qemu-io - an I/O path exerciser (Christoph Hellwig)
[qemu/mmix.git] / exec.c
blob94bc92802e4c6c60116fa55e97185387e6ab890a
1 /*
2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
20 #include "config.h"
21 #ifdef _WIN32
22 #include <windows.h>
23 #else
24 #include <sys/types.h>
25 #include <sys/mman.h>
26 #endif
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdarg.h>
30 #include <string.h>
31 #include <errno.h>
32 #include <unistd.h>
33 #include <inttypes.h>
35 #include "cpu.h"
36 #include "exec-all.h"
37 #include "qemu-common.h"
38 #include "tcg.h"
39 #include "hw/hw.h"
40 #include "osdep.h"
41 #include "kvm.h"
42 #if defined(CONFIG_USER_ONLY)
43 #include <qemu.h>
44 #endif
46 //#define DEBUG_TB_INVALIDATE
47 //#define DEBUG_FLUSH
48 //#define DEBUG_TLB
49 //#define DEBUG_UNASSIGNED
51 /* make various TB consistency checks */
52 //#define DEBUG_TB_CHECK
53 //#define DEBUG_TLB_CHECK
55 //#define DEBUG_IOPORT
56 //#define DEBUG_SUBPAGE
58 #if !defined(CONFIG_USER_ONLY)
59 /* TB consistency checks only implemented for usermode emulation. */
60 #undef DEBUG_TB_CHECK
61 #endif
63 #define SMC_BITMAP_USE_THRESHOLD 10
65 #if defined(TARGET_SPARC64)
66 #define TARGET_PHYS_ADDR_SPACE_BITS 41
67 #elif defined(TARGET_SPARC)
68 #define TARGET_PHYS_ADDR_SPACE_BITS 36
69 #elif defined(TARGET_ALPHA)
70 #define TARGET_PHYS_ADDR_SPACE_BITS 42
71 #define TARGET_VIRT_ADDR_SPACE_BITS 42
72 #elif defined(TARGET_PPC64)
73 #define TARGET_PHYS_ADDR_SPACE_BITS 42
74 #elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
75 #define TARGET_PHYS_ADDR_SPACE_BITS 42
76 #elif defined(TARGET_I386) && !defined(USE_KQEMU)
77 #define TARGET_PHYS_ADDR_SPACE_BITS 36
78 #else
79 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
80 #define TARGET_PHYS_ADDR_SPACE_BITS 32
81 #endif
83 static TranslationBlock *tbs;
84 int code_gen_max_blocks;
85 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
86 static int nb_tbs;
87 /* any access to the tbs or the page table must use this lock */
88 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
90 #if defined(__arm__) || defined(__sparc_v9__)
91 /* The prologue must be reachable with a direct jump. ARM and Sparc64
92 have limited branch ranges (possibly also PPC) so place it in a
93 section close to code segment. */
94 #define code_gen_section \
95 __attribute__((__section__(".gen_code"))) \
96 __attribute__((aligned (32)))
97 #else
98 #define code_gen_section \
99 __attribute__((aligned (32)))
100 #endif
102 uint8_t code_gen_prologue[1024] code_gen_section;
103 static uint8_t *code_gen_buffer;
104 static unsigned long code_gen_buffer_size;
105 /* threshold to flush the translated code buffer */
106 static unsigned long code_gen_buffer_max_size;
107 uint8_t *code_gen_ptr;
109 #if !defined(CONFIG_USER_ONLY)
110 ram_addr_t phys_ram_size;
111 int phys_ram_fd;
112 uint8_t *phys_ram_base;
113 uint8_t *phys_ram_dirty;
114 static int in_migration;
115 static ram_addr_t phys_ram_alloc_offset = 0;
116 #endif
118 CPUState *first_cpu;
119 /* current CPU in the current thread. It is only valid inside
120 cpu_exec() */
121 CPUState *cpu_single_env;
122 /* 0 = Do not count executed instructions.
123 1 = Precise instruction counting.
124 2 = Adaptive rate instruction counting. */
125 int use_icount = 0;
126 /* Current instruction counter. While executing translated code this may
127 include some instructions that have not yet been executed. */
128 int64_t qemu_icount;
130 typedef struct PageDesc {
131 /* list of TBs intersecting this ram page */
132 TranslationBlock *first_tb;
133 /* in order to optimize self modifying code, we count the number
134 of lookups we do to a given page to use a bitmap */
135 unsigned int code_write_count;
136 uint8_t *code_bitmap;
137 #if defined(CONFIG_USER_ONLY)
138 unsigned long flags;
139 #endif
140 } PageDesc;
142 typedef struct PhysPageDesc {
143 /* offset in host memory of the page + io_index in the low bits */
144 ram_addr_t phys_offset;
145 ram_addr_t region_offset;
146 } PhysPageDesc;
148 #define L2_BITS 10
149 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
150 /* XXX: this is a temporary hack for alpha target.
151 * In the future, this is to be replaced by a multi-level table
152 * to actually be able to handle the complete 64 bits address space.
154 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
155 #else
156 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
157 #endif
159 #define L1_SIZE (1 << L1_BITS)
160 #define L2_SIZE (1 << L2_BITS)
162 unsigned long qemu_real_host_page_size;
163 unsigned long qemu_host_page_bits;
164 unsigned long qemu_host_page_size;
165 unsigned long qemu_host_page_mask;
167 /* XXX: for system emulation, it could just be an array */
168 static PageDesc *l1_map[L1_SIZE];
169 static PhysPageDesc **l1_phys_map;
171 #if !defined(CONFIG_USER_ONLY)
172 static void io_mem_init(void);
174 /* io memory support */
175 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
176 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
177 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
178 static char io_mem_used[IO_MEM_NB_ENTRIES];
179 static int io_mem_watch;
180 #endif
182 /* log support */
183 static const char *logfilename = "/tmp/qemu.log";
184 FILE *logfile;
185 int loglevel;
186 static int log_append = 0;
188 /* statistics */
189 static int tlb_flush_count;
190 static int tb_flush_count;
191 static int tb_phys_invalidate_count;
193 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
194 typedef struct subpage_t {
195 target_phys_addr_t base;
196 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
197 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
198 void *opaque[TARGET_PAGE_SIZE][2][4];
199 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
200 } subpage_t;
202 #ifdef _WIN32
203 static void map_exec(void *addr, long size)
205 DWORD old_protect;
206 VirtualProtect(addr, size,
207 PAGE_EXECUTE_READWRITE, &old_protect);
210 #else
211 static void map_exec(void *addr, long size)
213 unsigned long start, end, page_size;
215 page_size = getpagesize();
216 start = (unsigned long)addr;
217 start &= ~(page_size - 1);
219 end = (unsigned long)addr + size;
220 end += page_size - 1;
221 end &= ~(page_size - 1);
223 mprotect((void *)start, end - start,
224 PROT_READ | PROT_WRITE | PROT_EXEC);
226 #endif
228 static void page_init(void)
230 /* NOTE: we can always suppose that qemu_host_page_size >=
231 TARGET_PAGE_SIZE */
232 #ifdef _WIN32
234 SYSTEM_INFO system_info;
236 GetSystemInfo(&system_info);
237 qemu_real_host_page_size = system_info.dwPageSize;
239 #else
240 qemu_real_host_page_size = getpagesize();
241 #endif
242 if (qemu_host_page_size == 0)
243 qemu_host_page_size = qemu_real_host_page_size;
244 if (qemu_host_page_size < TARGET_PAGE_SIZE)
245 qemu_host_page_size = TARGET_PAGE_SIZE;
246 qemu_host_page_bits = 0;
247 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
248 qemu_host_page_bits++;
249 qemu_host_page_mask = ~(qemu_host_page_size - 1);
250 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
251 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
253 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
255 long long startaddr, endaddr;
256 FILE *f;
257 int n;
259 mmap_lock();
260 last_brk = (unsigned long)sbrk(0);
261 f = fopen("/proc/self/maps", "r");
262 if (f) {
263 do {
264 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
265 if (n == 2) {
266 startaddr = MIN(startaddr,
267 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
268 endaddr = MIN(endaddr,
269 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
270 page_set_flags(startaddr & TARGET_PAGE_MASK,
271 TARGET_PAGE_ALIGN(endaddr),
272 PAGE_RESERVED);
274 } while (!feof(f));
275 fclose(f);
277 mmap_unlock();
279 #endif
282 static inline PageDesc **page_l1_map(target_ulong index)
284 #if TARGET_LONG_BITS > 32
285 /* Host memory outside guest VM. For 32-bit targets we have already
286 excluded high addresses. */
287 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
288 return NULL;
289 #endif
290 return &l1_map[index >> L2_BITS];
293 static inline PageDesc *page_find_alloc(target_ulong index)
295 PageDesc **lp, *p;
296 lp = page_l1_map(index);
297 if (!lp)
298 return NULL;
300 p = *lp;
301 if (!p) {
302 /* allocate if not found */
303 #if defined(CONFIG_USER_ONLY)
304 size_t len = sizeof(PageDesc) * L2_SIZE;
305 /* Don't use qemu_malloc because it may recurse. */
306 p = mmap(0, len, PROT_READ | PROT_WRITE,
307 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
308 *lp = p;
309 if (h2g_valid(p)) {
310 unsigned long addr = h2g(p);
311 page_set_flags(addr & TARGET_PAGE_MASK,
312 TARGET_PAGE_ALIGN(addr + len),
313 PAGE_RESERVED);
315 #else
316 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
317 *lp = p;
318 #endif
320 return p + (index & (L2_SIZE - 1));
323 static inline PageDesc *page_find(target_ulong index)
325 PageDesc **lp, *p;
326 lp = page_l1_map(index);
327 if (!lp)
328 return NULL;
330 p = *lp;
331 if (!p)
332 return 0;
333 return p + (index & (L2_SIZE - 1));
336 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
338 void **lp, **p;
339 PhysPageDesc *pd;
341 p = (void **)l1_phys_map;
342 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
344 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
345 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
346 #endif
347 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
348 p = *lp;
349 if (!p) {
350 /* allocate if not found */
351 if (!alloc)
352 return NULL;
353 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
354 memset(p, 0, sizeof(void *) * L1_SIZE);
355 *lp = p;
357 #endif
358 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
359 pd = *lp;
360 if (!pd) {
361 int i;
362 /* allocate if not found */
363 if (!alloc)
364 return NULL;
365 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
366 *lp = pd;
367 for (i = 0; i < L2_SIZE; i++) {
368 pd[i].phys_offset = IO_MEM_UNASSIGNED;
369 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
372 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
375 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
377 return phys_page_find_alloc(index, 0);
380 #if !defined(CONFIG_USER_ONLY)
381 static void tlb_protect_code(ram_addr_t ram_addr);
382 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
383 target_ulong vaddr);
384 #define mmap_lock() do { } while(0)
385 #define mmap_unlock() do { } while(0)
386 #endif
388 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
390 #if defined(CONFIG_USER_ONLY)
391 /* Currently it is not recommanded to allocate big chunks of data in
392 user mode. It will change when a dedicated libc will be used */
393 #define USE_STATIC_CODE_GEN_BUFFER
394 #endif
396 #ifdef USE_STATIC_CODE_GEN_BUFFER
397 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
398 #endif
400 static void code_gen_alloc(unsigned long tb_size)
402 #ifdef USE_STATIC_CODE_GEN_BUFFER
403 code_gen_buffer = static_code_gen_buffer;
404 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
405 map_exec(code_gen_buffer, code_gen_buffer_size);
406 #else
407 code_gen_buffer_size = tb_size;
408 if (code_gen_buffer_size == 0) {
409 #if defined(CONFIG_USER_ONLY)
410 /* in user mode, phys_ram_size is not meaningful */
411 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
412 #else
413 /* XXX: needs ajustments */
414 code_gen_buffer_size = (unsigned long)(phys_ram_size / 4);
415 #endif
417 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
418 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
419 /* The code gen buffer location may have constraints depending on
420 the host cpu and OS */
421 #if defined(__linux__)
423 int flags;
424 void *start = NULL;
426 flags = MAP_PRIVATE | MAP_ANONYMOUS;
427 #if defined(__x86_64__)
428 flags |= MAP_32BIT;
429 /* Cannot map more than that */
430 if (code_gen_buffer_size > (800 * 1024 * 1024))
431 code_gen_buffer_size = (800 * 1024 * 1024);
432 #elif defined(__sparc_v9__)
433 // Map the buffer below 2G, so we can use direct calls and branches
434 flags |= MAP_FIXED;
435 start = (void *) 0x60000000UL;
436 if (code_gen_buffer_size > (512 * 1024 * 1024))
437 code_gen_buffer_size = (512 * 1024 * 1024);
438 #elif defined(__arm__)
439 /* Map the buffer below 32M, so we can use direct calls and branches */
440 flags |= MAP_FIXED;
441 start = (void *) 0x01000000UL;
442 if (code_gen_buffer_size > 16 * 1024 * 1024)
443 code_gen_buffer_size = 16 * 1024 * 1024;
444 #endif
445 code_gen_buffer = mmap(start, code_gen_buffer_size,
446 PROT_WRITE | PROT_READ | PROT_EXEC,
447 flags, -1, 0);
448 if (code_gen_buffer == MAP_FAILED) {
449 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
450 exit(1);
453 #elif defined(__FreeBSD__) || defined(__DragonFly__)
455 int flags;
456 void *addr = NULL;
457 flags = MAP_PRIVATE | MAP_ANONYMOUS;
458 #if defined(__x86_64__)
459 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
460 * 0x40000000 is free */
461 flags |= MAP_FIXED;
462 addr = (void *)0x40000000;
463 /* Cannot map more than that */
464 if (code_gen_buffer_size > (800 * 1024 * 1024))
465 code_gen_buffer_size = (800 * 1024 * 1024);
466 #endif
467 code_gen_buffer = mmap(addr, code_gen_buffer_size,
468 PROT_WRITE | PROT_READ | PROT_EXEC,
469 flags, -1, 0);
470 if (code_gen_buffer == MAP_FAILED) {
471 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
472 exit(1);
475 #else
476 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
477 map_exec(code_gen_buffer, code_gen_buffer_size);
478 #endif
479 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
480 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
481 code_gen_buffer_max_size = code_gen_buffer_size -
482 code_gen_max_block_size();
483 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
484 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
487 /* Must be called before using the QEMU cpus. 'tb_size' is the size
488 (in bytes) allocated to the translation buffer. Zero means default
489 size. */
490 void cpu_exec_init_all(unsigned long tb_size)
492 cpu_gen_init();
493 code_gen_alloc(tb_size);
494 code_gen_ptr = code_gen_buffer;
495 page_init();
496 #if !defined(CONFIG_USER_ONLY)
497 io_mem_init();
498 #endif
501 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
503 #define CPU_COMMON_SAVE_VERSION 1
505 static void cpu_common_save(QEMUFile *f, void *opaque)
507 CPUState *env = opaque;
509 qemu_put_be32s(f, &env->halted);
510 qemu_put_be32s(f, &env->interrupt_request);
513 static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
515 CPUState *env = opaque;
517 if (version_id != CPU_COMMON_SAVE_VERSION)
518 return -EINVAL;
520 qemu_get_be32s(f, &env->halted);
521 qemu_get_be32s(f, &env->interrupt_request);
522 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
523 version_id is increased. */
524 env->interrupt_request &= ~0x01;
525 tlb_flush(env, 1);
527 return 0;
529 #endif
531 void cpu_exec_init(CPUState *env)
533 CPUState **penv;
534 int cpu_index;
536 #if defined(CONFIG_USER_ONLY)
537 cpu_list_lock();
538 #endif
539 env->next_cpu = NULL;
540 penv = &first_cpu;
541 cpu_index = 0;
542 while (*penv != NULL) {
543 penv = (CPUState **)&(*penv)->next_cpu;
544 cpu_index++;
546 env->cpu_index = cpu_index;
547 TAILQ_INIT(&env->breakpoints);
548 TAILQ_INIT(&env->watchpoints);
549 *penv = env;
550 #if defined(CONFIG_USER_ONLY)
551 cpu_list_unlock();
552 #endif
553 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
554 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
555 cpu_common_save, cpu_common_load, env);
556 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
557 cpu_save, cpu_load, env);
558 #endif
561 static inline void invalidate_page_bitmap(PageDesc *p)
563 if (p->code_bitmap) {
564 qemu_free(p->code_bitmap);
565 p->code_bitmap = NULL;
567 p->code_write_count = 0;
570 /* set to NULL all the 'first_tb' fields in all PageDescs */
571 static void page_flush_tb(void)
573 int i, j;
574 PageDesc *p;
576 for(i = 0; i < L1_SIZE; i++) {
577 p = l1_map[i];
578 if (p) {
579 for(j = 0; j < L2_SIZE; j++) {
580 p->first_tb = NULL;
581 invalidate_page_bitmap(p);
582 p++;
588 /* flush all the translation blocks */
589 /* XXX: tb_flush is currently not thread safe */
590 void tb_flush(CPUState *env1)
592 CPUState *env;
593 #if defined(DEBUG_FLUSH)
594 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
595 (unsigned long)(code_gen_ptr - code_gen_buffer),
596 nb_tbs, nb_tbs > 0 ?
597 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
598 #endif
599 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
600 cpu_abort(env1, "Internal error: code buffer overflow\n");
602 nb_tbs = 0;
604 for(env = first_cpu; env != NULL; env = env->next_cpu) {
605 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
608 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
609 page_flush_tb();
611 code_gen_ptr = code_gen_buffer;
612 /* XXX: flush processor icache at this point if cache flush is
613 expensive */
614 tb_flush_count++;
617 #ifdef DEBUG_TB_CHECK
619 static void tb_invalidate_check(target_ulong address)
621 TranslationBlock *tb;
622 int i;
623 address &= TARGET_PAGE_MASK;
624 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
625 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
626 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
627 address >= tb->pc + tb->size)) {
628 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
629 address, (long)tb->pc, tb->size);
635 /* verify that all the pages have correct rights for code */
636 static void tb_page_check(void)
638 TranslationBlock *tb;
639 int i, flags1, flags2;
641 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
642 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
643 flags1 = page_get_flags(tb->pc);
644 flags2 = page_get_flags(tb->pc + tb->size - 1);
645 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
646 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
647 (long)tb->pc, tb->size, flags1, flags2);
653 static void tb_jmp_check(TranslationBlock *tb)
655 TranslationBlock *tb1;
656 unsigned int n1;
658 /* suppress any remaining jumps to this TB */
659 tb1 = tb->jmp_first;
660 for(;;) {
661 n1 = (long)tb1 & 3;
662 tb1 = (TranslationBlock *)((long)tb1 & ~3);
663 if (n1 == 2)
664 break;
665 tb1 = tb1->jmp_next[n1];
667 /* check end of list */
668 if (tb1 != tb) {
669 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
673 #endif
675 /* invalidate one TB */
676 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
677 int next_offset)
679 TranslationBlock *tb1;
680 for(;;) {
681 tb1 = *ptb;
682 if (tb1 == tb) {
683 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
684 break;
686 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
690 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
692 TranslationBlock *tb1;
693 unsigned int n1;
695 for(;;) {
696 tb1 = *ptb;
697 n1 = (long)tb1 & 3;
698 tb1 = (TranslationBlock *)((long)tb1 & ~3);
699 if (tb1 == tb) {
700 *ptb = tb1->page_next[n1];
701 break;
703 ptb = &tb1->page_next[n1];
707 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
709 TranslationBlock *tb1, **ptb;
710 unsigned int n1;
712 ptb = &tb->jmp_next[n];
713 tb1 = *ptb;
714 if (tb1) {
715 /* find tb(n) in circular list */
716 for(;;) {
717 tb1 = *ptb;
718 n1 = (long)tb1 & 3;
719 tb1 = (TranslationBlock *)((long)tb1 & ~3);
720 if (n1 == n && tb1 == tb)
721 break;
722 if (n1 == 2) {
723 ptb = &tb1->jmp_first;
724 } else {
725 ptb = &tb1->jmp_next[n1];
728 /* now we can suppress tb(n) from the list */
729 *ptb = tb->jmp_next[n];
731 tb->jmp_next[n] = NULL;
735 /* reset the jump entry 'n' of a TB so that it is not chained to
736 another TB */
737 static inline void tb_reset_jump(TranslationBlock *tb, int n)
739 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
742 void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
744 CPUState *env;
745 PageDesc *p;
746 unsigned int h, n1;
747 target_phys_addr_t phys_pc;
748 TranslationBlock *tb1, *tb2;
750 /* remove the TB from the hash list */
751 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
752 h = tb_phys_hash_func(phys_pc);
753 tb_remove(&tb_phys_hash[h], tb,
754 offsetof(TranslationBlock, phys_hash_next));
756 /* remove the TB from the page list */
757 if (tb->page_addr[0] != page_addr) {
758 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
759 tb_page_remove(&p->first_tb, tb);
760 invalidate_page_bitmap(p);
762 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
763 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
764 tb_page_remove(&p->first_tb, tb);
765 invalidate_page_bitmap(p);
768 tb_invalidated_flag = 1;
770 /* remove the TB from the hash list */
771 h = tb_jmp_cache_hash_func(tb->pc);
772 for(env = first_cpu; env != NULL; env = env->next_cpu) {
773 if (env->tb_jmp_cache[h] == tb)
774 env->tb_jmp_cache[h] = NULL;
777 /* suppress this TB from the two jump lists */
778 tb_jmp_remove(tb, 0);
779 tb_jmp_remove(tb, 1);
781 /* suppress any remaining jumps to this TB */
782 tb1 = tb->jmp_first;
783 for(;;) {
784 n1 = (long)tb1 & 3;
785 if (n1 == 2)
786 break;
787 tb1 = (TranslationBlock *)((long)tb1 & ~3);
788 tb2 = tb1->jmp_next[n1];
789 tb_reset_jump(tb1, n1);
790 tb1->jmp_next[n1] = NULL;
791 tb1 = tb2;
793 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
795 tb_phys_invalidate_count++;
798 static inline void set_bits(uint8_t *tab, int start, int len)
800 int end, mask, end1;
802 end = start + len;
803 tab += start >> 3;
804 mask = 0xff << (start & 7);
805 if ((start & ~7) == (end & ~7)) {
806 if (start < end) {
807 mask &= ~(0xff << (end & 7));
808 *tab |= mask;
810 } else {
811 *tab++ |= mask;
812 start = (start + 8) & ~7;
813 end1 = end & ~7;
814 while (start < end1) {
815 *tab++ = 0xff;
816 start += 8;
818 if (start < end) {
819 mask = ~(0xff << (end & 7));
820 *tab |= mask;
825 static void build_page_bitmap(PageDesc *p)
827 int n, tb_start, tb_end;
828 TranslationBlock *tb;
830 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
832 tb = p->first_tb;
833 while (tb != NULL) {
834 n = (long)tb & 3;
835 tb = (TranslationBlock *)((long)tb & ~3);
836 /* NOTE: this is subtle as a TB may span two physical pages */
837 if (n == 0) {
838 /* NOTE: tb_end may be after the end of the page, but
839 it is not a problem */
840 tb_start = tb->pc & ~TARGET_PAGE_MASK;
841 tb_end = tb_start + tb->size;
842 if (tb_end > TARGET_PAGE_SIZE)
843 tb_end = TARGET_PAGE_SIZE;
844 } else {
845 tb_start = 0;
846 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
848 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
849 tb = tb->page_next[n];
853 TranslationBlock *tb_gen_code(CPUState *env,
854 target_ulong pc, target_ulong cs_base,
855 int flags, int cflags)
857 TranslationBlock *tb;
858 uint8_t *tc_ptr;
859 target_ulong phys_pc, phys_page2, virt_page2;
860 int code_gen_size;
862 phys_pc = get_phys_addr_code(env, pc);
863 tb = tb_alloc(pc);
864 if (!tb) {
865 /* flush must be done */
866 tb_flush(env);
867 /* cannot fail at this point */
868 tb = tb_alloc(pc);
869 /* Don't forget to invalidate previous TB info. */
870 tb_invalidated_flag = 1;
872 tc_ptr = code_gen_ptr;
873 tb->tc_ptr = tc_ptr;
874 tb->cs_base = cs_base;
875 tb->flags = flags;
876 tb->cflags = cflags;
877 cpu_gen_code(env, tb, &code_gen_size);
878 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
880 /* check next page if needed */
881 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
882 phys_page2 = -1;
883 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
884 phys_page2 = get_phys_addr_code(env, virt_page2);
886 tb_link_phys(tb, phys_pc, phys_page2);
887 return tb;
890 /* invalidate all TBs which intersect with the target physical page
891 starting in range [start;end[. NOTE: start and end must refer to
892 the same physical page. 'is_cpu_write_access' should be true if called
893 from a real cpu write access: the virtual CPU will exit the current
894 TB if code is modified inside this TB. */
895 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
896 int is_cpu_write_access)
898 TranslationBlock *tb, *tb_next, *saved_tb;
899 CPUState *env = cpu_single_env;
900 target_ulong tb_start, tb_end;
901 PageDesc *p;
902 int n;
903 #ifdef TARGET_HAS_PRECISE_SMC
904 int current_tb_not_found = is_cpu_write_access;
905 TranslationBlock *current_tb = NULL;
906 int current_tb_modified = 0;
907 target_ulong current_pc = 0;
908 target_ulong current_cs_base = 0;
909 int current_flags = 0;
910 #endif /* TARGET_HAS_PRECISE_SMC */
912 p = page_find(start >> TARGET_PAGE_BITS);
913 if (!p)
914 return;
915 if (!p->code_bitmap &&
916 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
917 is_cpu_write_access) {
918 /* build code bitmap */
919 build_page_bitmap(p);
922 /* we remove all the TBs in the range [start, end[ */
923 /* XXX: see if in some cases it could be faster to invalidate all the code */
924 tb = p->first_tb;
925 while (tb != NULL) {
926 n = (long)tb & 3;
927 tb = (TranslationBlock *)((long)tb & ~3);
928 tb_next = tb->page_next[n];
929 /* NOTE: this is subtle as a TB may span two physical pages */
930 if (n == 0) {
931 /* NOTE: tb_end may be after the end of the page, but
932 it is not a problem */
933 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
934 tb_end = tb_start + tb->size;
935 } else {
936 tb_start = tb->page_addr[1];
937 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
939 if (!(tb_end <= start || tb_start >= end)) {
940 #ifdef TARGET_HAS_PRECISE_SMC
941 if (current_tb_not_found) {
942 current_tb_not_found = 0;
943 current_tb = NULL;
944 if (env->mem_io_pc) {
945 /* now we have a real cpu fault */
946 current_tb = tb_find_pc(env->mem_io_pc);
949 if (current_tb == tb &&
950 (current_tb->cflags & CF_COUNT_MASK) != 1) {
951 /* If we are modifying the current TB, we must stop
952 its execution. We could be more precise by checking
953 that the modification is after the current PC, but it
954 would require a specialized function to partially
955 restore the CPU state */
957 current_tb_modified = 1;
958 cpu_restore_state(current_tb, env,
959 env->mem_io_pc, NULL);
960 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
961 &current_flags);
963 #endif /* TARGET_HAS_PRECISE_SMC */
964 /* we need to do that to handle the case where a signal
965 occurs while doing tb_phys_invalidate() */
966 saved_tb = NULL;
967 if (env) {
968 saved_tb = env->current_tb;
969 env->current_tb = NULL;
971 tb_phys_invalidate(tb, -1);
972 if (env) {
973 env->current_tb = saved_tb;
974 if (env->interrupt_request && env->current_tb)
975 cpu_interrupt(env, env->interrupt_request);
978 tb = tb_next;
980 #if !defined(CONFIG_USER_ONLY)
981 /* if no code remaining, no need to continue to use slow writes */
982 if (!p->first_tb) {
983 invalidate_page_bitmap(p);
984 if (is_cpu_write_access) {
985 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
988 #endif
989 #ifdef TARGET_HAS_PRECISE_SMC
990 if (current_tb_modified) {
991 /* we generate a block containing just the instruction
992 modifying the memory. It will ensure that it cannot modify
993 itself */
994 env->current_tb = NULL;
995 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
996 cpu_resume_from_signal(env, NULL);
998 #endif
1001 /* len must be <= 8 and start must be a multiple of len */
1002 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
1004 PageDesc *p;
1005 int offset, b;
1006 #if 0
1007 if (1) {
1008 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1009 cpu_single_env->mem_io_vaddr, len,
1010 cpu_single_env->eip,
1011 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1013 #endif
1014 p = page_find(start >> TARGET_PAGE_BITS);
1015 if (!p)
1016 return;
1017 if (p->code_bitmap) {
1018 offset = start & ~TARGET_PAGE_MASK;
1019 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1020 if (b & ((1 << len) - 1))
1021 goto do_invalidate;
1022 } else {
1023 do_invalidate:
1024 tb_invalidate_phys_page_range(start, start + len, 1);
1028 #if !defined(CONFIG_SOFTMMU)
1029 static void tb_invalidate_phys_page(target_phys_addr_t addr,
1030 unsigned long pc, void *puc)
1032 TranslationBlock *tb;
1033 PageDesc *p;
1034 int n;
1035 #ifdef TARGET_HAS_PRECISE_SMC
1036 TranslationBlock *current_tb = NULL;
1037 CPUState *env = cpu_single_env;
1038 int current_tb_modified = 0;
1039 target_ulong current_pc = 0;
1040 target_ulong current_cs_base = 0;
1041 int current_flags = 0;
1042 #endif
1044 addr &= TARGET_PAGE_MASK;
1045 p = page_find(addr >> TARGET_PAGE_BITS);
1046 if (!p)
1047 return;
1048 tb = p->first_tb;
1049 #ifdef TARGET_HAS_PRECISE_SMC
1050 if (tb && pc != 0) {
1051 current_tb = tb_find_pc(pc);
1053 #endif
1054 while (tb != NULL) {
1055 n = (long)tb & 3;
1056 tb = (TranslationBlock *)((long)tb & ~3);
1057 #ifdef TARGET_HAS_PRECISE_SMC
1058 if (current_tb == tb &&
1059 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1060 /* If we are modifying the current TB, we must stop
1061 its execution. We could be more precise by checking
1062 that the modification is after the current PC, but it
1063 would require a specialized function to partially
1064 restore the CPU state */
1066 current_tb_modified = 1;
1067 cpu_restore_state(current_tb, env, pc, puc);
1068 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1069 &current_flags);
1071 #endif /* TARGET_HAS_PRECISE_SMC */
1072 tb_phys_invalidate(tb, addr);
1073 tb = tb->page_next[n];
1075 p->first_tb = NULL;
1076 #ifdef TARGET_HAS_PRECISE_SMC
1077 if (current_tb_modified) {
1078 /* we generate a block containing just the instruction
1079 modifying the memory. It will ensure that it cannot modify
1080 itself */
1081 env->current_tb = NULL;
1082 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1083 cpu_resume_from_signal(env, puc);
1085 #endif
1087 #endif
1089 /* add the tb in the target page and protect it if necessary */
1090 static inline void tb_alloc_page(TranslationBlock *tb,
1091 unsigned int n, target_ulong page_addr)
1093 PageDesc *p;
1094 TranslationBlock *last_first_tb;
1096 tb->page_addr[n] = page_addr;
1097 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
1098 tb->page_next[n] = p->first_tb;
1099 last_first_tb = p->first_tb;
1100 p->first_tb = (TranslationBlock *)((long)tb | n);
1101 invalidate_page_bitmap(p);
1103 #if defined(TARGET_HAS_SMC) || 1
1105 #if defined(CONFIG_USER_ONLY)
1106 if (p->flags & PAGE_WRITE) {
1107 target_ulong addr;
1108 PageDesc *p2;
1109 int prot;
1111 /* force the host page as non writable (writes will have a
1112 page fault + mprotect overhead) */
1113 page_addr &= qemu_host_page_mask;
1114 prot = 0;
1115 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1116 addr += TARGET_PAGE_SIZE) {
1118 p2 = page_find (addr >> TARGET_PAGE_BITS);
1119 if (!p2)
1120 continue;
1121 prot |= p2->flags;
1122 p2->flags &= ~PAGE_WRITE;
1123 page_get_flags(addr);
1125 mprotect(g2h(page_addr), qemu_host_page_size,
1126 (prot & PAGE_BITS) & ~PAGE_WRITE);
1127 #ifdef DEBUG_TB_INVALIDATE
1128 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1129 page_addr);
1130 #endif
1132 #else
1133 /* if some code is already present, then the pages are already
1134 protected. So we handle the case where only the first TB is
1135 allocated in a physical page */
1136 if (!last_first_tb) {
1137 tlb_protect_code(page_addr);
1139 #endif
1141 #endif /* TARGET_HAS_SMC */
1144 /* Allocate a new translation block. Flush the translation buffer if
1145 too many translation blocks or too much generated code. */
1146 TranslationBlock *tb_alloc(target_ulong pc)
1148 TranslationBlock *tb;
1150 if (nb_tbs >= code_gen_max_blocks ||
1151 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1152 return NULL;
1153 tb = &tbs[nb_tbs++];
1154 tb->pc = pc;
1155 tb->cflags = 0;
1156 return tb;
1159 void tb_free(TranslationBlock *tb)
1161 /* In practice this is mostly used for single use temporary TB
1162 Ignore the hard cases and just back up if this TB happens to
1163 be the last one generated. */
1164 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1165 code_gen_ptr = tb->tc_ptr;
1166 nb_tbs--;
1170 /* add a new TB and link it to the physical page tables. phys_page2 is
1171 (-1) to indicate that only one page contains the TB. */
1172 void tb_link_phys(TranslationBlock *tb,
1173 target_ulong phys_pc, target_ulong phys_page2)
1175 unsigned int h;
1176 TranslationBlock **ptb;
1178 /* Grab the mmap lock to stop another thread invalidating this TB
1179 before we are done. */
1180 mmap_lock();
1181 /* add in the physical hash table */
1182 h = tb_phys_hash_func(phys_pc);
1183 ptb = &tb_phys_hash[h];
1184 tb->phys_hash_next = *ptb;
1185 *ptb = tb;
1187 /* add in the page list */
1188 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1189 if (phys_page2 != -1)
1190 tb_alloc_page(tb, 1, phys_page2);
1191 else
1192 tb->page_addr[1] = -1;
1194 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1195 tb->jmp_next[0] = NULL;
1196 tb->jmp_next[1] = NULL;
1198 /* init original jump addresses */
1199 if (tb->tb_next_offset[0] != 0xffff)
1200 tb_reset_jump(tb, 0);
1201 if (tb->tb_next_offset[1] != 0xffff)
1202 tb_reset_jump(tb, 1);
1204 #ifdef DEBUG_TB_CHECK
1205 tb_page_check();
1206 #endif
1207 mmap_unlock();
1210 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1211 tb[1].tc_ptr. Return NULL if not found */
1212 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1214 int m_min, m_max, m;
1215 unsigned long v;
1216 TranslationBlock *tb;
1218 if (nb_tbs <= 0)
1219 return NULL;
1220 if (tc_ptr < (unsigned long)code_gen_buffer ||
1221 tc_ptr >= (unsigned long)code_gen_ptr)
1222 return NULL;
1223 /* binary search (cf Knuth) */
1224 m_min = 0;
1225 m_max = nb_tbs - 1;
1226 while (m_min <= m_max) {
1227 m = (m_min + m_max) >> 1;
1228 tb = &tbs[m];
1229 v = (unsigned long)tb->tc_ptr;
1230 if (v == tc_ptr)
1231 return tb;
1232 else if (tc_ptr < v) {
1233 m_max = m - 1;
1234 } else {
1235 m_min = m + 1;
1238 return &tbs[m_max];
1241 static void tb_reset_jump_recursive(TranslationBlock *tb);
1243 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1245 TranslationBlock *tb1, *tb_next, **ptb;
1246 unsigned int n1;
1248 tb1 = tb->jmp_next[n];
1249 if (tb1 != NULL) {
1250 /* find head of list */
1251 for(;;) {
1252 n1 = (long)tb1 & 3;
1253 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1254 if (n1 == 2)
1255 break;
1256 tb1 = tb1->jmp_next[n1];
1258 /* we are now sure now that tb jumps to tb1 */
1259 tb_next = tb1;
1261 /* remove tb from the jmp_first list */
1262 ptb = &tb_next->jmp_first;
1263 for(;;) {
1264 tb1 = *ptb;
1265 n1 = (long)tb1 & 3;
1266 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1267 if (n1 == n && tb1 == tb)
1268 break;
1269 ptb = &tb1->jmp_next[n1];
1271 *ptb = tb->jmp_next[n];
1272 tb->jmp_next[n] = NULL;
1274 /* suppress the jump to next tb in generated code */
1275 tb_reset_jump(tb, n);
1277 /* suppress jumps in the tb on which we could have jumped */
1278 tb_reset_jump_recursive(tb_next);
1282 static void tb_reset_jump_recursive(TranslationBlock *tb)
1284 tb_reset_jump_recursive2(tb, 0);
1285 tb_reset_jump_recursive2(tb, 1);
1288 #if defined(TARGET_HAS_ICE)
1289 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1291 target_phys_addr_t addr;
1292 target_ulong pd;
1293 ram_addr_t ram_addr;
1294 PhysPageDesc *p;
1296 addr = cpu_get_phys_page_debug(env, pc);
1297 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1298 if (!p) {
1299 pd = IO_MEM_UNASSIGNED;
1300 } else {
1301 pd = p->phys_offset;
1303 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1304 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1306 #endif
1308 /* Add a watchpoint. */
1309 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1310 int flags, CPUWatchpoint **watchpoint)
1312 target_ulong len_mask = ~(len - 1);
1313 CPUWatchpoint *wp;
1315 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1316 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1317 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1318 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1319 return -EINVAL;
1321 wp = qemu_malloc(sizeof(*wp));
1323 wp->vaddr = addr;
1324 wp->len_mask = len_mask;
1325 wp->flags = flags;
1327 /* keep all GDB-injected watchpoints in front */
1328 if (flags & BP_GDB)
1329 TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1330 else
1331 TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1333 tlb_flush_page(env, addr);
1335 if (watchpoint)
1336 *watchpoint = wp;
1337 return 0;
1340 /* Remove a specific watchpoint. */
1341 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1342 int flags)
1344 target_ulong len_mask = ~(len - 1);
1345 CPUWatchpoint *wp;
1347 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1348 if (addr == wp->vaddr && len_mask == wp->len_mask
1349 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1350 cpu_watchpoint_remove_by_ref(env, wp);
1351 return 0;
1354 return -ENOENT;
1357 /* Remove a specific watchpoint by reference. */
1358 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1360 TAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1362 tlb_flush_page(env, watchpoint->vaddr);
1364 qemu_free(watchpoint);
1367 /* Remove all matching watchpoints. */
1368 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1370 CPUWatchpoint *wp, *next;
1372 TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1373 if (wp->flags & mask)
1374 cpu_watchpoint_remove_by_ref(env, wp);
1378 /* Add a breakpoint. */
1379 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1380 CPUBreakpoint **breakpoint)
1382 #if defined(TARGET_HAS_ICE)
1383 CPUBreakpoint *bp;
1385 bp = qemu_malloc(sizeof(*bp));
1387 bp->pc = pc;
1388 bp->flags = flags;
1390 /* keep all GDB-injected breakpoints in front */
1391 if (flags & BP_GDB)
1392 TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1393 else
1394 TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1396 breakpoint_invalidate(env, pc);
1398 if (breakpoint)
1399 *breakpoint = bp;
1400 return 0;
1401 #else
1402 return -ENOSYS;
1403 #endif
1406 /* Remove a specific breakpoint. */
1407 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1409 #if defined(TARGET_HAS_ICE)
1410 CPUBreakpoint *bp;
1412 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1413 if (bp->pc == pc && bp->flags == flags) {
1414 cpu_breakpoint_remove_by_ref(env, bp);
1415 return 0;
1418 return -ENOENT;
1419 #else
1420 return -ENOSYS;
1421 #endif
1424 /* Remove a specific breakpoint by reference. */
1425 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1427 #if defined(TARGET_HAS_ICE)
1428 TAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1430 breakpoint_invalidate(env, breakpoint->pc);
1432 qemu_free(breakpoint);
1433 #endif
1436 /* Remove all matching breakpoints. */
1437 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1439 #if defined(TARGET_HAS_ICE)
1440 CPUBreakpoint *bp, *next;
1442 TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1443 if (bp->flags & mask)
1444 cpu_breakpoint_remove_by_ref(env, bp);
1446 #endif
1449 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1450 CPU loop after each instruction */
1451 void cpu_single_step(CPUState *env, int enabled)
1453 #if defined(TARGET_HAS_ICE)
1454 if (env->singlestep_enabled != enabled) {
1455 env->singlestep_enabled = enabled;
1456 if (kvm_enabled())
1457 kvm_update_guest_debug(env, 0);
1458 else {
1459 /* must flush all the translated code to avoid inconsistancies */
1460 /* XXX: only flush what is necessary */
1461 tb_flush(env);
1464 #endif
1467 /* enable or disable low levels log */
1468 void cpu_set_log(int log_flags)
1470 loglevel = log_flags;
1471 if (loglevel && !logfile) {
1472 logfile = fopen(logfilename, log_append ? "a" : "w");
1473 if (!logfile) {
1474 perror(logfilename);
1475 _exit(1);
1477 #if !defined(CONFIG_SOFTMMU)
1478 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1480 static char logfile_buf[4096];
1481 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1483 #else
1484 setvbuf(logfile, NULL, _IOLBF, 0);
1485 #endif
1486 log_append = 1;
1488 if (!loglevel && logfile) {
1489 fclose(logfile);
1490 logfile = NULL;
1494 void cpu_set_log_filename(const char *filename)
1496 logfilename = strdup(filename);
1497 if (logfile) {
1498 fclose(logfile);
1499 logfile = NULL;
1501 cpu_set_log(loglevel);
1504 static void cpu_unlink_tb(CPUState *env)
1506 #if defined(USE_NPTL)
1507 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1508 problem and hope the cpu will stop of its own accord. For userspace
1509 emulation this often isn't actually as bad as it sounds. Often
1510 signals are used primarily to interrupt blocking syscalls. */
1511 #else
1512 TranslationBlock *tb;
1513 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1515 tb = env->current_tb;
1516 /* if the cpu is currently executing code, we must unlink it and
1517 all the potentially executing TB */
1518 if (tb && !testandset(&interrupt_lock)) {
1519 env->current_tb = NULL;
1520 tb_reset_jump_recursive(tb);
1521 resetlock(&interrupt_lock);
1523 #endif
1526 /* mask must never be zero, except for A20 change call */
1527 void cpu_interrupt(CPUState *env, int mask)
1529 int old_mask;
1531 old_mask = env->interrupt_request;
1532 env->interrupt_request |= mask;
1534 if (use_icount) {
1535 env->icount_decr.u16.high = 0xffff;
1536 #ifndef CONFIG_USER_ONLY
1537 if (!can_do_io(env)
1538 && (mask & ~old_mask) != 0) {
1539 cpu_abort(env, "Raised interrupt while not in I/O function");
1541 #endif
1542 } else {
1543 cpu_unlink_tb(env);
1547 void cpu_reset_interrupt(CPUState *env, int mask)
1549 env->interrupt_request &= ~mask;
1552 void cpu_exit(CPUState *env)
1554 env->exit_request = 1;
1555 cpu_unlink_tb(env);
1558 const CPULogItem cpu_log_items[] = {
1559 { CPU_LOG_TB_OUT_ASM, "out_asm",
1560 "show generated host assembly code for each compiled TB" },
1561 { CPU_LOG_TB_IN_ASM, "in_asm",
1562 "show target assembly code for each compiled TB" },
1563 { CPU_LOG_TB_OP, "op",
1564 "show micro ops for each compiled TB" },
1565 { CPU_LOG_TB_OP_OPT, "op_opt",
1566 "show micro ops "
1567 #ifdef TARGET_I386
1568 "before eflags optimization and "
1569 #endif
1570 "after liveness analysis" },
1571 { CPU_LOG_INT, "int",
1572 "show interrupts/exceptions in short format" },
1573 { CPU_LOG_EXEC, "exec",
1574 "show trace before each executed TB (lots of logs)" },
1575 { CPU_LOG_TB_CPU, "cpu",
1576 "show CPU state before block translation" },
1577 #ifdef TARGET_I386
1578 { CPU_LOG_PCALL, "pcall",
1579 "show protected mode far calls/returns/exceptions" },
1580 { CPU_LOG_RESET, "cpu_reset",
1581 "show CPU state before CPU resets" },
1582 #endif
1583 #ifdef DEBUG_IOPORT
1584 { CPU_LOG_IOPORT, "ioport",
1585 "show all i/o ports accesses" },
1586 #endif
1587 { 0, NULL, NULL },
1590 static int cmp1(const char *s1, int n, const char *s2)
1592 if (strlen(s2) != n)
1593 return 0;
1594 return memcmp(s1, s2, n) == 0;
1597 /* takes a comma separated list of log masks. Return 0 if error. */
1598 int cpu_str_to_log_mask(const char *str)
1600 const CPULogItem *item;
1601 int mask;
1602 const char *p, *p1;
1604 p = str;
1605 mask = 0;
1606 for(;;) {
1607 p1 = strchr(p, ',');
1608 if (!p1)
1609 p1 = p + strlen(p);
1610 if(cmp1(p,p1-p,"all")) {
1611 for(item = cpu_log_items; item->mask != 0; item++) {
1612 mask |= item->mask;
1614 } else {
1615 for(item = cpu_log_items; item->mask != 0; item++) {
1616 if (cmp1(p, p1 - p, item->name))
1617 goto found;
1619 return 0;
1621 found:
1622 mask |= item->mask;
1623 if (*p1 != ',')
1624 break;
1625 p = p1 + 1;
1627 return mask;
1630 void cpu_abort(CPUState *env, const char *fmt, ...)
1632 va_list ap;
1633 va_list ap2;
1635 va_start(ap, fmt);
1636 va_copy(ap2, ap);
1637 fprintf(stderr, "qemu: fatal: ");
1638 vfprintf(stderr, fmt, ap);
1639 fprintf(stderr, "\n");
1640 #ifdef TARGET_I386
1641 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1642 #else
1643 cpu_dump_state(env, stderr, fprintf, 0);
1644 #endif
1645 if (qemu_log_enabled()) {
1646 qemu_log("qemu: fatal: ");
1647 qemu_log_vprintf(fmt, ap2);
1648 qemu_log("\n");
1649 #ifdef TARGET_I386
1650 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1651 #else
1652 log_cpu_state(env, 0);
1653 #endif
1654 qemu_log_flush();
1655 qemu_log_close();
1657 va_end(ap2);
1658 va_end(ap);
1659 abort();
1662 CPUState *cpu_copy(CPUState *env)
1664 CPUState *new_env = cpu_init(env->cpu_model_str);
1665 CPUState *next_cpu = new_env->next_cpu;
1666 int cpu_index = new_env->cpu_index;
1667 #if defined(TARGET_HAS_ICE)
1668 CPUBreakpoint *bp;
1669 CPUWatchpoint *wp;
1670 #endif
1672 memcpy(new_env, env, sizeof(CPUState));
1674 /* Preserve chaining and index. */
1675 new_env->next_cpu = next_cpu;
1676 new_env->cpu_index = cpu_index;
1678 /* Clone all break/watchpoints.
1679 Note: Once we support ptrace with hw-debug register access, make sure
1680 BP_CPU break/watchpoints are handled correctly on clone. */
1681 TAILQ_INIT(&env->breakpoints);
1682 TAILQ_INIT(&env->watchpoints);
1683 #if defined(TARGET_HAS_ICE)
1684 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1685 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1687 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1688 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1689 wp->flags, NULL);
1691 #endif
1693 return new_env;
1696 #if !defined(CONFIG_USER_ONLY)
1698 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1700 unsigned int i;
1702 /* Discard jump cache entries for any tb which might potentially
1703 overlap the flushed page. */
1704 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1705 memset (&env->tb_jmp_cache[i], 0,
1706 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1708 i = tb_jmp_cache_hash_page(addr);
1709 memset (&env->tb_jmp_cache[i], 0,
1710 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1713 /* NOTE: if flush_global is true, also flush global entries (not
1714 implemented yet) */
1715 void tlb_flush(CPUState *env, int flush_global)
1717 int i;
1719 #if defined(DEBUG_TLB)
1720 printf("tlb_flush:\n");
1721 #endif
1722 /* must reset current TB so that interrupts cannot modify the
1723 links while we are modifying them */
1724 env->current_tb = NULL;
1726 for(i = 0; i < CPU_TLB_SIZE; i++) {
1727 env->tlb_table[0][i].addr_read = -1;
1728 env->tlb_table[0][i].addr_write = -1;
1729 env->tlb_table[0][i].addr_code = -1;
1730 env->tlb_table[1][i].addr_read = -1;
1731 env->tlb_table[1][i].addr_write = -1;
1732 env->tlb_table[1][i].addr_code = -1;
1733 #if (NB_MMU_MODES >= 3)
1734 env->tlb_table[2][i].addr_read = -1;
1735 env->tlb_table[2][i].addr_write = -1;
1736 env->tlb_table[2][i].addr_code = -1;
1737 #if (NB_MMU_MODES == 4)
1738 env->tlb_table[3][i].addr_read = -1;
1739 env->tlb_table[3][i].addr_write = -1;
1740 env->tlb_table[3][i].addr_code = -1;
1741 #endif
1742 #endif
1745 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1747 #ifdef USE_KQEMU
1748 if (env->kqemu_enabled) {
1749 kqemu_flush(env, flush_global);
1751 #endif
1752 tlb_flush_count++;
1755 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1757 if (addr == (tlb_entry->addr_read &
1758 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1759 addr == (tlb_entry->addr_write &
1760 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1761 addr == (tlb_entry->addr_code &
1762 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1763 tlb_entry->addr_read = -1;
1764 tlb_entry->addr_write = -1;
1765 tlb_entry->addr_code = -1;
1769 void tlb_flush_page(CPUState *env, target_ulong addr)
1771 int i;
1773 #if defined(DEBUG_TLB)
1774 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1775 #endif
1776 /* must reset current TB so that interrupts cannot modify the
1777 links while we are modifying them */
1778 env->current_tb = NULL;
1780 addr &= TARGET_PAGE_MASK;
1781 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1782 tlb_flush_entry(&env->tlb_table[0][i], addr);
1783 tlb_flush_entry(&env->tlb_table[1][i], addr);
1784 #if (NB_MMU_MODES >= 3)
1785 tlb_flush_entry(&env->tlb_table[2][i], addr);
1786 #if (NB_MMU_MODES == 4)
1787 tlb_flush_entry(&env->tlb_table[3][i], addr);
1788 #endif
1789 #endif
1791 tlb_flush_jmp_cache(env, addr);
1793 #ifdef USE_KQEMU
1794 if (env->kqemu_enabled) {
1795 kqemu_flush_page(env, addr);
1797 #endif
1800 /* update the TLBs so that writes to code in the virtual page 'addr'
1801 can be detected */
1802 static void tlb_protect_code(ram_addr_t ram_addr)
1804 cpu_physical_memory_reset_dirty(ram_addr,
1805 ram_addr + TARGET_PAGE_SIZE,
1806 CODE_DIRTY_FLAG);
1809 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1810 tested for self modifying code */
1811 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1812 target_ulong vaddr)
1814 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1817 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1818 unsigned long start, unsigned long length)
1820 unsigned long addr;
1821 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1822 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1823 if ((addr - start) < length) {
1824 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1829 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1830 int dirty_flags)
1832 CPUState *env;
1833 unsigned long length, start1;
1834 int i, mask, len;
1835 uint8_t *p;
1837 start &= TARGET_PAGE_MASK;
1838 end = TARGET_PAGE_ALIGN(end);
1840 length = end - start;
1841 if (length == 0)
1842 return;
1843 len = length >> TARGET_PAGE_BITS;
1844 #ifdef USE_KQEMU
1845 /* XXX: should not depend on cpu context */
1846 env = first_cpu;
1847 if (env->kqemu_enabled) {
1848 ram_addr_t addr;
1849 addr = start;
1850 for(i = 0; i < len; i++) {
1851 kqemu_set_notdirty(env, addr);
1852 addr += TARGET_PAGE_SIZE;
1855 #endif
1856 mask = ~dirty_flags;
1857 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1858 for(i = 0; i < len; i++)
1859 p[i] &= mask;
1861 /* we modify the TLB cache so that the dirty bit will be set again
1862 when accessing the range */
1863 start1 = start + (unsigned long)phys_ram_base;
1864 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1865 for(i = 0; i < CPU_TLB_SIZE; i++)
1866 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
1867 for(i = 0; i < CPU_TLB_SIZE; i++)
1868 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
1869 #if (NB_MMU_MODES >= 3)
1870 for(i = 0; i < CPU_TLB_SIZE; i++)
1871 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1872 #if (NB_MMU_MODES == 4)
1873 for(i = 0; i < CPU_TLB_SIZE; i++)
1874 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1875 #endif
1876 #endif
1880 int cpu_physical_memory_set_dirty_tracking(int enable)
1882 in_migration = enable;
1883 return 0;
1886 int cpu_physical_memory_get_dirty_tracking(void)
1888 return in_migration;
1891 void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr)
1893 if (kvm_enabled())
1894 kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1897 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1899 ram_addr_t ram_addr;
1901 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1902 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
1903 tlb_entry->addend - (unsigned long)phys_ram_base;
1904 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1905 tlb_entry->addr_write |= TLB_NOTDIRTY;
1910 /* update the TLB according to the current state of the dirty bits */
1911 void cpu_tlb_update_dirty(CPUState *env)
1913 int i;
1914 for(i = 0; i < CPU_TLB_SIZE; i++)
1915 tlb_update_dirty(&env->tlb_table[0][i]);
1916 for(i = 0; i < CPU_TLB_SIZE; i++)
1917 tlb_update_dirty(&env->tlb_table[1][i]);
1918 #if (NB_MMU_MODES >= 3)
1919 for(i = 0; i < CPU_TLB_SIZE; i++)
1920 tlb_update_dirty(&env->tlb_table[2][i]);
1921 #if (NB_MMU_MODES == 4)
1922 for(i = 0; i < CPU_TLB_SIZE; i++)
1923 tlb_update_dirty(&env->tlb_table[3][i]);
1924 #endif
1925 #endif
1928 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1930 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1931 tlb_entry->addr_write = vaddr;
1934 /* update the TLB corresponding to virtual page vaddr
1935 so that it is no longer dirty */
1936 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1938 int i;
1940 vaddr &= TARGET_PAGE_MASK;
1941 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1942 tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
1943 tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
1944 #if (NB_MMU_MODES >= 3)
1945 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
1946 #if (NB_MMU_MODES == 4)
1947 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
1948 #endif
1949 #endif
1952 /* add a new TLB entry. At most one entry for a given virtual address
1953 is permitted. Return 0 if OK or 2 if the page could not be mapped
1954 (can only happen in non SOFTMMU mode for I/O pages or pages
1955 conflicting with the host address space). */
1956 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1957 target_phys_addr_t paddr, int prot,
1958 int mmu_idx, int is_softmmu)
1960 PhysPageDesc *p;
1961 unsigned long pd;
1962 unsigned int index;
1963 target_ulong address;
1964 target_ulong code_address;
1965 target_phys_addr_t addend;
1966 int ret;
1967 CPUTLBEntry *te;
1968 CPUWatchpoint *wp;
1969 target_phys_addr_t iotlb;
1971 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
1972 if (!p) {
1973 pd = IO_MEM_UNASSIGNED;
1974 } else {
1975 pd = p->phys_offset;
1977 #if defined(DEBUG_TLB)
1978 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1979 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
1980 #endif
1982 ret = 0;
1983 address = vaddr;
1984 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1985 /* IO memory case (romd handled later) */
1986 address |= TLB_MMIO;
1988 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1989 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1990 /* Normal RAM. */
1991 iotlb = pd & TARGET_PAGE_MASK;
1992 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
1993 iotlb |= IO_MEM_NOTDIRTY;
1994 else
1995 iotlb |= IO_MEM_ROM;
1996 } else {
1997 /* IO handlers are currently passed a phsical address.
1998 It would be nice to pass an offset from the base address
1999 of that region. This would avoid having to special case RAM,
2000 and avoid full address decoding in every device.
2001 We can't use the high bits of pd for this because
2002 IO_MEM_ROMD uses these as a ram address. */
2003 iotlb = (pd & ~TARGET_PAGE_MASK);
2004 if (p) {
2005 iotlb += p->region_offset;
2006 } else {
2007 iotlb += paddr;
2011 code_address = address;
2012 /* Make accesses to pages with watchpoints go via the
2013 watchpoint trap routines. */
2014 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
2015 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2016 iotlb = io_mem_watch + paddr;
2017 /* TODO: The memory case can be optimized by not trapping
2018 reads of pages with a write breakpoint. */
2019 address |= TLB_MMIO;
2023 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2024 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2025 te = &env->tlb_table[mmu_idx][index];
2026 te->addend = addend - vaddr;
2027 if (prot & PAGE_READ) {
2028 te->addr_read = address;
2029 } else {
2030 te->addr_read = -1;
2033 if (prot & PAGE_EXEC) {
2034 te->addr_code = code_address;
2035 } else {
2036 te->addr_code = -1;
2038 if (prot & PAGE_WRITE) {
2039 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2040 (pd & IO_MEM_ROMD)) {
2041 /* Write access calls the I/O callback. */
2042 te->addr_write = address | TLB_MMIO;
2043 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2044 !cpu_physical_memory_is_dirty(pd)) {
2045 te->addr_write = address | TLB_NOTDIRTY;
2046 } else {
2047 te->addr_write = address;
2049 } else {
2050 te->addr_write = -1;
2052 return ret;
2055 #else
2057 void tlb_flush(CPUState *env, int flush_global)
2061 void tlb_flush_page(CPUState *env, target_ulong addr)
2065 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2066 target_phys_addr_t paddr, int prot,
2067 int mmu_idx, int is_softmmu)
2069 return 0;
2072 /* dump memory mappings */
2073 void page_dump(FILE *f)
2075 unsigned long start, end;
2076 int i, j, prot, prot1;
2077 PageDesc *p;
2079 fprintf(f, "%-8s %-8s %-8s %s\n",
2080 "start", "end", "size", "prot");
2081 start = -1;
2082 end = -1;
2083 prot = 0;
2084 for(i = 0; i <= L1_SIZE; i++) {
2085 if (i < L1_SIZE)
2086 p = l1_map[i];
2087 else
2088 p = NULL;
2089 for(j = 0;j < L2_SIZE; j++) {
2090 if (!p)
2091 prot1 = 0;
2092 else
2093 prot1 = p[j].flags;
2094 if (prot1 != prot) {
2095 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2096 if (start != -1) {
2097 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2098 start, end, end - start,
2099 prot & PAGE_READ ? 'r' : '-',
2100 prot & PAGE_WRITE ? 'w' : '-',
2101 prot & PAGE_EXEC ? 'x' : '-');
2103 if (prot1 != 0)
2104 start = end;
2105 else
2106 start = -1;
2107 prot = prot1;
2109 if (!p)
2110 break;
2115 int page_get_flags(target_ulong address)
2117 PageDesc *p;
2119 p = page_find(address >> TARGET_PAGE_BITS);
2120 if (!p)
2121 return 0;
2122 return p->flags;
2125 /* modify the flags of a page and invalidate the code if
2126 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2127 depending on PAGE_WRITE */
2128 void page_set_flags(target_ulong start, target_ulong end, int flags)
2130 PageDesc *p;
2131 target_ulong addr;
2133 /* mmap_lock should already be held. */
2134 start = start & TARGET_PAGE_MASK;
2135 end = TARGET_PAGE_ALIGN(end);
2136 if (flags & PAGE_WRITE)
2137 flags |= PAGE_WRITE_ORG;
2138 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2139 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
2140 /* We may be called for host regions that are outside guest
2141 address space. */
2142 if (!p)
2143 return;
2144 /* if the write protection is set, then we invalidate the code
2145 inside */
2146 if (!(p->flags & PAGE_WRITE) &&
2147 (flags & PAGE_WRITE) &&
2148 p->first_tb) {
2149 tb_invalidate_phys_page(addr, 0, NULL);
2151 p->flags = flags;
2155 int page_check_range(target_ulong start, target_ulong len, int flags)
2157 PageDesc *p;
2158 target_ulong end;
2159 target_ulong addr;
2161 if (start + len < start)
2162 /* we've wrapped around */
2163 return -1;
2165 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2166 start = start & TARGET_PAGE_MASK;
2168 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2169 p = page_find(addr >> TARGET_PAGE_BITS);
2170 if( !p )
2171 return -1;
2172 if( !(p->flags & PAGE_VALID) )
2173 return -1;
2175 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2176 return -1;
2177 if (flags & PAGE_WRITE) {
2178 if (!(p->flags & PAGE_WRITE_ORG))
2179 return -1;
2180 /* unprotect the page if it was put read-only because it
2181 contains translated code */
2182 if (!(p->flags & PAGE_WRITE)) {
2183 if (!page_unprotect(addr, 0, NULL))
2184 return -1;
2186 return 0;
2189 return 0;
2192 /* called from signal handler: invalidate the code and unprotect the
2193 page. Return TRUE if the fault was succesfully handled. */
2194 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2196 unsigned int page_index, prot, pindex;
2197 PageDesc *p, *p1;
2198 target_ulong host_start, host_end, addr;
2200 /* Technically this isn't safe inside a signal handler. However we
2201 know this only ever happens in a synchronous SEGV handler, so in
2202 practice it seems to be ok. */
2203 mmap_lock();
2205 host_start = address & qemu_host_page_mask;
2206 page_index = host_start >> TARGET_PAGE_BITS;
2207 p1 = page_find(page_index);
2208 if (!p1) {
2209 mmap_unlock();
2210 return 0;
2212 host_end = host_start + qemu_host_page_size;
2213 p = p1;
2214 prot = 0;
2215 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2216 prot |= p->flags;
2217 p++;
2219 /* if the page was really writable, then we change its
2220 protection back to writable */
2221 if (prot & PAGE_WRITE_ORG) {
2222 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2223 if (!(p1[pindex].flags & PAGE_WRITE)) {
2224 mprotect((void *)g2h(host_start), qemu_host_page_size,
2225 (prot & PAGE_BITS) | PAGE_WRITE);
2226 p1[pindex].flags |= PAGE_WRITE;
2227 /* and since the content will be modified, we must invalidate
2228 the corresponding translated code. */
2229 tb_invalidate_phys_page(address, pc, puc);
2230 #ifdef DEBUG_TB_CHECK
2231 tb_invalidate_check(address);
2232 #endif
2233 mmap_unlock();
2234 return 1;
2237 mmap_unlock();
2238 return 0;
2241 static inline void tlb_set_dirty(CPUState *env,
2242 unsigned long addr, target_ulong vaddr)
2245 #endif /* defined(CONFIG_USER_ONLY) */
2247 #if !defined(CONFIG_USER_ONLY)
2249 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2250 ram_addr_t memory, ram_addr_t region_offset);
2251 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2252 ram_addr_t orig_memory, ram_addr_t region_offset);
2253 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2254 need_subpage) \
2255 do { \
2256 if (addr > start_addr) \
2257 start_addr2 = 0; \
2258 else { \
2259 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2260 if (start_addr2 > 0) \
2261 need_subpage = 1; \
2264 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2265 end_addr2 = TARGET_PAGE_SIZE - 1; \
2266 else { \
2267 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2268 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2269 need_subpage = 1; \
2271 } while (0)
2273 /* register physical memory. 'size' must be a multiple of the target
2274 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2275 io memory page. The address used when calling the IO function is
2276 the offset from the start of the region, plus region_offset. Both
2277 start_region and regon_offset are rounded down to a page boundary
2278 before calculating this offset. This should not be a problem unless
2279 the low bits of start_addr and region_offset differ. */
2280 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2281 ram_addr_t size,
2282 ram_addr_t phys_offset,
2283 ram_addr_t region_offset)
2285 target_phys_addr_t addr, end_addr;
2286 PhysPageDesc *p;
2287 CPUState *env;
2288 ram_addr_t orig_size = size;
2289 void *subpage;
2291 #ifdef USE_KQEMU
2292 /* XXX: should not depend on cpu context */
2293 env = first_cpu;
2294 if (env->kqemu_enabled) {
2295 kqemu_set_phys_mem(start_addr, size, phys_offset);
2297 #endif
2298 if (kvm_enabled())
2299 kvm_set_phys_mem(start_addr, size, phys_offset);
2301 if (phys_offset == IO_MEM_UNASSIGNED) {
2302 region_offset = start_addr;
2304 region_offset &= TARGET_PAGE_MASK;
2305 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2306 end_addr = start_addr + (target_phys_addr_t)size;
2307 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2308 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2309 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2310 ram_addr_t orig_memory = p->phys_offset;
2311 target_phys_addr_t start_addr2, end_addr2;
2312 int need_subpage = 0;
2314 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2315 need_subpage);
2316 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2317 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2318 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2319 &p->phys_offset, orig_memory,
2320 p->region_offset);
2321 } else {
2322 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2323 >> IO_MEM_SHIFT];
2325 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2326 region_offset);
2327 p->region_offset = 0;
2328 } else {
2329 p->phys_offset = phys_offset;
2330 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2331 (phys_offset & IO_MEM_ROMD))
2332 phys_offset += TARGET_PAGE_SIZE;
2334 } else {
2335 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2336 p->phys_offset = phys_offset;
2337 p->region_offset = region_offset;
2338 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2339 (phys_offset & IO_MEM_ROMD)) {
2340 phys_offset += TARGET_PAGE_SIZE;
2341 } else {
2342 target_phys_addr_t start_addr2, end_addr2;
2343 int need_subpage = 0;
2345 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2346 end_addr2, need_subpage);
2348 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2349 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2350 &p->phys_offset, IO_MEM_UNASSIGNED,
2351 addr & TARGET_PAGE_MASK);
2352 subpage_register(subpage, start_addr2, end_addr2,
2353 phys_offset, region_offset);
2354 p->region_offset = 0;
2358 region_offset += TARGET_PAGE_SIZE;
2361 /* since each CPU stores ram addresses in its TLB cache, we must
2362 reset the modified entries */
2363 /* XXX: slow ! */
2364 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2365 tlb_flush(env, 1);
2369 /* XXX: temporary until new memory mapping API */
2370 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2372 PhysPageDesc *p;
2374 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2375 if (!p)
2376 return IO_MEM_UNASSIGNED;
2377 return p->phys_offset;
2380 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2382 if (kvm_enabled())
2383 kvm_coalesce_mmio_region(addr, size);
2386 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2388 if (kvm_enabled())
2389 kvm_uncoalesce_mmio_region(addr, size);
2392 /* XXX: better than nothing */
2393 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2395 ram_addr_t addr;
2396 if ((phys_ram_alloc_offset + size) > phys_ram_size) {
2397 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
2398 (uint64_t)size, (uint64_t)phys_ram_size);
2399 abort();
2401 addr = phys_ram_alloc_offset;
2402 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2403 return addr;
2406 void qemu_ram_free(ram_addr_t addr)
2410 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2412 #ifdef DEBUG_UNASSIGNED
2413 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2414 #endif
2415 #if defined(TARGET_SPARC)
2416 do_unassigned_access(addr, 0, 0, 0, 1);
2417 #endif
2418 return 0;
2421 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2423 #ifdef DEBUG_UNASSIGNED
2424 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2425 #endif
2426 #if defined(TARGET_SPARC)
2427 do_unassigned_access(addr, 0, 0, 0, 2);
2428 #endif
2429 return 0;
2432 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2434 #ifdef DEBUG_UNASSIGNED
2435 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2436 #endif
2437 #if defined(TARGET_SPARC)
2438 do_unassigned_access(addr, 0, 0, 0, 4);
2439 #endif
2440 return 0;
2443 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2445 #ifdef DEBUG_UNASSIGNED
2446 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2447 #endif
2448 #if defined(TARGET_SPARC)
2449 do_unassigned_access(addr, 1, 0, 0, 1);
2450 #endif
2453 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2455 #ifdef DEBUG_UNASSIGNED
2456 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2457 #endif
2458 #if defined(TARGET_SPARC)
2459 do_unassigned_access(addr, 1, 0, 0, 2);
2460 #endif
2463 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2465 #ifdef DEBUG_UNASSIGNED
2466 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2467 #endif
2468 #if defined(TARGET_SPARC)
2469 do_unassigned_access(addr, 1, 0, 0, 4);
2470 #endif
2473 static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2474 unassigned_mem_readb,
2475 unassigned_mem_readw,
2476 unassigned_mem_readl,
2479 static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2480 unassigned_mem_writeb,
2481 unassigned_mem_writew,
2482 unassigned_mem_writel,
2485 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2486 uint32_t val)
2488 int dirty_flags;
2489 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2490 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2491 #if !defined(CONFIG_USER_ONLY)
2492 tb_invalidate_phys_page_fast(ram_addr, 1);
2493 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2494 #endif
2496 stb_p(phys_ram_base + ram_addr, val);
2497 #ifdef USE_KQEMU
2498 if (cpu_single_env->kqemu_enabled &&
2499 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2500 kqemu_modify_page(cpu_single_env, ram_addr);
2501 #endif
2502 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2503 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2504 /* we remove the notdirty callback only if the code has been
2505 flushed */
2506 if (dirty_flags == 0xff)
2507 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2510 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2511 uint32_t val)
2513 int dirty_flags;
2514 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2515 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2516 #if !defined(CONFIG_USER_ONLY)
2517 tb_invalidate_phys_page_fast(ram_addr, 2);
2518 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2519 #endif
2521 stw_p(phys_ram_base + ram_addr, val);
2522 #ifdef USE_KQEMU
2523 if (cpu_single_env->kqemu_enabled &&
2524 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2525 kqemu_modify_page(cpu_single_env, ram_addr);
2526 #endif
2527 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2528 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2529 /* we remove the notdirty callback only if the code has been
2530 flushed */
2531 if (dirty_flags == 0xff)
2532 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2535 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2536 uint32_t val)
2538 int dirty_flags;
2539 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2540 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2541 #if !defined(CONFIG_USER_ONLY)
2542 tb_invalidate_phys_page_fast(ram_addr, 4);
2543 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2544 #endif
2546 stl_p(phys_ram_base + ram_addr, val);
2547 #ifdef USE_KQEMU
2548 if (cpu_single_env->kqemu_enabled &&
2549 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2550 kqemu_modify_page(cpu_single_env, ram_addr);
2551 #endif
2552 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2553 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2554 /* we remove the notdirty callback only if the code has been
2555 flushed */
2556 if (dirty_flags == 0xff)
2557 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2560 static CPUReadMemoryFunc *error_mem_read[3] = {
2561 NULL, /* never used */
2562 NULL, /* never used */
2563 NULL, /* never used */
2566 static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2567 notdirty_mem_writeb,
2568 notdirty_mem_writew,
2569 notdirty_mem_writel,
2572 /* Generate a debug exception if a watchpoint has been hit. */
2573 static void check_watchpoint(int offset, int len_mask, int flags)
2575 CPUState *env = cpu_single_env;
2576 target_ulong pc, cs_base;
2577 TranslationBlock *tb;
2578 target_ulong vaddr;
2579 CPUWatchpoint *wp;
2580 int cpu_flags;
2582 if (env->watchpoint_hit) {
2583 /* We re-entered the check after replacing the TB. Now raise
2584 * the debug interrupt so that is will trigger after the
2585 * current instruction. */
2586 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2587 return;
2589 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2590 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
2591 if ((vaddr == (wp->vaddr & len_mask) ||
2592 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2593 wp->flags |= BP_WATCHPOINT_HIT;
2594 if (!env->watchpoint_hit) {
2595 env->watchpoint_hit = wp;
2596 tb = tb_find_pc(env->mem_io_pc);
2597 if (!tb) {
2598 cpu_abort(env, "check_watchpoint: could not find TB for "
2599 "pc=%p", (void *)env->mem_io_pc);
2601 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2602 tb_phys_invalidate(tb, -1);
2603 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2604 env->exception_index = EXCP_DEBUG;
2605 } else {
2606 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2607 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2609 cpu_resume_from_signal(env, NULL);
2611 } else {
2612 wp->flags &= ~BP_WATCHPOINT_HIT;
2617 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2618 so these check for a hit then pass through to the normal out-of-line
2619 phys routines. */
2620 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2622 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
2623 return ldub_phys(addr);
2626 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2628 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
2629 return lduw_phys(addr);
2632 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2634 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
2635 return ldl_phys(addr);
2638 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2639 uint32_t val)
2641 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
2642 stb_phys(addr, val);
2645 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2646 uint32_t val)
2648 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
2649 stw_phys(addr, val);
2652 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2653 uint32_t val)
2655 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
2656 stl_phys(addr, val);
2659 static CPUReadMemoryFunc *watch_mem_read[3] = {
2660 watch_mem_readb,
2661 watch_mem_readw,
2662 watch_mem_readl,
2665 static CPUWriteMemoryFunc *watch_mem_write[3] = {
2666 watch_mem_writeb,
2667 watch_mem_writew,
2668 watch_mem_writel,
2671 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2672 unsigned int len)
2674 uint32_t ret;
2675 unsigned int idx;
2677 idx = SUBPAGE_IDX(addr);
2678 #if defined(DEBUG_SUBPAGE)
2679 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2680 mmio, len, addr, idx);
2681 #endif
2682 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2683 addr + mmio->region_offset[idx][0][len]);
2685 return ret;
2688 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2689 uint32_t value, unsigned int len)
2691 unsigned int idx;
2693 idx = SUBPAGE_IDX(addr);
2694 #if defined(DEBUG_SUBPAGE)
2695 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2696 mmio, len, addr, idx, value);
2697 #endif
2698 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2699 addr + mmio->region_offset[idx][1][len],
2700 value);
2703 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2705 #if defined(DEBUG_SUBPAGE)
2706 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2707 #endif
2709 return subpage_readlen(opaque, addr, 0);
2712 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2713 uint32_t value)
2715 #if defined(DEBUG_SUBPAGE)
2716 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2717 #endif
2718 subpage_writelen(opaque, addr, value, 0);
2721 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2723 #if defined(DEBUG_SUBPAGE)
2724 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2725 #endif
2727 return subpage_readlen(opaque, addr, 1);
2730 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2731 uint32_t value)
2733 #if defined(DEBUG_SUBPAGE)
2734 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2735 #endif
2736 subpage_writelen(opaque, addr, value, 1);
2739 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2741 #if defined(DEBUG_SUBPAGE)
2742 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2743 #endif
2745 return subpage_readlen(opaque, addr, 2);
2748 static void subpage_writel (void *opaque,
2749 target_phys_addr_t addr, uint32_t value)
2751 #if defined(DEBUG_SUBPAGE)
2752 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2753 #endif
2754 subpage_writelen(opaque, addr, value, 2);
2757 static CPUReadMemoryFunc *subpage_read[] = {
2758 &subpage_readb,
2759 &subpage_readw,
2760 &subpage_readl,
2763 static CPUWriteMemoryFunc *subpage_write[] = {
2764 &subpage_writeb,
2765 &subpage_writew,
2766 &subpage_writel,
2769 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2770 ram_addr_t memory, ram_addr_t region_offset)
2772 int idx, eidx;
2773 unsigned int i;
2775 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2776 return -1;
2777 idx = SUBPAGE_IDX(start);
2778 eidx = SUBPAGE_IDX(end);
2779 #if defined(DEBUG_SUBPAGE)
2780 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2781 mmio, start, end, idx, eidx, memory);
2782 #endif
2783 memory >>= IO_MEM_SHIFT;
2784 for (; idx <= eidx; idx++) {
2785 for (i = 0; i < 4; i++) {
2786 if (io_mem_read[memory][i]) {
2787 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2788 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2789 mmio->region_offset[idx][0][i] = region_offset;
2791 if (io_mem_write[memory][i]) {
2792 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2793 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2794 mmio->region_offset[idx][1][i] = region_offset;
2799 return 0;
2802 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2803 ram_addr_t orig_memory, ram_addr_t region_offset)
2805 subpage_t *mmio;
2806 int subpage_memory;
2808 mmio = qemu_mallocz(sizeof(subpage_t));
2810 mmio->base = base;
2811 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2812 #if defined(DEBUG_SUBPAGE)
2813 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2814 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2815 #endif
2816 *phys = subpage_memory | IO_MEM_SUBPAGE;
2817 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
2818 region_offset);
2820 return mmio;
2823 static int get_free_io_mem_idx(void)
2825 int i;
2827 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
2828 if (!io_mem_used[i]) {
2829 io_mem_used[i] = 1;
2830 return i;
2833 return -1;
2836 static void io_mem_init(void)
2838 int i;
2840 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
2841 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
2842 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
2843 for (i=0; i<5; i++)
2844 io_mem_used[i] = 1;
2846 io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
2847 watch_mem_write, NULL);
2848 /* alloc dirty bits array */
2849 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
2850 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
2853 /* mem_read and mem_write are arrays of functions containing the
2854 function to access byte (index 0), word (index 1) and dword (index
2855 2). Functions can be omitted with a NULL function pointer. The
2856 registered functions may be modified dynamically later.
2857 If io_index is non zero, the corresponding io zone is
2858 modified. If it is zero, a new io zone is allocated. The return
2859 value can be used with cpu_register_physical_memory(). (-1) is
2860 returned if error. */
2861 int cpu_register_io_memory(int io_index,
2862 CPUReadMemoryFunc **mem_read,
2863 CPUWriteMemoryFunc **mem_write,
2864 void *opaque)
2866 int i, subwidth = 0;
2868 if (io_index <= 0) {
2869 io_index = get_free_io_mem_idx();
2870 if (io_index == -1)
2871 return io_index;
2872 } else {
2873 if (io_index >= IO_MEM_NB_ENTRIES)
2874 return -1;
2877 for(i = 0;i < 3; i++) {
2878 if (!mem_read[i] || !mem_write[i])
2879 subwidth = IO_MEM_SUBWIDTH;
2880 io_mem_read[io_index][i] = mem_read[i];
2881 io_mem_write[io_index][i] = mem_write[i];
2883 io_mem_opaque[io_index] = opaque;
2884 return (io_index << IO_MEM_SHIFT) | subwidth;
2887 void cpu_unregister_io_memory(int io_table_address)
2889 int i;
2890 int io_index = io_table_address >> IO_MEM_SHIFT;
2892 for (i=0;i < 3; i++) {
2893 io_mem_read[io_index][i] = unassigned_mem_read[i];
2894 io_mem_write[io_index][i] = unassigned_mem_write[i];
2896 io_mem_opaque[io_index] = NULL;
2897 io_mem_used[io_index] = 0;
2900 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2902 return io_mem_write[io_index >> IO_MEM_SHIFT];
2905 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2907 return io_mem_read[io_index >> IO_MEM_SHIFT];
2910 #endif /* !defined(CONFIG_USER_ONLY) */
2912 /* physical memory access (slow version, mainly for debug) */
2913 #if defined(CONFIG_USER_ONLY)
2914 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2915 int len, int is_write)
2917 int l, flags;
2918 target_ulong page;
2919 void * p;
2921 while (len > 0) {
2922 page = addr & TARGET_PAGE_MASK;
2923 l = (page + TARGET_PAGE_SIZE) - addr;
2924 if (l > len)
2925 l = len;
2926 flags = page_get_flags(page);
2927 if (!(flags & PAGE_VALID))
2928 return;
2929 if (is_write) {
2930 if (!(flags & PAGE_WRITE))
2931 return;
2932 /* XXX: this code should not depend on lock_user */
2933 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2934 /* FIXME - should this return an error rather than just fail? */
2935 return;
2936 memcpy(p, buf, l);
2937 unlock_user(p, addr, l);
2938 } else {
2939 if (!(flags & PAGE_READ))
2940 return;
2941 /* XXX: this code should not depend on lock_user */
2942 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2943 /* FIXME - should this return an error rather than just fail? */
2944 return;
2945 memcpy(buf, p, l);
2946 unlock_user(p, addr, 0);
2948 len -= l;
2949 buf += l;
2950 addr += l;
2954 #else
2955 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2956 int len, int is_write)
2958 int l, io_index;
2959 uint8_t *ptr;
2960 uint32_t val;
2961 target_phys_addr_t page;
2962 unsigned long pd;
2963 PhysPageDesc *p;
2965 while (len > 0) {
2966 page = addr & TARGET_PAGE_MASK;
2967 l = (page + TARGET_PAGE_SIZE) - addr;
2968 if (l > len)
2969 l = len;
2970 p = phys_page_find(page >> TARGET_PAGE_BITS);
2971 if (!p) {
2972 pd = IO_MEM_UNASSIGNED;
2973 } else {
2974 pd = p->phys_offset;
2977 if (is_write) {
2978 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2979 target_phys_addr_t addr1 = addr;
2980 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2981 if (p)
2982 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
2983 /* XXX: could force cpu_single_env to NULL to avoid
2984 potential bugs */
2985 if (l >= 4 && ((addr1 & 3) == 0)) {
2986 /* 32 bit write access */
2987 val = ldl_p(buf);
2988 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
2989 l = 4;
2990 } else if (l >= 2 && ((addr1 & 1) == 0)) {
2991 /* 16 bit write access */
2992 val = lduw_p(buf);
2993 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
2994 l = 2;
2995 } else {
2996 /* 8 bit write access */
2997 val = ldub_p(buf);
2998 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
2999 l = 1;
3001 } else {
3002 unsigned long addr1;
3003 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3004 /* RAM case */
3005 ptr = phys_ram_base + addr1;
3006 memcpy(ptr, buf, l);
3007 if (!cpu_physical_memory_is_dirty(addr1)) {
3008 /* invalidate code */
3009 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3010 /* set dirty bit */
3011 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3012 (0xff & ~CODE_DIRTY_FLAG);
3015 } else {
3016 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3017 !(pd & IO_MEM_ROMD)) {
3018 target_phys_addr_t addr1 = addr;
3019 /* I/O case */
3020 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3021 if (p)
3022 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3023 if (l >= 4 && ((addr1 & 3) == 0)) {
3024 /* 32 bit read access */
3025 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3026 stl_p(buf, val);
3027 l = 4;
3028 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3029 /* 16 bit read access */
3030 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3031 stw_p(buf, val);
3032 l = 2;
3033 } else {
3034 /* 8 bit read access */
3035 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3036 stb_p(buf, val);
3037 l = 1;
3039 } else {
3040 /* RAM case */
3041 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3042 (addr & ~TARGET_PAGE_MASK);
3043 memcpy(buf, ptr, l);
3046 len -= l;
3047 buf += l;
3048 addr += l;
3052 /* used for ROM loading : can write in RAM and ROM */
3053 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3054 const uint8_t *buf, int len)
3056 int l;
3057 uint8_t *ptr;
3058 target_phys_addr_t page;
3059 unsigned long pd;
3060 PhysPageDesc *p;
3062 while (len > 0) {
3063 page = addr & TARGET_PAGE_MASK;
3064 l = (page + TARGET_PAGE_SIZE) - addr;
3065 if (l > len)
3066 l = len;
3067 p = phys_page_find(page >> TARGET_PAGE_BITS);
3068 if (!p) {
3069 pd = IO_MEM_UNASSIGNED;
3070 } else {
3071 pd = p->phys_offset;
3074 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3075 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3076 !(pd & IO_MEM_ROMD)) {
3077 /* do nothing */
3078 } else {
3079 unsigned long addr1;
3080 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3081 /* ROM/RAM case */
3082 ptr = phys_ram_base + addr1;
3083 memcpy(ptr, buf, l);
3085 len -= l;
3086 buf += l;
3087 addr += l;
3091 typedef struct {
3092 void *buffer;
3093 target_phys_addr_t addr;
3094 target_phys_addr_t len;
3095 } BounceBuffer;
3097 static BounceBuffer bounce;
3099 typedef struct MapClient {
3100 void *opaque;
3101 void (*callback)(void *opaque);
3102 LIST_ENTRY(MapClient) link;
3103 } MapClient;
3105 static LIST_HEAD(map_client_list, MapClient) map_client_list
3106 = LIST_HEAD_INITIALIZER(map_client_list);
3108 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3110 MapClient *client = qemu_malloc(sizeof(*client));
3112 client->opaque = opaque;
3113 client->callback = callback;
3114 LIST_INSERT_HEAD(&map_client_list, client, link);
3115 return client;
3118 void cpu_unregister_map_client(void *_client)
3120 MapClient *client = (MapClient *)_client;
3122 LIST_REMOVE(client, link);
3125 static void cpu_notify_map_clients(void)
3127 MapClient *client;
3129 while (!LIST_EMPTY(&map_client_list)) {
3130 client = LIST_FIRST(&map_client_list);
3131 client->callback(client->opaque);
3132 LIST_REMOVE(client, link);
3136 /* Map a physical memory region into a host virtual address.
3137 * May map a subset of the requested range, given by and returned in *plen.
3138 * May return NULL if resources needed to perform the mapping are exhausted.
3139 * Use only for reads OR writes - not for read-modify-write operations.
3140 * Use cpu_register_map_client() to know when retrying the map operation is
3141 * likely to succeed.
3143 void *cpu_physical_memory_map(target_phys_addr_t addr,
3144 target_phys_addr_t *plen,
3145 int is_write)
3147 target_phys_addr_t len = *plen;
3148 target_phys_addr_t done = 0;
3149 int l;
3150 uint8_t *ret = NULL;
3151 uint8_t *ptr;
3152 target_phys_addr_t page;
3153 unsigned long pd;
3154 PhysPageDesc *p;
3155 unsigned long addr1;
3157 while (len > 0) {
3158 page = addr & TARGET_PAGE_MASK;
3159 l = (page + TARGET_PAGE_SIZE) - addr;
3160 if (l > len)
3161 l = len;
3162 p = phys_page_find(page >> TARGET_PAGE_BITS);
3163 if (!p) {
3164 pd = IO_MEM_UNASSIGNED;
3165 } else {
3166 pd = p->phys_offset;
3169 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3170 if (done || bounce.buffer) {
3171 break;
3173 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3174 bounce.addr = addr;
3175 bounce.len = l;
3176 if (!is_write) {
3177 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3179 ptr = bounce.buffer;
3180 } else {
3181 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3182 ptr = phys_ram_base + addr1;
3184 if (!done) {
3185 ret = ptr;
3186 } else if (ret + done != ptr) {
3187 break;
3190 len -= l;
3191 addr += l;
3192 done += l;
3194 *plen = done;
3195 return ret;
3198 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3199 * Will also mark the memory as dirty if is_write == 1. access_len gives
3200 * the amount of memory that was actually read or written by the caller.
3202 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3203 int is_write, target_phys_addr_t access_len)
3205 if (buffer != bounce.buffer) {
3206 if (is_write) {
3207 unsigned long addr1 = (uint8_t *)buffer - phys_ram_base;
3208 while (access_len) {
3209 unsigned l;
3210 l = TARGET_PAGE_SIZE;
3211 if (l > access_len)
3212 l = access_len;
3213 if (!cpu_physical_memory_is_dirty(addr1)) {
3214 /* invalidate code */
3215 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3216 /* set dirty bit */
3217 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3218 (0xff & ~CODE_DIRTY_FLAG);
3220 addr1 += l;
3221 access_len -= l;
3224 return;
3226 if (is_write) {
3227 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3229 qemu_free(bounce.buffer);
3230 bounce.buffer = NULL;
3231 cpu_notify_map_clients();
3234 /* warning: addr must be aligned */
3235 uint32_t ldl_phys(target_phys_addr_t addr)
3237 int io_index;
3238 uint8_t *ptr;
3239 uint32_t val;
3240 unsigned long pd;
3241 PhysPageDesc *p;
3243 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3244 if (!p) {
3245 pd = IO_MEM_UNASSIGNED;
3246 } else {
3247 pd = p->phys_offset;
3250 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3251 !(pd & IO_MEM_ROMD)) {
3252 /* I/O case */
3253 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3254 if (p)
3255 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3256 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3257 } else {
3258 /* RAM case */
3259 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3260 (addr & ~TARGET_PAGE_MASK);
3261 val = ldl_p(ptr);
3263 return val;
3266 /* warning: addr must be aligned */
3267 uint64_t ldq_phys(target_phys_addr_t addr)
3269 int io_index;
3270 uint8_t *ptr;
3271 uint64_t val;
3272 unsigned long pd;
3273 PhysPageDesc *p;
3275 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3276 if (!p) {
3277 pd = IO_MEM_UNASSIGNED;
3278 } else {
3279 pd = p->phys_offset;
3282 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3283 !(pd & IO_MEM_ROMD)) {
3284 /* I/O case */
3285 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3286 if (p)
3287 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3288 #ifdef TARGET_WORDS_BIGENDIAN
3289 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3290 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3291 #else
3292 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3293 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3294 #endif
3295 } else {
3296 /* RAM case */
3297 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3298 (addr & ~TARGET_PAGE_MASK);
3299 val = ldq_p(ptr);
3301 return val;
3304 /* XXX: optimize */
3305 uint32_t ldub_phys(target_phys_addr_t addr)
3307 uint8_t val;
3308 cpu_physical_memory_read(addr, &val, 1);
3309 return val;
3312 /* XXX: optimize */
3313 uint32_t lduw_phys(target_phys_addr_t addr)
3315 uint16_t val;
3316 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3317 return tswap16(val);
3320 /* warning: addr must be aligned. The ram page is not masked as dirty
3321 and the code inside is not invalidated. It is useful if the dirty
3322 bits are used to track modified PTEs */
3323 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3325 int io_index;
3326 uint8_t *ptr;
3327 unsigned long pd;
3328 PhysPageDesc *p;
3330 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3331 if (!p) {
3332 pd = IO_MEM_UNASSIGNED;
3333 } else {
3334 pd = p->phys_offset;
3337 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3338 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3339 if (p)
3340 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3341 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3342 } else {
3343 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3344 ptr = phys_ram_base + addr1;
3345 stl_p(ptr, val);
3347 if (unlikely(in_migration)) {
3348 if (!cpu_physical_memory_is_dirty(addr1)) {
3349 /* invalidate code */
3350 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3351 /* set dirty bit */
3352 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3353 (0xff & ~CODE_DIRTY_FLAG);
3359 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3361 int io_index;
3362 uint8_t *ptr;
3363 unsigned long pd;
3364 PhysPageDesc *p;
3366 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3367 if (!p) {
3368 pd = IO_MEM_UNASSIGNED;
3369 } else {
3370 pd = p->phys_offset;
3373 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3374 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3375 if (p)
3376 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3377 #ifdef TARGET_WORDS_BIGENDIAN
3378 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3379 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3380 #else
3381 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3382 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3383 #endif
3384 } else {
3385 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3386 (addr & ~TARGET_PAGE_MASK);
3387 stq_p(ptr, val);
3391 /* warning: addr must be aligned */
3392 void stl_phys(target_phys_addr_t addr, uint32_t val)
3394 int io_index;
3395 uint8_t *ptr;
3396 unsigned long pd;
3397 PhysPageDesc *p;
3399 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3400 if (!p) {
3401 pd = IO_MEM_UNASSIGNED;
3402 } else {
3403 pd = p->phys_offset;
3406 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3407 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3408 if (p)
3409 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3410 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3411 } else {
3412 unsigned long addr1;
3413 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3414 /* RAM case */
3415 ptr = phys_ram_base + addr1;
3416 stl_p(ptr, val);
3417 if (!cpu_physical_memory_is_dirty(addr1)) {
3418 /* invalidate code */
3419 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3420 /* set dirty bit */
3421 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3422 (0xff & ~CODE_DIRTY_FLAG);
3427 /* XXX: optimize */
3428 void stb_phys(target_phys_addr_t addr, uint32_t val)
3430 uint8_t v = val;
3431 cpu_physical_memory_write(addr, &v, 1);
3434 /* XXX: optimize */
3435 void stw_phys(target_phys_addr_t addr, uint32_t val)
3437 uint16_t v = tswap16(val);
3438 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3441 /* XXX: optimize */
3442 void stq_phys(target_phys_addr_t addr, uint64_t val)
3444 val = tswap64(val);
3445 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3448 #endif
3450 /* virtual memory access for debug (includes writing to ROM) */
3451 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3452 uint8_t *buf, int len, int is_write)
3454 int l;
3455 target_phys_addr_t phys_addr;
3456 target_ulong page;
3458 while (len > 0) {
3459 page = addr & TARGET_PAGE_MASK;
3460 phys_addr = cpu_get_phys_page_debug(env, page);
3461 /* if no physical page mapped, return an error */
3462 if (phys_addr == -1)
3463 return -1;
3464 l = (page + TARGET_PAGE_SIZE) - addr;
3465 if (l > len)
3466 l = len;
3467 phys_addr += (addr & ~TARGET_PAGE_MASK);
3468 #if !defined(CONFIG_USER_ONLY)
3469 if (is_write)
3470 cpu_physical_memory_write_rom(phys_addr, buf, l);
3471 else
3472 #endif
3473 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
3474 len -= l;
3475 buf += l;
3476 addr += l;
3478 return 0;
3481 /* in deterministic execution mode, instructions doing device I/Os
3482 must be at the end of the TB */
3483 void cpu_io_recompile(CPUState *env, void *retaddr)
3485 TranslationBlock *tb;
3486 uint32_t n, cflags;
3487 target_ulong pc, cs_base;
3488 uint64_t flags;
3490 tb = tb_find_pc((unsigned long)retaddr);
3491 if (!tb) {
3492 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3493 retaddr);
3495 n = env->icount_decr.u16.low + tb->icount;
3496 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3497 /* Calculate how many instructions had been executed before the fault
3498 occurred. */
3499 n = n - env->icount_decr.u16.low;
3500 /* Generate a new TB ending on the I/O insn. */
3501 n++;
3502 /* On MIPS and SH, delay slot instructions can only be restarted if
3503 they were already the first instruction in the TB. If this is not
3504 the first instruction in a TB then re-execute the preceding
3505 branch. */
3506 #if defined(TARGET_MIPS)
3507 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3508 env->active_tc.PC -= 4;
3509 env->icount_decr.u16.low++;
3510 env->hflags &= ~MIPS_HFLAG_BMASK;
3512 #elif defined(TARGET_SH4)
3513 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3514 && n > 1) {
3515 env->pc -= 2;
3516 env->icount_decr.u16.low++;
3517 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3519 #endif
3520 /* This should never happen. */
3521 if (n > CF_COUNT_MASK)
3522 cpu_abort(env, "TB too big during recompile");
3524 cflags = n | CF_LAST_IO;
3525 pc = tb->pc;
3526 cs_base = tb->cs_base;
3527 flags = tb->flags;
3528 tb_phys_invalidate(tb, -1);
3529 /* FIXME: In theory this could raise an exception. In practice
3530 we have already translated the block once so it's probably ok. */
3531 tb_gen_code(env, pc, cs_base, flags, cflags);
3532 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3533 the first in the TB) then we end up generating a whole new TB and
3534 repeating the fault, which is horribly inefficient.
3535 Better would be to execute just this insn uncached, or generate a
3536 second new TB. */
3537 cpu_resume_from_signal(env, NULL);
3540 void dump_exec_info(FILE *f,
3541 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3543 int i, target_code_size, max_target_code_size;
3544 int direct_jmp_count, direct_jmp2_count, cross_page;
3545 TranslationBlock *tb;
3547 target_code_size = 0;
3548 max_target_code_size = 0;
3549 cross_page = 0;
3550 direct_jmp_count = 0;
3551 direct_jmp2_count = 0;
3552 for(i = 0; i < nb_tbs; i++) {
3553 tb = &tbs[i];
3554 target_code_size += tb->size;
3555 if (tb->size > max_target_code_size)
3556 max_target_code_size = tb->size;
3557 if (tb->page_addr[1] != -1)
3558 cross_page++;
3559 if (tb->tb_next_offset[0] != 0xffff) {
3560 direct_jmp_count++;
3561 if (tb->tb_next_offset[1] != 0xffff) {
3562 direct_jmp2_count++;
3566 /* XXX: avoid using doubles ? */
3567 cpu_fprintf(f, "Translation buffer state:\n");
3568 cpu_fprintf(f, "gen code size %ld/%ld\n",
3569 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3570 cpu_fprintf(f, "TB count %d/%d\n",
3571 nb_tbs, code_gen_max_blocks);
3572 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3573 nb_tbs ? target_code_size / nb_tbs : 0,
3574 max_target_code_size);
3575 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3576 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3577 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3578 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3579 cross_page,
3580 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3581 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3582 direct_jmp_count,
3583 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3584 direct_jmp2_count,
3585 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3586 cpu_fprintf(f, "\nStatistics:\n");
3587 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3588 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3589 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3590 tcg_dump_info(f, cpu_fprintf);
3593 #if !defined(CONFIG_USER_ONLY)
3595 #define MMUSUFFIX _cmmu
3596 #define GETPC() NULL
3597 #define env cpu_single_env
3598 #define SOFTMMU_CODE_ACCESS
3600 #define SHIFT 0
3601 #include "softmmu_template.h"
3603 #define SHIFT 1
3604 #include "softmmu_template.h"
3606 #define SHIFT 2
3607 #include "softmmu_template.h"
3609 #define SHIFT 3
3610 #include "softmmu_template.h"
3612 #undef env
3614 #endif