
4512 for(;;) {
4513 if (!popt->name) {
4514 fprintf(stderr, "%s: invalid option -- '%s'\n",
4515 argv[0], r);
4516 exit(1);
4518 if (!strcmp(popt->name, r + 1))
4519 break;
4520 popt++;
4522 if (popt->flags & HAS_ARG) {
4523 if (optind >= argc) {
4524 fprintf(stderr, "%s: option '%s' requires an argument\n",
4525 argv[0], r);
4526 exit(1);
4528 optarg = argv[optind++];
4529 } else {
4530 optarg = NULL;
4533 switch(popt->index) {
4534 case QEMU_OPTION_M:
4535 machine = find_machine(optarg);
4536 if (!machine) {
4537 QEMUMachine *m;
4538 printf("Supported machines are:\n");
4539 for(m = first_machine; m != NULL; m = m->next) {
4540 printf("%-10s %s%s\n",
4541 m->name, m->desc,
4542 m == first_machine ? " (default)" : "");
4544 exit(*optarg != '?');
4546 break;
4547 case QEMU_OPTION_cpu:
4548 /* hw initialization will check this */
4549 if (*optarg == '?') {
4550 /* XXX: implement xxx_cpu_list for targets that still miss it */
4551 #if defined(cpu_list)
4552 cpu_list(stdout, &fprintf);
4553 #endif
4554 exit(0);
4555 } else {
4556 cpu_model = optarg;
4558 break;
4559 case QEMU_OPTION_initrd:
4560 initrd_filename = optarg;
4561 break;
4562 case QEMU_OPTION_hda:
4563 if (cyls == 0)
4564 hda_index = drive_add(optarg, HD_ALIAS, 0);
4565 else
4566 hda_index = drive_add(optarg, HD_ALIAS
4567 ",cyls=%d,heads=%d,secs=%d%s",
4568 0, cyls, heads, secs,
4569 translation == BIOS_ATA_TRANSLATION_LBA ?
4570 ",trans=lba" :
4571 translation == BIOS_ATA_TRANSLATION_NONE ?
4572 ",trans=none" : "");
4573 break;
4574 case QEMU_OPTION_hdb:
4575 case QEMU_OPTION_hdc:
4576 case QEMU_OPTION_hdd:
4577 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4578 break;
4579 case QEMU_OPTION_drive:
4580 drive_add(NULL, "%s", optarg);
4581 break;
4582 case QEMU_OPTION_mtdblock:
4583 drive_add(optarg, MTD_ALIAS);
4584 break;
4585 case QEMU_OPTION_sd:
4586 drive_add(optarg, SD_ALIAS);
4587 break;
4588 case QEMU_OPTION_pflash:
4589 drive_add(optarg, PFLASH_ALIAS);
4590 break;
4591 case QEMU_OPTION_snapshot:
4592 snapshot = 1;
4593 break;
4594 case QEMU_OPTION_hdachs:
4596 const char *p;
4597 p = optarg;
4598 cyls = strtol(p, (char **)&p, 0);
4599 if (cyls < 1 || cyls > 16383)
4600 goto chs_fail;
4601 if (*p != ',')
4602 goto chs_fail;
4603 p++;
4604 heads = strtol(p, (char **)&p, 0);
4605 if (heads < 1 || heads > 16)
4606 goto chs_fail;
4607 if (*p != ',')
4608 goto chs_fail;
4609 p++;
4610 secs = strtol(p, (char **)&p, 0);
4611 if (secs < 1 || secs > 63)
4612 goto chs_fail;
4613 if (*p == ',') {
4614 p++;
4615 if (!strcmp(p, "none"))
4616 translation = BIOS_ATA_TRANSLATION_NONE;
4617 else if (!strcmp(p, "lba"))
4618 translation = BIOS_ATA_TRANSLATION_LBA;
4619 else if (!strcmp(p, "auto"))
4620 translation = BIOS_ATA_TRANSLATION_AUTO;
4621 else
4622 goto chs_fail;
4623 } else if (*p != '\0') {
4624 chs_fail:
4625 fprintf(stderr, "qemu: invalid physical CHS format\n");
4626 exit(1);
4628 if (hda_index != -1)
4629 snprintf(drives_opt[hda_index].opt,
4630 sizeof(drives_opt[hda_index].opt),
4631 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
4632 0, cyls, heads, secs,
4633 translation == BIOS_ATA_TRANSLATION_LBA ?
4634 ",trans=lba" :
4635 translation == BIOS_ATA_TRANSLATION_NONE ?
4636 ",trans=none" : "");
4638 break;
4639 case QEMU_OPTION_numa:
4640 if (nb_numa_nodes >= MAX_NODES) {
4641 fprintf(stderr, "qemu: too many NUMA nodes\n");
4642 exit(1);
4644 numa_add(optarg);
4645 break;
4646 case QEMU_OPTION_nographic:
4647 nographic = 1;
4648 break;
4649 #ifdef CONFIG_CURSES
4650 case QEMU_OPTION_curses:
4651 curses = 1;
4652 break;
4653 #endif
4654 case QEMU_OPTION_portrait:
4655 graphic_rotate = 1;
4656 break;
4657 case QEMU_OPTION_kernel:
4658 kernel_filename = optarg;
4659 break;
4660 case QEMU_OPTION_append:
4661 kernel_cmdline = optarg;
4662 break;
4663 case QEMU_OPTION_cdrom:
4664 drive_add(optarg, CDROM_ALIAS);
4665 break;
4666 case QEMU_OPTION_boot:
4667 boot_devices = optarg;
4668 /* We just do some generic consistency checks */
4670 /* Could easily be extended to 64 devices if needed */
4671 const char *p;
4673 boot_devices_bitmap = 0;
4674 for (p = boot_devices; *p != '\0'; p++) {
4675 /* Allowed boot devices are:
4676 * a b : floppy disk drives
4677 * c ... f : IDE disk drives
4678 * g ... m : machine implementation dependant drives
4679 * n ... p : network devices
4680 * It's up to each machine implementation to check
4681 * if the given boot devices match the actual hardware
4682 * implementation and firmware features.
4684 if (*p < 'a' || *p > 'q') {
4685 fprintf(stderr, "Invalid boot device '%c'\n", *p);
4686 exit(1);
4688 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
4689 fprintf(stderr,
4690 "Boot device '%c' was given twice\n",*p);
4691 exit(1);
4693 boot_devices_bitmap |= 1 << (*p - 'a');
4696 break;
4697 case QEMU_OPTION_fda:
4698 case QEMU_OPTION_fdb:
4699 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
4700 break;
4701 #ifdef TARGET_I386
4702 case QEMU_OPTION_no_fd_bootchk:
4703 fd_bootchk = 0;
4704 break;
4705 #endif
4706 case QEMU_OPTION_net:
4707 if (nb_net_clients >= MAX_NET_CLIENTS) {
4708 fprintf(stderr, "qemu: too many network clients\n");
4709 exit(1);
4711 net_clients[nb_net_clients] = optarg;
4712 nb_net_clients++;
4713 break;
4714 #ifdef CONFIG_SLIRP
4715 case QEMU_OPTION_tftp:
4716 tftp_prefix = optarg;
4717 break;
4718 case QEMU_OPTION_bootp:
4719 bootp_filename = optarg;
4720 break;
4721 #ifndef _WIN32
4722 case QEMU_OPTION_smb:
4723 net_slirp_smb(optarg);
4724 break;
4725 #endif
4726 case QEMU_OPTION_redir:
4727 net_slirp_redir(NULL, optarg);
4728 break;
4729 #endif
4730 case QEMU_OPTION_bt:
4731 if (nb_bt_opts >= MAX_BT_CMDLINE) {
4732 fprintf(stderr, "qemu: too many bluetooth options\n");
4733 exit(1);
4735 bt_opts[nb_bt_opts++] = optarg;
4736 break;
4737 #ifdef HAS_AUDIO
4738 case QEMU_OPTION_audio_help:
4739 AUD_help ();
4740 exit (0);
4741 break;
4742 case QEMU_OPTION_soundhw:
4743 select_soundhw (optarg);
4744 break;
4745 #endif
4746 case QEMU_OPTION_h:
4747 help(0);
4748 break;
4749 case QEMU_OPTION_version:
4750 version();
4751 exit(0);
4752 break;
4753 case QEMU_OPTION_m: {
4754 uint64_t value;
4755 char *ptr;
4757 value = strtoul(optarg, &ptr, 10);
4758 switch (*ptr) {
4759 case 0: case 'M': case 'm':
4760 value <<= 20;
4761 break;
4762 case 'G': case 'g':
4763 value <<= 30;
4764 break;
4765 default:
4766 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
4767 exit(1);
4770 /* On 32-bit hosts, QEMU is limited by virtual address space */
4771 if (value > (2047 << 20)
4772 #ifndef CONFIG_KQEMU
4773 && HOST_LONG_BITS == 32
4774 #endif
4776 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
4777 exit(1);
4779 if (value != (uint64_t)(ram_addr_t)value) {
4780 fprintf(stderr, "qemu: ram size too large\n");
4781 exit(1);
4783 ram_size = value;
4784 break;
4786 case QEMU_OPTION_d:
4788 int mask;
4789 const CPULogItem *item;
4791 mask = cpu_str_to_log_mask(optarg);
4792 if (!mask) {
4793 printf("Log items (comma separated):\n");
4794 for(item = cpu_log_items; item->mask != 0; item++) {
4795 printf("%-10s %s\n", item->name, item->help);
4797 exit(1);
4799 cpu_set_log(mask);
4801 break;
4802 #ifdef CONFIG_GDBSTUB
4803 case QEMU_OPTION_s:
4804 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
4805 break;
4806 case QEMU_OPTION_gdb:
4807 gdbstub_dev = optarg;
4808 break;
4809 #endif
4810 case QEMU_OPTION_L:
4811 bios_dir = optarg;
4812 break;
4813 case QEMU_OPTION_bios:
4814 bios_name = optarg;
4815 break;
4816 case QEMU_OPTION_singlestep:
4817 singlestep = 1;
4818 break;
4819 case QEMU_OPTION_S:
4820 autostart = 0;
4821 break;
4822 #ifndef _WIN32
4823 case QEMU_OPTION_k:
4824 keyboard_layout = optarg;
4825 break;
4826 #endif
4827 case QEMU_OPTION_localtime:
4828 rtc_utc = 0;
4829 break;
4830 case QEMU_OPTION_vga:
4831 select_vgahw (optarg);
4832 break;
4833 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
4834 case QEMU_OPTION_g:
4836 const char *p;
4837 int w, h, depth;
4838 p = optarg;
4839 w = strtol(p, (char **)&p, 10);
4840 if (w <= 0) {
4841 graphic_error:
4842 fprintf(stderr, "qemu: invalid resolution or depth\n");
4843 exit(1);
4845 if (*p != 'x')
4846 goto graphic_error;
4847 p++;
4848 h = strtol(p, (char **)&p, 10);
4849 if (h <= 0)
4850 goto graphic_error;
4851 if (*p == 'x') {
4852 p++;
4853 depth = strtol(p, (char **)&p, 10);
4854 if (depth != 8 && depth != 15 && depth != 16 &&
4855 depth != 24 && depth != 32)
4856 goto graphic_error;
4857 } else if (*p == '\0') {
4858 depth = graphic_depth;
4859 } else {
4860 goto graphic_error;
4863 graphic_width = w;
4864 graphic_height = h;
4865 graphic_depth = depth;
4867 break;
4868 #endif
4869 case QEMU_OPTION_echr:
4871 char *r;
4872 term_escape_char = strtol(optarg, &r, 0);
4873 if (r == optarg)
4874 printf("Bad argument to echr\n");
4875 break;
4877 case QEMU_OPTION_monitor:
4878 monitor_device = optarg;
4879 break;
4880 case QEMU_OPTION_serial:
4881 if (serial_device_index >= MAX_SERIAL_PORTS) {
4882 fprintf(stderr, "qemu: too many serial ports\n");
4883 exit(1);
4885 serial_devices[serial_device_index] = optarg;
4886 serial_device_index++;
4887 break;
4888 case QEMU_OPTION_virtiocon:
4889 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
4890 fprintf(stderr, "qemu: too many virtio consoles\n");
4891 exit(1);
4893 virtio_consoles[virtio_console_index] = optarg;
4894 virtio_console_index++;
4895 break;
4896 case QEMU_OPTION_parallel:
4897 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
4898 fprintf(stderr, "qemu: too many parallel ports\n");
4899 exit(1);
4901 parallel_devices[parallel_device_index] = optarg;
4902 parallel_device_index++;
4903 break;
4904 case QEMU_OPTION_loadvm:
4905 loadvm = optarg;
4906 break;
4907 case QEMU_OPTION_full_screen:
4908 full_screen = 1;
4909 break;
4910 #ifdef CONFIG_SDL
4911 case QEMU_OPTION_no_frame:
4912 no_frame = 1;
4913 break;
4914 case QEMU_OPTION_alt_grab:
4915 alt_grab = 1;
4916 break;
4917 case QEMU_OPTION_no_quit:
4918 no_quit = 1;
4919 break;
4920 case QEMU_OPTION_sdl:
4921 sdl = 1;
4922 break;
4923 #endif
4924 case QEMU_OPTION_pidfile:
4925 pid_file = optarg;
4926 break;
4927 #ifdef TARGET_I386
4928 case QEMU_OPTION_win2k_hack:
4929 win2k_install_hack = 1;
4930 break;
4931 case QEMU_OPTION_rtc_td_hack:
4932 rtc_td_hack = 1;
4933 break;
4934 case QEMU_OPTION_acpitable:
4935 if(acpi_table_add(optarg) < 0) {
4936 fprintf(stderr, "Wrong acpi table provided\n");
4937 exit(1);
4939 break;
4940 case QEMU_OPTION_smbios:
4941 if(smbios_entry_add(optarg) < 0) {
4942 fprintf(stderr, "Wrong smbios provided\n");
4943 exit(1);
4945 break;
4946 #endif
4947 #ifdef CONFIG_KQEMU
4948 case QEMU_OPTION_no_kqemu:
4949 kqemu_allowed = 0;
4950 break;
4951 case QEMU_OPTION_kernel_kqemu:
4952 kqemu_allowed = 2;
4953 break;
4954 #endif
4955 #ifdef CONFIG_KVM
4956 case QEMU_OPTION_enable_kvm:
4957 kvm_allowed = 1;
4958 #ifdef CONFIG_KQEMU
4959 kqemu_allowed = 0;
4960 #endif
4961 break;
4962 #endif
4963 case QEMU_OPTION_usb:
4964 usb_enabled = 1;
4965 break;
4966 case QEMU_OPTION_usbdevice:
4967 usb_enabled = 1;
4968 if (usb_devices_index >= MAX_USB_CMDLINE) {
4969 fprintf(stderr, "Too many USB devices\n");
4970 exit(1);
4972 usb_devices[usb_devices_index] = optarg;
4973 usb_devices_index++;
4974 break;
4975 case QEMU_OPTION_smp:
4976 smp_cpus = atoi(optarg);
4977 if (smp_cpus < 1) {
4978 fprintf(stderr, "Invalid number of CPUs\n");
4979 exit(1);
4981 break;
4982 case QEMU_OPTION_vnc:
4983 vnc_display = optarg;
4984 break;
4985 #ifdef TARGET_I386
4986 case QEMU_OPTION_no_acpi:
4987 acpi_enabled = 0;
4988 break;
4989 case QEMU_OPTION_no_hpet:
4990 no_hpet = 1;
4991 break;
4992 #endif
4993 case QEMU_OPTION_no_reboot:
4994 no_reboot = 1;
4995 break;
4996 case QEMU_OPTION_no_shutdown:
4997 no_shutdown = 1;
4998 break;
4999 case QEMU_OPTION_show_cursor:
5000 cursor_hide = 0;
5001 break;
5002 case QEMU_OPTION_uuid:
5003 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5004 fprintf(stderr, "Fail to parse UUID string."
5005 " Wrong format.\n");
5006 exit(1);
5008 break;
5009 #ifndef _WIN32
5010 case QEMU_OPTION_daemonize:
5011 daemonize = 1;
5012 break;
5013 #endif
5014 case QEMU_OPTION_option_rom:
5015 if (nb_option_roms >= MAX_OPTION_ROMS) {
5016 fprintf(stderr, "Too many option ROMs\n");
5017 exit(1);
5019 option_rom[nb_option_roms] = optarg;
5020 nb_option_roms++;
5021 break;
5022 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5023 case QEMU_OPTION_semihosting:
5024 semihosting_enabled = 1;
5025 break;
5026 #endif
5027 case QEMU_OPTION_name:
5028 qemu_name = optarg;
5029 break;
5030 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5031 case QEMU_OPTION_prom_env:
5032 if (nb_prom_envs >= MAX_PROM_ENVS) {
5033 fprintf(stderr, "Too many prom variables\n");
5034 exit(1);
5036 prom_envs[nb_prom_envs] = optarg;
5037 nb_prom_envs++;
5038 break;
5039 #endif
5040 #ifdef TARGET_ARM
5041 case QEMU_OPTION_old_param:
5042 old_param = 1;
5043 break;
5044 #endif
5045 case QEMU_OPTION_clock:
5046 configure_alarms(optarg);
5047 break;
5048 case QEMU_OPTION_startdate:
5050 struct tm tm;
5051 time_t rtc_start_date;
5052 if (!strcmp(optarg, "now")) {
5053 rtc_date_offset = -1;
5054 } else {
5055 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5056 &tm.tm_year,
5057 &tm.tm_mon,
5058 &tm.tm_mday,
5059 &tm.tm_hour,
5060 &tm.tm_min,
5061 &tm.tm_sec) == 6) {
5062 /* OK */
5063 } else if (sscanf(optarg, "%d-%d-%d",
5064 &tm.tm_year,
5065 &tm.tm_mon,
5066 &tm.tm_mday) == 3) {
5067 tm.tm_hour = 0;
5068 tm.tm_min = 0;
5069 tm.tm_sec = 0;
5070 } else {
5071 goto date_fail;
5073 tm.tm_year -= 1900;
5074 tm.tm_mon--;
5075 rtc_start_date = mktimegm(&tm);
5076 if (rtc_start_date == -1) {
5077 date_fail:
5078 fprintf(stderr, "Invalid date format. Valid format are:\n"
5079 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5080 exit(1);
5082 rtc_date_offset = time(NULL) - rtc_start_date;
5085 break;
5086 case QEMU_OPTION_tb_size:
5087 tb_size = strtol(optarg, NULL, 0);
5088 if (tb_size < 0)
5089 tb_size = 0;
5090 break;
5091 case QEMU_OPTION_icount:
5092 use_icount = 1;
5093 if (strcmp(optarg, "auto") == 0) {
5094 icount_time_shift = -1;
5095 } else {
5096 icount_time_shift = strtol(optarg, NULL, 0);
5098 break;
5099 case QEMU_OPTION_incoming:
5100 incoming = optarg;
5101 break;
5102 #ifndef _WIN32
5103 case QEMU_OPTION_chroot:
5104 chroot_dir = optarg;
5105 break;
5106 case QEMU_OPTION_runas:
5107 run_as = optarg;
5108 break;
5109 #endif
5110 #ifdef CONFIG_XEN
5111 case QEMU_OPTION_xen_domid:
5112 xen_domid = atoi(optarg);
5113 break;
5114 case QEMU_OPTION_xen_create:
5115 xen_mode = XEN_CREATE;
5116 break;
5117 case QEMU_OPTION_xen_attach:
5118 xen_mode = XEN_ATTACH;
5119 break;
5120 #endif
5125 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5126 if (kvm_allowed && kqemu_allowed) {
5127 fprintf(stderr,
5128 "You can not enable both KVM and kqemu at the same time\n");
5129 exit(1);
5131 #endif
5133 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5134 if (smp_cpus > machine->max_cpus) {
5135 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5136 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5137 machine->max_cpus);
5138 exit(1);
5141 if (nographic) {
5142 if (serial_device_index == 0)
5143 serial_devices[0] = "stdio";
5144 if (parallel_device_index == 0)
5145 parallel_devices[0] = "null";
5146 if (strncmp(monitor_device, "vc", 2) == 0)
5147 monitor_device = "stdio";
5150 #ifndef _WIN32
5151 if (daemonize) {
5152 pid_t pid;
5154 if (pipe(fds) == -1)
5155 exit(1);
5157 pid = fork();
5158 if (pid > 0) {
5159 uint8_t status;
5160 ssize_t len;
5162 close(fds[1]);
5164 again:
5165 len = read(fds[0], &status, 1);
5166 if (len == -1 && (errno == EINTR))
5167 goto again;
5169 if (len != 1)
5170 exit(1);
5171 else if (status == 1) {
5172 fprintf(stderr, "Could not acquire pidfile\n");
5173 exit(1);
5174 } else
5175 exit(0);
5176 } else if (pid < 0)
5177 exit(1);
5179 setsid();
5181 pid = fork();
5182 if (pid > 0)
5183 exit(0);
5184 else if (pid < 0)
5185 exit(1);
5187 umask(027);
5189 signal(SIGTSTP, SIG_IGN);
5190 signal(SIGTTOU, SIG_IGN);
5191 signal(SIGTTIN, SIG_IGN);
5194 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5195 if (daemonize) {
5196 uint8_t status = 1;
5197 write(fds[1], &status, 1);
5198 } else
5199 fprintf(stderr, "Could not acquire pid file\n");
5200 exit(1);
5202 #endif
5204 #ifdef CONFIG_KQEMU
5205 if (smp_cpus > 1)
5206 kqemu_allowed = 0;
5207 #endif
5208 if (qemu_init_main_loop()) {
5209 fprintf(stderr, "qemu_init_main_loop failed\n");
5210 exit(1);
5212 linux_boot = (kernel_filename != NULL);
5213 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5215 if (!linux_boot && *kernel_cmdline != '\0') {
5216 fprintf(stderr, "-append only allowed with -kernel option\n");
5217 exit(1);
5220 if (!linux_boot && initrd_filename != NULL) {
5221 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5222 exit(1);
5225 /* boot to floppy or the default cd if no hard disk defined yet */
5226 if (!boot_devices[0]) {
5227 boot_devices = "cad";
5229 setvbuf(stdout, NULL, _IOLBF, 0);
5231 init_timers();
5232 if (init_timer_alarm() < 0) {
5233 fprintf(stderr, "could not initialize alarm timer\n");
5234 exit(1);
5236 if (use_icount && icount_time_shift < 0) {
5237 use_icount = 2;
5238 /* 125MIPS seems a reasonable initial guess at the guest speed.
5239 It will be corrected fairly quickly anyway. */
5240 icount_time_shift = 3;
5241 init_icount_adjust();
5244 #ifdef _WIN32
5245 socket_init();
5246 #endif
5248 /* init network clients */
5249 if (nb_net_clients == 0) {
5250 /* if no clients, we use a default config */
5251 net_clients[nb_net_clients++] = "nic";
5252 #ifdef CONFIG_SLIRP
5253 net_clients[nb_net_clients++] = "user";
5254 #endif
5257 for(i = 0;i < nb_net_clients; i++) {
5258 if (net_client_parse(net_clients[i]) < 0)
5259 exit(1);
5261 net_client_check();
5263 #ifdef TARGET_I386
5264 /* XXX: this should be moved in the PC machine instantiation code */
5265 if (net_boot != 0) {
5266 int netroms = 0;
5267 for (i = 0; i < nb_nics && i < 4; i++) {
5268 const char *model = nd_table[i].model;
5269 char buf[1024];
5270 if (net_boot & (1 << i)) {
5271 if (model == NULL)
5272 model = "ne2k_pci";
5273 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
5274 if (get_image_size(buf) > 0) {
5275 if (nb_option_roms >= MAX_OPTION_ROMS) {
5276 fprintf(stderr, "Too many option ROMs\n");
5277 exit(1);
5279 option_rom[nb_option_roms] = strdup(buf);
5280 nb_option_roms++;
5281 netroms++;
5285 if (netroms == 0) {
5286 fprintf(stderr, "No valid PXE rom found for network device\n");
5287 exit(1);
5290 #endif
5292 /* init the bluetooth world */
5293 for (i = 0; i < nb_bt_opts; i++)
5294 if (bt_parse(bt_opts[i]))
5295 exit(1);
5297 /* init the memory */
5298 if (ram_size == 0)
5299 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5301 #ifdef CONFIG_KQEMU
5302 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5303 guest ram allocation. It needs to go away. */
5304 if (kqemu_allowed) {
5305 kqemu_phys_ram_size = ram_size + VGA_RAM_SIZE + 4 * 1024 * 1024;
5306 kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
5307 if (!kqemu_phys_ram_base) {
5308 fprintf(stderr, "Could not allocate physical memory\n");
5309 exit(1);
5312 #endif
5314 /* init the dynamic translator */
5315 cpu_exec_init_all(tb_size * 1024 * 1024);
5317 bdrv_init();
5318 dma_helper_init();
5320 /* we always create the cdrom drive, even if no disk is there */
5322 if (nb_drives_opt < MAX_DRIVES)
5323 drive_add(NULL, CDROM_ALIAS);
5325 /* we always create at least one floppy */
5327 if (nb_drives_opt < MAX_DRIVES)
5328 drive_add(NULL, FD_ALIAS, 0);
5330 /* we always create one sd slot, even if no card is in it */
5332 if (nb_drives_opt < MAX_DRIVES)
5333 drive_add(NULL, SD_ALIAS);
5335 /* open the virtual block devices */
5337 for(i = 0; i < nb_drives_opt; i++)
5338 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5339 exit(1);
5341 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5342 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5344 #ifndef _WIN32
5345 /* must be after terminal init, SDL library changes signal handlers */
5346 termsig_setup();
5347 #endif
5349 /* Maintain compatibility with multiple stdio monitors */
5350 if (!strcmp(monitor_device,"stdio")) {
5351 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5352 const char *devname = serial_devices[i];
5353 if (devname && !strcmp(devname,"mon:stdio")) {
5354 monitor_device = NULL;
5355 break;
5356 } else if (devname && !strcmp(devname,"stdio")) {
5357 monitor_device = NULL;
5358 serial_devices[i] = "mon:stdio";
5359 break;
5364 if (nb_numa_nodes > 0) {
5365 int i;
5367 if (nb_numa_nodes > smp_cpus) {
5368 nb_numa_nodes = smp_cpus;
5371 /* If no memory size if given for any node, assume the default case
5372 * and distribute the available memory equally across all nodes
5374 for (i = 0; i < nb_numa_nodes; i++) {
5375 if (node_mem[i] != 0)
5376 break;
5378 if (i == nb_numa_nodes) {
5379 uint64_t usedmem = 0;
5381 /* On Linux, the each node's border has to be 8MB aligned,
5382 * the final node gets the rest.
5384 for (i = 0; i < nb_numa_nodes - 1; i++) {
5385 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5386 usedmem += node_mem[i];
5388 node_mem[i] = ram_size - usedmem;
5391 for (i = 0; i < nb_numa_nodes; i++) {
5392 if (node_cpumask[i] != 0)
5393 break;
5395 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5396 * must cope with this anyway, because there are BIOSes out there in
5397 * real machines which also use this scheme.
5399 if (i == nb_numa_nodes) {
5400 for (i = 0; i < smp_cpus; i++) {
5401 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5406 if (kvm_enabled()) {
5407 int ret;
5409 ret = kvm_init(smp_cpus);
5410 if (ret < 0) {
5411 fprintf(stderr, "failed to initialize KVM\n");
5412 exit(1);
5416 if (monitor_device) {
5417 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5418 if (!monitor_hd) {
5419 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5420 exit(1);
5424 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5425 const char *devname = serial_devices[i];
5426 if (devname && strcmp(devname, "none")) {
5427 char label[32];
5428 snprintf(label, sizeof(label), "serial%d", i);
5429 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5430 if (!serial_hds[i]) {
5431 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5432 devname);
5433 exit(1);
5438 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5439 const char *devname = parallel_devices[i];
5440 if (devname && strcmp(devname, "none")) {
5441 char label[32];
5442 snprintf(label, sizeof(label), "parallel%d", i);
5443 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5444 if (!parallel_hds[i]) {
5445 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5446 devname);
5447 exit(1);
5452 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5453 const char *devname = virtio_consoles[i];
5454 if (devname && strcmp(devname, "none")) {
5455 char label[32];
5456 snprintf(label, sizeof(label), "virtcon%d", i);
5457 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5458 if (!virtcon_hds[i]) {
5459 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5460 devname);
5461 exit(1);
5466 machine->init(ram_size, vga_ram_size, boot_devices,
5467 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5470 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5471 for (i = 0; i < nb_numa_nodes; i++) {
5472 if (node_cpumask[i] & (1 << env->cpu_index)) {
5473 env->numa_node = i;
5478 current_machine = machine;
5480 /* Set KVM's vcpu state to qemu's initial CPUState. */
5481 if (kvm_enabled()) {
5482 int ret;
5484 ret = kvm_sync_vcpus();
5485 if (ret < 0) {
5486 fprintf(stderr, "failed to initialize vcpus\n");
5487 exit(1);
5491 /* init USB devices */
5492 if (usb_enabled) {
5493 for(i = 0; i < usb_devices_index; i++) {
5494 if (usb_device_add(usb_devices[i], 0) < 0) {
5495 fprintf(stderr, "Warning: could not add USB device %s\n",
5496 usb_devices[i]);
5501 if (!display_state)
5502 dumb_display_init();
5503 /* just use the first displaystate for the moment */
5504 ds = display_state;
5505 /* terminal init */
5506 if (nographic) {
5507 if (curses) {
5508 fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
5509 exit(1);
5511 } else {
5512 #if defined(CONFIG_CURSES)
5513 if (curses) {
5514 /* At the moment curses cannot be used with other displays */
5515 curses_display_init(ds, full_screen);
5516 } else
5517 #endif
5519 if (vnc_display != NULL) {
5520 vnc_display_init(ds);
5521 if (vnc_display_open(ds, vnc_display) < 0)
5522 exit(1);
5524 #if defined(CONFIG_SDL)
5525 if (sdl || !vnc_display)
5526 sdl_display_init(ds, full_screen, no_frame);
5527 #elif defined(CONFIG_COCOA)
5528 if (sdl || !vnc_display)
5529 cocoa_display_init(ds, full_screen);
5530 #endif
5533 dpy_resize(ds);
5535 dcl = ds->listeners;
5536 while (dcl != NULL) {
5537 if (dcl->dpy_refresh != NULL) {
5538 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5539 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5541 dcl = dcl->next;
5544 if (nographic || (vnc_display && !sdl)) {
5545 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5546 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5549 text_consoles_set_display(display_state);
5550 qemu_chr_initial_reset();
5552 if (monitor_device && monitor_hd)
5553 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
5555 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5556 const char *devname = serial_devices[i];
5557 if (devname && strcmp(devname, "none")) {
5558 char label[32];
5559 snprintf(label, sizeof(label), "serial%d", i);
5560 if (strstart(devname, "vc", 0))
5561 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5565 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5566 const char *devname = parallel_devices[i];
5567 if (devname && strcmp(devname, "none")) {
5568 char label[32];
5569 snprintf(label, sizeof(label), "parallel%d", i);
5570 if (strstart(devname, "vc", 0))
5571 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5575 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5576 const char *devname = virtio_consoles[i];
5577 if (virtcon_hds[i] && devname) {
5578 char label[32];
5579 snprintf(label, sizeof(label), "virtcon%d", i);
5580 if (strstart(devname, "vc", 0))
5581 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
5585 #ifdef CONFIG_GDBSTUB
5586 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
5587 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
5588 gdbstub_dev);
5589 exit(1);
5591 #endif
5593 if (loadvm)
5594 do_loadvm(cur_mon, loadvm);
5596 if (incoming) {
5597 autostart = 0; /* fixme how to deal with -daemonize */
5598 qemu_start_incoming_migration(incoming);
5601 if (autostart)
5602 vm_start();
5604 #ifndef _WIN32
5605 if (daemonize) {
5606 uint8_t status = 0;
5607 ssize_t len;
5609 again1:
5610 len = write(fds[1], &status, 1);
5611 if (len == -1 && (errno == EINTR))
5612 goto again1;
5614 if (len != 1)
5615 exit(1);
5617 chdir("/");
5618 TFR(fd = open("/dev/null", O_RDWR));
5619 if (fd == -1)
5620 exit(1);
5623 if (run_as) {
5624 pwd = getpwnam(run_as);
5625 if (!pwd) {
5626 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
5627 exit(1);
5631 if (chroot_dir) {
5632 if (chroot(chroot_dir) < 0) {
5633 fprintf(stderr, "chroot failed\n");
5634 exit(1);
5636 chdir("/");
5639 if (run_as) {
5640 if (setgid(pwd->pw_gid) < 0) {
5641 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
5642 exit(1);
5644 if (setuid(pwd->pw_uid) < 0) {
5645 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
5646 exit(1);
5648 if (setuid(0) != -1) {
5649 fprintf(stderr, "Dropping privileges failed\n");
5650 exit(1);
5654 if (daemonize) {
5655 dup2(fd, 0);
5656 dup2(fd, 1);
5657 dup2(fd, 2);
5659 close(fd);
5661 #endif
5663 main_loop();
5664 quit_timers();
5665 net_cleanup();
5667 return 0;