target-ppc: update nip before calling an helper in FP instructions
[qemu/mini2440/sniper_sniper_test.git] / hw / dma.c
blobb247a0cd89896e434682a0305cb1f1f8edd723b6
1 /*
2 * QEMU DMA emulation
4 * Copyright (c) 2003-2004 Vassili Karpov (malc)
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "isa.h"
27 /* #define DEBUG_DMA */
29 #define dolog(...) fprintf (stderr, "dma: " __VA_ARGS__)
30 #ifdef DEBUG_DMA
31 #define lwarn(...) fprintf (stderr, "dma: " __VA_ARGS__)
32 #define linfo(...) fprintf (stderr, "dma: " __VA_ARGS__)
33 #define ldebug(...) fprintf (stderr, "dma: " __VA_ARGS__)
34 #else
35 #define lwarn(...)
36 #define linfo(...)
37 #define ldebug(...)
38 #endif
40 #define LENOFA(a) ((int) (sizeof(a)/sizeof(a[0])))
42 struct dma_regs {
43 int now[2];
44 uint16_t base[2];
45 uint8_t mode;
46 uint8_t page;
47 uint8_t pageh;
48 uint8_t dack;
49 uint8_t eop;
50 DMA_transfer_handler transfer_handler;
51 void *opaque;
54 #define ADDR 0
55 #define COUNT 1
57 static struct dma_cont {
58 uint8_t status;
59 uint8_t command;
60 uint8_t mask;
61 uint8_t flip_flop;
62 int dshift;
63 struct dma_regs regs[4];
64 } dma_controllers[2];
66 enum {
67 CMD_MEMORY_TO_MEMORY = 0x01,
68 CMD_FIXED_ADDRESS = 0x02,
69 CMD_BLOCK_CONTROLLER = 0x04,
70 CMD_COMPRESSED_TIME = 0x08,
71 CMD_CYCLIC_PRIORITY = 0x10,
72 CMD_EXTENDED_WRITE = 0x20,
73 CMD_LOW_DREQ = 0x40,
74 CMD_LOW_DACK = 0x80,
75 CMD_NOT_SUPPORTED = CMD_MEMORY_TO_MEMORY | CMD_FIXED_ADDRESS
76 | CMD_COMPRESSED_TIME | CMD_CYCLIC_PRIORITY | CMD_EXTENDED_WRITE
77 | CMD_LOW_DREQ | CMD_LOW_DACK
81 static void DMA_run (void);
83 static int channels[8] = {-1, 2, 3, 1, -1, -1, -1, 0};
85 static void write_page (void *opaque, uint32_t nport, uint32_t data)
87 struct dma_cont *d = opaque;
88 int ichan;
90 ichan = channels[nport & 7];
91 if (-1 == ichan) {
92 dolog ("invalid channel %#x %#x\n", nport, data);
93 return;
95 d->regs[ichan].page = data;
98 static void write_pageh (void *opaque, uint32_t nport, uint32_t data)
100 struct dma_cont *d = opaque;
101 int ichan;
103 ichan = channels[nport & 7];
104 if (-1 == ichan) {
105 dolog ("invalid channel %#x %#x\n", nport, data);
106 return;
108 d->regs[ichan].pageh = data;
111 static uint32_t read_page (void *opaque, uint32_t nport)
113 struct dma_cont *d = opaque;
114 int ichan;
116 ichan = channels[nport & 7];
117 if (-1 == ichan) {
118 dolog ("invalid channel read %#x\n", nport);
119 return 0;
121 return d->regs[ichan].page;
124 static uint32_t read_pageh (void *opaque, uint32_t nport)
126 struct dma_cont *d = opaque;
127 int ichan;
129 ichan = channels[nport & 7];
130 if (-1 == ichan) {
131 dolog ("invalid channel read %#x\n", nport);
132 return 0;
134 return d->regs[ichan].pageh;
137 static inline void init_chan (struct dma_cont *d, int ichan)
139 struct dma_regs *r;
141 r = d->regs + ichan;
142 r->now[ADDR] = r->base[ADDR] << d->dshift;
143 r->now[COUNT] = 0;
146 static inline int getff (struct dma_cont *d)
148 int ff;
150 ff = d->flip_flop;
151 d->flip_flop = !ff;
152 return ff;
155 static uint32_t read_chan (void *opaque, uint32_t nport)
157 struct dma_cont *d = opaque;
158 int ichan, nreg, iport, ff, val, dir;
159 struct dma_regs *r;
161 iport = (nport >> d->dshift) & 0x0f;
162 ichan = iport >> 1;
163 nreg = iport & 1;
164 r = d->regs + ichan;
166 dir = ((r->mode >> 5) & 1) ? -1 : 1;
167 ff = getff (d);
168 if (nreg)
169 val = (r->base[COUNT] << d->dshift) - r->now[COUNT];
170 else
171 val = r->now[ADDR] + r->now[COUNT] * dir;
173 ldebug ("read_chan %#x -> %d\n", iport, val);
174 return (val >> (d->dshift + (ff << 3))) & 0xff;
177 static void write_chan (void *opaque, uint32_t nport, uint32_t data)
179 struct dma_cont *d = opaque;
180 int iport, ichan, nreg;
181 struct dma_regs *r;
183 iport = (nport >> d->dshift) & 0x0f;
184 ichan = iport >> 1;
185 nreg = iport & 1;
186 r = d->regs + ichan;
187 if (getff (d)) {
188 r->base[nreg] = (r->base[nreg] & 0xff) | ((data << 8) & 0xff00);
189 init_chan (d, ichan);
190 } else {
191 r->base[nreg] = (r->base[nreg] & 0xff00) | (data & 0xff);
195 static void write_cont (void *opaque, uint32_t nport, uint32_t data)
197 struct dma_cont *d = opaque;
198 int iport, ichan = 0;
200 iport = (nport >> d->dshift) & 0x0f;
201 switch (iport) {
202 case 0x08: /* command */
203 if ((data != 0) && (data & CMD_NOT_SUPPORTED)) {
204 dolog ("command %#x not supported\n", data);
205 return;
207 d->command = data;
208 break;
210 case 0x09:
211 ichan = data & 3;
212 if (data & 4) {
213 d->status |= 1 << (ichan + 4);
215 else {
216 d->status &= ~(1 << (ichan + 4));
218 d->status &= ~(1 << ichan);
219 DMA_run();
220 break;
222 case 0x0a: /* single mask */
223 if (data & 4)
224 d->mask |= 1 << (data & 3);
225 else
226 d->mask &= ~(1 << (data & 3));
227 DMA_run();
228 break;
230 case 0x0b: /* mode */
232 ichan = data & 3;
233 #ifdef DEBUG_DMA
235 int op, ai, dir, opmode;
236 op = (data >> 2) & 3;
237 ai = (data >> 4) & 1;
238 dir = (data >> 5) & 1;
239 opmode = (data >> 6) & 3;
241 linfo ("ichan %d, op %d, ai %d, dir %d, opmode %d\n",
242 ichan, op, ai, dir, opmode);
244 #endif
245 d->regs[ichan].mode = data;
246 break;
249 case 0x0c: /* clear flip flop */
250 d->flip_flop = 0;
251 break;
253 case 0x0d: /* reset */
254 d->flip_flop = 0;
255 d->mask = ~0;
256 d->status = 0;
257 d->command = 0;
258 break;
260 case 0x0e: /* clear mask for all channels */
261 d->mask = 0;
262 DMA_run();
263 break;
265 case 0x0f: /* write mask for all channels */
266 d->mask = data;
267 DMA_run();
268 break;
270 default:
271 dolog ("unknown iport %#x\n", iport);
272 break;
275 #ifdef DEBUG_DMA
276 if (0xc != iport) {
277 linfo ("write_cont: nport %#06x, ichan % 2d, val %#06x\n",
278 nport, ichan, data);
280 #endif
283 static uint32_t read_cont (void *opaque, uint32_t nport)
285 struct dma_cont *d = opaque;
286 int iport, val;
288 iport = (nport >> d->dshift) & 0x0f;
289 switch (iport) {
290 case 0x08: /* status */
291 val = d->status;
292 d->status &= 0xf0;
293 break;
294 case 0x0f: /* mask */
295 val = d->mask;
296 break;
297 default:
298 val = 0;
299 break;
302 ldebug ("read_cont: nport %#06x, iport %#04x val %#x\n", nport, iport, val);
303 return val;
306 int DMA_get_channel_mode (int nchan)
308 return dma_controllers[nchan > 3].regs[nchan & 3].mode;
311 void DMA_hold_DREQ (int nchan)
313 int ncont, ichan;
315 ncont = nchan > 3;
316 ichan = nchan & 3;
317 linfo ("held cont=%d chan=%d\n", ncont, ichan);
318 dma_controllers[ncont].status |= 1 << (ichan + 4);
319 DMA_run();
322 void DMA_release_DREQ (int nchan)
324 int ncont, ichan;
326 ncont = nchan > 3;
327 ichan = nchan & 3;
328 linfo ("released cont=%d chan=%d\n", ncont, ichan);
329 dma_controllers[ncont].status &= ~(1 << (ichan + 4));
330 DMA_run();
333 static void channel_run (int ncont, int ichan)
335 int n;
336 struct dma_regs *r = &dma_controllers[ncont].regs[ichan];
337 #ifdef DEBUG_DMA
338 int dir, opmode;
340 dir = (r->mode >> 5) & 1;
341 opmode = (r->mode >> 6) & 3;
343 if (dir) {
344 dolog ("DMA in address decrement mode\n");
346 if (opmode != 1) {
347 dolog ("DMA not in single mode select %#x\n", opmode);
349 #endif
351 r = dma_controllers[ncont].regs + ichan;
352 n = r->transfer_handler (r->opaque, ichan + (ncont << 2),
353 r->now[COUNT], (r->base[COUNT] + 1) << ncont);
354 r->now[COUNT] = n;
355 ldebug ("dma_pos %d size %d\n", n, (r->base[COUNT] + 1) << ncont);
358 static QEMUBH *dma_bh;
360 static void DMA_run (void)
362 struct dma_cont *d;
363 int icont, ichan;
364 int rearm = 0;
366 d = dma_controllers;
368 for (icont = 0; icont < 2; icont++, d++) {
369 for (ichan = 0; ichan < 4; ichan++) {
370 int mask;
372 mask = 1 << ichan;
374 if ((0 == (d->mask & mask)) && (0 != (d->status & (mask << 4)))) {
375 channel_run (icont, ichan);
376 rearm = 1;
381 if (rearm)
382 qemu_bh_schedule_idle(dma_bh);
385 static void DMA_run_bh(void *unused)
387 DMA_run();
390 void DMA_register_channel (int nchan,
391 DMA_transfer_handler transfer_handler,
392 void *opaque)
394 struct dma_regs *r;
395 int ichan, ncont;
397 ncont = nchan > 3;
398 ichan = nchan & 3;
400 r = dma_controllers[ncont].regs + ichan;
401 r->transfer_handler = transfer_handler;
402 r->opaque = opaque;
405 int DMA_read_memory (int nchan, void *buf, int pos, int len)
407 struct dma_regs *r = &dma_controllers[nchan > 3].regs[nchan & 3];
408 target_phys_addr_t addr = ((r->pageh & 0x7f) << 24) | (r->page << 16) | r->now[ADDR];
410 if (r->mode & 0x20) {
411 int i;
412 uint8_t *p = buf;
414 cpu_physical_memory_read (addr - pos - len, buf, len);
415 /* What about 16bit transfers? */
416 for (i = 0; i < len >> 1; i++) {
417 uint8_t b = p[len - i - 1];
418 p[i] = b;
421 else
422 cpu_physical_memory_read (addr + pos, buf, len);
424 return len;
427 int DMA_write_memory (int nchan, void *buf, int pos, int len)
429 struct dma_regs *r = &dma_controllers[nchan > 3].regs[nchan & 3];
430 target_phys_addr_t addr = ((r->pageh & 0x7f) << 24) | (r->page << 16) | r->now[ADDR];
432 if (r->mode & 0x20) {
433 int i;
434 uint8_t *p = buf;
436 cpu_physical_memory_write (addr - pos - len, buf, len);
437 /* What about 16bit transfers? */
438 for (i = 0; i < len; i++) {
439 uint8_t b = p[len - i - 1];
440 p[i] = b;
443 else
444 cpu_physical_memory_write (addr + pos, buf, len);
446 return len;
449 /* request the emulator to transfer a new DMA memory block ASAP */
450 void DMA_schedule(int nchan)
452 CPUState *env = cpu_single_env;
453 if (env)
454 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
457 static void dma_reset(void *opaque)
459 struct dma_cont *d = opaque;
460 write_cont (d, (0x0d << d->dshift), 0);
463 static int dma_phony_handler (void *opaque, int nchan, int dma_pos, int dma_len)
465 dolog ("unregistered DMA channel used nchan=%d dma_pos=%d dma_len=%d\n",
466 nchan, dma_pos, dma_len);
467 return dma_pos;
470 /* dshift = 0: 8 bit DMA, 1 = 16 bit DMA */
471 static void dma_init2(struct dma_cont *d, int base, int dshift,
472 int page_base, int pageh_base)
474 static const int page_port_list[] = { 0x1, 0x2, 0x3, 0x7 };
475 int i;
477 d->dshift = dshift;
478 for (i = 0; i < 8; i++) {
479 register_ioport_write (base + (i << dshift), 1, 1, write_chan, d);
480 register_ioport_read (base + (i << dshift), 1, 1, read_chan, d);
482 for (i = 0; i < LENOFA (page_port_list); i++) {
483 register_ioport_write (page_base + page_port_list[i], 1, 1,
484 write_page, d);
485 register_ioport_read (page_base + page_port_list[i], 1, 1,
486 read_page, d);
487 if (pageh_base >= 0) {
488 register_ioport_write (pageh_base + page_port_list[i], 1, 1,
489 write_pageh, d);
490 register_ioport_read (pageh_base + page_port_list[i], 1, 1,
491 read_pageh, d);
494 for (i = 0; i < 8; i++) {
495 register_ioport_write (base + ((i + 8) << dshift), 1, 1,
496 write_cont, d);
497 register_ioport_read (base + ((i + 8) << dshift), 1, 1,
498 read_cont, d);
500 qemu_register_reset(dma_reset, d);
501 dma_reset(d);
502 for (i = 0; i < LENOFA (d->regs); ++i) {
503 d->regs[i].transfer_handler = dma_phony_handler;
507 static void dma_save (QEMUFile *f, void *opaque)
509 struct dma_cont *d = opaque;
510 int i;
512 /* qemu_put_8s (f, &d->status); */
513 qemu_put_8s (f, &d->command);
514 qemu_put_8s (f, &d->mask);
515 qemu_put_8s (f, &d->flip_flop);
516 qemu_put_be32 (f, d->dshift);
518 for (i = 0; i < 4; ++i) {
519 struct dma_regs *r = &d->regs[i];
520 qemu_put_be32 (f, r->now[0]);
521 qemu_put_be32 (f, r->now[1]);
522 qemu_put_be16s (f, &r->base[0]);
523 qemu_put_be16s (f, &r->base[1]);
524 qemu_put_8s (f, &r->mode);
525 qemu_put_8s (f, &r->page);
526 qemu_put_8s (f, &r->pageh);
527 qemu_put_8s (f, &r->dack);
528 qemu_put_8s (f, &r->eop);
532 static int dma_load (QEMUFile *f, void *opaque, int version_id)
534 struct dma_cont *d = opaque;
535 int i;
537 if (version_id != 1)
538 return -EINVAL;
540 /* qemu_get_8s (f, &d->status); */
541 qemu_get_8s (f, &d->command);
542 qemu_get_8s (f, &d->mask);
543 qemu_get_8s (f, &d->flip_flop);
544 d->dshift=qemu_get_be32 (f);
546 for (i = 0; i < 4; ++i) {
547 struct dma_regs *r = &d->regs[i];
548 r->now[0]=qemu_get_be32 (f);
549 r->now[1]=qemu_get_be32 (f);
550 qemu_get_be16s (f, &r->base[0]);
551 qemu_get_be16s (f, &r->base[1]);
552 qemu_get_8s (f, &r->mode);
553 qemu_get_8s (f, &r->page);
554 qemu_get_8s (f, &r->pageh);
555 qemu_get_8s (f, &r->dack);
556 qemu_get_8s (f, &r->eop);
559 DMA_run();
561 return 0;
564 void DMA_init (int high_page_enable)
566 dma_init2(&dma_controllers[0], 0x00, 0, 0x80,
567 high_page_enable ? 0x480 : -1);
568 dma_init2(&dma_controllers[1], 0xc0, 1, 0x88,
569 high_page_enable ? 0x488 : -1);
570 register_savevm ("dma", 0, 1, dma_save, dma_load, &dma_controllers[0]);
571 register_savevm ("dma", 1, 1, dma_save, dma_load, &dma_controllers[1]);
573 dma_bh = qemu_bh_new(DMA_run_bh, NULL);