qemu: refactor main_loop (Marcelo Tosatti)
[qemu/mmix.git] / cpu-all.h
blobe8cccc646071c3cf51e6cedb76f767af910e71ec
1 /*
2 * defines common to all virtual CPUs
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
20 #ifndef CPU_ALL_H
21 #define CPU_ALL_H
23 #include "qemu-common.h"
25 #if defined(__arm__) || defined(__sparc__) || defined(__mips__) || defined(__hppa__)
26 #define WORDS_ALIGNED
27 #endif
29 /* some important defines:
31 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
32 * memory accesses.
34 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
35 * otherwise little endian.
37 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
39 * TARGET_WORDS_BIGENDIAN : same for target cpu
42 #include "bswap.h"
43 #include "softfloat.h"
45 #if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
46 #define BSWAP_NEEDED
47 #endif
49 #ifdef BSWAP_NEEDED
51 static inline uint16_t tswap16(uint16_t s)
53 return bswap16(s);
56 static inline uint32_t tswap32(uint32_t s)
58 return bswap32(s);
61 static inline uint64_t tswap64(uint64_t s)
63 return bswap64(s);
66 static inline void tswap16s(uint16_t *s)
68 *s = bswap16(*s);
71 static inline void tswap32s(uint32_t *s)
73 *s = bswap32(*s);
76 static inline void tswap64s(uint64_t *s)
78 *s = bswap64(*s);
81 #else
83 static inline uint16_t tswap16(uint16_t s)
85 return s;
88 static inline uint32_t tswap32(uint32_t s)
90 return s;
93 static inline uint64_t tswap64(uint64_t s)
95 return s;
98 static inline void tswap16s(uint16_t *s)
102 static inline void tswap32s(uint32_t *s)
106 static inline void tswap64s(uint64_t *s)
110 #endif
112 #if TARGET_LONG_SIZE == 4
113 #define tswapl(s) tswap32(s)
114 #define tswapls(s) tswap32s((uint32_t *)(s))
115 #define bswaptls(s) bswap32s(s)
116 #else
117 #define tswapl(s) tswap64(s)
118 #define tswapls(s) tswap64s((uint64_t *)(s))
119 #define bswaptls(s) bswap64s(s)
120 #endif
122 typedef union {
123 float32 f;
124 uint32_t l;
125 } CPU_FloatU;
127 /* NOTE: arm FPA is horrible as double 32 bit words are stored in big
128 endian ! */
129 typedef union {
130 float64 d;
131 #if defined(WORDS_BIGENDIAN) \
132 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
133 struct {
134 uint32_t upper;
135 uint32_t lower;
136 } l;
137 #else
138 struct {
139 uint32_t lower;
140 uint32_t upper;
141 } l;
142 #endif
143 uint64_t ll;
144 } CPU_DoubleU;
146 #ifdef TARGET_SPARC
147 typedef union {
148 float128 q;
149 #if defined(WORDS_BIGENDIAN) \
150 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
151 struct {
152 uint32_t upmost;
153 uint32_t upper;
154 uint32_t lower;
155 uint32_t lowest;
156 } l;
157 struct {
158 uint64_t upper;
159 uint64_t lower;
160 } ll;
161 #else
162 struct {
163 uint32_t lowest;
164 uint32_t lower;
165 uint32_t upper;
166 uint32_t upmost;
167 } l;
168 struct {
169 uint64_t lower;
170 uint64_t upper;
171 } ll;
172 #endif
173 } CPU_QuadU;
174 #endif
176 /* CPU memory access without any memory or io remapping */
179 * the generic syntax for the memory accesses is:
181 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
183 * store: st{type}{size}{endian}_{access_type}(ptr, val)
185 * type is:
186 * (empty): integer access
187 * f : float access
189 * sign is:
190 * (empty): for floats or 32 bit size
191 * u : unsigned
192 * s : signed
194 * size is:
195 * b: 8 bits
196 * w: 16 bits
197 * l: 32 bits
198 * q: 64 bits
200 * endian is:
201 * (empty): target cpu endianness or 8 bit access
202 * r : reversed target cpu endianness (not implemented yet)
203 * be : big endian (not implemented yet)
204 * le : little endian (not implemented yet)
206 * access_type is:
207 * raw : host memory access
208 * user : user mode access using soft MMU
209 * kernel : kernel mode access using soft MMU
211 static inline int ldub_p(const void *ptr)
213 return *(uint8_t *)ptr;
216 static inline int ldsb_p(const void *ptr)
218 return *(int8_t *)ptr;
221 static inline void stb_p(void *ptr, int v)
223 *(uint8_t *)ptr = v;
226 /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
227 kernel handles unaligned load/stores may give better results, but
228 it is a system wide setting : bad */
229 #if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
231 /* conservative code for little endian unaligned accesses */
232 static inline int lduw_le_p(const void *ptr)
234 #ifdef _ARCH_PPC
235 int val;
236 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
237 return val;
238 #else
239 const uint8_t *p = ptr;
240 return p[0] | (p[1] << 8);
241 #endif
244 static inline int ldsw_le_p(const void *ptr)
246 #ifdef _ARCH_PPC
247 int val;
248 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
249 return (int16_t)val;
250 #else
251 const uint8_t *p = ptr;
252 return (int16_t)(p[0] | (p[1] << 8));
253 #endif
256 static inline int ldl_le_p(const void *ptr)
258 #ifdef _ARCH_PPC
259 int val;
260 __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
261 return val;
262 #else
263 const uint8_t *p = ptr;
264 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
265 #endif
268 static inline uint64_t ldq_le_p(const void *ptr)
270 const uint8_t *p = ptr;
271 uint32_t v1, v2;
272 v1 = ldl_le_p(p);
273 v2 = ldl_le_p(p + 4);
274 return v1 | ((uint64_t)v2 << 32);
277 static inline void stw_le_p(void *ptr, int v)
279 #ifdef _ARCH_PPC
280 __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
281 #else
282 uint8_t *p = ptr;
283 p[0] = v;
284 p[1] = v >> 8;
285 #endif
288 static inline void stl_le_p(void *ptr, int v)
290 #ifdef _ARCH_PPC
291 __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
292 #else
293 uint8_t *p = ptr;
294 p[0] = v;
295 p[1] = v >> 8;
296 p[2] = v >> 16;
297 p[3] = v >> 24;
298 #endif
301 static inline void stq_le_p(void *ptr, uint64_t v)
303 uint8_t *p = ptr;
304 stl_le_p(p, (uint32_t)v);
305 stl_le_p(p + 4, v >> 32);
308 /* float access */
310 static inline float32 ldfl_le_p(const void *ptr)
312 union {
313 float32 f;
314 uint32_t i;
315 } u;
316 u.i = ldl_le_p(ptr);
317 return u.f;
320 static inline void stfl_le_p(void *ptr, float32 v)
322 union {
323 float32 f;
324 uint32_t i;
325 } u;
326 u.f = v;
327 stl_le_p(ptr, u.i);
330 static inline float64 ldfq_le_p(const void *ptr)
332 CPU_DoubleU u;
333 u.l.lower = ldl_le_p(ptr);
334 u.l.upper = ldl_le_p(ptr + 4);
335 return u.d;
338 static inline void stfq_le_p(void *ptr, float64 v)
340 CPU_DoubleU u;
341 u.d = v;
342 stl_le_p(ptr, u.l.lower);
343 stl_le_p(ptr + 4, u.l.upper);
346 #else
348 static inline int lduw_le_p(const void *ptr)
350 return *(uint16_t *)ptr;
353 static inline int ldsw_le_p(const void *ptr)
355 return *(int16_t *)ptr;
358 static inline int ldl_le_p(const void *ptr)
360 return *(uint32_t *)ptr;
363 static inline uint64_t ldq_le_p(const void *ptr)
365 return *(uint64_t *)ptr;
368 static inline void stw_le_p(void *ptr, int v)
370 *(uint16_t *)ptr = v;
373 static inline void stl_le_p(void *ptr, int v)
375 *(uint32_t *)ptr = v;
378 static inline void stq_le_p(void *ptr, uint64_t v)
380 *(uint64_t *)ptr = v;
383 /* float access */
385 static inline float32 ldfl_le_p(const void *ptr)
387 return *(float32 *)ptr;
390 static inline float64 ldfq_le_p(const void *ptr)
392 return *(float64 *)ptr;
395 static inline void stfl_le_p(void *ptr, float32 v)
397 *(float32 *)ptr = v;
400 static inline void stfq_le_p(void *ptr, float64 v)
402 *(float64 *)ptr = v;
404 #endif
406 #if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
408 static inline int lduw_be_p(const void *ptr)
410 #if defined(__i386__)
411 int val;
412 asm volatile ("movzwl %1, %0\n"
413 "xchgb %b0, %h0\n"
414 : "=q" (val)
415 : "m" (*(uint16_t *)ptr));
416 return val;
417 #else
418 const uint8_t *b = ptr;
419 return ((b[0] << 8) | b[1]);
420 #endif
423 static inline int ldsw_be_p(const void *ptr)
425 #if defined(__i386__)
426 int val;
427 asm volatile ("movzwl %1, %0\n"
428 "xchgb %b0, %h0\n"
429 : "=q" (val)
430 : "m" (*(uint16_t *)ptr));
431 return (int16_t)val;
432 #else
433 const uint8_t *b = ptr;
434 return (int16_t)((b[0] << 8) | b[1]);
435 #endif
438 static inline int ldl_be_p(const void *ptr)
440 #if defined(__i386__) || defined(__x86_64__)
441 int val;
442 asm volatile ("movl %1, %0\n"
443 "bswap %0\n"
444 : "=r" (val)
445 : "m" (*(uint32_t *)ptr));
446 return val;
447 #else
448 const uint8_t *b = ptr;
449 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
450 #endif
453 static inline uint64_t ldq_be_p(const void *ptr)
455 uint32_t a,b;
456 a = ldl_be_p(ptr);
457 b = ldl_be_p((uint8_t *)ptr + 4);
458 return (((uint64_t)a<<32)|b);
461 static inline void stw_be_p(void *ptr, int v)
463 #if defined(__i386__)
464 asm volatile ("xchgb %b0, %h0\n"
465 "movw %w0, %1\n"
466 : "=q" (v)
467 : "m" (*(uint16_t *)ptr), "0" (v));
468 #else
469 uint8_t *d = (uint8_t *) ptr;
470 d[0] = v >> 8;
471 d[1] = v;
472 #endif
475 static inline void stl_be_p(void *ptr, int v)
477 #if defined(__i386__) || defined(__x86_64__)
478 asm volatile ("bswap %0\n"
479 "movl %0, %1\n"
480 : "=r" (v)
481 : "m" (*(uint32_t *)ptr), "0" (v));
482 #else
483 uint8_t *d = (uint8_t *) ptr;
484 d[0] = v >> 24;
485 d[1] = v >> 16;
486 d[2] = v >> 8;
487 d[3] = v;
488 #endif
491 static inline void stq_be_p(void *ptr, uint64_t v)
493 stl_be_p(ptr, v >> 32);
494 stl_be_p((uint8_t *)ptr + 4, v);
497 /* float access */
499 static inline float32 ldfl_be_p(const void *ptr)
501 union {
502 float32 f;
503 uint32_t i;
504 } u;
505 u.i = ldl_be_p(ptr);
506 return u.f;
509 static inline void stfl_be_p(void *ptr, float32 v)
511 union {
512 float32 f;
513 uint32_t i;
514 } u;
515 u.f = v;
516 stl_be_p(ptr, u.i);
519 static inline float64 ldfq_be_p(const void *ptr)
521 CPU_DoubleU u;
522 u.l.upper = ldl_be_p(ptr);
523 u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
524 return u.d;
527 static inline void stfq_be_p(void *ptr, float64 v)
529 CPU_DoubleU u;
530 u.d = v;
531 stl_be_p(ptr, u.l.upper);
532 stl_be_p((uint8_t *)ptr + 4, u.l.lower);
535 #else
537 static inline int lduw_be_p(const void *ptr)
539 return *(uint16_t *)ptr;
542 static inline int ldsw_be_p(const void *ptr)
544 return *(int16_t *)ptr;
547 static inline int ldl_be_p(const void *ptr)
549 return *(uint32_t *)ptr;
552 static inline uint64_t ldq_be_p(const void *ptr)
554 return *(uint64_t *)ptr;
557 static inline void stw_be_p(void *ptr, int v)
559 *(uint16_t *)ptr = v;
562 static inline void stl_be_p(void *ptr, int v)
564 *(uint32_t *)ptr = v;
567 static inline void stq_be_p(void *ptr, uint64_t v)
569 *(uint64_t *)ptr = v;
572 /* float access */
574 static inline float32 ldfl_be_p(const void *ptr)
576 return *(float32 *)ptr;
579 static inline float64 ldfq_be_p(const void *ptr)
581 return *(float64 *)ptr;
584 static inline void stfl_be_p(void *ptr, float32 v)
586 *(float32 *)ptr = v;
589 static inline void stfq_be_p(void *ptr, float64 v)
591 *(float64 *)ptr = v;
594 #endif
596 /* target CPU memory access functions */
597 #if defined(TARGET_WORDS_BIGENDIAN)
598 #define lduw_p(p) lduw_be_p(p)
599 #define ldsw_p(p) ldsw_be_p(p)
600 #define ldl_p(p) ldl_be_p(p)
601 #define ldq_p(p) ldq_be_p(p)
602 #define ldfl_p(p) ldfl_be_p(p)
603 #define ldfq_p(p) ldfq_be_p(p)
604 #define stw_p(p, v) stw_be_p(p, v)
605 #define stl_p(p, v) stl_be_p(p, v)
606 #define stq_p(p, v) stq_be_p(p, v)
607 #define stfl_p(p, v) stfl_be_p(p, v)
608 #define stfq_p(p, v) stfq_be_p(p, v)
609 #else
610 #define lduw_p(p) lduw_le_p(p)
611 #define ldsw_p(p) ldsw_le_p(p)
612 #define ldl_p(p) ldl_le_p(p)
613 #define ldq_p(p) ldq_le_p(p)
614 #define ldfl_p(p) ldfl_le_p(p)
615 #define ldfq_p(p) ldfq_le_p(p)
616 #define stw_p(p, v) stw_le_p(p, v)
617 #define stl_p(p, v) stl_le_p(p, v)
618 #define stq_p(p, v) stq_le_p(p, v)
619 #define stfl_p(p, v) stfl_le_p(p, v)
620 #define stfq_p(p, v) stfq_le_p(p, v)
621 #endif
623 /* MMU memory access macros */
625 #if defined(CONFIG_USER_ONLY)
626 #include <assert.h>
627 #include "qemu-types.h"
629 /* On some host systems the guest address space is reserved on the host.
630 * This allows the guest address space to be offset to a convenient location.
632 //#define GUEST_BASE 0x20000000
633 #define GUEST_BASE 0
635 /* All direct uses of g2h and h2g need to go away for usermode softmmu. */
636 #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
637 #define h2g(x) ({ \
638 unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
639 /* Check if given address fits target address space */ \
640 assert(__ret == (abi_ulong)__ret); \
641 (abi_ulong)__ret; \
643 #define h2g_valid(x) ({ \
644 unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
645 (__guest == (abi_ulong)__guest); \
648 #define saddr(x) g2h(x)
649 #define laddr(x) g2h(x)
651 #else /* !CONFIG_USER_ONLY */
652 /* NOTE: we use double casts if pointers and target_ulong have
653 different sizes */
654 #define saddr(x) (uint8_t *)(long)(x)
655 #define laddr(x) (uint8_t *)(long)(x)
656 #endif
658 #define ldub_raw(p) ldub_p(laddr((p)))
659 #define ldsb_raw(p) ldsb_p(laddr((p)))
660 #define lduw_raw(p) lduw_p(laddr((p)))
661 #define ldsw_raw(p) ldsw_p(laddr((p)))
662 #define ldl_raw(p) ldl_p(laddr((p)))
663 #define ldq_raw(p) ldq_p(laddr((p)))
664 #define ldfl_raw(p) ldfl_p(laddr((p)))
665 #define ldfq_raw(p) ldfq_p(laddr((p)))
666 #define stb_raw(p, v) stb_p(saddr((p)), v)
667 #define stw_raw(p, v) stw_p(saddr((p)), v)
668 #define stl_raw(p, v) stl_p(saddr((p)), v)
669 #define stq_raw(p, v) stq_p(saddr((p)), v)
670 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
671 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
674 #if defined(CONFIG_USER_ONLY)
676 /* if user mode, no other memory access functions */
677 #define ldub(p) ldub_raw(p)
678 #define ldsb(p) ldsb_raw(p)
679 #define lduw(p) lduw_raw(p)
680 #define ldsw(p) ldsw_raw(p)
681 #define ldl(p) ldl_raw(p)
682 #define ldq(p) ldq_raw(p)
683 #define ldfl(p) ldfl_raw(p)
684 #define ldfq(p) ldfq_raw(p)
685 #define stb(p, v) stb_raw(p, v)
686 #define stw(p, v) stw_raw(p, v)
687 #define stl(p, v) stl_raw(p, v)
688 #define stq(p, v) stq_raw(p, v)
689 #define stfl(p, v) stfl_raw(p, v)
690 #define stfq(p, v) stfq_raw(p, v)
692 #define ldub_code(p) ldub_raw(p)
693 #define ldsb_code(p) ldsb_raw(p)
694 #define lduw_code(p) lduw_raw(p)
695 #define ldsw_code(p) ldsw_raw(p)
696 #define ldl_code(p) ldl_raw(p)
697 #define ldq_code(p) ldq_raw(p)
699 #define ldub_kernel(p) ldub_raw(p)
700 #define ldsb_kernel(p) ldsb_raw(p)
701 #define lduw_kernel(p) lduw_raw(p)
702 #define ldsw_kernel(p) ldsw_raw(p)
703 #define ldl_kernel(p) ldl_raw(p)
704 #define ldq_kernel(p) ldq_raw(p)
705 #define ldfl_kernel(p) ldfl_raw(p)
706 #define ldfq_kernel(p) ldfq_raw(p)
707 #define stb_kernel(p, v) stb_raw(p, v)
708 #define stw_kernel(p, v) stw_raw(p, v)
709 #define stl_kernel(p, v) stl_raw(p, v)
710 #define stq_kernel(p, v) stq_raw(p, v)
711 #define stfl_kernel(p, v) stfl_raw(p, v)
712 #define stfq_kernel(p, vt) stfq_raw(p, v)
714 #endif /* defined(CONFIG_USER_ONLY) */
716 /* page related stuff */
718 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
719 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
720 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
722 /* ??? These should be the larger of unsigned long and target_ulong. */
723 extern unsigned long qemu_real_host_page_size;
724 extern unsigned long qemu_host_page_bits;
725 extern unsigned long qemu_host_page_size;
726 extern unsigned long qemu_host_page_mask;
728 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
730 /* same as PROT_xxx */
731 #define PAGE_READ 0x0001
732 #define PAGE_WRITE 0x0002
733 #define PAGE_EXEC 0x0004
734 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
735 #define PAGE_VALID 0x0008
736 /* original state of the write flag (used when tracking self-modifying
737 code */
738 #define PAGE_WRITE_ORG 0x0010
739 #define PAGE_RESERVED 0x0020
741 void page_dump(FILE *f);
742 int page_get_flags(target_ulong address);
743 void page_set_flags(target_ulong start, target_ulong end, int flags);
744 int page_check_range(target_ulong start, target_ulong len, int flags);
746 void cpu_exec_init_all(unsigned long tb_size);
747 CPUState *cpu_copy(CPUState *env);
749 void cpu_dump_state(CPUState *env, FILE *f,
750 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
751 int flags);
752 void cpu_dump_statistics (CPUState *env, FILE *f,
753 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
754 int flags);
756 void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
757 __attribute__ ((__format__ (__printf__, 2, 3)));
758 extern CPUState *first_cpu;
759 extern CPUState *cpu_single_env;
760 extern int64_t qemu_icount;
761 extern int use_icount;
763 #define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
764 #define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
765 #define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
766 #define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
767 #define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
768 #define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
769 #define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
770 #define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
771 #define CPU_INTERRUPT_NMI 0x200 /* NMI pending. */
773 void cpu_interrupt(CPUState *s, int mask);
774 void cpu_reset_interrupt(CPUState *env, int mask);
776 void cpu_exit(CPUState *s);
778 int qemu_cpu_has_work(CPUState *env);
780 /* Breakpoint/watchpoint flags */
781 #define BP_MEM_READ 0x01
782 #define BP_MEM_WRITE 0x02
783 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
784 #define BP_STOP_BEFORE_ACCESS 0x04
785 #define BP_WATCHPOINT_HIT 0x08
786 #define BP_GDB 0x10
787 #define BP_CPU 0x20
789 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
790 CPUBreakpoint **breakpoint);
791 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
792 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
793 void cpu_breakpoint_remove_all(CPUState *env, int mask);
794 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
795 int flags, CPUWatchpoint **watchpoint);
796 int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
797 target_ulong len, int flags);
798 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
799 void cpu_watchpoint_remove_all(CPUState *env, int mask);
801 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
802 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
803 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
805 void cpu_single_step(CPUState *env, int enabled);
806 void cpu_reset(CPUState *s);
808 /* Return the physical page corresponding to a virtual one. Use it
809 only for debugging because no protection checks are done. Return -1
810 if no page found. */
811 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
813 #define CPU_LOG_TB_OUT_ASM (1 << 0)
814 #define CPU_LOG_TB_IN_ASM (1 << 1)
815 #define CPU_LOG_TB_OP (1 << 2)
816 #define CPU_LOG_TB_OP_OPT (1 << 3)
817 #define CPU_LOG_INT (1 << 4)
818 #define CPU_LOG_EXEC (1 << 5)
819 #define CPU_LOG_PCALL (1 << 6)
820 #define CPU_LOG_IOPORT (1 << 7)
821 #define CPU_LOG_TB_CPU (1 << 8)
822 #define CPU_LOG_RESET (1 << 9)
824 /* define log items */
825 typedef struct CPULogItem {
826 int mask;
827 const char *name;
828 const char *help;
829 } CPULogItem;
831 extern const CPULogItem cpu_log_items[];
833 void cpu_set_log(int log_flags);
834 void cpu_set_log_filename(const char *filename);
835 int cpu_str_to_log_mask(const char *str);
837 /* IO ports API */
839 /* NOTE: as these functions may be even used when there is an isa
840 brige on non x86 targets, we always defined them */
841 #ifndef NO_CPU_IO_DEFS
842 void cpu_outb(CPUState *env, int addr, int val);
843 void cpu_outw(CPUState *env, int addr, int val);
844 void cpu_outl(CPUState *env, int addr, int val);
845 int cpu_inb(CPUState *env, int addr);
846 int cpu_inw(CPUState *env, int addr);
847 int cpu_inl(CPUState *env, int addr);
848 #endif
850 /* address in the RAM (different from a physical address) */
851 #ifdef CONFIG_KQEMU
852 typedef uint32_t ram_addr_t;
853 #else
854 typedef unsigned long ram_addr_t;
855 #endif
857 /* memory API */
859 extern int phys_ram_fd;
860 extern uint8_t *phys_ram_dirty;
861 extern ram_addr_t ram_size;
862 extern ram_addr_t last_ram_offset;
864 /* physical memory access */
866 /* MMIO pages are identified by a combination of an IO device index and
867 3 flags. The ROMD code stores the page ram offset in iotlb entry,
868 so only a limited number of ids are avaiable. */
870 #define IO_MEM_SHIFT 3
871 #define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
873 #define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */
874 #define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */
875 #define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT)
876 #define IO_MEM_NOTDIRTY (3 << IO_MEM_SHIFT)
878 /* Acts like a ROM when read and like a device when written. */
879 #define IO_MEM_ROMD (1)
880 #define IO_MEM_SUBPAGE (2)
881 #define IO_MEM_SUBWIDTH (4)
883 /* Flags stored in the low bits of the TLB virtual address. These are
884 defined so that fast path ram access is all zeros. */
885 /* Zero if TLB entry is valid. */
886 #define TLB_INVALID_MASK (1 << 3)
887 /* Set if TLB entry references a clean RAM page. The iotlb entry will
888 contain the page physical address. */
889 #define TLB_NOTDIRTY (1 << 4)
890 /* Set if TLB entry is an IO callback. */
891 #define TLB_MMIO (1 << 5)
893 typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
894 typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
896 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
897 ram_addr_t size,
898 ram_addr_t phys_offset,
899 ram_addr_t region_offset);
900 static inline void cpu_register_physical_memory(target_phys_addr_t start_addr,
901 ram_addr_t size,
902 ram_addr_t phys_offset)
904 cpu_register_physical_memory_offset(start_addr, size, phys_offset, 0);
907 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr);
908 ram_addr_t qemu_ram_alloc(ram_addr_t);
909 void qemu_ram_free(ram_addr_t addr);
910 /* This should only be used for ram local to a device. */
911 void *qemu_get_ram_ptr(ram_addr_t addr);
912 /* This should not be used by devices. */
913 ram_addr_t qemu_ram_addr_from_host(void *ptr);
915 int cpu_register_io_memory(int io_index,
916 CPUReadMemoryFunc **mem_read,
917 CPUWriteMemoryFunc **mem_write,
918 void *opaque);
919 void cpu_unregister_io_memory(int table_address);
920 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
921 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
923 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
924 int len, int is_write);
925 static inline void cpu_physical_memory_read(target_phys_addr_t addr,
926 uint8_t *buf, int len)
928 cpu_physical_memory_rw(addr, buf, len, 0);
930 static inline void cpu_physical_memory_write(target_phys_addr_t addr,
931 const uint8_t *buf, int len)
933 cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
935 void *cpu_physical_memory_map(target_phys_addr_t addr,
936 target_phys_addr_t *plen,
937 int is_write);
938 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
939 int is_write, target_phys_addr_t access_len);
940 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque));
941 void cpu_unregister_map_client(void *cookie);
943 uint32_t ldub_phys(target_phys_addr_t addr);
944 uint32_t lduw_phys(target_phys_addr_t addr);
945 uint32_t ldl_phys(target_phys_addr_t addr);
946 uint64_t ldq_phys(target_phys_addr_t addr);
947 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
948 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
949 void stb_phys(target_phys_addr_t addr, uint32_t val);
950 void stw_phys(target_phys_addr_t addr, uint32_t val);
951 void stl_phys(target_phys_addr_t addr, uint32_t val);
952 void stq_phys(target_phys_addr_t addr, uint64_t val);
954 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
955 const uint8_t *buf, int len);
956 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
957 uint8_t *buf, int len, int is_write);
959 #define VGA_DIRTY_FLAG 0x01
960 #define CODE_DIRTY_FLAG 0x02
961 #define KQEMU_DIRTY_FLAG 0x04
962 #define MIGRATION_DIRTY_FLAG 0x08
964 /* read dirty bit (return 0 or 1) */
965 static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
967 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
970 static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
971 int dirty_flags)
973 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
976 static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
978 phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
981 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
982 int dirty_flags);
983 void cpu_tlb_update_dirty(CPUState *env);
985 int cpu_physical_memory_set_dirty_tracking(int enable);
987 int cpu_physical_memory_get_dirty_tracking(void);
989 void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr);
991 void dump_exec_info(FILE *f,
992 int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
994 /* Coalesced MMIO regions are areas where write operations can be reordered.
995 * This usually implies that write operations are side-effect free. This allows
996 * batching which can make a major impact on performance when using
997 * virtualization.
999 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
1001 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
1003 /*******************************************/
1004 /* host CPU ticks (if available) */
1006 #if defined(_ARCH_PPC)
1008 static inline int64_t cpu_get_real_ticks(void)
1010 int64_t retval;
1011 #ifdef _ARCH_PPC64
1012 /* This reads timebase in one 64bit go and includes Cell workaround from:
1013 http://ozlabs.org/pipermail/linuxppc-dev/2006-October/027052.html
1015 __asm__ __volatile__ (
1016 "mftb %0\n\t"
1017 "cmpwi %0,0\n\t"
1018 "beq- $-8"
1019 : "=r" (retval));
1020 #else
1021 /* http://ozlabs.org/pipermail/linuxppc-dev/1999-October/003889.html */
1022 unsigned long junk;
1023 __asm__ __volatile__ (
1024 "mftbu %1\n\t"
1025 "mftb %L0\n\t"
1026 "mftbu %0\n\t"
1027 "cmpw %0,%1\n\t"
1028 "bne $-16"
1029 : "=r" (retval), "=r" (junk));
1030 #endif
1031 return retval;
1034 #elif defined(__i386__)
1036 static inline int64_t cpu_get_real_ticks(void)
1038 int64_t val;
1039 asm volatile ("rdtsc" : "=A" (val));
1040 return val;
1043 #elif defined(__x86_64__)
1045 static inline int64_t cpu_get_real_ticks(void)
1047 uint32_t low,high;
1048 int64_t val;
1049 asm volatile("rdtsc" : "=a" (low), "=d" (high));
1050 val = high;
1051 val <<= 32;
1052 val |= low;
1053 return val;
1056 #elif defined(__hppa__)
1058 static inline int64_t cpu_get_real_ticks(void)
1060 int val;
1061 asm volatile ("mfctl %%cr16, %0" : "=r"(val));
1062 return val;
1065 #elif defined(__ia64)
1067 static inline int64_t cpu_get_real_ticks(void)
1069 int64_t val;
1070 asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
1071 return val;
1074 #elif defined(__s390__)
1076 static inline int64_t cpu_get_real_ticks(void)
1078 int64_t val;
1079 asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
1080 return val;
1083 #elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
1085 static inline int64_t cpu_get_real_ticks (void)
1087 #if defined(_LP64)
1088 uint64_t rval;
1089 asm volatile("rd %%tick,%0" : "=r"(rval));
1090 return rval;
1091 #else
1092 union {
1093 uint64_t i64;
1094 struct {
1095 uint32_t high;
1096 uint32_t low;
1097 } i32;
1098 } rval;
1099 asm volatile("rd %%tick,%1; srlx %1,32,%0"
1100 : "=r"(rval.i32.high), "=r"(rval.i32.low));
1101 return rval.i64;
1102 #endif
1105 #elif defined(__mips__)
1107 static inline int64_t cpu_get_real_ticks(void)
1109 #if __mips_isa_rev >= 2
1110 uint32_t count;
1111 static uint32_t cyc_per_count = 0;
1113 if (!cyc_per_count)
1114 __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));
1116 __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
1117 return (int64_t)(count * cyc_per_count);
1118 #else
1119 /* FIXME */
1120 static int64_t ticks = 0;
1121 return ticks++;
1122 #endif
1125 #else
1126 /* The host CPU doesn't have an easily accessible cycle counter.
1127 Just return a monotonically increasing value. This will be
1128 totally wrong, but hopefully better than nothing. */
1129 static inline int64_t cpu_get_real_ticks (void)
1131 static int64_t ticks = 0;
1132 return ticks++;
1134 #endif
1136 /* profiling */
1137 #ifdef CONFIG_PROFILER
1138 static inline int64_t profile_getclock(void)
1140 return cpu_get_real_ticks();
1143 extern int64_t kqemu_time, kqemu_time_start;
1144 extern int64_t qemu_time, qemu_time_start;
1145 extern int64_t tlb_flush_time;
1146 extern int64_t kqemu_exec_count;
1147 extern int64_t dev_time;
1148 extern int64_t kqemu_ret_int_count;
1149 extern int64_t kqemu_ret_excp_count;
1150 extern int64_t kqemu_ret_intr_count;
1151 #endif
1153 #endif /* CPU_ALL_H */