qemu: introduce lock/unlock_iothread (Marcelo Tosatti)
[qemu/mmix.git] / vl.c
blob63aeb23beca4b0bd544b1d12ed15e11b57b210c3
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
35 #ifndef _WIN32
36 #include <pwd.h>
37 #include <sys/times.h>
38 #include <sys/wait.h>
39 #include <termios.h>
40 #include <sys/mman.h>
41 #include <sys/ioctl.h>
42 #include <sys/resource.h>
43 #include <sys/socket.h>
44 #include <netinet/in.h>
45 #include <net/if.h>
46 #if defined(__NetBSD__)
47 #include <net/if_tap.h>
48 #endif
49 #ifdef __linux__
50 #include <linux/if_tun.h>
51 #endif
52 #include <arpa/inet.h>
53 #include <dirent.h>
54 #include <netdb.h>
55 #include <sys/select.h>
56 #ifdef HOST_BSD
57 #include <sys/stat.h>
58 #if defined(__FreeBSD__) || defined(__DragonFly__)
59 #include <libutil.h>
60 #else
61 #include <util.h>
62 #endif
63 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
64 #include <freebsd/stdlib.h>
65 #else
66 #ifdef __linux__
67 #include <pty.h>
68 #include <malloc.h>
69 #include <linux/rtc.h>
71 /* For the benefit of older linux systems which don't supply it,
72 we use a local copy of hpet.h. */
73 /* #include <linux/hpet.h> */
74 #include "hpet.h"
76 #include <linux/ppdev.h>
77 #include <linux/parport.h>
78 #endif
79 #ifdef __sun__
80 #include <sys/stat.h>
81 #include <sys/ethernet.h>
82 #include <sys/sockio.h>
83 #include <netinet/arp.h>
84 #include <netinet/in.h>
85 #include <netinet/in_systm.h>
86 #include <netinet/ip.h>
87 #include <netinet/ip_icmp.h> // must come after ip.h
88 #include <netinet/udp.h>
89 #include <netinet/tcp.h>
90 #include <net/if.h>
91 #include <syslog.h>
92 #include <stropts.h>
93 #endif
94 #endif
95 #endif
97 #if defined(__OpenBSD__)
98 #include <util.h>
99 #endif
101 #if defined(CONFIG_VDE)
102 #include <libvdeplug.h>
103 #endif
105 #ifdef _WIN32
106 #include <windows.h>
107 #include <malloc.h>
108 #include <sys/timeb.h>
109 #include <mmsystem.h>
110 #define getopt_long_only getopt_long
111 #define memalign(align, size) malloc(size)
112 #endif
114 #ifdef CONFIG_SDL
115 #ifdef __APPLE__
116 #include <SDL/SDL.h>
117 int qemu_main(int argc, char **argv, char **envp);
118 int main(int argc, char **argv)
120 qemu_main(argc, argv, NULL);
122 #undef main
123 #define main qemu_main
124 #endif
125 #endif /* CONFIG_SDL */
127 #ifdef CONFIG_COCOA
128 #undef main
129 #define main qemu_main
130 #endif /* CONFIG_COCOA */
132 #include "hw/hw.h"
133 #include "hw/boards.h"
134 #include "hw/usb.h"
135 #include "hw/pcmcia.h"
136 #include "hw/pc.h"
137 #include "hw/audiodev.h"
138 #include "hw/isa.h"
139 #include "hw/baum.h"
140 #include "hw/bt.h"
141 #include "hw/smbios.h"
142 #include "hw/xen.h"
143 #include "bt-host.h"
144 #include "net.h"
145 #include "monitor.h"
146 #include "console.h"
147 #include "sysemu.h"
148 #include "gdbstub.h"
149 #include "qemu-timer.h"
150 #include "qemu-char.h"
151 #include "cache-utils.h"
152 #include "block.h"
153 #include "dma.h"
154 #include "audio/audio.h"
155 #include "migration.h"
156 #include "kvm.h"
157 #include "balloon.h"
159 #include "disas.h"
161 #include "exec-all.h"
163 #include "qemu_socket.h"
165 #if defined(CONFIG_SLIRP)
166 #include "libslirp.h"
167 #endif
169 //#define DEBUG_UNUSED_IOPORT
170 //#define DEBUG_IOPORT
171 //#define DEBUG_NET
172 //#define DEBUG_SLIRP
175 #ifdef DEBUG_IOPORT
176 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
177 #else
178 # define LOG_IOPORT(...) do { } while (0)
179 #endif
181 #define DEFAULT_RAM_SIZE 128
183 /* Max number of USB devices that can be specified on the commandline. */
184 #define MAX_USB_CMDLINE 8
186 /* Max number of bluetooth switches on the commandline. */
187 #define MAX_BT_CMDLINE 10
189 /* XXX: use a two level table to limit memory usage */
190 #define MAX_IOPORTS 65536
192 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
193 const char *bios_name = NULL;
194 static void *ioport_opaque[MAX_IOPORTS];
195 static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
196 static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
197 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
198 to store the VM snapshots */
199 DriveInfo drives_table[MAX_DRIVES+1];
200 int nb_drives;
201 static int vga_ram_size;
202 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
203 static DisplayState *display_state;
204 int nographic;
205 static int curses;
206 static int sdl;
207 const char* keyboard_layout = NULL;
208 int64_t ticks_per_sec;
209 ram_addr_t ram_size;
210 int nb_nics;
211 NICInfo nd_table[MAX_NICS];
212 int vm_running;
213 static int autostart;
214 static int rtc_utc = 1;
215 static int rtc_date_offset = -1; /* -1 means no change */
216 int cirrus_vga_enabled = 1;
217 int std_vga_enabled = 0;
218 int vmsvga_enabled = 0;
219 int xenfb_enabled = 0;
220 #ifdef TARGET_SPARC
221 int graphic_width = 1024;
222 int graphic_height = 768;
223 int graphic_depth = 8;
224 #else
225 int graphic_width = 800;
226 int graphic_height = 600;
227 int graphic_depth = 15;
228 #endif
229 static int full_screen = 0;
230 #ifdef CONFIG_SDL
231 static int no_frame = 0;
232 #endif
233 int no_quit = 0;
234 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
235 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
236 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
237 #ifdef TARGET_I386
238 int win2k_install_hack = 0;
239 int rtc_td_hack = 0;
240 #endif
241 int usb_enabled = 0;
242 int singlestep = 0;
243 int smp_cpus = 1;
244 const char *vnc_display;
245 int acpi_enabled = 1;
246 int no_hpet = 0;
247 int fd_bootchk = 1;
248 int no_reboot = 0;
249 int no_shutdown = 0;
250 int cursor_hide = 1;
251 int graphic_rotate = 0;
252 #ifndef _WIN32
253 int daemonize = 0;
254 #endif
255 const char *option_rom[MAX_OPTION_ROMS];
256 int nb_option_roms;
257 int semihosting_enabled = 0;
258 #ifdef TARGET_ARM
259 int old_param = 0;
260 #endif
261 const char *qemu_name;
262 int alt_grab = 0;
263 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
264 unsigned int nb_prom_envs = 0;
265 const char *prom_envs[MAX_PROM_ENVS];
266 #endif
267 int nb_drives_opt;
268 struct drive_opt drives_opt[MAX_DRIVES];
270 int nb_numa_nodes;
271 uint64_t node_mem[MAX_NODES];
272 uint64_t node_cpumask[MAX_NODES];
274 static CPUState *cur_cpu;
275 static CPUState *next_cpu;
276 static int timer_alarm_pending = 1;
277 /* Conversion factor from emulated instructions to virtual clock ticks. */
278 static int icount_time_shift;
279 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
280 #define MAX_ICOUNT_SHIFT 10
281 /* Compensate for varying guest execution speed. */
282 static int64_t qemu_icount_bias;
283 static QEMUTimer *icount_rt_timer;
284 static QEMUTimer *icount_vm_timer;
285 static QEMUTimer *nographic_timer;
287 uint8_t qemu_uuid[16];
289 /***********************************************************/
290 /* x86 ISA bus support */
292 target_phys_addr_t isa_mem_base = 0;
293 PicState2 *isa_pic;
295 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
296 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
298 static uint32_t ioport_read(int index, uint32_t address)
300 static IOPortReadFunc *default_func[3] = {
301 default_ioport_readb,
302 default_ioport_readw,
303 default_ioport_readl
305 IOPortReadFunc *func = ioport_read_table[index][address];
306 if (!func)
307 func = default_func[index];
308 return func(ioport_opaque[address], address);
311 static void ioport_write(int index, uint32_t address, uint32_t data)
313 static IOPortWriteFunc *default_func[3] = {
314 default_ioport_writeb,
315 default_ioport_writew,
316 default_ioport_writel
318 IOPortWriteFunc *func = ioport_write_table[index][address];
319 if (!func)
320 func = default_func[index];
321 func(ioport_opaque[address], address, data);
324 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
326 #ifdef DEBUG_UNUSED_IOPORT
327 fprintf(stderr, "unused inb: port=0x%04x\n", address);
328 #endif
329 return 0xff;
332 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
334 #ifdef DEBUG_UNUSED_IOPORT
335 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
336 #endif
339 /* default is to make two byte accesses */
340 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
342 uint32_t data;
343 data = ioport_read(0, address);
344 address = (address + 1) & (MAX_IOPORTS - 1);
345 data |= ioport_read(0, address) << 8;
346 return data;
349 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
351 ioport_write(0, address, data & 0xff);
352 address = (address + 1) & (MAX_IOPORTS - 1);
353 ioport_write(0, address, (data >> 8) & 0xff);
356 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
358 #ifdef DEBUG_UNUSED_IOPORT
359 fprintf(stderr, "unused inl: port=0x%04x\n", address);
360 #endif
361 return 0xffffffff;
364 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
366 #ifdef DEBUG_UNUSED_IOPORT
367 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
368 #endif
371 /* size is the word size in byte */
372 int register_ioport_read(int start, int length, int size,
373 IOPortReadFunc *func, void *opaque)
375 int i, bsize;
377 if (size == 1) {
378 bsize = 0;
379 } else if (size == 2) {
380 bsize = 1;
381 } else if (size == 4) {
382 bsize = 2;
383 } else {
384 hw_error("register_ioport_read: invalid size");
385 return -1;
387 for(i = start; i < start + length; i += size) {
388 ioport_read_table[bsize][i] = func;
389 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
390 hw_error("register_ioport_read: invalid opaque");
391 ioport_opaque[i] = opaque;
393 return 0;
396 /* size is the word size in byte */
397 int register_ioport_write(int start, int length, int size,
398 IOPortWriteFunc *func, void *opaque)
400 int i, bsize;
402 if (size == 1) {
403 bsize = 0;
404 } else if (size == 2) {
405 bsize = 1;
406 } else if (size == 4) {
407 bsize = 2;
408 } else {
409 hw_error("register_ioport_write: invalid size");
410 return -1;
412 for(i = start; i < start + length; i += size) {
413 ioport_write_table[bsize][i] = func;
414 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
415 hw_error("register_ioport_write: invalid opaque");
416 ioport_opaque[i] = opaque;
418 return 0;
421 void isa_unassign_ioport(int start, int length)
423 int i;
425 for(i = start; i < start + length; i++) {
426 ioport_read_table[0][i] = default_ioport_readb;
427 ioport_read_table[1][i] = default_ioport_readw;
428 ioport_read_table[2][i] = default_ioport_readl;
430 ioport_write_table[0][i] = default_ioport_writeb;
431 ioport_write_table[1][i] = default_ioport_writew;
432 ioport_write_table[2][i] = default_ioport_writel;
434 ioport_opaque[i] = NULL;
438 /***********************************************************/
440 void cpu_outb(CPUState *env, int addr, int val)
442 LOG_IOPORT("outb: %04x %02x\n", addr, val);
443 ioport_write(0, addr, val);
444 #ifdef CONFIG_KQEMU
445 if (env)
446 env->last_io_time = cpu_get_time_fast();
447 #endif
450 void cpu_outw(CPUState *env, int addr, int val)
452 LOG_IOPORT("outw: %04x %04x\n", addr, val);
453 ioport_write(1, addr, val);
454 #ifdef CONFIG_KQEMU
455 if (env)
456 env->last_io_time = cpu_get_time_fast();
457 #endif
460 void cpu_outl(CPUState *env, int addr, int val)
462 LOG_IOPORT("outl: %04x %08x\n", addr, val);
463 ioport_write(2, addr, val);
464 #ifdef CONFIG_KQEMU
465 if (env)
466 env->last_io_time = cpu_get_time_fast();
467 #endif
470 int cpu_inb(CPUState *env, int addr)
472 int val;
473 val = ioport_read(0, addr);
474 LOG_IOPORT("inb : %04x %02x\n", addr, val);
475 #ifdef CONFIG_KQEMU
476 if (env)
477 env->last_io_time = cpu_get_time_fast();
478 #endif
479 return val;
482 int cpu_inw(CPUState *env, int addr)
484 int val;
485 val = ioport_read(1, addr);
486 LOG_IOPORT("inw : %04x %04x\n", addr, val);
487 #ifdef CONFIG_KQEMU
488 if (env)
489 env->last_io_time = cpu_get_time_fast();
490 #endif
491 return val;
494 int cpu_inl(CPUState *env, int addr)
496 int val;
497 val = ioport_read(2, addr);
498 LOG_IOPORT("inl : %04x %08x\n", addr, val);
499 #ifdef CONFIG_KQEMU
500 if (env)
501 env->last_io_time = cpu_get_time_fast();
502 #endif
503 return val;
506 /***********************************************************/
507 void hw_error(const char *fmt, ...)
509 va_list ap;
510 CPUState *env;
512 va_start(ap, fmt);
513 fprintf(stderr, "qemu: hardware error: ");
514 vfprintf(stderr, fmt, ap);
515 fprintf(stderr, "\n");
516 for(env = first_cpu; env != NULL; env = env->next_cpu) {
517 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
518 #ifdef TARGET_I386
519 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
520 #else
521 cpu_dump_state(env, stderr, fprintf, 0);
522 #endif
524 va_end(ap);
525 abort();
528 /***************/
529 /* ballooning */
531 static QEMUBalloonEvent *qemu_balloon_event;
532 void *qemu_balloon_event_opaque;
534 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
536 qemu_balloon_event = func;
537 qemu_balloon_event_opaque = opaque;
540 void qemu_balloon(ram_addr_t target)
542 if (qemu_balloon_event)
543 qemu_balloon_event(qemu_balloon_event_opaque, target);
546 ram_addr_t qemu_balloon_status(void)
548 if (qemu_balloon_event)
549 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
550 return 0;
553 /***********************************************************/
554 /* keyboard/mouse */
556 static QEMUPutKBDEvent *qemu_put_kbd_event;
557 static void *qemu_put_kbd_event_opaque;
558 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
559 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
561 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
563 qemu_put_kbd_event_opaque = opaque;
564 qemu_put_kbd_event = func;
567 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
568 void *opaque, int absolute,
569 const char *name)
571 QEMUPutMouseEntry *s, *cursor;
573 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
575 s->qemu_put_mouse_event = func;
576 s->qemu_put_mouse_event_opaque = opaque;
577 s->qemu_put_mouse_event_absolute = absolute;
578 s->qemu_put_mouse_event_name = qemu_strdup(name);
579 s->next = NULL;
581 if (!qemu_put_mouse_event_head) {
582 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
583 return s;
586 cursor = qemu_put_mouse_event_head;
587 while (cursor->next != NULL)
588 cursor = cursor->next;
590 cursor->next = s;
591 qemu_put_mouse_event_current = s;
593 return s;
596 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
598 QEMUPutMouseEntry *prev = NULL, *cursor;
600 if (!qemu_put_mouse_event_head || entry == NULL)
601 return;
603 cursor = qemu_put_mouse_event_head;
604 while (cursor != NULL && cursor != entry) {
605 prev = cursor;
606 cursor = cursor->next;
609 if (cursor == NULL) // does not exist or list empty
610 return;
611 else if (prev == NULL) { // entry is head
612 qemu_put_mouse_event_head = cursor->next;
613 if (qemu_put_mouse_event_current == entry)
614 qemu_put_mouse_event_current = cursor->next;
615 qemu_free(entry->qemu_put_mouse_event_name);
616 qemu_free(entry);
617 return;
620 prev->next = entry->next;
622 if (qemu_put_mouse_event_current == entry)
623 qemu_put_mouse_event_current = prev;
625 qemu_free(entry->qemu_put_mouse_event_name);
626 qemu_free(entry);
629 void kbd_put_keycode(int keycode)
631 if (qemu_put_kbd_event) {
632 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
636 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
638 QEMUPutMouseEvent *mouse_event;
639 void *mouse_event_opaque;
640 int width;
642 if (!qemu_put_mouse_event_current) {
643 return;
646 mouse_event =
647 qemu_put_mouse_event_current->qemu_put_mouse_event;
648 mouse_event_opaque =
649 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
651 if (mouse_event) {
652 if (graphic_rotate) {
653 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
654 width = 0x7fff;
655 else
656 width = graphic_width - 1;
657 mouse_event(mouse_event_opaque,
658 width - dy, dx, dz, buttons_state);
659 } else
660 mouse_event(mouse_event_opaque,
661 dx, dy, dz, buttons_state);
665 int kbd_mouse_is_absolute(void)
667 if (!qemu_put_mouse_event_current)
668 return 0;
670 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
673 void do_info_mice(Monitor *mon)
675 QEMUPutMouseEntry *cursor;
676 int index = 0;
678 if (!qemu_put_mouse_event_head) {
679 monitor_printf(mon, "No mouse devices connected\n");
680 return;
683 monitor_printf(mon, "Mouse devices available:\n");
684 cursor = qemu_put_mouse_event_head;
685 while (cursor != NULL) {
686 monitor_printf(mon, "%c Mouse #%d: %s\n",
687 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
688 index, cursor->qemu_put_mouse_event_name);
689 index++;
690 cursor = cursor->next;
694 void do_mouse_set(Monitor *mon, int index)
696 QEMUPutMouseEntry *cursor;
697 int i = 0;
699 if (!qemu_put_mouse_event_head) {
700 monitor_printf(mon, "No mouse devices connected\n");
701 return;
704 cursor = qemu_put_mouse_event_head;
705 while (cursor != NULL && index != i) {
706 i++;
707 cursor = cursor->next;
710 if (cursor != NULL)
711 qemu_put_mouse_event_current = cursor;
712 else
713 monitor_printf(mon, "Mouse at given index not found\n");
716 /* compute with 96 bit intermediate result: (a*b)/c */
717 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
719 union {
720 uint64_t ll;
721 struct {
722 #ifdef WORDS_BIGENDIAN
723 uint32_t high, low;
724 #else
725 uint32_t low, high;
726 #endif
727 } l;
728 } u, res;
729 uint64_t rl, rh;
731 u.ll = a;
732 rl = (uint64_t)u.l.low * (uint64_t)b;
733 rh = (uint64_t)u.l.high * (uint64_t)b;
734 rh += (rl >> 32);
735 res.l.high = rh / c;
736 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
737 return res.ll;
740 /***********************************************************/
741 /* real time host monotonic timer */
743 #define QEMU_TIMER_BASE 1000000000LL
745 #ifdef WIN32
747 static int64_t clock_freq;
749 static void init_get_clock(void)
751 LARGE_INTEGER freq;
752 int ret;
753 ret = QueryPerformanceFrequency(&freq);
754 if (ret == 0) {
755 fprintf(stderr, "Could not calibrate ticks\n");
756 exit(1);
758 clock_freq = freq.QuadPart;
761 static int64_t get_clock(void)
763 LARGE_INTEGER ti;
764 QueryPerformanceCounter(&ti);
765 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
768 #else
770 static int use_rt_clock;
772 static void init_get_clock(void)
774 use_rt_clock = 0;
775 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
776 || defined(__DragonFly__)
778 struct timespec ts;
779 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
780 use_rt_clock = 1;
783 #endif
786 static int64_t get_clock(void)
788 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
789 || defined(__DragonFly__)
790 if (use_rt_clock) {
791 struct timespec ts;
792 clock_gettime(CLOCK_MONOTONIC, &ts);
793 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
794 } else
795 #endif
797 /* XXX: using gettimeofday leads to problems if the date
798 changes, so it should be avoided. */
799 struct timeval tv;
800 gettimeofday(&tv, NULL);
801 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
804 #endif
806 /* Return the virtual CPU time, based on the instruction counter. */
807 static int64_t cpu_get_icount(void)
809 int64_t icount;
810 CPUState *env = cpu_single_env;;
811 icount = qemu_icount;
812 if (env) {
813 if (!can_do_io(env))
814 fprintf(stderr, "Bad clock read\n");
815 icount -= (env->icount_decr.u16.low + env->icount_extra);
817 return qemu_icount_bias + (icount << icount_time_shift);
820 /***********************************************************/
821 /* guest cycle counter */
823 static int64_t cpu_ticks_prev;
824 static int64_t cpu_ticks_offset;
825 static int64_t cpu_clock_offset;
826 static int cpu_ticks_enabled;
828 /* return the host CPU cycle counter and handle stop/restart */
829 int64_t cpu_get_ticks(void)
831 if (use_icount) {
832 return cpu_get_icount();
834 if (!cpu_ticks_enabled) {
835 return cpu_ticks_offset;
836 } else {
837 int64_t ticks;
838 ticks = cpu_get_real_ticks();
839 if (cpu_ticks_prev > ticks) {
840 /* Note: non increasing ticks may happen if the host uses
841 software suspend */
842 cpu_ticks_offset += cpu_ticks_prev - ticks;
844 cpu_ticks_prev = ticks;
845 return ticks + cpu_ticks_offset;
849 /* return the host CPU monotonic timer and handle stop/restart */
850 static int64_t cpu_get_clock(void)
852 int64_t ti;
853 if (!cpu_ticks_enabled) {
854 return cpu_clock_offset;
855 } else {
856 ti = get_clock();
857 return ti + cpu_clock_offset;
861 /* enable cpu_get_ticks() */
862 void cpu_enable_ticks(void)
864 if (!cpu_ticks_enabled) {
865 cpu_ticks_offset -= cpu_get_real_ticks();
866 cpu_clock_offset -= get_clock();
867 cpu_ticks_enabled = 1;
871 /* disable cpu_get_ticks() : the clock is stopped. You must not call
872 cpu_get_ticks() after that. */
873 void cpu_disable_ticks(void)
875 if (cpu_ticks_enabled) {
876 cpu_ticks_offset = cpu_get_ticks();
877 cpu_clock_offset = cpu_get_clock();
878 cpu_ticks_enabled = 0;
882 /***********************************************************/
883 /* timers */
885 #define QEMU_TIMER_REALTIME 0
886 #define QEMU_TIMER_VIRTUAL 1
888 struct QEMUClock {
889 int type;
890 /* XXX: add frequency */
893 struct QEMUTimer {
894 QEMUClock *clock;
895 int64_t expire_time;
896 QEMUTimerCB *cb;
897 void *opaque;
898 struct QEMUTimer *next;
901 struct qemu_alarm_timer {
902 char const *name;
903 unsigned int flags;
905 int (*start)(struct qemu_alarm_timer *t);
906 void (*stop)(struct qemu_alarm_timer *t);
907 void (*rearm)(struct qemu_alarm_timer *t);
908 void *priv;
911 #define ALARM_FLAG_DYNTICKS 0x1
912 #define ALARM_FLAG_EXPIRED 0x2
914 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
916 return t->flags & ALARM_FLAG_DYNTICKS;
919 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
921 if (!alarm_has_dynticks(t))
922 return;
924 t->rearm(t);
927 /* TODO: MIN_TIMER_REARM_US should be optimized */
928 #define MIN_TIMER_REARM_US 250
930 static struct qemu_alarm_timer *alarm_timer;
932 #ifdef _WIN32
934 struct qemu_alarm_win32 {
935 MMRESULT timerId;
936 unsigned int period;
937 } alarm_win32_data = {0, NULL, -1};
939 static int win32_start_timer(struct qemu_alarm_timer *t);
940 static void win32_stop_timer(struct qemu_alarm_timer *t);
941 static void win32_rearm_timer(struct qemu_alarm_timer *t);
943 #else
945 static int unix_start_timer(struct qemu_alarm_timer *t);
946 static void unix_stop_timer(struct qemu_alarm_timer *t);
948 #ifdef __linux__
950 static int dynticks_start_timer(struct qemu_alarm_timer *t);
951 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
952 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
954 static int hpet_start_timer(struct qemu_alarm_timer *t);
955 static void hpet_stop_timer(struct qemu_alarm_timer *t);
957 static int rtc_start_timer(struct qemu_alarm_timer *t);
958 static void rtc_stop_timer(struct qemu_alarm_timer *t);
960 #endif /* __linux__ */
962 #endif /* _WIN32 */
964 /* Correlation between real and virtual time is always going to be
965 fairly approximate, so ignore small variation.
966 When the guest is idle real and virtual time will be aligned in
967 the IO wait loop. */
968 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
970 static void icount_adjust(void)
972 int64_t cur_time;
973 int64_t cur_icount;
974 int64_t delta;
975 static int64_t last_delta;
976 /* If the VM is not running, then do nothing. */
977 if (!vm_running)
978 return;
980 cur_time = cpu_get_clock();
981 cur_icount = qemu_get_clock(vm_clock);
982 delta = cur_icount - cur_time;
983 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
984 if (delta > 0
985 && last_delta + ICOUNT_WOBBLE < delta * 2
986 && icount_time_shift > 0) {
987 /* The guest is getting too far ahead. Slow time down. */
988 icount_time_shift--;
990 if (delta < 0
991 && last_delta - ICOUNT_WOBBLE > delta * 2
992 && icount_time_shift < MAX_ICOUNT_SHIFT) {
993 /* The guest is getting too far behind. Speed time up. */
994 icount_time_shift++;
996 last_delta = delta;
997 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
1000 static void icount_adjust_rt(void * opaque)
1002 qemu_mod_timer(icount_rt_timer,
1003 qemu_get_clock(rt_clock) + 1000);
1004 icount_adjust();
1007 static void icount_adjust_vm(void * opaque)
1009 qemu_mod_timer(icount_vm_timer,
1010 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1011 icount_adjust();
1014 static void init_icount_adjust(void)
1016 /* Have both realtime and virtual time triggers for speed adjustment.
1017 The realtime trigger catches emulated time passing too slowly,
1018 the virtual time trigger catches emulated time passing too fast.
1019 Realtime triggers occur even when idle, so use them less frequently
1020 than VM triggers. */
1021 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1022 qemu_mod_timer(icount_rt_timer,
1023 qemu_get_clock(rt_clock) + 1000);
1024 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1025 qemu_mod_timer(icount_vm_timer,
1026 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1029 static struct qemu_alarm_timer alarm_timers[] = {
1030 #ifndef _WIN32
1031 #ifdef __linux__
1032 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1033 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1034 /* HPET - if available - is preferred */
1035 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1036 /* ...otherwise try RTC */
1037 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1038 #endif
1039 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1040 #else
1041 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1042 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1043 {"win32", 0, win32_start_timer,
1044 win32_stop_timer, NULL, &alarm_win32_data},
1045 #endif
1046 {NULL, }
1049 static void show_available_alarms(void)
1051 int i;
1053 printf("Available alarm timers, in order of precedence:\n");
1054 for (i = 0; alarm_timers[i].name; i++)
1055 printf("%s\n", alarm_timers[i].name);
1058 static void configure_alarms(char const *opt)
1060 int i;
1061 int cur = 0;
1062 int count = ARRAY_SIZE(alarm_timers) - 1;
1063 char *arg;
1064 char *name;
1065 struct qemu_alarm_timer tmp;
1067 if (!strcmp(opt, "?")) {
1068 show_available_alarms();
1069 exit(0);
1072 arg = strdup(opt);
1074 /* Reorder the array */
1075 name = strtok(arg, ",");
1076 while (name) {
1077 for (i = 0; i < count && alarm_timers[i].name; i++) {
1078 if (!strcmp(alarm_timers[i].name, name))
1079 break;
1082 if (i == count) {
1083 fprintf(stderr, "Unknown clock %s\n", name);
1084 goto next;
1087 if (i < cur)
1088 /* Ignore */
1089 goto next;
1091 /* Swap */
1092 tmp = alarm_timers[i];
1093 alarm_timers[i] = alarm_timers[cur];
1094 alarm_timers[cur] = tmp;
1096 cur++;
1097 next:
1098 name = strtok(NULL, ",");
1101 free(arg);
1103 if (cur) {
1104 /* Disable remaining timers */
1105 for (i = cur; i < count; i++)
1106 alarm_timers[i].name = NULL;
1107 } else {
1108 show_available_alarms();
1109 exit(1);
1113 QEMUClock *rt_clock;
1114 QEMUClock *vm_clock;
1116 static QEMUTimer *active_timers[2];
1118 static QEMUClock *qemu_new_clock(int type)
1120 QEMUClock *clock;
1121 clock = qemu_mallocz(sizeof(QEMUClock));
1122 clock->type = type;
1123 return clock;
1126 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1128 QEMUTimer *ts;
1130 ts = qemu_mallocz(sizeof(QEMUTimer));
1131 ts->clock = clock;
1132 ts->cb = cb;
1133 ts->opaque = opaque;
1134 return ts;
1137 void qemu_free_timer(QEMUTimer *ts)
1139 qemu_free(ts);
1142 /* stop a timer, but do not dealloc it */
1143 void qemu_del_timer(QEMUTimer *ts)
1145 QEMUTimer **pt, *t;
1147 /* NOTE: this code must be signal safe because
1148 qemu_timer_expired() can be called from a signal. */
1149 pt = &active_timers[ts->clock->type];
1150 for(;;) {
1151 t = *pt;
1152 if (!t)
1153 break;
1154 if (t == ts) {
1155 *pt = t->next;
1156 break;
1158 pt = &t->next;
1162 /* modify the current timer so that it will be fired when current_time
1163 >= expire_time. The corresponding callback will be called. */
1164 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1166 QEMUTimer **pt, *t;
1168 qemu_del_timer(ts);
1170 /* add the timer in the sorted list */
1171 /* NOTE: this code must be signal safe because
1172 qemu_timer_expired() can be called from a signal. */
1173 pt = &active_timers[ts->clock->type];
1174 for(;;) {
1175 t = *pt;
1176 if (!t)
1177 break;
1178 if (t->expire_time > expire_time)
1179 break;
1180 pt = &t->next;
1182 ts->expire_time = expire_time;
1183 ts->next = *pt;
1184 *pt = ts;
1186 /* Rearm if necessary */
1187 if (pt == &active_timers[ts->clock->type]) {
1188 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1189 qemu_rearm_alarm_timer(alarm_timer);
1191 /* Interrupt execution to force deadline recalculation. */
1192 if (use_icount)
1193 qemu_notify_event();
1197 int qemu_timer_pending(QEMUTimer *ts)
1199 QEMUTimer *t;
1200 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1201 if (t == ts)
1202 return 1;
1204 return 0;
1207 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1209 if (!timer_head)
1210 return 0;
1211 return (timer_head->expire_time <= current_time);
1214 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1216 QEMUTimer *ts;
1218 for(;;) {
1219 ts = *ptimer_head;
1220 if (!ts || ts->expire_time > current_time)
1221 break;
1222 /* remove timer from the list before calling the callback */
1223 *ptimer_head = ts->next;
1224 ts->next = NULL;
1226 /* run the callback (the timer list can be modified) */
1227 ts->cb(ts->opaque);
1231 int64_t qemu_get_clock(QEMUClock *clock)
1233 switch(clock->type) {
1234 case QEMU_TIMER_REALTIME:
1235 return get_clock() / 1000000;
1236 default:
1237 case QEMU_TIMER_VIRTUAL:
1238 if (use_icount) {
1239 return cpu_get_icount();
1240 } else {
1241 return cpu_get_clock();
1246 static void init_timers(void)
1248 init_get_clock();
1249 ticks_per_sec = QEMU_TIMER_BASE;
1250 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1251 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1254 /* save a timer */
1255 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1257 uint64_t expire_time;
1259 if (qemu_timer_pending(ts)) {
1260 expire_time = ts->expire_time;
1261 } else {
1262 expire_time = -1;
1264 qemu_put_be64(f, expire_time);
1267 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1269 uint64_t expire_time;
1271 expire_time = qemu_get_be64(f);
1272 if (expire_time != -1) {
1273 qemu_mod_timer(ts, expire_time);
1274 } else {
1275 qemu_del_timer(ts);
1279 static void timer_save(QEMUFile *f, void *opaque)
1281 if (cpu_ticks_enabled) {
1282 hw_error("cannot save state if virtual timers are running");
1284 qemu_put_be64(f, cpu_ticks_offset);
1285 qemu_put_be64(f, ticks_per_sec);
1286 qemu_put_be64(f, cpu_clock_offset);
1289 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1291 if (version_id != 1 && version_id != 2)
1292 return -EINVAL;
1293 if (cpu_ticks_enabled) {
1294 return -EINVAL;
1296 cpu_ticks_offset=qemu_get_be64(f);
1297 ticks_per_sec=qemu_get_be64(f);
1298 if (version_id == 2) {
1299 cpu_clock_offset=qemu_get_be64(f);
1301 return 0;
1304 static void qemu_event_increment(void);
1306 #ifdef _WIN32
1307 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1308 DWORD_PTR dwUser, DWORD_PTR dw1,
1309 DWORD_PTR dw2)
1310 #else
1311 static void host_alarm_handler(int host_signum)
1312 #endif
1314 #if 0
1315 #define DISP_FREQ 1000
1317 static int64_t delta_min = INT64_MAX;
1318 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1319 static int count;
1320 ti = qemu_get_clock(vm_clock);
1321 if (last_clock != 0) {
1322 delta = ti - last_clock;
1323 if (delta < delta_min)
1324 delta_min = delta;
1325 if (delta > delta_max)
1326 delta_max = delta;
1327 delta_cum += delta;
1328 if (++count == DISP_FREQ) {
1329 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1330 muldiv64(delta_min, 1000000, ticks_per_sec),
1331 muldiv64(delta_max, 1000000, ticks_per_sec),
1332 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1333 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1334 count = 0;
1335 delta_min = INT64_MAX;
1336 delta_max = 0;
1337 delta_cum = 0;
1340 last_clock = ti;
1342 #endif
1343 if (alarm_has_dynticks(alarm_timer) ||
1344 (!use_icount &&
1345 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1346 qemu_get_clock(vm_clock))) ||
1347 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1348 qemu_get_clock(rt_clock))) {
1349 CPUState *env = next_cpu;
1351 qemu_event_increment();
1352 alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1354 if (env) {
1355 /* stop the currently executing cpu because a timer occured */
1356 cpu_exit(env);
1357 #ifdef CONFIG_KQEMU
1358 if (env->kqemu_enabled) {
1359 kqemu_cpu_interrupt(env);
1361 #endif
1363 timer_alarm_pending = 1;
1364 qemu_notify_event();
1368 static int64_t qemu_next_deadline(void)
1370 int64_t delta;
1372 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1373 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1374 qemu_get_clock(vm_clock);
1375 } else {
1376 /* To avoid problems with overflow limit this to 2^32. */
1377 delta = INT32_MAX;
1380 if (delta < 0)
1381 delta = 0;
1383 return delta;
1386 #if defined(__linux__) || defined(_WIN32)
1387 static uint64_t qemu_next_deadline_dyntick(void)
1389 int64_t delta;
1390 int64_t rtdelta;
1392 if (use_icount)
1393 delta = INT32_MAX;
1394 else
1395 delta = (qemu_next_deadline() + 999) / 1000;
1397 if (active_timers[QEMU_TIMER_REALTIME]) {
1398 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1399 qemu_get_clock(rt_clock))*1000;
1400 if (rtdelta < delta)
1401 delta = rtdelta;
1404 if (delta < MIN_TIMER_REARM_US)
1405 delta = MIN_TIMER_REARM_US;
1407 return delta;
1409 #endif
1411 #ifndef _WIN32
1413 /* Sets a specific flag */
1414 static int fcntl_setfl(int fd, int flag)
1416 int flags;
1418 flags = fcntl(fd, F_GETFL);
1419 if (flags == -1)
1420 return -errno;
1422 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1423 return -errno;
1425 return 0;
1428 #if defined(__linux__)
1430 #define RTC_FREQ 1024
1432 static void enable_sigio_timer(int fd)
1434 struct sigaction act;
1436 /* timer signal */
1437 sigfillset(&act.sa_mask);
1438 act.sa_flags = 0;
1439 act.sa_handler = host_alarm_handler;
1441 sigaction(SIGIO, &act, NULL);
1442 fcntl_setfl(fd, O_ASYNC);
1443 fcntl(fd, F_SETOWN, getpid());
1446 static int hpet_start_timer(struct qemu_alarm_timer *t)
1448 struct hpet_info info;
1449 int r, fd;
1451 fd = open("/dev/hpet", O_RDONLY);
1452 if (fd < 0)
1453 return -1;
1455 /* Set frequency */
1456 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1457 if (r < 0) {
1458 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1459 "error, but for better emulation accuracy type:\n"
1460 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1461 goto fail;
1464 /* Check capabilities */
1465 r = ioctl(fd, HPET_INFO, &info);
1466 if (r < 0)
1467 goto fail;
1469 /* Enable periodic mode */
1470 r = ioctl(fd, HPET_EPI, 0);
1471 if (info.hi_flags && (r < 0))
1472 goto fail;
1474 /* Enable interrupt */
1475 r = ioctl(fd, HPET_IE_ON, 0);
1476 if (r < 0)
1477 goto fail;
1479 enable_sigio_timer(fd);
1480 t->priv = (void *)(long)fd;
1482 return 0;
1483 fail:
1484 close(fd);
1485 return -1;
1488 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1490 int fd = (long)t->priv;
1492 close(fd);
1495 static int rtc_start_timer(struct qemu_alarm_timer *t)
1497 int rtc_fd;
1498 unsigned long current_rtc_freq = 0;
1500 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1501 if (rtc_fd < 0)
1502 return -1;
1503 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1504 if (current_rtc_freq != RTC_FREQ &&
1505 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1506 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1507 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1508 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1509 goto fail;
1511 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1512 fail:
1513 close(rtc_fd);
1514 return -1;
1517 enable_sigio_timer(rtc_fd);
1519 t->priv = (void *)(long)rtc_fd;
1521 return 0;
1524 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1526 int rtc_fd = (long)t->priv;
1528 close(rtc_fd);
1531 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1533 struct sigevent ev;
1534 timer_t host_timer;
1535 struct sigaction act;
1537 sigfillset(&act.sa_mask);
1538 act.sa_flags = 0;
1539 act.sa_handler = host_alarm_handler;
1541 sigaction(SIGALRM, &act, NULL);
1543 ev.sigev_value.sival_int = 0;
1544 ev.sigev_notify = SIGEV_SIGNAL;
1545 ev.sigev_signo = SIGALRM;
1547 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1548 perror("timer_create");
1550 /* disable dynticks */
1551 fprintf(stderr, "Dynamic Ticks disabled\n");
1553 return -1;
1556 t->priv = (void *)(long)host_timer;
1558 return 0;
1561 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1563 timer_t host_timer = (timer_t)(long)t->priv;
1565 timer_delete(host_timer);
1568 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1570 timer_t host_timer = (timer_t)(long)t->priv;
1571 struct itimerspec timeout;
1572 int64_t nearest_delta_us = INT64_MAX;
1573 int64_t current_us;
1575 if (!active_timers[QEMU_TIMER_REALTIME] &&
1576 !active_timers[QEMU_TIMER_VIRTUAL])
1577 return;
1579 nearest_delta_us = qemu_next_deadline_dyntick();
1581 /* check whether a timer is already running */
1582 if (timer_gettime(host_timer, &timeout)) {
1583 perror("gettime");
1584 fprintf(stderr, "Internal timer error: aborting\n");
1585 exit(1);
1587 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1588 if (current_us && current_us <= nearest_delta_us)
1589 return;
1591 timeout.it_interval.tv_sec = 0;
1592 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1593 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1594 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1595 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1596 perror("settime");
1597 fprintf(stderr, "Internal timer error: aborting\n");
1598 exit(1);
1602 #endif /* defined(__linux__) */
1604 static int unix_start_timer(struct qemu_alarm_timer *t)
1606 struct sigaction act;
1607 struct itimerval itv;
1608 int err;
1610 /* timer signal */
1611 sigfillset(&act.sa_mask);
1612 act.sa_flags = 0;
1613 act.sa_handler = host_alarm_handler;
1615 sigaction(SIGALRM, &act, NULL);
1617 itv.it_interval.tv_sec = 0;
1618 /* for i386 kernel 2.6 to get 1 ms */
1619 itv.it_interval.tv_usec = 999;
1620 itv.it_value.tv_sec = 0;
1621 itv.it_value.tv_usec = 10 * 1000;
1623 err = setitimer(ITIMER_REAL, &itv, NULL);
1624 if (err)
1625 return -1;
1627 return 0;
1630 static void unix_stop_timer(struct qemu_alarm_timer *t)
1632 struct itimerval itv;
1634 memset(&itv, 0, sizeof(itv));
1635 setitimer(ITIMER_REAL, &itv, NULL);
1638 #endif /* !defined(_WIN32) */
1641 #ifdef _WIN32
1643 static int win32_start_timer(struct qemu_alarm_timer *t)
1645 TIMECAPS tc;
1646 struct qemu_alarm_win32 *data = t->priv;
1647 UINT flags;
1649 memset(&tc, 0, sizeof(tc));
1650 timeGetDevCaps(&tc, sizeof(tc));
1652 if (data->period < tc.wPeriodMin)
1653 data->period = tc.wPeriodMin;
1655 timeBeginPeriod(data->period);
1657 flags = TIME_CALLBACK_FUNCTION;
1658 if (alarm_has_dynticks(t))
1659 flags |= TIME_ONESHOT;
1660 else
1661 flags |= TIME_PERIODIC;
1663 data->timerId = timeSetEvent(1, // interval (ms)
1664 data->period, // resolution
1665 host_alarm_handler, // function
1666 (DWORD)t, // parameter
1667 flags);
1669 if (!data->timerId) {
1670 perror("Failed to initialize win32 alarm timer");
1671 timeEndPeriod(data->period);
1672 return -1;
1675 return 0;
1678 static void win32_stop_timer(struct qemu_alarm_timer *t)
1680 struct qemu_alarm_win32 *data = t->priv;
1682 timeKillEvent(data->timerId);
1683 timeEndPeriod(data->period);
1686 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1688 struct qemu_alarm_win32 *data = t->priv;
1689 uint64_t nearest_delta_us;
1691 if (!active_timers[QEMU_TIMER_REALTIME] &&
1692 !active_timers[QEMU_TIMER_VIRTUAL])
1693 return;
1695 nearest_delta_us = qemu_next_deadline_dyntick();
1696 nearest_delta_us /= 1000;
1698 timeKillEvent(data->timerId);
1700 data->timerId = timeSetEvent(1,
1701 data->period,
1702 host_alarm_handler,
1703 (DWORD)t,
1704 TIME_ONESHOT | TIME_PERIODIC);
1706 if (!data->timerId) {
1707 perror("Failed to re-arm win32 alarm timer");
1709 timeEndPeriod(data->period);
1710 exit(1);
1714 #endif /* _WIN32 */
1716 static int init_timer_alarm(void)
1718 struct qemu_alarm_timer *t = NULL;
1719 int i, err = -1;
1721 for (i = 0; alarm_timers[i].name; i++) {
1722 t = &alarm_timers[i];
1724 err = t->start(t);
1725 if (!err)
1726 break;
1729 if (err) {
1730 err = -ENOENT;
1731 goto fail;
1734 alarm_timer = t;
1736 return 0;
1738 fail:
1739 return err;
1742 static void quit_timers(void)
1744 alarm_timer->stop(alarm_timer);
1745 alarm_timer = NULL;
1748 /***********************************************************/
1749 /* host time/date access */
1750 void qemu_get_timedate(struct tm *tm, int offset)
1752 time_t ti;
1753 struct tm *ret;
1755 time(&ti);
1756 ti += offset;
1757 if (rtc_date_offset == -1) {
1758 if (rtc_utc)
1759 ret = gmtime(&ti);
1760 else
1761 ret = localtime(&ti);
1762 } else {
1763 ti -= rtc_date_offset;
1764 ret = gmtime(&ti);
1767 memcpy(tm, ret, sizeof(struct tm));
1770 int qemu_timedate_diff(struct tm *tm)
1772 time_t seconds;
1774 if (rtc_date_offset == -1)
1775 if (rtc_utc)
1776 seconds = mktimegm(tm);
1777 else
1778 seconds = mktime(tm);
1779 else
1780 seconds = mktimegm(tm) + rtc_date_offset;
1782 return seconds - time(NULL);
1785 #ifdef _WIN32
1786 static void socket_cleanup(void)
1788 WSACleanup();
1791 static int socket_init(void)
1793 WSADATA Data;
1794 int ret, err;
1796 ret = WSAStartup(MAKEWORD(2,2), &Data);
1797 if (ret != 0) {
1798 err = WSAGetLastError();
1799 fprintf(stderr, "WSAStartup: %d\n", err);
1800 return -1;
1802 atexit(socket_cleanup);
1803 return 0;
1805 #endif
1807 const char *get_opt_name(char *buf, int buf_size, const char *p, char delim)
1809 char *q;
1811 q = buf;
1812 while (*p != '\0' && *p != delim) {
1813 if (q && (q - buf) < buf_size - 1)
1814 *q++ = *p;
1815 p++;
1817 if (q)
1818 *q = '\0';
1820 return p;
1823 const char *get_opt_value(char *buf, int buf_size, const char *p)
1825 char *q;
1827 q = buf;
1828 while (*p != '\0') {
1829 if (*p == ',') {
1830 if (*(p + 1) != ',')
1831 break;
1832 p++;
1834 if (q && (q - buf) < buf_size - 1)
1835 *q++ = *p;
1836 p++;
1838 if (q)
1839 *q = '\0';
1841 return p;
1844 int get_param_value(char *buf, int buf_size,
1845 const char *tag, const char *str)
1847 const char *p;
1848 char option[128];
1850 p = str;
1851 for(;;) {
1852 p = get_opt_name(option, sizeof(option), p, '=');
1853 if (*p != '=')
1854 break;
1855 p++;
1856 if (!strcmp(tag, option)) {
1857 (void)get_opt_value(buf, buf_size, p);
1858 return strlen(buf);
1859 } else {
1860 p = get_opt_value(NULL, 0, p);
1862 if (*p != ',')
1863 break;
1864 p++;
1866 return 0;
1869 int check_params(char *buf, int buf_size,
1870 const char * const *params, const char *str)
1872 const char *p;
1873 int i;
1875 p = str;
1876 while (*p != '\0') {
1877 p = get_opt_name(buf, buf_size, p, '=');
1878 if (*p != '=')
1879 return -1;
1880 p++;
1881 for(i = 0; params[i] != NULL; i++)
1882 if (!strcmp(params[i], buf))
1883 break;
1884 if (params[i] == NULL)
1885 return -1;
1886 p = get_opt_value(NULL, 0, p);
1887 if (*p != ',')
1888 break;
1889 p++;
1891 return 0;
1894 /***********************************************************/
1895 /* Bluetooth support */
1896 static int nb_hcis;
1897 static int cur_hci;
1898 static struct HCIInfo *hci_table[MAX_NICS];
1900 static struct bt_vlan_s {
1901 struct bt_scatternet_s net;
1902 int id;
1903 struct bt_vlan_s *next;
1904 } *first_bt_vlan;
1906 /* find or alloc a new bluetooth "VLAN" */
1907 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1909 struct bt_vlan_s **pvlan, *vlan;
1910 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1911 if (vlan->id == id)
1912 return &vlan->net;
1914 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1915 vlan->id = id;
1916 pvlan = &first_bt_vlan;
1917 while (*pvlan != NULL)
1918 pvlan = &(*pvlan)->next;
1919 *pvlan = vlan;
1920 return &vlan->net;
1923 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1927 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1929 return -ENOTSUP;
1932 static struct HCIInfo null_hci = {
1933 .cmd_send = null_hci_send,
1934 .sco_send = null_hci_send,
1935 .acl_send = null_hci_send,
1936 .bdaddr_set = null_hci_addr_set,
1939 struct HCIInfo *qemu_next_hci(void)
1941 if (cur_hci == nb_hcis)
1942 return &null_hci;
1944 return hci_table[cur_hci++];
1947 static struct HCIInfo *hci_init(const char *str)
1949 char *endp;
1950 struct bt_scatternet_s *vlan = 0;
1952 if (!strcmp(str, "null"))
1953 /* null */
1954 return &null_hci;
1955 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1956 /* host[:hciN] */
1957 return bt_host_hci(str[4] ? str + 5 : "hci0");
1958 else if (!strncmp(str, "hci", 3)) {
1959 /* hci[,vlan=n] */
1960 if (str[3]) {
1961 if (!strncmp(str + 3, ",vlan=", 6)) {
1962 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1963 if (*endp)
1964 vlan = 0;
1966 } else
1967 vlan = qemu_find_bt_vlan(0);
1968 if (vlan)
1969 return bt_new_hci(vlan);
1972 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1974 return 0;
1977 static int bt_hci_parse(const char *str)
1979 struct HCIInfo *hci;
1980 bdaddr_t bdaddr;
1982 if (nb_hcis >= MAX_NICS) {
1983 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1984 return -1;
1987 hci = hci_init(str);
1988 if (!hci)
1989 return -1;
1991 bdaddr.b[0] = 0x52;
1992 bdaddr.b[1] = 0x54;
1993 bdaddr.b[2] = 0x00;
1994 bdaddr.b[3] = 0x12;
1995 bdaddr.b[4] = 0x34;
1996 bdaddr.b[5] = 0x56 + nb_hcis;
1997 hci->bdaddr_set(hci, bdaddr.b);
1999 hci_table[nb_hcis++] = hci;
2001 return 0;
2004 static void bt_vhci_add(int vlan_id)
2006 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
2008 if (!vlan->slave)
2009 fprintf(stderr, "qemu: warning: adding a VHCI to "
2010 "an empty scatternet %i\n", vlan_id);
2012 bt_vhci_init(bt_new_hci(vlan));
2015 static struct bt_device_s *bt_device_add(const char *opt)
2017 struct bt_scatternet_s *vlan;
2018 int vlan_id = 0;
2019 char *endp = strstr(opt, ",vlan=");
2020 int len = (endp ? endp - opt : strlen(opt)) + 1;
2021 char devname[10];
2023 pstrcpy(devname, MIN(sizeof(devname), len), opt);
2025 if (endp) {
2026 vlan_id = strtol(endp + 6, &endp, 0);
2027 if (*endp) {
2028 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2029 return 0;
2033 vlan = qemu_find_bt_vlan(vlan_id);
2035 if (!vlan->slave)
2036 fprintf(stderr, "qemu: warning: adding a slave device to "
2037 "an empty scatternet %i\n", vlan_id);
2039 if (!strcmp(devname, "keyboard"))
2040 return bt_keyboard_init(vlan);
2042 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2043 return 0;
2046 static int bt_parse(const char *opt)
2048 const char *endp, *p;
2049 int vlan;
2051 if (strstart(opt, "hci", &endp)) {
2052 if (!*endp || *endp == ',') {
2053 if (*endp)
2054 if (!strstart(endp, ",vlan=", 0))
2055 opt = endp + 1;
2057 return bt_hci_parse(opt);
2059 } else if (strstart(opt, "vhci", &endp)) {
2060 if (!*endp || *endp == ',') {
2061 if (*endp) {
2062 if (strstart(endp, ",vlan=", &p)) {
2063 vlan = strtol(p, (char **) &endp, 0);
2064 if (*endp) {
2065 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2066 return 1;
2068 } else {
2069 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2070 return 1;
2072 } else
2073 vlan = 0;
2075 bt_vhci_add(vlan);
2076 return 0;
2078 } else if (strstart(opt, "device:", &endp))
2079 return !bt_device_add(endp);
2081 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2082 return 1;
2085 /***********************************************************/
2086 /* QEMU Block devices */
2088 #define HD_ALIAS "index=%d,media=disk"
2089 #define CDROM_ALIAS "index=2,media=cdrom"
2090 #define FD_ALIAS "index=%d,if=floppy"
2091 #define PFLASH_ALIAS "if=pflash"
2092 #define MTD_ALIAS "if=mtd"
2093 #define SD_ALIAS "index=0,if=sd"
2095 static int drive_opt_get_free_idx(void)
2097 int index;
2099 for (index = 0; index < MAX_DRIVES; index++)
2100 if (!drives_opt[index].used) {
2101 drives_opt[index].used = 1;
2102 return index;
2105 return -1;
2108 static int drive_get_free_idx(void)
2110 int index;
2112 for (index = 0; index < MAX_DRIVES; index++)
2113 if (!drives_table[index].used) {
2114 drives_table[index].used = 1;
2115 return index;
2118 return -1;
2121 int drive_add(const char *file, const char *fmt, ...)
2123 va_list ap;
2124 int index = drive_opt_get_free_idx();
2126 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2127 fprintf(stderr, "qemu: too many drives\n");
2128 return -1;
2131 drives_opt[index].file = file;
2132 va_start(ap, fmt);
2133 vsnprintf(drives_opt[index].opt,
2134 sizeof(drives_opt[0].opt), fmt, ap);
2135 va_end(ap);
2137 nb_drives_opt++;
2138 return index;
2141 void drive_remove(int index)
2143 drives_opt[index].used = 0;
2144 nb_drives_opt--;
2147 int drive_get_index(BlockInterfaceType type, int bus, int unit)
2149 int index;
2151 /* seek interface, bus and unit */
2153 for (index = 0; index < MAX_DRIVES; index++)
2154 if (drives_table[index].type == type &&
2155 drives_table[index].bus == bus &&
2156 drives_table[index].unit == unit &&
2157 drives_table[index].used)
2158 return index;
2160 return -1;
2163 int drive_get_max_bus(BlockInterfaceType type)
2165 int max_bus;
2166 int index;
2168 max_bus = -1;
2169 for (index = 0; index < nb_drives; index++) {
2170 if(drives_table[index].type == type &&
2171 drives_table[index].bus > max_bus)
2172 max_bus = drives_table[index].bus;
2174 return max_bus;
2177 const char *drive_get_serial(BlockDriverState *bdrv)
2179 int index;
2181 for (index = 0; index < nb_drives; index++)
2182 if (drives_table[index].bdrv == bdrv)
2183 return drives_table[index].serial;
2185 return "\0";
2188 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2190 int index;
2192 for (index = 0; index < nb_drives; index++)
2193 if (drives_table[index].bdrv == bdrv)
2194 return drives_table[index].onerror;
2196 return BLOCK_ERR_STOP_ENOSPC;
2199 static void bdrv_format_print(void *opaque, const char *name)
2201 fprintf(stderr, " %s", name);
2204 void drive_uninit(BlockDriverState *bdrv)
2206 int i;
2208 for (i = 0; i < MAX_DRIVES; i++)
2209 if (drives_table[i].bdrv == bdrv) {
2210 drives_table[i].bdrv = NULL;
2211 drives_table[i].used = 0;
2212 drive_remove(drives_table[i].drive_opt_idx);
2213 nb_drives--;
2214 break;
2218 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2220 char buf[128];
2221 char file[1024];
2222 char devname[128];
2223 char serial[21];
2224 const char *mediastr = "";
2225 BlockInterfaceType type;
2226 enum { MEDIA_DISK, MEDIA_CDROM } media;
2227 int bus_id, unit_id;
2228 int cyls, heads, secs, translation;
2229 BlockDriverState *bdrv;
2230 BlockDriver *drv = NULL;
2231 QEMUMachine *machine = opaque;
2232 int max_devs;
2233 int index;
2234 int cache;
2235 int bdrv_flags, onerror;
2236 int drives_table_idx;
2237 char *str = arg->opt;
2238 static const char * const params[] = { "bus", "unit", "if", "index",
2239 "cyls", "heads", "secs", "trans",
2240 "media", "snapshot", "file",
2241 "cache", "format", "serial", "werror",
2242 NULL };
2244 if (check_params(buf, sizeof(buf), params, str) < 0) {
2245 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2246 buf, str);
2247 return -1;
2250 file[0] = 0;
2251 cyls = heads = secs = 0;
2252 bus_id = 0;
2253 unit_id = -1;
2254 translation = BIOS_ATA_TRANSLATION_AUTO;
2255 index = -1;
2256 cache = 3;
2258 if (machine->use_scsi) {
2259 type = IF_SCSI;
2260 max_devs = MAX_SCSI_DEVS;
2261 pstrcpy(devname, sizeof(devname), "scsi");
2262 } else {
2263 type = IF_IDE;
2264 max_devs = MAX_IDE_DEVS;
2265 pstrcpy(devname, sizeof(devname), "ide");
2267 media = MEDIA_DISK;
2269 /* extract parameters */
2271 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2272 bus_id = strtol(buf, NULL, 0);
2273 if (bus_id < 0) {
2274 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2275 return -1;
2279 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2280 unit_id = strtol(buf, NULL, 0);
2281 if (unit_id < 0) {
2282 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2283 return -1;
2287 if (get_param_value(buf, sizeof(buf), "if", str)) {
2288 pstrcpy(devname, sizeof(devname), buf);
2289 if (!strcmp(buf, "ide")) {
2290 type = IF_IDE;
2291 max_devs = MAX_IDE_DEVS;
2292 } else if (!strcmp(buf, "scsi")) {
2293 type = IF_SCSI;
2294 max_devs = MAX_SCSI_DEVS;
2295 } else if (!strcmp(buf, "floppy")) {
2296 type = IF_FLOPPY;
2297 max_devs = 0;
2298 } else if (!strcmp(buf, "pflash")) {
2299 type = IF_PFLASH;
2300 max_devs = 0;
2301 } else if (!strcmp(buf, "mtd")) {
2302 type = IF_MTD;
2303 max_devs = 0;
2304 } else if (!strcmp(buf, "sd")) {
2305 type = IF_SD;
2306 max_devs = 0;
2307 } else if (!strcmp(buf, "virtio")) {
2308 type = IF_VIRTIO;
2309 max_devs = 0;
2310 } else if (!strcmp(buf, "xen")) {
2311 type = IF_XEN;
2312 max_devs = 0;
2313 } else {
2314 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2315 return -1;
2319 if (get_param_value(buf, sizeof(buf), "index", str)) {
2320 index = strtol(buf, NULL, 0);
2321 if (index < 0) {
2322 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2323 return -1;
2327 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2328 cyls = strtol(buf, NULL, 0);
2331 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2332 heads = strtol(buf, NULL, 0);
2335 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2336 secs = strtol(buf, NULL, 0);
2339 if (cyls || heads || secs) {
2340 if (cyls < 1 || cyls > 16383) {
2341 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2342 return -1;
2344 if (heads < 1 || heads > 16) {
2345 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2346 return -1;
2348 if (secs < 1 || secs > 63) {
2349 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2350 return -1;
2354 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2355 if (!cyls) {
2356 fprintf(stderr,
2357 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2358 str);
2359 return -1;
2361 if (!strcmp(buf, "none"))
2362 translation = BIOS_ATA_TRANSLATION_NONE;
2363 else if (!strcmp(buf, "lba"))
2364 translation = BIOS_ATA_TRANSLATION_LBA;
2365 else if (!strcmp(buf, "auto"))
2366 translation = BIOS_ATA_TRANSLATION_AUTO;
2367 else {
2368 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2369 return -1;
2373 if (get_param_value(buf, sizeof(buf), "media", str)) {
2374 if (!strcmp(buf, "disk")) {
2375 media = MEDIA_DISK;
2376 } else if (!strcmp(buf, "cdrom")) {
2377 if (cyls || secs || heads) {
2378 fprintf(stderr,
2379 "qemu: '%s' invalid physical CHS format\n", str);
2380 return -1;
2382 media = MEDIA_CDROM;
2383 } else {
2384 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2385 return -1;
2389 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2390 if (!strcmp(buf, "on"))
2391 snapshot = 1;
2392 else if (!strcmp(buf, "off"))
2393 snapshot = 0;
2394 else {
2395 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2396 return -1;
2400 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2401 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2402 cache = 0;
2403 else if (!strcmp(buf, "writethrough"))
2404 cache = 1;
2405 else if (!strcmp(buf, "writeback"))
2406 cache = 2;
2407 else {
2408 fprintf(stderr, "qemu: invalid cache option\n");
2409 return -1;
2413 if (get_param_value(buf, sizeof(buf), "format", str)) {
2414 if (strcmp(buf, "?") == 0) {
2415 fprintf(stderr, "qemu: Supported formats:");
2416 bdrv_iterate_format(bdrv_format_print, NULL);
2417 fprintf(stderr, "\n");
2418 return -1;
2420 drv = bdrv_find_format(buf);
2421 if (!drv) {
2422 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2423 return -1;
2427 if (arg->file == NULL)
2428 get_param_value(file, sizeof(file), "file", str);
2429 else
2430 pstrcpy(file, sizeof(file), arg->file);
2432 if (!get_param_value(serial, sizeof(serial), "serial", str))
2433 memset(serial, 0, sizeof(serial));
2435 onerror = BLOCK_ERR_STOP_ENOSPC;
2436 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2437 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2438 fprintf(stderr, "werror is no supported by this format\n");
2439 return -1;
2441 if (!strcmp(buf, "ignore"))
2442 onerror = BLOCK_ERR_IGNORE;
2443 else if (!strcmp(buf, "enospc"))
2444 onerror = BLOCK_ERR_STOP_ENOSPC;
2445 else if (!strcmp(buf, "stop"))
2446 onerror = BLOCK_ERR_STOP_ANY;
2447 else if (!strcmp(buf, "report"))
2448 onerror = BLOCK_ERR_REPORT;
2449 else {
2450 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2451 return -1;
2455 /* compute bus and unit according index */
2457 if (index != -1) {
2458 if (bus_id != 0 || unit_id != -1) {
2459 fprintf(stderr,
2460 "qemu: '%s' index cannot be used with bus and unit\n", str);
2461 return -1;
2463 if (max_devs == 0)
2465 unit_id = index;
2466 bus_id = 0;
2467 } else {
2468 unit_id = index % max_devs;
2469 bus_id = index / max_devs;
2473 /* if user doesn't specify a unit_id,
2474 * try to find the first free
2477 if (unit_id == -1) {
2478 unit_id = 0;
2479 while (drive_get_index(type, bus_id, unit_id) != -1) {
2480 unit_id++;
2481 if (max_devs && unit_id >= max_devs) {
2482 unit_id -= max_devs;
2483 bus_id++;
2488 /* check unit id */
2490 if (max_devs && unit_id >= max_devs) {
2491 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2492 str, unit_id, max_devs - 1);
2493 return -1;
2497 * ignore multiple definitions
2500 if (drive_get_index(type, bus_id, unit_id) != -1)
2501 return -2;
2503 /* init */
2505 if (type == IF_IDE || type == IF_SCSI)
2506 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2507 if (max_devs)
2508 snprintf(buf, sizeof(buf), "%s%i%s%i",
2509 devname, bus_id, mediastr, unit_id);
2510 else
2511 snprintf(buf, sizeof(buf), "%s%s%i",
2512 devname, mediastr, unit_id);
2513 bdrv = bdrv_new(buf);
2514 drives_table_idx = drive_get_free_idx();
2515 drives_table[drives_table_idx].bdrv = bdrv;
2516 drives_table[drives_table_idx].type = type;
2517 drives_table[drives_table_idx].bus = bus_id;
2518 drives_table[drives_table_idx].unit = unit_id;
2519 drives_table[drives_table_idx].onerror = onerror;
2520 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2521 strncpy(drives_table[nb_drives].serial, serial, sizeof(serial));
2522 nb_drives++;
2524 switch(type) {
2525 case IF_IDE:
2526 case IF_SCSI:
2527 case IF_XEN:
2528 switch(media) {
2529 case MEDIA_DISK:
2530 if (cyls != 0) {
2531 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2532 bdrv_set_translation_hint(bdrv, translation);
2534 break;
2535 case MEDIA_CDROM:
2536 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2537 break;
2539 break;
2540 case IF_SD:
2541 /* FIXME: This isn't really a floppy, but it's a reasonable
2542 approximation. */
2543 case IF_FLOPPY:
2544 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2545 break;
2546 case IF_PFLASH:
2547 case IF_MTD:
2548 case IF_VIRTIO:
2549 break;
2551 if (!file[0])
2552 return -2;
2553 bdrv_flags = 0;
2554 if (snapshot) {
2555 bdrv_flags |= BDRV_O_SNAPSHOT;
2556 cache = 2; /* always use write-back with snapshot */
2558 if (cache == 0) /* no caching */
2559 bdrv_flags |= BDRV_O_NOCACHE;
2560 else if (cache == 2) /* write-back */
2561 bdrv_flags |= BDRV_O_CACHE_WB;
2562 else if (cache == 3) /* not specified */
2563 bdrv_flags |= BDRV_O_CACHE_DEF;
2564 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2565 fprintf(stderr, "qemu: could not open disk image %s\n",
2566 file);
2567 return -1;
2569 if (bdrv_key_required(bdrv))
2570 autostart = 0;
2571 return drives_table_idx;
2574 static void numa_add(const char *optarg)
2576 char option[128];
2577 char *endptr;
2578 unsigned long long value, endvalue;
2579 int nodenr;
2581 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2582 if (!strcmp(option, "node")) {
2583 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2584 nodenr = nb_numa_nodes;
2585 } else {
2586 nodenr = strtoull(option, NULL, 10);
2589 if (get_param_value(option, 128, "mem", optarg) == 0) {
2590 node_mem[nodenr] = 0;
2591 } else {
2592 value = strtoull(option, &endptr, 0);
2593 switch (*endptr) {
2594 case 0: case 'M': case 'm':
2595 value <<= 20;
2596 break;
2597 case 'G': case 'g':
2598 value <<= 30;
2599 break;
2601 node_mem[nodenr] = value;
2603 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2604 node_cpumask[nodenr] = 0;
2605 } else {
2606 value = strtoull(option, &endptr, 10);
2607 if (value >= 64) {
2608 value = 63;
2609 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2610 } else {
2611 if (*endptr == '-') {
2612 endvalue = strtoull(endptr+1, &endptr, 10);
2613 if (endvalue >= 63) {
2614 endvalue = 62;
2615 fprintf(stderr,
2616 "only 63 CPUs in NUMA mode supported.\n");
2618 value = (1 << (endvalue + 1)) - (1 << value);
2619 } else {
2620 value = 1 << value;
2623 node_cpumask[nodenr] = value;
2625 nb_numa_nodes++;
2627 return;
2630 /***********************************************************/
2631 /* USB devices */
2633 static USBPort *used_usb_ports;
2634 static USBPort *free_usb_ports;
2636 /* ??? Maybe change this to register a hub to keep track of the topology. */
2637 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2638 usb_attachfn attach)
2640 port->opaque = opaque;
2641 port->index = index;
2642 port->attach = attach;
2643 port->next = free_usb_ports;
2644 free_usb_ports = port;
2647 int usb_device_add_dev(USBDevice *dev)
2649 USBPort *port;
2651 /* Find a USB port to add the device to. */
2652 port = free_usb_ports;
2653 if (!port->next) {
2654 USBDevice *hub;
2656 /* Create a new hub and chain it on. */
2657 free_usb_ports = NULL;
2658 port->next = used_usb_ports;
2659 used_usb_ports = port;
2661 hub = usb_hub_init(VM_USB_HUB_SIZE);
2662 usb_attach(port, hub);
2663 port = free_usb_ports;
2666 free_usb_ports = port->next;
2667 port->next = used_usb_ports;
2668 used_usb_ports = port;
2669 usb_attach(port, dev);
2670 return 0;
2673 static void usb_msd_password_cb(void *opaque, int err)
2675 USBDevice *dev = opaque;
2677 if (!err)
2678 usb_device_add_dev(dev);
2679 else
2680 dev->handle_destroy(dev);
2683 static int usb_device_add(const char *devname, int is_hotplug)
2685 const char *p;
2686 USBDevice *dev;
2688 if (!free_usb_ports)
2689 return -1;
2691 if (strstart(devname, "host:", &p)) {
2692 dev = usb_host_device_open(p);
2693 } else if (!strcmp(devname, "mouse")) {
2694 dev = usb_mouse_init();
2695 } else if (!strcmp(devname, "tablet")) {
2696 dev = usb_tablet_init();
2697 } else if (!strcmp(devname, "keyboard")) {
2698 dev = usb_keyboard_init();
2699 } else if (strstart(devname, "disk:", &p)) {
2700 BlockDriverState *bs;
2702 dev = usb_msd_init(p);
2703 if (!dev)
2704 return -1;
2705 bs = usb_msd_get_bdrv(dev);
2706 if (bdrv_key_required(bs)) {
2707 autostart = 0;
2708 if (is_hotplug) {
2709 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2710 dev);
2711 return 0;
2714 } else if (!strcmp(devname, "wacom-tablet")) {
2715 dev = usb_wacom_init();
2716 } else if (strstart(devname, "serial:", &p)) {
2717 dev = usb_serial_init(p);
2718 #ifdef CONFIG_BRLAPI
2719 } else if (!strcmp(devname, "braille")) {
2720 dev = usb_baum_init();
2721 #endif
2722 } else if (strstart(devname, "net:", &p)) {
2723 int nic = nb_nics;
2725 if (net_client_init("nic", p) < 0)
2726 return -1;
2727 nd_table[nic].model = "usb";
2728 dev = usb_net_init(&nd_table[nic]);
2729 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2730 dev = usb_bt_init(devname[2] ? hci_init(p) :
2731 bt_new_hci(qemu_find_bt_vlan(0)));
2732 } else {
2733 return -1;
2735 if (!dev)
2736 return -1;
2738 return usb_device_add_dev(dev);
2741 int usb_device_del_addr(int bus_num, int addr)
2743 USBPort *port;
2744 USBPort **lastp;
2745 USBDevice *dev;
2747 if (!used_usb_ports)
2748 return -1;
2750 if (bus_num != 0)
2751 return -1;
2753 lastp = &used_usb_ports;
2754 port = used_usb_ports;
2755 while (port && port->dev->addr != addr) {
2756 lastp = &port->next;
2757 port = port->next;
2760 if (!port)
2761 return -1;
2763 dev = port->dev;
2764 *lastp = port->next;
2765 usb_attach(port, NULL);
2766 dev->handle_destroy(dev);
2767 port->next = free_usb_ports;
2768 free_usb_ports = port;
2769 return 0;
2772 static int usb_device_del(const char *devname)
2774 int bus_num, addr;
2775 const char *p;
2777 if (strstart(devname, "host:", &p))
2778 return usb_host_device_close(p);
2780 if (!used_usb_ports)
2781 return -1;
2783 p = strchr(devname, '.');
2784 if (!p)
2785 return -1;
2786 bus_num = strtoul(devname, NULL, 0);
2787 addr = strtoul(p + 1, NULL, 0);
2789 return usb_device_del_addr(bus_num, addr);
2792 void do_usb_add(Monitor *mon, const char *devname)
2794 usb_device_add(devname, 1);
2797 void do_usb_del(Monitor *mon, const char *devname)
2799 usb_device_del(devname);
2802 void usb_info(Monitor *mon)
2804 USBDevice *dev;
2805 USBPort *port;
2806 const char *speed_str;
2808 if (!usb_enabled) {
2809 monitor_printf(mon, "USB support not enabled\n");
2810 return;
2813 for (port = used_usb_ports; port; port = port->next) {
2814 dev = port->dev;
2815 if (!dev)
2816 continue;
2817 switch(dev->speed) {
2818 case USB_SPEED_LOW:
2819 speed_str = "1.5";
2820 break;
2821 case USB_SPEED_FULL:
2822 speed_str = "12";
2823 break;
2824 case USB_SPEED_HIGH:
2825 speed_str = "480";
2826 break;
2827 default:
2828 speed_str = "?";
2829 break;
2831 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2832 0, dev->addr, speed_str, dev->devname);
2836 /***********************************************************/
2837 /* PCMCIA/Cardbus */
2839 static struct pcmcia_socket_entry_s {
2840 struct pcmcia_socket_s *socket;
2841 struct pcmcia_socket_entry_s *next;
2842 } *pcmcia_sockets = 0;
2844 void pcmcia_socket_register(struct pcmcia_socket_s *socket)
2846 struct pcmcia_socket_entry_s *entry;
2848 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2849 entry->socket = socket;
2850 entry->next = pcmcia_sockets;
2851 pcmcia_sockets = entry;
2854 void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
2856 struct pcmcia_socket_entry_s *entry, **ptr;
2858 ptr = &pcmcia_sockets;
2859 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2860 if (entry->socket == socket) {
2861 *ptr = entry->next;
2862 qemu_free(entry);
2866 void pcmcia_info(Monitor *mon)
2868 struct pcmcia_socket_entry_s *iter;
2870 if (!pcmcia_sockets)
2871 monitor_printf(mon, "No PCMCIA sockets\n");
2873 for (iter = pcmcia_sockets; iter; iter = iter->next)
2874 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2875 iter->socket->attached ? iter->socket->card_string :
2876 "Empty");
2879 /***********************************************************/
2880 /* register display */
2882 struct DisplayAllocator default_allocator = {
2883 defaultallocator_create_displaysurface,
2884 defaultallocator_resize_displaysurface,
2885 defaultallocator_free_displaysurface
2888 void register_displaystate(DisplayState *ds)
2890 DisplayState **s;
2891 s = &display_state;
2892 while (*s != NULL)
2893 s = &(*s)->next;
2894 ds->next = NULL;
2895 *s = ds;
2898 DisplayState *get_displaystate(void)
2900 return display_state;
2903 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2905 if(ds->allocator == &default_allocator) ds->allocator = da;
2906 return ds->allocator;
2909 /* dumb display */
2911 static void dumb_display_init(void)
2913 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2914 ds->allocator = &default_allocator;
2915 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2916 register_displaystate(ds);
2919 /***********************************************************/
2920 /* I/O handling */
2922 typedef struct IOHandlerRecord {
2923 int fd;
2924 IOCanRWHandler *fd_read_poll;
2925 IOHandler *fd_read;
2926 IOHandler *fd_write;
2927 int deleted;
2928 void *opaque;
2929 /* temporary data */
2930 struct pollfd *ufd;
2931 struct IOHandlerRecord *next;
2932 } IOHandlerRecord;
2934 static IOHandlerRecord *first_io_handler;
2936 /* XXX: fd_read_poll should be suppressed, but an API change is
2937 necessary in the character devices to suppress fd_can_read(). */
2938 int qemu_set_fd_handler2(int fd,
2939 IOCanRWHandler *fd_read_poll,
2940 IOHandler *fd_read,
2941 IOHandler *fd_write,
2942 void *opaque)
2944 IOHandlerRecord **pioh, *ioh;
2946 if (!fd_read && !fd_write) {
2947 pioh = &first_io_handler;
2948 for(;;) {
2949 ioh = *pioh;
2950 if (ioh == NULL)
2951 break;
2952 if (ioh->fd == fd) {
2953 ioh->deleted = 1;
2954 break;
2956 pioh = &ioh->next;
2958 } else {
2959 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2960 if (ioh->fd == fd)
2961 goto found;
2963 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2964 ioh->next = first_io_handler;
2965 first_io_handler = ioh;
2966 found:
2967 ioh->fd = fd;
2968 ioh->fd_read_poll = fd_read_poll;
2969 ioh->fd_read = fd_read;
2970 ioh->fd_write = fd_write;
2971 ioh->opaque = opaque;
2972 ioh->deleted = 0;
2974 return 0;
2977 int qemu_set_fd_handler(int fd,
2978 IOHandler *fd_read,
2979 IOHandler *fd_write,
2980 void *opaque)
2982 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2985 #ifdef _WIN32
2986 /***********************************************************/
2987 /* Polling handling */
2989 typedef struct PollingEntry {
2990 PollingFunc *func;
2991 void *opaque;
2992 struct PollingEntry *next;
2993 } PollingEntry;
2995 static PollingEntry *first_polling_entry;
2997 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2999 PollingEntry **ppe, *pe;
3000 pe = qemu_mallocz(sizeof(PollingEntry));
3001 pe->func = func;
3002 pe->opaque = opaque;
3003 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
3004 *ppe = pe;
3005 return 0;
3008 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
3010 PollingEntry **ppe, *pe;
3011 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
3012 pe = *ppe;
3013 if (pe->func == func && pe->opaque == opaque) {
3014 *ppe = pe->next;
3015 qemu_free(pe);
3016 break;
3021 /***********************************************************/
3022 /* Wait objects support */
3023 typedef struct WaitObjects {
3024 int num;
3025 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
3026 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
3027 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
3028 } WaitObjects;
3030 static WaitObjects wait_objects = {0};
3032 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3034 WaitObjects *w = &wait_objects;
3036 if (w->num >= MAXIMUM_WAIT_OBJECTS)
3037 return -1;
3038 w->events[w->num] = handle;
3039 w->func[w->num] = func;
3040 w->opaque[w->num] = opaque;
3041 w->num++;
3042 return 0;
3045 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3047 int i, found;
3048 WaitObjects *w = &wait_objects;
3050 found = 0;
3051 for (i = 0; i < w->num; i++) {
3052 if (w->events[i] == handle)
3053 found = 1;
3054 if (found) {
3055 w->events[i] = w->events[i + 1];
3056 w->func[i] = w->func[i + 1];
3057 w->opaque[i] = w->opaque[i + 1];
3060 if (found)
3061 w->num--;
3063 #endif
3065 /***********************************************************/
3066 /* ram save/restore */
3068 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3070 int v;
3072 v = qemu_get_byte(f);
3073 switch(v) {
3074 case 0:
3075 if (qemu_get_buffer(f, buf, len) != len)
3076 return -EIO;
3077 break;
3078 case 1:
3079 v = qemu_get_byte(f);
3080 memset(buf, v, len);
3081 break;
3082 default:
3083 return -EINVAL;
3086 if (qemu_file_has_error(f))
3087 return -EIO;
3089 return 0;
3092 static int ram_load_v1(QEMUFile *f, void *opaque)
3094 int ret;
3095 ram_addr_t i;
3097 if (qemu_get_be32(f) != last_ram_offset)
3098 return -EINVAL;
3099 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
3100 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
3101 if (ret)
3102 return ret;
3104 return 0;
3107 #define BDRV_HASH_BLOCK_SIZE 1024
3108 #define IOBUF_SIZE 4096
3109 #define RAM_CBLOCK_MAGIC 0xfabe
3111 typedef struct RamDecompressState {
3112 z_stream zstream;
3113 QEMUFile *f;
3114 uint8_t buf[IOBUF_SIZE];
3115 } RamDecompressState;
3117 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3119 int ret;
3120 memset(s, 0, sizeof(*s));
3121 s->f = f;
3122 ret = inflateInit(&s->zstream);
3123 if (ret != Z_OK)
3124 return -1;
3125 return 0;
3128 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3130 int ret, clen;
3132 s->zstream.avail_out = len;
3133 s->zstream.next_out = buf;
3134 while (s->zstream.avail_out > 0) {
3135 if (s->zstream.avail_in == 0) {
3136 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3137 return -1;
3138 clen = qemu_get_be16(s->f);
3139 if (clen > IOBUF_SIZE)
3140 return -1;
3141 qemu_get_buffer(s->f, s->buf, clen);
3142 s->zstream.avail_in = clen;
3143 s->zstream.next_in = s->buf;
3145 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3146 if (ret != Z_OK && ret != Z_STREAM_END) {
3147 return -1;
3150 return 0;
3153 static void ram_decompress_close(RamDecompressState *s)
3155 inflateEnd(&s->zstream);
3158 #define RAM_SAVE_FLAG_FULL 0x01
3159 #define RAM_SAVE_FLAG_COMPRESS 0x02
3160 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3161 #define RAM_SAVE_FLAG_PAGE 0x08
3162 #define RAM_SAVE_FLAG_EOS 0x10
3164 static int is_dup_page(uint8_t *page, uint8_t ch)
3166 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3167 uint32_t *array = (uint32_t *)page;
3168 int i;
3170 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3171 if (array[i] != val)
3172 return 0;
3175 return 1;
3178 static int ram_save_block(QEMUFile *f)
3180 static ram_addr_t current_addr = 0;
3181 ram_addr_t saved_addr = current_addr;
3182 ram_addr_t addr = 0;
3183 int found = 0;
3185 while (addr < last_ram_offset) {
3186 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3187 uint8_t *p;
3189 cpu_physical_memory_reset_dirty(current_addr,
3190 current_addr + TARGET_PAGE_SIZE,
3191 MIGRATION_DIRTY_FLAG);
3193 p = qemu_get_ram_ptr(current_addr);
3195 if (is_dup_page(p, *p)) {
3196 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3197 qemu_put_byte(f, *p);
3198 } else {
3199 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3200 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3203 found = 1;
3204 break;
3206 addr += TARGET_PAGE_SIZE;
3207 current_addr = (saved_addr + addr) % last_ram_offset;
3210 return found;
3213 static ram_addr_t ram_save_threshold = 10;
3215 static ram_addr_t ram_save_remaining(void)
3217 ram_addr_t addr;
3218 ram_addr_t count = 0;
3220 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3221 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3222 count++;
3225 return count;
3228 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3230 ram_addr_t addr;
3232 if (stage == 1) {
3233 /* Make sure all dirty bits are set */
3234 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3235 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3236 cpu_physical_memory_set_dirty(addr);
3239 /* Enable dirty memory tracking */
3240 cpu_physical_memory_set_dirty_tracking(1);
3242 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3245 while (!qemu_file_rate_limit(f)) {
3246 int ret;
3248 ret = ram_save_block(f);
3249 if (ret == 0) /* no more blocks */
3250 break;
3253 /* try transferring iterative blocks of memory */
3255 if (stage == 3) {
3257 /* flush all remaining blocks regardless of rate limiting */
3258 while (ram_save_block(f) != 0);
3259 cpu_physical_memory_set_dirty_tracking(0);
3262 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3264 return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3267 static int ram_load_dead(QEMUFile *f, void *opaque)
3269 RamDecompressState s1, *s = &s1;
3270 uint8_t buf[10];
3271 ram_addr_t i;
3273 if (ram_decompress_open(s, f) < 0)
3274 return -EINVAL;
3275 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3276 if (ram_decompress_buf(s, buf, 1) < 0) {
3277 fprintf(stderr, "Error while reading ram block header\n");
3278 goto error;
3280 if (buf[0] == 0) {
3281 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3282 BDRV_HASH_BLOCK_SIZE) < 0) {
3283 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3284 goto error;
3286 } else {
3287 error:
3288 printf("Error block header\n");
3289 return -EINVAL;
3292 ram_decompress_close(s);
3294 return 0;
3297 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3299 ram_addr_t addr;
3300 int flags;
3302 if (version_id == 1)
3303 return ram_load_v1(f, opaque);
3305 if (version_id == 2) {
3306 if (qemu_get_be32(f) != last_ram_offset)
3307 return -EINVAL;
3308 return ram_load_dead(f, opaque);
3311 if (version_id != 3)
3312 return -EINVAL;
3314 do {
3315 addr = qemu_get_be64(f);
3317 flags = addr & ~TARGET_PAGE_MASK;
3318 addr &= TARGET_PAGE_MASK;
3320 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3321 if (addr != last_ram_offset)
3322 return -EINVAL;
3325 if (flags & RAM_SAVE_FLAG_FULL) {
3326 if (ram_load_dead(f, opaque) < 0)
3327 return -EINVAL;
3330 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3331 uint8_t ch = qemu_get_byte(f);
3332 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3333 } else if (flags & RAM_SAVE_FLAG_PAGE)
3334 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3335 } while (!(flags & RAM_SAVE_FLAG_EOS));
3337 return 0;
3340 void qemu_service_io(void)
3342 qemu_notify_event();
3345 /***********************************************************/
3346 /* bottom halves (can be seen as timers which expire ASAP) */
3348 struct QEMUBH {
3349 QEMUBHFunc *cb;
3350 void *opaque;
3351 int scheduled;
3352 int idle;
3353 int deleted;
3354 QEMUBH *next;
3357 static QEMUBH *first_bh = NULL;
3359 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3361 QEMUBH *bh;
3362 bh = qemu_mallocz(sizeof(QEMUBH));
3363 bh->cb = cb;
3364 bh->opaque = opaque;
3365 bh->next = first_bh;
3366 first_bh = bh;
3367 return bh;
3370 int qemu_bh_poll(void)
3372 QEMUBH *bh, **bhp;
3373 int ret;
3375 ret = 0;
3376 for (bh = first_bh; bh; bh = bh->next) {
3377 if (!bh->deleted && bh->scheduled) {
3378 bh->scheduled = 0;
3379 if (!bh->idle)
3380 ret = 1;
3381 bh->idle = 0;
3382 bh->cb(bh->opaque);
3386 /* remove deleted bhs */
3387 bhp = &first_bh;
3388 while (*bhp) {
3389 bh = *bhp;
3390 if (bh->deleted) {
3391 *bhp = bh->next;
3392 qemu_free(bh);
3393 } else
3394 bhp = &bh->next;
3397 return ret;
3400 void qemu_bh_schedule_idle(QEMUBH *bh)
3402 if (bh->scheduled)
3403 return;
3404 bh->scheduled = 1;
3405 bh->idle = 1;
3408 void qemu_bh_schedule(QEMUBH *bh)
3410 if (bh->scheduled)
3411 return;
3412 bh->scheduled = 1;
3413 bh->idle = 0;
3414 /* stop the currently executing CPU to execute the BH ASAP */
3415 qemu_notify_event();
3418 void qemu_bh_cancel(QEMUBH *bh)
3420 bh->scheduled = 0;
3423 void qemu_bh_delete(QEMUBH *bh)
3425 bh->scheduled = 0;
3426 bh->deleted = 1;
3429 static void qemu_bh_update_timeout(int *timeout)
3431 QEMUBH *bh;
3433 for (bh = first_bh; bh; bh = bh->next) {
3434 if (!bh->deleted && bh->scheduled) {
3435 if (bh->idle) {
3436 /* idle bottom halves will be polled at least
3437 * every 10ms */
3438 *timeout = MIN(10, *timeout);
3439 } else {
3440 /* non-idle bottom halves will be executed
3441 * immediately */
3442 *timeout = 0;
3443 break;
3449 /***********************************************************/
3450 /* machine registration */
3452 static QEMUMachine *first_machine = NULL;
3453 QEMUMachine *current_machine = NULL;
3455 int qemu_register_machine(QEMUMachine *m)
3457 QEMUMachine **pm;
3458 pm = &first_machine;
3459 while (*pm != NULL)
3460 pm = &(*pm)->next;
3461 m->next = NULL;
3462 *pm = m;
3463 return 0;
3466 static QEMUMachine *find_machine(const char *name)
3468 QEMUMachine *m;
3470 for(m = first_machine; m != NULL; m = m->next) {
3471 if (!strcmp(m->name, name))
3472 return m;
3474 return NULL;
3477 /***********************************************************/
3478 /* main execution loop */
3480 static void gui_update(void *opaque)
3482 uint64_t interval = GUI_REFRESH_INTERVAL;
3483 DisplayState *ds = opaque;
3484 DisplayChangeListener *dcl = ds->listeners;
3486 dpy_refresh(ds);
3488 while (dcl != NULL) {
3489 if (dcl->gui_timer_interval &&
3490 dcl->gui_timer_interval < interval)
3491 interval = dcl->gui_timer_interval;
3492 dcl = dcl->next;
3494 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3497 static void nographic_update(void *opaque)
3499 uint64_t interval = GUI_REFRESH_INTERVAL;
3501 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3504 struct vm_change_state_entry {
3505 VMChangeStateHandler *cb;
3506 void *opaque;
3507 LIST_ENTRY (vm_change_state_entry) entries;
3510 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3512 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3513 void *opaque)
3515 VMChangeStateEntry *e;
3517 e = qemu_mallocz(sizeof (*e));
3519 e->cb = cb;
3520 e->opaque = opaque;
3521 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3522 return e;
3525 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3527 LIST_REMOVE (e, entries);
3528 qemu_free (e);
3531 static void vm_state_notify(int running, int reason)
3533 VMChangeStateEntry *e;
3535 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3536 e->cb(e->opaque, running, reason);
3540 void vm_start(void)
3542 if (!vm_running) {
3543 cpu_enable_ticks();
3544 vm_running = 1;
3545 vm_state_notify(1, 0);
3546 qemu_rearm_alarm_timer(alarm_timer);
3550 void vm_stop(int reason)
3552 if (vm_running) {
3553 cpu_disable_ticks();
3554 vm_running = 0;
3555 vm_state_notify(0, reason);
3559 /* reset/shutdown handler */
3561 typedef struct QEMUResetEntry {
3562 QEMUResetHandler *func;
3563 void *opaque;
3564 struct QEMUResetEntry *next;
3565 } QEMUResetEntry;
3567 static QEMUResetEntry *first_reset_entry;
3568 static int reset_requested;
3569 static int shutdown_requested;
3570 static int powerdown_requested;
3572 int qemu_shutdown_requested(void)
3574 int r = shutdown_requested;
3575 shutdown_requested = 0;
3576 return r;
3579 int qemu_reset_requested(void)
3581 int r = reset_requested;
3582 reset_requested = 0;
3583 return r;
3586 int qemu_powerdown_requested(void)
3588 int r = powerdown_requested;
3589 powerdown_requested = 0;
3590 return r;
3593 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3595 QEMUResetEntry **pre, *re;
3597 pre = &first_reset_entry;
3598 while (*pre != NULL)
3599 pre = &(*pre)->next;
3600 re = qemu_mallocz(sizeof(QEMUResetEntry));
3601 re->func = func;
3602 re->opaque = opaque;
3603 re->next = NULL;
3604 *pre = re;
3607 void qemu_system_reset(void)
3609 QEMUResetEntry *re;
3611 /* reset all devices */
3612 for(re = first_reset_entry; re != NULL; re = re->next) {
3613 re->func(re->opaque);
3615 if (kvm_enabled())
3616 kvm_sync_vcpus();
3619 void qemu_system_reset_request(void)
3621 if (no_reboot) {
3622 shutdown_requested = 1;
3623 } else {
3624 reset_requested = 1;
3626 qemu_notify_event();
3629 void qemu_system_shutdown_request(void)
3631 shutdown_requested = 1;
3632 qemu_notify_event();
3635 void qemu_system_powerdown_request(void)
3637 powerdown_requested = 1;
3638 qemu_notify_event();
3641 void qemu_notify_event(void)
3643 CPUState *env = cpu_single_env;
3645 if (env) {
3646 cpu_exit(env);
3647 #ifdef USE_KQEMU
3648 if (env->kqemu_enabled)
3649 kqemu_cpu_interrupt(env);
3650 #endif
3654 #ifndef _WIN32
3655 static int io_thread_fd = -1;
3657 static void qemu_event_increment(void)
3659 static const char byte = 0;
3661 if (io_thread_fd == -1)
3662 return;
3664 write(io_thread_fd, &byte, sizeof(byte));
3667 static void qemu_event_read(void *opaque)
3669 int fd = (unsigned long)opaque;
3670 ssize_t len;
3672 /* Drain the notify pipe */
3673 do {
3674 char buffer[512];
3675 len = read(fd, buffer, sizeof(buffer));
3676 } while ((len == -1 && errno == EINTR) || len > 0);
3679 static int qemu_event_init(void)
3681 int err;
3682 int fds[2];
3684 err = pipe(fds);
3685 if (err == -1)
3686 return -errno;
3688 err = fcntl_setfl(fds[0], O_NONBLOCK);
3689 if (err < 0)
3690 goto fail;
3692 err = fcntl_setfl(fds[1], O_NONBLOCK);
3693 if (err < 0)
3694 goto fail;
3696 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3697 (void *)(unsigned long)fds[0]);
3699 io_thread_fd = fds[1];
3700 fail:
3701 close(fds[0]);
3702 close(fds[1]);
3703 return err;
3705 #else
3706 HANDLE qemu_event_handle;
3708 static void dummy_event_handler(void *opaque)
3712 static int qemu_event_init(void)
3714 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3715 if (!qemu_event_handle) {
3716 perror("Failed CreateEvent");
3717 return -1;
3719 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3720 return 0;
3723 static void qemu_event_increment(void)
3725 SetEvent(qemu_event_handle);
3727 #endif
3729 static int qemu_init_main_loop(void)
3731 return qemu_event_init();
3734 void qemu_init_vcpu(void *_env)
3736 CPUState *env = _env;
3738 if (kvm_enabled())
3739 kvm_init_vcpu(env);
3740 return;
3743 int qemu_cpu_self(void *env)
3745 return 1;
3748 void qemu_cpu_kick(void *env)
3750 return;
3753 #define qemu_mutex_lock_iothread() do { } while (0)
3754 #define qemu_mutex_unlock_iothread() do { } while (0)
3756 #ifdef _WIN32
3757 static void host_main_loop_wait(int *timeout)
3759 int ret, ret2, i;
3760 PollingEntry *pe;
3763 /* XXX: need to suppress polling by better using win32 events */
3764 ret = 0;
3765 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3766 ret |= pe->func(pe->opaque);
3768 if (ret == 0) {
3769 int err;
3770 WaitObjects *w = &wait_objects;
3772 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3773 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3774 if (w->func[ret - WAIT_OBJECT_0])
3775 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3777 /* Check for additional signaled events */
3778 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3780 /* Check if event is signaled */
3781 ret2 = WaitForSingleObject(w->events[i], 0);
3782 if(ret2 == WAIT_OBJECT_0) {
3783 if (w->func[i])
3784 w->func[i](w->opaque[i]);
3785 } else if (ret2 == WAIT_TIMEOUT) {
3786 } else {
3787 err = GetLastError();
3788 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3791 } else if (ret == WAIT_TIMEOUT) {
3792 } else {
3793 err = GetLastError();
3794 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3798 *timeout = 0;
3800 #else
3801 static void host_main_loop_wait(int *timeout)
3804 #endif
3806 void main_loop_wait(int timeout)
3808 IOHandlerRecord *ioh;
3809 fd_set rfds, wfds, xfds;
3810 int ret, nfds;
3811 struct timeval tv;
3813 qemu_bh_update_timeout(&timeout);
3815 host_main_loop_wait(&timeout);
3817 /* poll any events */
3818 /* XXX: separate device handlers from system ones */
3819 nfds = -1;
3820 FD_ZERO(&rfds);
3821 FD_ZERO(&wfds);
3822 FD_ZERO(&xfds);
3823 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3824 if (ioh->deleted)
3825 continue;
3826 if (ioh->fd_read &&
3827 (!ioh->fd_read_poll ||
3828 ioh->fd_read_poll(ioh->opaque) != 0)) {
3829 FD_SET(ioh->fd, &rfds);
3830 if (ioh->fd > nfds)
3831 nfds = ioh->fd;
3833 if (ioh->fd_write) {
3834 FD_SET(ioh->fd, &wfds);
3835 if (ioh->fd > nfds)
3836 nfds = ioh->fd;
3840 tv.tv_sec = timeout / 1000;
3841 tv.tv_usec = (timeout % 1000) * 1000;
3843 #if defined(CONFIG_SLIRP)
3844 if (slirp_is_inited()) {
3845 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3847 #endif
3848 qemu_mutex_unlock_iothread();
3849 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3850 qemu_mutex_lock_iothread();
3851 if (ret > 0) {
3852 IOHandlerRecord **pioh;
3854 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3855 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3856 ioh->fd_read(ioh->opaque);
3858 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3859 ioh->fd_write(ioh->opaque);
3863 /* remove deleted IO handlers */
3864 pioh = &first_io_handler;
3865 while (*pioh) {
3866 ioh = *pioh;
3867 if (ioh->deleted) {
3868 *pioh = ioh->next;
3869 qemu_free(ioh);
3870 } else
3871 pioh = &ioh->next;
3874 #if defined(CONFIG_SLIRP)
3875 if (slirp_is_inited()) {
3876 if (ret < 0) {
3877 FD_ZERO(&rfds);
3878 FD_ZERO(&wfds);
3879 FD_ZERO(&xfds);
3881 slirp_select_poll(&rfds, &wfds, &xfds);
3883 #endif
3885 /* rearm timer, if not periodic */
3886 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
3887 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
3888 qemu_rearm_alarm_timer(alarm_timer);
3891 /* vm time timers */
3892 if (vm_running && likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
3893 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
3894 qemu_get_clock(vm_clock));
3896 /* real time timers */
3897 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
3898 qemu_get_clock(rt_clock));
3900 /* Check bottom-halves last in case any of the earlier events triggered
3901 them. */
3902 qemu_bh_poll();
3906 static int qemu_cpu_exec(CPUState *env)
3908 int ret;
3909 #ifdef CONFIG_PROFILER
3910 int64_t ti;
3911 #endif
3913 #ifdef CONFIG_PROFILER
3914 ti = profile_getclock();
3915 #endif
3916 if (use_icount) {
3917 int64_t count;
3918 int decr;
3919 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
3920 env->icount_decr.u16.low = 0;
3921 env->icount_extra = 0;
3922 count = qemu_next_deadline();
3923 count = (count + (1 << icount_time_shift) - 1)
3924 >> icount_time_shift;
3925 qemu_icount += count;
3926 decr = (count > 0xffff) ? 0xffff : count;
3927 count -= decr;
3928 env->icount_decr.u16.low = decr;
3929 env->icount_extra = count;
3931 ret = cpu_exec(env);
3932 #ifdef CONFIG_PROFILER
3933 qemu_time += profile_getclock() - ti;
3934 #endif
3935 if (use_icount) {
3936 /* Fold pending instructions back into the
3937 instruction counter, and clear the interrupt flag. */
3938 qemu_icount -= (env->icount_decr.u16.low
3939 + env->icount_extra);
3940 env->icount_decr.u32 = 0;
3941 env->icount_extra = 0;
3943 return ret;
3946 static int cpu_has_work(CPUState *env)
3948 if (!env->halted)
3949 return 1;
3950 if (qemu_cpu_has_work(env))
3951 return 1;
3952 return 0;
3955 static int tcg_has_work(void)
3957 CPUState *env;
3959 for (env = first_cpu; env != NULL; env = env->next_cpu)
3960 if (cpu_has_work(env))
3961 return 1;
3962 return 0;
3965 static int qemu_calculate_timeout(void)
3967 int timeout;
3969 if (!vm_running)
3970 timeout = 5000;
3971 else if (tcg_has_work())
3972 timeout = 0;
3973 else if (!use_icount)
3974 timeout = 5000;
3975 else {
3976 /* XXX: use timeout computed from timers */
3977 int64_t add;
3978 int64_t delta;
3979 /* Advance virtual time to the next event. */
3980 if (use_icount == 1) {
3981 /* When not using an adaptive execution frequency
3982 we tend to get badly out of sync with real time,
3983 so just delay for a reasonable amount of time. */
3984 delta = 0;
3985 } else {
3986 delta = cpu_get_icount() - cpu_get_clock();
3988 if (delta > 0) {
3989 /* If virtual time is ahead of real time then just
3990 wait for IO. */
3991 timeout = (delta / 1000000) + 1;
3992 } else {
3993 /* Wait for either IO to occur or the next
3994 timer event. */
3995 add = qemu_next_deadline();
3996 /* We advance the timer before checking for IO.
3997 Limit the amount we advance so that early IO
3998 activity won't get the guest too far ahead. */
3999 if (add > 10000000)
4000 add = 10000000;
4001 delta += add;
4002 add = (add + (1 << icount_time_shift) - 1)
4003 >> icount_time_shift;
4004 qemu_icount += add;
4005 timeout = delta / 1000000;
4006 if (timeout < 0)
4007 timeout = 0;
4011 return timeout;
4014 static int vm_can_run(void)
4016 if (powerdown_requested)
4017 return 0;
4018 if (reset_requested)
4019 return 0;
4020 if (shutdown_requested)
4021 return 0;
4022 return 1;
4025 static void main_loop(void)
4027 int ret = 0;
4028 #ifdef CONFIG_PROFILER
4029 int64_t ti;
4030 #endif
4032 for (;;) {
4033 do {
4034 if (next_cpu == NULL)
4035 next_cpu = first_cpu;
4036 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4037 CPUState *env = cur_cpu = next_cpu;
4039 if (!vm_running)
4040 break;
4041 if (timer_alarm_pending) {
4042 timer_alarm_pending = 0;
4043 break;
4045 ret = qemu_cpu_exec(env);
4046 if (ret == EXCP_DEBUG) {
4047 gdb_set_stop_cpu(env);
4048 break;
4051 #ifdef CONFIG_PROFILER
4052 ti = profile_getclock();
4053 #endif
4054 main_loop_wait(qemu_calculate_timeout());
4055 #ifdef CONFIG_PROFILER
4056 dev_time += profile_getclock() - ti;
4057 #endif
4058 } while (ret != EXCP_DEBUG && vm_can_run());
4060 if (ret == EXCP_DEBUG)
4061 vm_stop(EXCP_DEBUG);
4063 if (qemu_shutdown_requested()) {
4064 if (no_shutdown) {
4065 vm_stop(0);
4066 no_shutdown = 0;
4067 } else
4068 break;
4070 if (qemu_reset_requested())
4071 qemu_system_reset();
4072 if (qemu_powerdown_requested())
4073 qemu_system_powerdown();
4077 static void version(void)
4079 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4082 static void help(int exitcode)
4084 version();
4085 printf("usage: %s [options] [disk_image]\n"
4086 "\n"
4087 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4088 "\n"
4089 #define DEF(option, opt_arg, opt_enum, opt_help) \
4090 opt_help
4091 #define DEFHEADING(text) stringify(text) "\n"
4092 #include "qemu-options.h"
4093 #undef DEF
4094 #undef DEFHEADING
4095 #undef GEN_DOCS
4096 "\n"
4097 "During emulation, the following keys are useful:\n"
4098 "ctrl-alt-f toggle full screen\n"
4099 "ctrl-alt-n switch to virtual console 'n'\n"
4100 "ctrl-alt toggle mouse and keyboard grab\n"
4101 "\n"
4102 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4104 "qemu",
4105 DEFAULT_RAM_SIZE,
4106 #ifndef _WIN32
4107 DEFAULT_NETWORK_SCRIPT,
4108 DEFAULT_NETWORK_DOWN_SCRIPT,
4109 #endif
4110 DEFAULT_GDBSTUB_PORT,
4111 "/tmp/qemu.log");
4112 exit(exitcode);
4115 #define HAS_ARG 0x0001
4117 enum {
4118 #define DEF(option, opt_arg, opt_enum, opt_help) \
4119 opt_enum,
4120 #define DEFHEADING(text)
4121 #include "qemu-options.h"
4122 #undef DEF
4123 #undef DEFHEADING
4124 #undef GEN_DOCS
4127 typedef struct QEMUOption {
4128 const char *name;
4129 int flags;
4130 int index;
4131 } QEMUOption;
4133 static const QEMUOption qemu_options[] = {
4134 { "h", 0, QEMU_OPTION_h },
4135 #define DEF(option, opt_arg, opt_enum, opt_help) \
4136 { option, opt_arg, opt_enum },
4137 #define DEFHEADING(text)
4138 #include "qemu-options.h"
4139 #undef DEF
4140 #undef DEFHEADING
4141 #undef GEN_DOCS
4142 { NULL },
4145 #ifdef HAS_AUDIO
4146 struct soundhw soundhw[] = {
4147 #ifdef HAS_AUDIO_CHOICE
4148 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4150 "pcspk",
4151 "PC speaker",
4154 { .init_isa = pcspk_audio_init }
4156 #endif
4158 #ifdef CONFIG_SB16
4160 "sb16",
4161 "Creative Sound Blaster 16",
4164 { .init_isa = SB16_init }
4166 #endif
4168 #ifdef CONFIG_CS4231A
4170 "cs4231a",
4171 "CS4231A",
4174 { .init_isa = cs4231a_init }
4176 #endif
4178 #ifdef CONFIG_ADLIB
4180 "adlib",
4181 #ifdef HAS_YMF262
4182 "Yamaha YMF262 (OPL3)",
4183 #else
4184 "Yamaha YM3812 (OPL2)",
4185 #endif
4188 { .init_isa = Adlib_init }
4190 #endif
4192 #ifdef CONFIG_GUS
4194 "gus",
4195 "Gravis Ultrasound GF1",
4198 { .init_isa = GUS_init }
4200 #endif
4202 #ifdef CONFIG_AC97
4204 "ac97",
4205 "Intel 82801AA AC97 Audio",
4208 { .init_pci = ac97_init }
4210 #endif
4212 #ifdef CONFIG_ES1370
4214 "es1370",
4215 "ENSONIQ AudioPCI ES1370",
4218 { .init_pci = es1370_init }
4220 #endif
4222 #endif /* HAS_AUDIO_CHOICE */
4224 { NULL, NULL, 0, 0, { NULL } }
4227 static void select_soundhw (const char *optarg)
4229 struct soundhw *c;
4231 if (*optarg == '?') {
4232 show_valid_cards:
4234 printf ("Valid sound card names (comma separated):\n");
4235 for (c = soundhw; c->name; ++c) {
4236 printf ("%-11s %s\n", c->name, c->descr);
4238 printf ("\n-soundhw all will enable all of the above\n");
4239 exit (*optarg != '?');
4241 else {
4242 size_t l;
4243 const char *p;
4244 char *e;
4245 int bad_card = 0;
4247 if (!strcmp (optarg, "all")) {
4248 for (c = soundhw; c->name; ++c) {
4249 c->enabled = 1;
4251 return;
4254 p = optarg;
4255 while (*p) {
4256 e = strchr (p, ',');
4257 l = !e ? strlen (p) : (size_t) (e - p);
4259 for (c = soundhw; c->name; ++c) {
4260 if (!strncmp (c->name, p, l)) {
4261 c->enabled = 1;
4262 break;
4266 if (!c->name) {
4267 if (l > 80) {
4268 fprintf (stderr,
4269 "Unknown sound card name (too big to show)\n");
4271 else {
4272 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4273 (int) l, p);
4275 bad_card = 1;
4277 p += l + (e != NULL);
4280 if (bad_card)
4281 goto show_valid_cards;
4284 #endif
4286 static void select_vgahw (const char *p)
4288 const char *opts;
4290 cirrus_vga_enabled = 0;
4291 std_vga_enabled = 0;
4292 vmsvga_enabled = 0;
4293 xenfb_enabled = 0;
4294 if (strstart(p, "std", &opts)) {
4295 std_vga_enabled = 1;
4296 } else if (strstart(p, "cirrus", &opts)) {
4297 cirrus_vga_enabled = 1;
4298 } else if (strstart(p, "vmware", &opts)) {
4299 vmsvga_enabled = 1;
4300 } else if (strstart(p, "xenfb", &opts)) {
4301 xenfb_enabled = 1;
4302 } else if (!strstart(p, "none", &opts)) {
4303 invalid_vga:
4304 fprintf(stderr, "Unknown vga type: %s\n", p);
4305 exit(1);
4307 while (*opts) {
4308 const char *nextopt;
4310 if (strstart(opts, ",retrace=", &nextopt)) {
4311 opts = nextopt;
4312 if (strstart(opts, "dumb", &nextopt))
4313 vga_retrace_method = VGA_RETRACE_DUMB;
4314 else if (strstart(opts, "precise", &nextopt))
4315 vga_retrace_method = VGA_RETRACE_PRECISE;
4316 else goto invalid_vga;
4317 } else goto invalid_vga;
4318 opts = nextopt;
4322 #ifdef _WIN32
4323 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4325 exit(STATUS_CONTROL_C_EXIT);
4326 return TRUE;
4328 #endif
4330 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4332 int ret;
4334 if(strlen(str) != 36)
4335 return -1;
4337 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4338 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4339 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4341 if(ret != 16)
4342 return -1;
4344 #ifdef TARGET_I386
4345 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4346 #endif
4348 return 0;
4351 #define MAX_NET_CLIENTS 32
4353 #ifndef _WIN32
4355 static void termsig_handler(int signal)
4357 qemu_system_shutdown_request();
4360 static void termsig_setup(void)
4362 struct sigaction act;
4364 memset(&act, 0, sizeof(act));
4365 act.sa_handler = termsig_handler;
4366 sigaction(SIGINT, &act, NULL);
4367 sigaction(SIGHUP, &act, NULL);
4368 sigaction(SIGTERM, &act, NULL);
4371 #endif
4373 int main(int argc, char **argv, char **envp)
4375 #ifdef CONFIG_GDBSTUB
4376 const char *gdbstub_dev = NULL;
4377 #endif
4378 uint32_t boot_devices_bitmap = 0;
4379 int i;
4380 int snapshot, linux_boot, net_boot;
4381 const char *initrd_filename;
4382 const char *kernel_filename, *kernel_cmdline;
4383 const char *boot_devices = "";
4384 DisplayState *ds;
4385 DisplayChangeListener *dcl;
4386 int cyls, heads, secs, translation;
4387 const char *net_clients[MAX_NET_CLIENTS];
4388 int nb_net_clients;
4389 const char *bt_opts[MAX_BT_CMDLINE];
4390 int nb_bt_opts;
4391 int hda_index;
4392 int optind;
4393 const char *r, *optarg;
4394 CharDriverState *monitor_hd = NULL;
4395 const char *monitor_device;
4396 const char *serial_devices[MAX_SERIAL_PORTS];
4397 int serial_device_index;
4398 const char *parallel_devices[MAX_PARALLEL_PORTS];
4399 int parallel_device_index;
4400 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4401 int virtio_console_index;
4402 const char *loadvm = NULL;
4403 QEMUMachine *machine;
4404 const char *cpu_model;
4405 const char *usb_devices[MAX_USB_CMDLINE];
4406 int usb_devices_index;
4407 #ifndef _WIN32
4408 int fds[2];
4409 #endif
4410 int tb_size;
4411 const char *pid_file = NULL;
4412 const char *incoming = NULL;
4413 #ifndef _WIN32
4414 int fd = 0;
4415 struct passwd *pwd = NULL;
4416 const char *chroot_dir = NULL;
4417 const char *run_as = NULL;
4418 #endif
4419 CPUState *env;
4421 qemu_cache_utils_init(envp);
4423 LIST_INIT (&vm_change_state_head);
4424 #ifndef _WIN32
4426 struct sigaction act;
4427 sigfillset(&act.sa_mask);
4428 act.sa_flags = 0;
4429 act.sa_handler = SIG_IGN;
4430 sigaction(SIGPIPE, &act, NULL);
4432 #else
4433 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4434 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4435 QEMU to run on a single CPU */
4437 HANDLE h;
4438 DWORD mask, smask;
4439 int i;
4440 h = GetCurrentProcess();
4441 if (GetProcessAffinityMask(h, &mask, &smask)) {
4442 for(i = 0; i < 32; i++) {
4443 if (mask & (1 << i))
4444 break;
4446 if (i != 32) {
4447 mask = 1 << i;
4448 SetProcessAffinityMask(h, mask);
4452 #endif
4454 register_machines();
4455 machine = first_machine;
4456 cpu_model = NULL;
4457 initrd_filename = NULL;
4458 ram_size = 0;
4459 vga_ram_size = VGA_RAM_SIZE;
4460 snapshot = 0;
4461 nographic = 0;
4462 curses = 0;
4463 kernel_filename = NULL;
4464 kernel_cmdline = "";
4465 cyls = heads = secs = 0;
4466 translation = BIOS_ATA_TRANSLATION_AUTO;
4467 monitor_device = "vc:80Cx24C";
4469 serial_devices[0] = "vc:80Cx24C";
4470 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4471 serial_devices[i] = NULL;
4472 serial_device_index = 0;
4474 parallel_devices[0] = "vc:80Cx24C";
4475 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4476 parallel_devices[i] = NULL;
4477 parallel_device_index = 0;
4479 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4480 virtio_consoles[i] = NULL;
4481 virtio_console_index = 0;
4483 for (i = 0; i < MAX_NODES; i++) {
4484 node_mem[i] = 0;
4485 node_cpumask[i] = 0;
4488 usb_devices_index = 0;
4490 nb_net_clients = 0;
4491 nb_bt_opts = 0;
4492 nb_drives = 0;
4493 nb_drives_opt = 0;
4494 nb_numa_nodes = 0;
4495 hda_index = -1;
4497 nb_nics = 0;
4499 tb_size = 0;
4500 autostart= 1;
4502 optind = 1;
4503 for(;;) {
4504 if (optind >= argc)
4505 break;
4506 r = argv[optind];
4507 if (r[0] != '-') {
4508 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4509 } else {
4510 const QEMUOption *popt;
4512 optind++;
4513 /* Treat --foo the same as -foo. */
4514 if (r[1] == '-')
4515 r++;
4516 popt = qemu_options;
4517 for(;;) {
4518 if (!popt->name) {
4519 fprintf(stderr, "%s: invalid option -- '%s'\n",
4520 argv[0], r);
4521 exit(1);
4523 if (!strcmp(popt->name, r + 1))
4524 break;
4525 popt++;
4527 if (popt->flags & HAS_ARG) {
4528 if (optind >= argc) {
4529 fprintf(stderr, "%s: option '%s' requires an argument\n",
4530 argv[0], r);
4531 exit(1);
4533 optarg = argv[optind++];
4534 } else {
4535 optarg = NULL;
4538 switch(popt->index) {
4539 case QEMU_OPTION_M:
4540 machine = find_machine(optarg);
4541 if (!machine) {
4542 QEMUMachine *m;
4543 printf("Supported machines are:\n");
4544 for(m = first_machine; m != NULL; m = m->next) {
4545 printf("%-10s %s%s\n",
4546 m->name, m->desc,
4547 m == first_machine ? " (default)" : "");
4549 exit(*optarg != '?');
4551 break;
4552 case QEMU_OPTION_cpu:
4553 /* hw initialization will check this */
4554 if (*optarg == '?') {
4555 /* XXX: implement xxx_cpu_list for targets that still miss it */
4556 #if defined(cpu_list)
4557 cpu_list(stdout, &fprintf);
4558 #endif
4559 exit(0);
4560 } else {
4561 cpu_model = optarg;
4563 break;
4564 case QEMU_OPTION_initrd:
4565 initrd_filename = optarg;
4566 break;
4567 case QEMU_OPTION_hda:
4568 if (cyls == 0)
4569 hda_index = drive_add(optarg, HD_ALIAS, 0);
4570 else
4571 hda_index = drive_add(optarg, HD_ALIAS
4572 ",cyls=%d,heads=%d,secs=%d%s",
4573 0, cyls, heads, secs,
4574 translation == BIOS_ATA_TRANSLATION_LBA ?
4575 ",trans=lba" :
4576 translation == BIOS_ATA_TRANSLATION_NONE ?
4577 ",trans=none" : "");
4578 break;
4579 case QEMU_OPTION_hdb:
4580 case QEMU_OPTION_hdc:
4581 case QEMU_OPTION_hdd:
4582 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4583 break;
4584 case QEMU_OPTION_drive:
4585 drive_add(NULL, "%s", optarg);
4586 break;
4587 case QEMU_OPTION_mtdblock:
4588 drive_add(optarg, MTD_ALIAS);
4589 break;
4590 case QEMU_OPTION_sd:
4591 drive_add(optarg, SD_ALIAS);
4592 break;
4593 case QEMU_OPTION_pflash:
4594 drive_add(optarg, PFLASH_ALIAS);
4595 break;
4596 case QEMU_OPTION_snapshot:
4597 snapshot = 1;
4598 break;
4599 case QEMU_OPTION_hdachs:
4601 const char *p;
4602 p = optarg;
4603 cyls = strtol(p, (char **)&p, 0);
4604 if (cyls < 1 || cyls > 16383)
4605 goto chs_fail;
4606 if (*p != ',')
4607 goto chs_fail;
4608 p++;
4609 heads = strtol(p, (char **)&p, 0);
4610 if (heads < 1 || heads > 16)
4611 goto chs_fail;
4612 if (*p != ',')
4613 goto chs_fail;
4614 p++;
4615 secs = strtol(p, (char **)&p, 0);
4616 if (secs < 1 || secs > 63)
4617 goto chs_fail;
4618 if (*p == ',') {
4619 p++;
4620 if (!strcmp(p, "none"))
4621 translation = BIOS_ATA_TRANSLATION_NONE;
4622 else if (!strcmp(p, "lba"))
4623 translation = BIOS_ATA_TRANSLATION_LBA;
4624 else if (!strcmp(p, "auto"))
4625 translation = BIOS_ATA_TRANSLATION_AUTO;
4626 else
4627 goto chs_fail;
4628 } else if (*p != '\0') {
4629 chs_fail:
4630 fprintf(stderr, "qemu: invalid physical CHS format\n");
4631 exit(1);
4633 if (hda_index != -1)
4634 snprintf(drives_opt[hda_index].opt,
4635 sizeof(drives_opt[hda_index].opt),
4636 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
4637 0, cyls, heads, secs,
4638 translation == BIOS_ATA_TRANSLATION_LBA ?
4639 ",trans=lba" :
4640 translation == BIOS_ATA_TRANSLATION_NONE ?
4641 ",trans=none" : "");
4643 break;
4644 case QEMU_OPTION_numa:
4645 if (nb_numa_nodes >= MAX_NODES) {
4646 fprintf(stderr, "qemu: too many NUMA nodes\n");
4647 exit(1);
4649 numa_add(optarg);
4650 break;
4651 case QEMU_OPTION_nographic:
4652 nographic = 1;
4653 break;
4654 #ifdef CONFIG_CURSES
4655 case QEMU_OPTION_curses:
4656 curses = 1;
4657 break;
4658 #endif
4659 case QEMU_OPTION_portrait:
4660 graphic_rotate = 1;
4661 break;
4662 case QEMU_OPTION_kernel:
4663 kernel_filename = optarg;
4664 break;
4665 case QEMU_OPTION_append:
4666 kernel_cmdline = optarg;
4667 break;
4668 case QEMU_OPTION_cdrom:
4669 drive_add(optarg, CDROM_ALIAS);
4670 break;
4671 case QEMU_OPTION_boot:
4672 boot_devices = optarg;
4673 /* We just do some generic consistency checks */
4675 /* Could easily be extended to 64 devices if needed */
4676 const char *p;
4678 boot_devices_bitmap = 0;
4679 for (p = boot_devices; *p != '\0'; p++) {
4680 /* Allowed boot devices are:
4681 * a b : floppy disk drives
4682 * c ... f : IDE disk drives
4683 * g ... m : machine implementation dependant drives
4684 * n ... p : network devices
4685 * It's up to each machine implementation to check
4686 * if the given boot devices match the actual hardware
4687 * implementation and firmware features.
4689 if (*p < 'a' || *p > 'q') {
4690 fprintf(stderr, "Invalid boot device '%c'\n", *p);
4691 exit(1);
4693 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
4694 fprintf(stderr,
4695 "Boot device '%c' was given twice\n",*p);
4696 exit(1);
4698 boot_devices_bitmap |= 1 << (*p - 'a');
4701 break;
4702 case QEMU_OPTION_fda:
4703 case QEMU_OPTION_fdb:
4704 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
4705 break;
4706 #ifdef TARGET_I386
4707 case QEMU_OPTION_no_fd_bootchk:
4708 fd_bootchk = 0;
4709 break;
4710 #endif
4711 case QEMU_OPTION_net:
4712 if (nb_net_clients >= MAX_NET_CLIENTS) {
4713 fprintf(stderr, "qemu: too many network clients\n");
4714 exit(1);
4716 net_clients[nb_net_clients] = optarg;
4717 nb_net_clients++;
4718 break;
4719 #ifdef CONFIG_SLIRP
4720 case QEMU_OPTION_tftp:
4721 tftp_prefix = optarg;
4722 break;
4723 case QEMU_OPTION_bootp:
4724 bootp_filename = optarg;
4725 break;
4726 #ifndef _WIN32
4727 case QEMU_OPTION_smb:
4728 net_slirp_smb(optarg);
4729 break;
4730 #endif
4731 case QEMU_OPTION_redir:
4732 net_slirp_redir(NULL, optarg);
4733 break;
4734 #endif
4735 case QEMU_OPTION_bt:
4736 if (nb_bt_opts >= MAX_BT_CMDLINE) {
4737 fprintf(stderr, "qemu: too many bluetooth options\n");
4738 exit(1);
4740 bt_opts[nb_bt_opts++] = optarg;
4741 break;
4742 #ifdef HAS_AUDIO
4743 case QEMU_OPTION_audio_help:
4744 AUD_help ();
4745 exit (0);
4746 break;
4747 case QEMU_OPTION_soundhw:
4748 select_soundhw (optarg);
4749 break;
4750 #endif
4751 case QEMU_OPTION_h:
4752 help(0);
4753 break;
4754 case QEMU_OPTION_version:
4755 version();
4756 exit(0);
4757 break;
4758 case QEMU_OPTION_m: {
4759 uint64_t value;
4760 char *ptr;
4762 value = strtoul(optarg, &ptr, 10);
4763 switch (*ptr) {
4764 case 0: case 'M': case 'm':
4765 value <<= 20;
4766 break;
4767 case 'G': case 'g':
4768 value <<= 30;
4769 break;
4770 default:
4771 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
4772 exit(1);
4775 /* On 32-bit hosts, QEMU is limited by virtual address space */
4776 if (value > (2047 << 20)
4777 #ifndef CONFIG_KQEMU
4778 && HOST_LONG_BITS == 32
4779 #endif
4781 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
4782 exit(1);
4784 if (value != (uint64_t)(ram_addr_t)value) {
4785 fprintf(stderr, "qemu: ram size too large\n");
4786 exit(1);
4788 ram_size = value;
4789 break;
4791 case QEMU_OPTION_d:
4793 int mask;
4794 const CPULogItem *item;
4796 mask = cpu_str_to_log_mask(optarg);
4797 if (!mask) {
4798 printf("Log items (comma separated):\n");
4799 for(item = cpu_log_items; item->mask != 0; item++) {
4800 printf("%-10s %s\n", item->name, item->help);
4802 exit(1);
4804 cpu_set_log(mask);
4806 break;
4807 #ifdef CONFIG_GDBSTUB
4808 case QEMU_OPTION_s:
4809 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
4810 break;
4811 case QEMU_OPTION_gdb:
4812 gdbstub_dev = optarg;
4813 break;
4814 #endif
4815 case QEMU_OPTION_L:
4816 bios_dir = optarg;
4817 break;
4818 case QEMU_OPTION_bios:
4819 bios_name = optarg;
4820 break;
4821 case QEMU_OPTION_singlestep:
4822 singlestep = 1;
4823 break;
4824 case QEMU_OPTION_S:
4825 autostart = 0;
4826 break;
4827 #ifndef _WIN32
4828 case QEMU_OPTION_k:
4829 keyboard_layout = optarg;
4830 break;
4831 #endif
4832 case QEMU_OPTION_localtime:
4833 rtc_utc = 0;
4834 break;
4835 case QEMU_OPTION_vga:
4836 select_vgahw (optarg);
4837 break;
4838 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
4839 case QEMU_OPTION_g:
4841 const char *p;
4842 int w, h, depth;
4843 p = optarg;
4844 w = strtol(p, (char **)&p, 10);
4845 if (w <= 0) {
4846 graphic_error:
4847 fprintf(stderr, "qemu: invalid resolution or depth\n");
4848 exit(1);
4850 if (*p != 'x')
4851 goto graphic_error;
4852 p++;
4853 h = strtol(p, (char **)&p, 10);
4854 if (h <= 0)
4855 goto graphic_error;
4856 if (*p == 'x') {
4857 p++;
4858 depth = strtol(p, (char **)&p, 10);
4859 if (depth != 8 && depth != 15 && depth != 16 &&
4860 depth != 24 && depth != 32)
4861 goto graphic_error;
4862 } else if (*p == '\0') {
4863 depth = graphic_depth;
4864 } else {
4865 goto graphic_error;
4868 graphic_width = w;
4869 graphic_height = h;
4870 graphic_depth = depth;
4872 break;
4873 #endif
4874 case QEMU_OPTION_echr:
4876 char *r;
4877 term_escape_char = strtol(optarg, &r, 0);
4878 if (r == optarg)
4879 printf("Bad argument to echr\n");
4880 break;
4882 case QEMU_OPTION_monitor:
4883 monitor_device = optarg;
4884 break;
4885 case QEMU_OPTION_serial:
4886 if (serial_device_index >= MAX_SERIAL_PORTS) {
4887 fprintf(stderr, "qemu: too many serial ports\n");
4888 exit(1);
4890 serial_devices[serial_device_index] = optarg;
4891 serial_device_index++;
4892 break;
4893 case QEMU_OPTION_virtiocon:
4894 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
4895 fprintf(stderr, "qemu: too many virtio consoles\n");
4896 exit(1);
4898 virtio_consoles[virtio_console_index] = optarg;
4899 virtio_console_index++;
4900 break;
4901 case QEMU_OPTION_parallel:
4902 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
4903 fprintf(stderr, "qemu: too many parallel ports\n");
4904 exit(1);
4906 parallel_devices[parallel_device_index] = optarg;
4907 parallel_device_index++;
4908 break;
4909 case QEMU_OPTION_loadvm:
4910 loadvm = optarg;
4911 break;
4912 case QEMU_OPTION_full_screen:
4913 full_screen = 1;
4914 break;
4915 #ifdef CONFIG_SDL
4916 case QEMU_OPTION_no_frame:
4917 no_frame = 1;
4918 break;
4919 case QEMU_OPTION_alt_grab:
4920 alt_grab = 1;
4921 break;
4922 case QEMU_OPTION_no_quit:
4923 no_quit = 1;
4924 break;
4925 case QEMU_OPTION_sdl:
4926 sdl = 1;
4927 break;
4928 #endif
4929 case QEMU_OPTION_pidfile:
4930 pid_file = optarg;
4931 break;
4932 #ifdef TARGET_I386
4933 case QEMU_OPTION_win2k_hack:
4934 win2k_install_hack = 1;
4935 break;
4936 case QEMU_OPTION_rtc_td_hack:
4937 rtc_td_hack = 1;
4938 break;
4939 case QEMU_OPTION_acpitable:
4940 if(acpi_table_add(optarg) < 0) {
4941 fprintf(stderr, "Wrong acpi table provided\n");
4942 exit(1);
4944 break;
4945 case QEMU_OPTION_smbios:
4946 if(smbios_entry_add(optarg) < 0) {
4947 fprintf(stderr, "Wrong smbios provided\n");
4948 exit(1);
4950 break;
4951 #endif
4952 #ifdef CONFIG_KQEMU
4953 case QEMU_OPTION_no_kqemu:
4954 kqemu_allowed = 0;
4955 break;
4956 case QEMU_OPTION_kernel_kqemu:
4957 kqemu_allowed = 2;
4958 break;
4959 #endif
4960 #ifdef CONFIG_KVM
4961 case QEMU_OPTION_enable_kvm:
4962 kvm_allowed = 1;
4963 #ifdef CONFIG_KQEMU
4964 kqemu_allowed = 0;
4965 #endif
4966 break;
4967 #endif
4968 case QEMU_OPTION_usb:
4969 usb_enabled = 1;
4970 break;
4971 case QEMU_OPTION_usbdevice:
4972 usb_enabled = 1;
4973 if (usb_devices_index >= MAX_USB_CMDLINE) {
4974 fprintf(stderr, "Too many USB devices\n");
4975 exit(1);
4977 usb_devices[usb_devices_index] = optarg;
4978 usb_devices_index++;
4979 break;
4980 case QEMU_OPTION_smp:
4981 smp_cpus = atoi(optarg);
4982 if (smp_cpus < 1) {
4983 fprintf(stderr, "Invalid number of CPUs\n");
4984 exit(1);
4986 break;
4987 case QEMU_OPTION_vnc:
4988 vnc_display = optarg;
4989 break;
4990 #ifdef TARGET_I386
4991 case QEMU_OPTION_no_acpi:
4992 acpi_enabled = 0;
4993 break;
4994 case QEMU_OPTION_no_hpet:
4995 no_hpet = 1;
4996 break;
4997 #endif
4998 case QEMU_OPTION_no_reboot:
4999 no_reboot = 1;
5000 break;
5001 case QEMU_OPTION_no_shutdown:
5002 no_shutdown = 1;
5003 break;
5004 case QEMU_OPTION_show_cursor:
5005 cursor_hide = 0;
5006 break;
5007 case QEMU_OPTION_uuid:
5008 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5009 fprintf(stderr, "Fail to parse UUID string."
5010 " Wrong format.\n");
5011 exit(1);
5013 break;
5014 #ifndef _WIN32
5015 case QEMU_OPTION_daemonize:
5016 daemonize = 1;
5017 break;
5018 #endif
5019 case QEMU_OPTION_option_rom:
5020 if (nb_option_roms >= MAX_OPTION_ROMS) {
5021 fprintf(stderr, "Too many option ROMs\n");
5022 exit(1);
5024 option_rom[nb_option_roms] = optarg;
5025 nb_option_roms++;
5026 break;
5027 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5028 case QEMU_OPTION_semihosting:
5029 semihosting_enabled = 1;
5030 break;
5031 #endif
5032 case QEMU_OPTION_name:
5033 qemu_name = optarg;
5034 break;
5035 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5036 case QEMU_OPTION_prom_env:
5037 if (nb_prom_envs >= MAX_PROM_ENVS) {
5038 fprintf(stderr, "Too many prom variables\n");
5039 exit(1);
5041 prom_envs[nb_prom_envs] = optarg;
5042 nb_prom_envs++;
5043 break;
5044 #endif
5045 #ifdef TARGET_ARM
5046 case QEMU_OPTION_old_param:
5047 old_param = 1;
5048 break;
5049 #endif
5050 case QEMU_OPTION_clock:
5051 configure_alarms(optarg);
5052 break;
5053 case QEMU_OPTION_startdate:
5055 struct tm tm;
5056 time_t rtc_start_date;
5057 if (!strcmp(optarg, "now")) {
5058 rtc_date_offset = -1;
5059 } else {
5060 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5061 &tm.tm_year,
5062 &tm.tm_mon,
5063 &tm.tm_mday,
5064 &tm.tm_hour,
5065 &tm.tm_min,
5066 &tm.tm_sec) == 6) {
5067 /* OK */
5068 } else if (sscanf(optarg, "%d-%d-%d",
5069 &tm.tm_year,
5070 &tm.tm_mon,
5071 &tm.tm_mday) == 3) {
5072 tm.tm_hour = 0;
5073 tm.tm_min = 0;
5074 tm.tm_sec = 0;
5075 } else {
5076 goto date_fail;
5078 tm.tm_year -= 1900;
5079 tm.tm_mon--;
5080 rtc_start_date = mktimegm(&tm);
5081 if (rtc_start_date == -1) {
5082 date_fail:
5083 fprintf(stderr, "Invalid date format. Valid format are:\n"
5084 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5085 exit(1);
5087 rtc_date_offset = time(NULL) - rtc_start_date;
5090 break;
5091 case QEMU_OPTION_tb_size:
5092 tb_size = strtol(optarg, NULL, 0);
5093 if (tb_size < 0)
5094 tb_size = 0;
5095 break;
5096 case QEMU_OPTION_icount:
5097 use_icount = 1;
5098 if (strcmp(optarg, "auto") == 0) {
5099 icount_time_shift = -1;
5100 } else {
5101 icount_time_shift = strtol(optarg, NULL, 0);
5103 break;
5104 case QEMU_OPTION_incoming:
5105 incoming = optarg;
5106 break;
5107 #ifndef _WIN32
5108 case QEMU_OPTION_chroot:
5109 chroot_dir = optarg;
5110 break;
5111 case QEMU_OPTION_runas:
5112 run_as = optarg;
5113 break;
5114 #endif
5115 #ifdef CONFIG_XEN
5116 case QEMU_OPTION_xen_domid:
5117 xen_domid = atoi(optarg);
5118 break;
5119 case QEMU_OPTION_xen_create:
5120 xen_mode = XEN_CREATE;
5121 break;
5122 case QEMU_OPTION_xen_attach:
5123 xen_mode = XEN_ATTACH;
5124 break;
5125 #endif
5130 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5131 if (kvm_allowed && kqemu_allowed) {
5132 fprintf(stderr,
5133 "You can not enable both KVM and kqemu at the same time\n");
5134 exit(1);
5136 #endif
5138 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5139 if (smp_cpus > machine->max_cpus) {
5140 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5141 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5142 machine->max_cpus);
5143 exit(1);
5146 if (nographic) {
5147 if (serial_device_index == 0)
5148 serial_devices[0] = "stdio";
5149 if (parallel_device_index == 0)
5150 parallel_devices[0] = "null";
5151 if (strncmp(monitor_device, "vc", 2) == 0)
5152 monitor_device = "stdio";
5155 #ifndef _WIN32
5156 if (daemonize) {
5157 pid_t pid;
5159 if (pipe(fds) == -1)
5160 exit(1);
5162 pid = fork();
5163 if (pid > 0) {
5164 uint8_t status;
5165 ssize_t len;
5167 close(fds[1]);
5169 again:
5170 len = read(fds[0], &status, 1);
5171 if (len == -1 && (errno == EINTR))
5172 goto again;
5174 if (len != 1)
5175 exit(1);
5176 else if (status == 1) {
5177 fprintf(stderr, "Could not acquire pidfile\n");
5178 exit(1);
5179 } else
5180 exit(0);
5181 } else if (pid < 0)
5182 exit(1);
5184 setsid();
5186 pid = fork();
5187 if (pid > 0)
5188 exit(0);
5189 else if (pid < 0)
5190 exit(1);
5192 umask(027);
5194 signal(SIGTSTP, SIG_IGN);
5195 signal(SIGTTOU, SIG_IGN);
5196 signal(SIGTTIN, SIG_IGN);
5199 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5200 if (daemonize) {
5201 uint8_t status = 1;
5202 write(fds[1], &status, 1);
5203 } else
5204 fprintf(stderr, "Could not acquire pid file\n");
5205 exit(1);
5207 #endif
5209 #ifdef CONFIG_KQEMU
5210 if (smp_cpus > 1)
5211 kqemu_allowed = 0;
5212 #endif
5213 if (qemu_init_main_loop()) {
5214 fprintf(stderr, "qemu_init_main_loop failed\n");
5215 exit(1);
5217 linux_boot = (kernel_filename != NULL);
5218 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5220 if (!linux_boot && *kernel_cmdline != '\0') {
5221 fprintf(stderr, "-append only allowed with -kernel option\n");
5222 exit(1);
5225 if (!linux_boot && initrd_filename != NULL) {
5226 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5227 exit(1);
5230 /* boot to floppy or the default cd if no hard disk defined yet */
5231 if (!boot_devices[0]) {
5232 boot_devices = "cad";
5234 setvbuf(stdout, NULL, _IOLBF, 0);
5236 init_timers();
5237 if (init_timer_alarm() < 0) {
5238 fprintf(stderr, "could not initialize alarm timer\n");
5239 exit(1);
5241 if (use_icount && icount_time_shift < 0) {
5242 use_icount = 2;
5243 /* 125MIPS seems a reasonable initial guess at the guest speed.
5244 It will be corrected fairly quickly anyway. */
5245 icount_time_shift = 3;
5246 init_icount_adjust();
5249 #ifdef _WIN32
5250 socket_init();
5251 #endif
5253 /* init network clients */
5254 if (nb_net_clients == 0) {
5255 /* if no clients, we use a default config */
5256 net_clients[nb_net_clients++] = "nic";
5257 #ifdef CONFIG_SLIRP
5258 net_clients[nb_net_clients++] = "user";
5259 #endif
5262 for(i = 0;i < nb_net_clients; i++) {
5263 if (net_client_parse(net_clients[i]) < 0)
5264 exit(1);
5266 net_client_check();
5268 #ifdef TARGET_I386
5269 /* XXX: this should be moved in the PC machine instantiation code */
5270 if (net_boot != 0) {
5271 int netroms = 0;
5272 for (i = 0; i < nb_nics && i < 4; i++) {
5273 const char *model = nd_table[i].model;
5274 char buf[1024];
5275 if (net_boot & (1 << i)) {
5276 if (model == NULL)
5277 model = "ne2k_pci";
5278 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
5279 if (get_image_size(buf) > 0) {
5280 if (nb_option_roms >= MAX_OPTION_ROMS) {
5281 fprintf(stderr, "Too many option ROMs\n");
5282 exit(1);
5284 option_rom[nb_option_roms] = strdup(buf);
5285 nb_option_roms++;
5286 netroms++;
5290 if (netroms == 0) {
5291 fprintf(stderr, "No valid PXE rom found for network device\n");
5292 exit(1);
5295 #endif
5297 /* init the bluetooth world */
5298 for (i = 0; i < nb_bt_opts; i++)
5299 if (bt_parse(bt_opts[i]))
5300 exit(1);
5302 /* init the memory */
5303 if (ram_size == 0)
5304 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5306 #ifdef CONFIG_KQEMU
5307 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5308 guest ram allocation. It needs to go away. */
5309 if (kqemu_allowed) {
5310 kqemu_phys_ram_size = ram_size + VGA_RAM_SIZE + 4 * 1024 * 1024;
5311 kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
5312 if (!kqemu_phys_ram_base) {
5313 fprintf(stderr, "Could not allocate physical memory\n");
5314 exit(1);
5317 #endif
5319 /* init the dynamic translator */
5320 cpu_exec_init_all(tb_size * 1024 * 1024);
5322 bdrv_init();
5323 dma_helper_init();
5325 /* we always create the cdrom drive, even if no disk is there */
5327 if (nb_drives_opt < MAX_DRIVES)
5328 drive_add(NULL, CDROM_ALIAS);
5330 /* we always create at least one floppy */
5332 if (nb_drives_opt < MAX_DRIVES)
5333 drive_add(NULL, FD_ALIAS, 0);
5335 /* we always create one sd slot, even if no card is in it */
5337 if (nb_drives_opt < MAX_DRIVES)
5338 drive_add(NULL, SD_ALIAS);
5340 /* open the virtual block devices */
5342 for(i = 0; i < nb_drives_opt; i++)
5343 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5344 exit(1);
5346 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5347 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5349 #ifndef _WIN32
5350 /* must be after terminal init, SDL library changes signal handlers */
5351 termsig_setup();
5352 #endif
5354 /* Maintain compatibility with multiple stdio monitors */
5355 if (!strcmp(monitor_device,"stdio")) {
5356 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5357 const char *devname = serial_devices[i];
5358 if (devname && !strcmp(devname,"mon:stdio")) {
5359 monitor_device = NULL;
5360 break;
5361 } else if (devname && !strcmp(devname,"stdio")) {
5362 monitor_device = NULL;
5363 serial_devices[i] = "mon:stdio";
5364 break;
5369 if (nb_numa_nodes > 0) {
5370 int i;
5372 if (nb_numa_nodes > smp_cpus) {
5373 nb_numa_nodes = smp_cpus;
5376 /* If no memory size if given for any node, assume the default case
5377 * and distribute the available memory equally across all nodes
5379 for (i = 0; i < nb_numa_nodes; i++) {
5380 if (node_mem[i] != 0)
5381 break;
5383 if (i == nb_numa_nodes) {
5384 uint64_t usedmem = 0;
5386 /* On Linux, the each node's border has to be 8MB aligned,
5387 * the final node gets the rest.
5389 for (i = 0; i < nb_numa_nodes - 1; i++) {
5390 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5391 usedmem += node_mem[i];
5393 node_mem[i] = ram_size - usedmem;
5396 for (i = 0; i < nb_numa_nodes; i++) {
5397 if (node_cpumask[i] != 0)
5398 break;
5400 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5401 * must cope with this anyway, because there are BIOSes out there in
5402 * real machines which also use this scheme.
5404 if (i == nb_numa_nodes) {
5405 for (i = 0; i < smp_cpus; i++) {
5406 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5411 if (kvm_enabled()) {
5412 int ret;
5414 ret = kvm_init(smp_cpus);
5415 if (ret < 0) {
5416 fprintf(stderr, "failed to initialize KVM\n");
5417 exit(1);
5421 if (monitor_device) {
5422 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5423 if (!monitor_hd) {
5424 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5425 exit(1);
5429 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5430 const char *devname = serial_devices[i];
5431 if (devname && strcmp(devname, "none")) {
5432 char label[32];
5433 snprintf(label, sizeof(label), "serial%d", i);
5434 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5435 if (!serial_hds[i]) {
5436 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5437 devname);
5438 exit(1);
5443 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5444 const char *devname = parallel_devices[i];
5445 if (devname && strcmp(devname, "none")) {
5446 char label[32];
5447 snprintf(label, sizeof(label), "parallel%d", i);
5448 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5449 if (!parallel_hds[i]) {
5450 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5451 devname);
5452 exit(1);
5457 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5458 const char *devname = virtio_consoles[i];
5459 if (devname && strcmp(devname, "none")) {
5460 char label[32];
5461 snprintf(label, sizeof(label), "virtcon%d", i);
5462 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5463 if (!virtcon_hds[i]) {
5464 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5465 devname);
5466 exit(1);
5471 machine->init(ram_size, vga_ram_size, boot_devices,
5472 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5475 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5476 for (i = 0; i < nb_numa_nodes; i++) {
5477 if (node_cpumask[i] & (1 << env->cpu_index)) {
5478 env->numa_node = i;
5483 current_machine = machine;
5485 /* Set KVM's vcpu state to qemu's initial CPUState. */
5486 if (kvm_enabled()) {
5487 int ret;
5489 ret = kvm_sync_vcpus();
5490 if (ret < 0) {
5491 fprintf(stderr, "failed to initialize vcpus\n");
5492 exit(1);
5496 /* init USB devices */
5497 if (usb_enabled) {
5498 for(i = 0; i < usb_devices_index; i++) {
5499 if (usb_device_add(usb_devices[i], 0) < 0) {
5500 fprintf(stderr, "Warning: could not add USB device %s\n",
5501 usb_devices[i]);
5506 if (!display_state)
5507 dumb_display_init();
5508 /* just use the first displaystate for the moment */
5509 ds = display_state;
5510 /* terminal init */
5511 if (nographic) {
5512 if (curses) {
5513 fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
5514 exit(1);
5516 } else {
5517 #if defined(CONFIG_CURSES)
5518 if (curses) {
5519 /* At the moment curses cannot be used with other displays */
5520 curses_display_init(ds, full_screen);
5521 } else
5522 #endif
5524 if (vnc_display != NULL) {
5525 vnc_display_init(ds);
5526 if (vnc_display_open(ds, vnc_display) < 0)
5527 exit(1);
5529 #if defined(CONFIG_SDL)
5530 if (sdl || !vnc_display)
5531 sdl_display_init(ds, full_screen, no_frame);
5532 #elif defined(CONFIG_COCOA)
5533 if (sdl || !vnc_display)
5534 cocoa_display_init(ds, full_screen);
5535 #endif
5538 dpy_resize(ds);
5540 dcl = ds->listeners;
5541 while (dcl != NULL) {
5542 if (dcl->dpy_refresh != NULL) {
5543 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5544 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5546 dcl = dcl->next;
5549 if (nographic || (vnc_display && !sdl)) {
5550 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5551 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5554 text_consoles_set_display(display_state);
5555 qemu_chr_initial_reset();
5557 if (monitor_device && monitor_hd)
5558 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
5560 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5561 const char *devname = serial_devices[i];
5562 if (devname && strcmp(devname, "none")) {
5563 char label[32];
5564 snprintf(label, sizeof(label), "serial%d", i);
5565 if (strstart(devname, "vc", 0))
5566 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5570 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5571 const char *devname = parallel_devices[i];
5572 if (devname && strcmp(devname, "none")) {
5573 char label[32];
5574 snprintf(label, sizeof(label), "parallel%d", i);
5575 if (strstart(devname, "vc", 0))
5576 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5580 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5581 const char *devname = virtio_consoles[i];
5582 if (virtcon_hds[i] && devname) {
5583 char label[32];
5584 snprintf(label, sizeof(label), "virtcon%d", i);
5585 if (strstart(devname, "vc", 0))
5586 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
5590 #ifdef CONFIG_GDBSTUB
5591 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
5592 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
5593 gdbstub_dev);
5594 exit(1);
5596 #endif
5598 if (loadvm)
5599 do_loadvm(cur_mon, loadvm);
5601 if (incoming) {
5602 autostart = 0; /* fixme how to deal with -daemonize */
5603 qemu_start_incoming_migration(incoming);
5606 if (autostart)
5607 vm_start();
5609 #ifndef _WIN32
5610 if (daemonize) {
5611 uint8_t status = 0;
5612 ssize_t len;
5614 again1:
5615 len = write(fds[1], &status, 1);
5616 if (len == -1 && (errno == EINTR))
5617 goto again1;
5619 if (len != 1)
5620 exit(1);
5622 chdir("/");
5623 TFR(fd = open("/dev/null", O_RDWR));
5624 if (fd == -1)
5625 exit(1);
5628 if (run_as) {
5629 pwd = getpwnam(run_as);
5630 if (!pwd) {
5631 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
5632 exit(1);
5636 if (chroot_dir) {
5637 if (chroot(chroot_dir) < 0) {
5638 fprintf(stderr, "chroot failed\n");
5639 exit(1);
5641 chdir("/");
5644 if (run_as) {
5645 if (setgid(pwd->pw_gid) < 0) {
5646 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
5647 exit(1);
5649 if (setuid(pwd->pw_uid) < 0) {
5650 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
5651 exit(1);
5653 if (setuid(0) != -1) {
5654 fprintf(stderr, "Dropping privileges failed\n");
5655 exit(1);
5659 if (daemonize) {
5660 dup2(fd, 0);
5661 dup2(fd, 1);
5662 dup2(fd, 2);
5664 close(fd);
5666 #endif
5668 main_loop();
5669 quit_timers();
5670 net_cleanup();
5672 return 0;