2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #define WIN32_LEAN_AND_MEAN
25 #include <sys/types.h>
38 #include "qemu-common.h"
43 #if defined(CONFIG_USER_ONLY)
47 //#define DEBUG_TB_INVALIDATE
50 //#define DEBUG_UNASSIGNED
52 /* make various TB consistency checks */
53 //#define DEBUG_TB_CHECK
54 //#define DEBUG_TLB_CHECK
56 //#define DEBUG_IOPORT
57 //#define DEBUG_SUBPAGE
59 #if !defined(CONFIG_USER_ONLY)
60 /* TB consistency checks only implemented for usermode emulation. */
64 #define SMC_BITMAP_USE_THRESHOLD 10
66 #define MMAP_AREA_START 0x00000000
67 #define MMAP_AREA_END 0xa8000000
69 #if defined(TARGET_SPARC64)
70 #define TARGET_PHYS_ADDR_SPACE_BITS 41
71 #elif defined(TARGET_SPARC)
72 #define TARGET_PHYS_ADDR_SPACE_BITS 36
73 #elif defined(TARGET_ALPHA)
74 #define TARGET_PHYS_ADDR_SPACE_BITS 42
75 #define TARGET_VIRT_ADDR_SPACE_BITS 42
76 #elif defined(TARGET_PPC64)
77 #define TARGET_PHYS_ADDR_SPACE_BITS 42
78 #elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
79 #define TARGET_PHYS_ADDR_SPACE_BITS 42
80 #elif defined(TARGET_I386) && !defined(USE_KQEMU)
81 #define TARGET_PHYS_ADDR_SPACE_BITS 36
83 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
84 #define TARGET_PHYS_ADDR_SPACE_BITS 32
87 static TranslationBlock
*tbs
;
88 int code_gen_max_blocks
;
89 TranslationBlock
*tb_phys_hash
[CODE_GEN_PHYS_HASH_SIZE
];
91 /* any access to the tbs or the page table must use this lock */
92 spinlock_t tb_lock
= SPIN_LOCK_UNLOCKED
;
94 #if defined(__arm__) || defined(__sparc_v9__)
95 /* The prologue must be reachable with a direct jump. ARM and Sparc64
96 have limited branch ranges (possibly also PPC) so place it in a
97 section close to code segment. */
98 #define code_gen_section \
99 __attribute__((__section__(".gen_code"))) \
100 __attribute__((aligned (32)))
102 #define code_gen_section \
103 __attribute__((aligned (32)))
106 uint8_t code_gen_prologue
[1024] code_gen_section
;
107 static uint8_t *code_gen_buffer
;
108 static unsigned long code_gen_buffer_size
;
109 /* threshold to flush the translated code buffer */
110 static unsigned long code_gen_buffer_max_size
;
111 uint8_t *code_gen_ptr
;
113 #if !defined(CONFIG_USER_ONLY)
114 ram_addr_t phys_ram_size
;
116 uint8_t *phys_ram_base
;
117 uint8_t *phys_ram_dirty
;
118 static int in_migration
;
119 static ram_addr_t phys_ram_alloc_offset
= 0;
123 /* current CPU in the current thread. It is only valid inside
125 CPUState
*cpu_single_env
;
126 /* 0 = Do not count executed instructions.
127 1 = Precise instruction counting.
128 2 = Adaptive rate instruction counting. */
130 /* Current instruction counter. While executing translated code this may
131 include some instructions that have not yet been executed. */
134 typedef struct PageDesc
{
135 /* list of TBs intersecting this ram page */
136 TranslationBlock
*first_tb
;
137 /* in order to optimize self modifying code, we count the number
138 of lookups we do to a given page to use a bitmap */
139 unsigned int code_write_count
;
140 uint8_t *code_bitmap
;
141 #if defined(CONFIG_USER_ONLY)
146 typedef struct PhysPageDesc
{
147 /* offset in host memory of the page + io_index in the low bits */
148 ram_addr_t phys_offset
;
149 ram_addr_t region_offset
;
153 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
154 /* XXX: this is a temporary hack for alpha target.
155 * In the future, this is to be replaced by a multi-level table
156 * to actually be able to handle the complete 64 bits address space.
158 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
160 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
163 #define L1_SIZE (1 << L1_BITS)
164 #define L2_SIZE (1 << L2_BITS)
166 unsigned long qemu_real_host_page_size
;
167 unsigned long qemu_host_page_bits
;
168 unsigned long qemu_host_page_size
;
169 unsigned long qemu_host_page_mask
;
171 /* XXX: for system emulation, it could just be an array */
172 static PageDesc
*l1_map
[L1_SIZE
];
173 static PhysPageDesc
**l1_phys_map
;
175 #if !defined(CONFIG_USER_ONLY)
176 static void io_mem_init(void);
178 /* io memory support */
179 CPUWriteMemoryFunc
*io_mem_write
[IO_MEM_NB_ENTRIES
][4];
180 CPUReadMemoryFunc
*io_mem_read
[IO_MEM_NB_ENTRIES
][4];
181 void *io_mem_opaque
[IO_MEM_NB_ENTRIES
];
182 static int io_mem_nb
;
183 static int io_mem_watch
;
187 static const char *logfilename
= "/tmp/qemu.log";
190 static int log_append
= 0;
193 static int tlb_flush_count
;
194 static int tb_flush_count
;
195 static int tb_phys_invalidate_count
;
197 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
198 typedef struct subpage_t
{
199 target_phys_addr_t base
;
200 CPUReadMemoryFunc
**mem_read
[TARGET_PAGE_SIZE
][4];
201 CPUWriteMemoryFunc
**mem_write
[TARGET_PAGE_SIZE
][4];
202 void *opaque
[TARGET_PAGE_SIZE
][2][4];
203 ram_addr_t region_offset
[TARGET_PAGE_SIZE
][2][4];
207 static void map_exec(void *addr
, long size
)
210 VirtualProtect(addr
, size
,
211 PAGE_EXECUTE_READWRITE
, &old_protect
);
215 static void map_exec(void *addr
, long size
)
217 unsigned long start
, end
, page_size
;
219 page_size
= getpagesize();
220 start
= (unsigned long)addr
;
221 start
&= ~(page_size
- 1);
223 end
= (unsigned long)addr
+ size
;
224 end
+= page_size
- 1;
225 end
&= ~(page_size
- 1);
227 mprotect((void *)start
, end
- start
,
228 PROT_READ
| PROT_WRITE
| PROT_EXEC
);
232 static void page_init(void)
234 /* NOTE: we can always suppose that qemu_host_page_size >=
238 SYSTEM_INFO system_info
;
240 GetSystemInfo(&system_info
);
241 qemu_real_host_page_size
= system_info
.dwPageSize
;
244 qemu_real_host_page_size
= getpagesize();
246 if (qemu_host_page_size
== 0)
247 qemu_host_page_size
= qemu_real_host_page_size
;
248 if (qemu_host_page_size
< TARGET_PAGE_SIZE
)
249 qemu_host_page_size
= TARGET_PAGE_SIZE
;
250 qemu_host_page_bits
= 0;
251 while ((1 << qemu_host_page_bits
) < qemu_host_page_size
)
252 qemu_host_page_bits
++;
253 qemu_host_page_mask
= ~(qemu_host_page_size
- 1);
254 l1_phys_map
= qemu_vmalloc(L1_SIZE
* sizeof(void *));
255 memset(l1_phys_map
, 0, L1_SIZE
* sizeof(void *));
257 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
259 long long startaddr
, endaddr
;
264 last_brk
= (unsigned long)sbrk(0);
265 f
= fopen("/proc/self/maps", "r");
268 n
= fscanf (f
, "%llx-%llx %*[^\n]\n", &startaddr
, &endaddr
);
270 startaddr
= MIN(startaddr
,
271 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS
) - 1);
272 endaddr
= MIN(endaddr
,
273 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS
) - 1);
274 page_set_flags(startaddr
& TARGET_PAGE_MASK
,
275 TARGET_PAGE_ALIGN(endaddr
),
286 static inline PageDesc
**page_l1_map(target_ulong index
)
288 #if TARGET_LONG_BITS > 32
289 /* Host memory outside guest VM. For 32-bit targets we have already
290 excluded high addresses. */
291 if (index
> ((target_ulong
)L2_SIZE
* L1_SIZE
))
294 return &l1_map
[index
>> L2_BITS
];
297 static inline PageDesc
*page_find_alloc(target_ulong index
)
300 lp
= page_l1_map(index
);
306 /* allocate if not found */
307 #if defined(CONFIG_USER_ONLY)
308 size_t len
= sizeof(PageDesc
) * L2_SIZE
;
309 /* Don't use qemu_malloc because it may recurse. */
310 p
= mmap(0, len
, PROT_READ
| PROT_WRITE
,
311 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
314 unsigned long addr
= h2g(p
);
315 page_set_flags(addr
& TARGET_PAGE_MASK
,
316 TARGET_PAGE_ALIGN(addr
+ len
),
320 p
= qemu_mallocz(sizeof(PageDesc
) * L2_SIZE
);
324 return p
+ (index
& (L2_SIZE
- 1));
327 static inline PageDesc
*page_find(target_ulong index
)
330 lp
= page_l1_map(index
);
337 return p
+ (index
& (L2_SIZE
- 1));
340 static PhysPageDesc
*phys_page_find_alloc(target_phys_addr_t index
, int alloc
)
345 p
= (void **)l1_phys_map
;
346 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
348 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
349 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
351 lp
= p
+ ((index
>> (L1_BITS
+ L2_BITS
)) & (L1_SIZE
- 1));
354 /* allocate if not found */
357 p
= qemu_vmalloc(sizeof(void *) * L1_SIZE
);
358 memset(p
, 0, sizeof(void *) * L1_SIZE
);
362 lp
= p
+ ((index
>> L2_BITS
) & (L1_SIZE
- 1));
366 /* allocate if not found */
369 pd
= qemu_vmalloc(sizeof(PhysPageDesc
) * L2_SIZE
);
371 for (i
= 0; i
< L2_SIZE
; i
++)
372 pd
[i
].phys_offset
= IO_MEM_UNASSIGNED
;
374 return ((PhysPageDesc
*)pd
) + (index
& (L2_SIZE
- 1));
377 static inline PhysPageDesc
*phys_page_find(target_phys_addr_t index
)
379 return phys_page_find_alloc(index
, 0);
382 #if !defined(CONFIG_USER_ONLY)
383 static void tlb_protect_code(ram_addr_t ram_addr
);
384 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
386 #define mmap_lock() do { } while(0)
387 #define mmap_unlock() do { } while(0)
390 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
392 #if defined(CONFIG_USER_ONLY)
393 /* Currently it is not recommanded to allocate big chunks of data in
394 user mode. It will change when a dedicated libc will be used */
395 #define USE_STATIC_CODE_GEN_BUFFER
398 #ifdef USE_STATIC_CODE_GEN_BUFFER
399 static uint8_t static_code_gen_buffer
[DEFAULT_CODE_GEN_BUFFER_SIZE
];
402 static void code_gen_alloc(unsigned long tb_size
)
404 #ifdef USE_STATIC_CODE_GEN_BUFFER
405 code_gen_buffer
= static_code_gen_buffer
;
406 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
407 map_exec(code_gen_buffer
, code_gen_buffer_size
);
409 code_gen_buffer_size
= tb_size
;
410 if (code_gen_buffer_size
== 0) {
411 #if defined(CONFIG_USER_ONLY)
412 /* in user mode, phys_ram_size is not meaningful */
413 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
415 /* XXX: needs ajustments */
416 code_gen_buffer_size
= (unsigned long)(phys_ram_size
/ 4);
419 if (code_gen_buffer_size
< MIN_CODE_GEN_BUFFER_SIZE
)
420 code_gen_buffer_size
= MIN_CODE_GEN_BUFFER_SIZE
;
421 /* The code gen buffer location may have constraints depending on
422 the host cpu and OS */
423 #if defined(__linux__)
428 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
429 #if defined(__x86_64__)
431 /* Cannot map more than that */
432 if (code_gen_buffer_size
> (800 * 1024 * 1024))
433 code_gen_buffer_size
= (800 * 1024 * 1024);
434 #elif defined(__sparc_v9__)
435 // Map the buffer below 2G, so we can use direct calls and branches
437 start
= (void *) 0x60000000UL
;
438 if (code_gen_buffer_size
> (512 * 1024 * 1024))
439 code_gen_buffer_size
= (512 * 1024 * 1024);
440 #elif defined(__arm__)
441 /* Map the buffer below 32M, so we can use direct calls and branches */
443 start
= (void *) 0x01000000UL
;
444 if (code_gen_buffer_size
> 16 * 1024 * 1024)
445 code_gen_buffer_size
= 16 * 1024 * 1024;
447 code_gen_buffer
= mmap(start
, code_gen_buffer_size
,
448 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
450 if (code_gen_buffer
== MAP_FAILED
) {
451 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
455 #elif defined(__FreeBSD__)
459 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
460 #if defined(__x86_64__)
461 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
462 * 0x40000000 is free */
464 addr
= (void *)0x40000000;
465 /* Cannot map more than that */
466 if (code_gen_buffer_size
> (800 * 1024 * 1024))
467 code_gen_buffer_size
= (800 * 1024 * 1024);
469 code_gen_buffer
= mmap(addr
, code_gen_buffer_size
,
470 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
472 if (code_gen_buffer
== MAP_FAILED
) {
473 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
478 code_gen_buffer
= qemu_malloc(code_gen_buffer_size
);
479 if (!code_gen_buffer
) {
480 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
483 map_exec(code_gen_buffer
, code_gen_buffer_size
);
485 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
486 map_exec(code_gen_prologue
, sizeof(code_gen_prologue
));
487 code_gen_buffer_max_size
= code_gen_buffer_size
-
488 code_gen_max_block_size();
489 code_gen_max_blocks
= code_gen_buffer_size
/ CODE_GEN_AVG_BLOCK_SIZE
;
490 tbs
= qemu_malloc(code_gen_max_blocks
* sizeof(TranslationBlock
));
493 /* Must be called before using the QEMU cpus. 'tb_size' is the size
494 (in bytes) allocated to the translation buffer. Zero means default
496 void cpu_exec_init_all(unsigned long tb_size
)
499 code_gen_alloc(tb_size
);
500 code_gen_ptr
= code_gen_buffer
;
502 #if !defined(CONFIG_USER_ONLY)
507 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
509 #define CPU_COMMON_SAVE_VERSION 1
511 static void cpu_common_save(QEMUFile
*f
, void *opaque
)
513 CPUState
*env
= opaque
;
515 qemu_put_be32s(f
, &env
->halted
);
516 qemu_put_be32s(f
, &env
->interrupt_request
);
519 static int cpu_common_load(QEMUFile
*f
, void *opaque
, int version_id
)
521 CPUState
*env
= opaque
;
523 if (version_id
!= CPU_COMMON_SAVE_VERSION
)
526 qemu_get_be32s(f
, &env
->halted
);
527 qemu_get_be32s(f
, &env
->interrupt_request
);
534 void cpu_exec_init(CPUState
*env
)
539 env
->next_cpu
= NULL
;
542 while (*penv
!= NULL
) {
543 penv
= (CPUState
**)&(*penv
)->next_cpu
;
546 env
->cpu_index
= cpu_index
;
547 TAILQ_INIT(&env
->breakpoints
);
548 TAILQ_INIT(&env
->watchpoints
);
550 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
551 register_savevm("cpu_common", cpu_index
, CPU_COMMON_SAVE_VERSION
,
552 cpu_common_save
, cpu_common_load
, env
);
553 register_savevm("cpu", cpu_index
, CPU_SAVE_VERSION
,
554 cpu_save
, cpu_load
, env
);
558 static inline void invalidate_page_bitmap(PageDesc
*p
)
560 if (p
->code_bitmap
) {
561 qemu_free(p
->code_bitmap
);
562 p
->code_bitmap
= NULL
;
564 p
->code_write_count
= 0;
567 /* set to NULL all the 'first_tb' fields in all PageDescs */
568 static void page_flush_tb(void)
573 for(i
= 0; i
< L1_SIZE
; i
++) {
576 for(j
= 0; j
< L2_SIZE
; j
++) {
578 invalidate_page_bitmap(p
);
585 /* flush all the translation blocks */
586 /* XXX: tb_flush is currently not thread safe */
587 void tb_flush(CPUState
*env1
)
590 #if defined(DEBUG_FLUSH)
591 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
592 (unsigned long)(code_gen_ptr
- code_gen_buffer
),
594 ((unsigned long)(code_gen_ptr
- code_gen_buffer
)) / nb_tbs
: 0);
596 if ((unsigned long)(code_gen_ptr
- code_gen_buffer
) > code_gen_buffer_size
)
597 cpu_abort(env1
, "Internal error: code buffer overflow\n");
601 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
602 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
605 memset (tb_phys_hash
, 0, CODE_GEN_PHYS_HASH_SIZE
* sizeof (void *));
608 code_gen_ptr
= code_gen_buffer
;
609 /* XXX: flush processor icache at this point if cache flush is
614 #ifdef DEBUG_TB_CHECK
616 static void tb_invalidate_check(target_ulong address
)
618 TranslationBlock
*tb
;
620 address
&= TARGET_PAGE_MASK
;
621 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
622 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
623 if (!(address
+ TARGET_PAGE_SIZE
<= tb
->pc
||
624 address
>= tb
->pc
+ tb
->size
)) {
625 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
626 address
, (long)tb
->pc
, tb
->size
);
632 /* verify that all the pages have correct rights for code */
633 static void tb_page_check(void)
635 TranslationBlock
*tb
;
636 int i
, flags1
, flags2
;
638 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
639 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
640 flags1
= page_get_flags(tb
->pc
);
641 flags2
= page_get_flags(tb
->pc
+ tb
->size
- 1);
642 if ((flags1
& PAGE_WRITE
) || (flags2
& PAGE_WRITE
)) {
643 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
644 (long)tb
->pc
, tb
->size
, flags1
, flags2
);
650 static void tb_jmp_check(TranslationBlock
*tb
)
652 TranslationBlock
*tb1
;
655 /* suppress any remaining jumps to this TB */
659 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
662 tb1
= tb1
->jmp_next
[n1
];
664 /* check end of list */
666 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb
);
672 /* invalidate one TB */
673 static inline void tb_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
,
676 TranslationBlock
*tb1
;
680 *ptb
= *(TranslationBlock
**)((char *)tb1
+ next_offset
);
683 ptb
= (TranslationBlock
**)((char *)tb1
+ next_offset
);
687 static inline void tb_page_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
)
689 TranslationBlock
*tb1
;
695 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
697 *ptb
= tb1
->page_next
[n1
];
700 ptb
= &tb1
->page_next
[n1
];
704 static inline void tb_jmp_remove(TranslationBlock
*tb
, int n
)
706 TranslationBlock
*tb1
, **ptb
;
709 ptb
= &tb
->jmp_next
[n
];
712 /* find tb(n) in circular list */
716 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
717 if (n1
== n
&& tb1
== tb
)
720 ptb
= &tb1
->jmp_first
;
722 ptb
= &tb1
->jmp_next
[n1
];
725 /* now we can suppress tb(n) from the list */
726 *ptb
= tb
->jmp_next
[n
];
728 tb
->jmp_next
[n
] = NULL
;
732 /* reset the jump entry 'n' of a TB so that it is not chained to
734 static inline void tb_reset_jump(TranslationBlock
*tb
, int n
)
736 tb_set_jmp_target(tb
, n
, (unsigned long)(tb
->tc_ptr
+ tb
->tb_next_offset
[n
]));
739 void tb_phys_invalidate(TranslationBlock
*tb
, target_ulong page_addr
)
744 target_phys_addr_t phys_pc
;
745 TranslationBlock
*tb1
, *tb2
;
747 /* remove the TB from the hash list */
748 phys_pc
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
749 h
= tb_phys_hash_func(phys_pc
);
750 tb_remove(&tb_phys_hash
[h
], tb
,
751 offsetof(TranslationBlock
, phys_hash_next
));
753 /* remove the TB from the page list */
754 if (tb
->page_addr
[0] != page_addr
) {
755 p
= page_find(tb
->page_addr
[0] >> TARGET_PAGE_BITS
);
756 tb_page_remove(&p
->first_tb
, tb
);
757 invalidate_page_bitmap(p
);
759 if (tb
->page_addr
[1] != -1 && tb
->page_addr
[1] != page_addr
) {
760 p
= page_find(tb
->page_addr
[1] >> TARGET_PAGE_BITS
);
761 tb_page_remove(&p
->first_tb
, tb
);
762 invalidate_page_bitmap(p
);
765 tb_invalidated_flag
= 1;
767 /* remove the TB from the hash list */
768 h
= tb_jmp_cache_hash_func(tb
->pc
);
769 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
770 if (env
->tb_jmp_cache
[h
] == tb
)
771 env
->tb_jmp_cache
[h
] = NULL
;
774 /* suppress this TB from the two jump lists */
775 tb_jmp_remove(tb
, 0);
776 tb_jmp_remove(tb
, 1);
778 /* suppress any remaining jumps to this TB */
784 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
785 tb2
= tb1
->jmp_next
[n1
];
786 tb_reset_jump(tb1
, n1
);
787 tb1
->jmp_next
[n1
] = NULL
;
790 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2); /* fail safe */
792 tb_phys_invalidate_count
++;
795 static inline void set_bits(uint8_t *tab
, int start
, int len
)
801 mask
= 0xff << (start
& 7);
802 if ((start
& ~7) == (end
& ~7)) {
804 mask
&= ~(0xff << (end
& 7));
809 start
= (start
+ 8) & ~7;
811 while (start
< end1
) {
816 mask
= ~(0xff << (end
& 7));
822 static void build_page_bitmap(PageDesc
*p
)
824 int n
, tb_start
, tb_end
;
825 TranslationBlock
*tb
;
827 p
->code_bitmap
= qemu_mallocz(TARGET_PAGE_SIZE
/ 8);
834 tb
= (TranslationBlock
*)((long)tb
& ~3);
835 /* NOTE: this is subtle as a TB may span two physical pages */
837 /* NOTE: tb_end may be after the end of the page, but
838 it is not a problem */
839 tb_start
= tb
->pc
& ~TARGET_PAGE_MASK
;
840 tb_end
= tb_start
+ tb
->size
;
841 if (tb_end
> TARGET_PAGE_SIZE
)
842 tb_end
= TARGET_PAGE_SIZE
;
845 tb_end
= ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
847 set_bits(p
->code_bitmap
, tb_start
, tb_end
- tb_start
);
848 tb
= tb
->page_next
[n
];
852 TranslationBlock
*tb_gen_code(CPUState
*env
,
853 target_ulong pc
, target_ulong cs_base
,
854 int flags
, int cflags
)
856 TranslationBlock
*tb
;
858 target_ulong phys_pc
, phys_page2
, virt_page2
;
861 phys_pc
= get_phys_addr_code(env
, pc
);
864 /* flush must be done */
866 /* cannot fail at this point */
868 /* Don't forget to invalidate previous TB info. */
869 tb_invalidated_flag
= 1;
871 tc_ptr
= code_gen_ptr
;
873 tb
->cs_base
= cs_base
;
876 cpu_gen_code(env
, tb
, &code_gen_size
);
877 code_gen_ptr
= (void *)(((unsigned long)code_gen_ptr
+ code_gen_size
+ CODE_GEN_ALIGN
- 1) & ~(CODE_GEN_ALIGN
- 1));
879 /* check next page if needed */
880 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
882 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
883 phys_page2
= get_phys_addr_code(env
, virt_page2
);
885 tb_link_phys(tb
, phys_pc
, phys_page2
);
889 /* invalidate all TBs which intersect with the target physical page
890 starting in range [start;end[. NOTE: start and end must refer to
891 the same physical page. 'is_cpu_write_access' should be true if called
892 from a real cpu write access: the virtual CPU will exit the current
893 TB if code is modified inside this TB. */
894 void tb_invalidate_phys_page_range(target_phys_addr_t start
, target_phys_addr_t end
,
895 int is_cpu_write_access
)
897 TranslationBlock
*tb
, *tb_next
, *saved_tb
;
898 CPUState
*env
= cpu_single_env
;
899 target_ulong tb_start
, tb_end
;
902 #ifdef TARGET_HAS_PRECISE_SMC
903 int current_tb_not_found
= is_cpu_write_access
;
904 TranslationBlock
*current_tb
= NULL
;
905 int current_tb_modified
= 0;
906 target_ulong current_pc
= 0;
907 target_ulong current_cs_base
= 0;
908 int current_flags
= 0;
909 #endif /* TARGET_HAS_PRECISE_SMC */
911 p
= page_find(start
>> TARGET_PAGE_BITS
);
914 if (!p
->code_bitmap
&&
915 ++p
->code_write_count
>= SMC_BITMAP_USE_THRESHOLD
&&
916 is_cpu_write_access
) {
917 /* build code bitmap */
918 build_page_bitmap(p
);
921 /* we remove all the TBs in the range [start, end[ */
922 /* XXX: see if in some cases it could be faster to invalidate all the code */
926 tb
= (TranslationBlock
*)((long)tb
& ~3);
927 tb_next
= tb
->page_next
[n
];
928 /* NOTE: this is subtle as a TB may span two physical pages */
930 /* NOTE: tb_end may be after the end of the page, but
931 it is not a problem */
932 tb_start
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
933 tb_end
= tb_start
+ tb
->size
;
935 tb_start
= tb
->page_addr
[1];
936 tb_end
= tb_start
+ ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
938 if (!(tb_end
<= start
|| tb_start
>= end
)) {
939 #ifdef TARGET_HAS_PRECISE_SMC
940 if (current_tb_not_found
) {
941 current_tb_not_found
= 0;
943 if (env
->mem_io_pc
) {
944 /* now we have a real cpu fault */
945 current_tb
= tb_find_pc(env
->mem_io_pc
);
948 if (current_tb
== tb
&&
949 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
950 /* If we are modifying the current TB, we must stop
951 its execution. We could be more precise by checking
952 that the modification is after the current PC, but it
953 would require a specialized function to partially
954 restore the CPU state */
956 current_tb_modified
= 1;
957 cpu_restore_state(current_tb
, env
,
958 env
->mem_io_pc
, NULL
);
959 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
962 #endif /* TARGET_HAS_PRECISE_SMC */
963 /* we need to do that to handle the case where a signal
964 occurs while doing tb_phys_invalidate() */
967 saved_tb
= env
->current_tb
;
968 env
->current_tb
= NULL
;
970 tb_phys_invalidate(tb
, -1);
972 env
->current_tb
= saved_tb
;
973 if (env
->interrupt_request
&& env
->current_tb
)
974 cpu_interrupt(env
, env
->interrupt_request
);
979 #if !defined(CONFIG_USER_ONLY)
980 /* if no code remaining, no need to continue to use slow writes */
982 invalidate_page_bitmap(p
);
983 if (is_cpu_write_access
) {
984 tlb_unprotect_code_phys(env
, start
, env
->mem_io_vaddr
);
988 #ifdef TARGET_HAS_PRECISE_SMC
989 if (current_tb_modified
) {
990 /* we generate a block containing just the instruction
991 modifying the memory. It will ensure that it cannot modify
993 env
->current_tb
= NULL
;
994 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
995 cpu_resume_from_signal(env
, NULL
);
1000 /* len must be <= 8 and start must be a multiple of len */
1001 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start
, int len
)
1008 fprintf(logfile
, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1009 cpu_single_env
->mem_io_vaddr
, len
,
1010 cpu_single_env
->eip
,
1011 cpu_single_env
->eip
+ (long)cpu_single_env
->segs
[R_CS
].base
);
1015 p
= page_find(start
>> TARGET_PAGE_BITS
);
1018 if (p
->code_bitmap
) {
1019 offset
= start
& ~TARGET_PAGE_MASK
;
1020 b
= p
->code_bitmap
[offset
>> 3] >> (offset
& 7);
1021 if (b
& ((1 << len
) - 1))
1025 tb_invalidate_phys_page_range(start
, start
+ len
, 1);
1029 #if !defined(CONFIG_SOFTMMU)
1030 static void tb_invalidate_phys_page(target_phys_addr_t addr
,
1031 unsigned long pc
, void *puc
)
1033 TranslationBlock
*tb
;
1036 #ifdef TARGET_HAS_PRECISE_SMC
1037 TranslationBlock
*current_tb
= NULL
;
1038 CPUState
*env
= cpu_single_env
;
1039 int current_tb_modified
= 0;
1040 target_ulong current_pc
= 0;
1041 target_ulong current_cs_base
= 0;
1042 int current_flags
= 0;
1045 addr
&= TARGET_PAGE_MASK
;
1046 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1050 #ifdef TARGET_HAS_PRECISE_SMC
1051 if (tb
&& pc
!= 0) {
1052 current_tb
= tb_find_pc(pc
);
1055 while (tb
!= NULL
) {
1057 tb
= (TranslationBlock
*)((long)tb
& ~3);
1058 #ifdef TARGET_HAS_PRECISE_SMC
1059 if (current_tb
== tb
&&
1060 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1061 /* If we are modifying the current TB, we must stop
1062 its execution. We could be more precise by checking
1063 that the modification is after the current PC, but it
1064 would require a specialized function to partially
1065 restore the CPU state */
1067 current_tb_modified
= 1;
1068 cpu_restore_state(current_tb
, env
, pc
, puc
);
1069 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1072 #endif /* TARGET_HAS_PRECISE_SMC */
1073 tb_phys_invalidate(tb
, addr
);
1074 tb
= tb
->page_next
[n
];
1077 #ifdef TARGET_HAS_PRECISE_SMC
1078 if (current_tb_modified
) {
1079 /* we generate a block containing just the instruction
1080 modifying the memory. It will ensure that it cannot modify
1082 env
->current_tb
= NULL
;
1083 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1084 cpu_resume_from_signal(env
, puc
);
1090 /* add the tb in the target page and protect it if necessary */
1091 static inline void tb_alloc_page(TranslationBlock
*tb
,
1092 unsigned int n
, target_ulong page_addr
)
1095 TranslationBlock
*last_first_tb
;
1097 tb
->page_addr
[n
] = page_addr
;
1098 p
= page_find_alloc(page_addr
>> TARGET_PAGE_BITS
);
1099 tb
->page_next
[n
] = p
->first_tb
;
1100 last_first_tb
= p
->first_tb
;
1101 p
->first_tb
= (TranslationBlock
*)((long)tb
| n
);
1102 invalidate_page_bitmap(p
);
1104 #if defined(TARGET_HAS_SMC) || 1
1106 #if defined(CONFIG_USER_ONLY)
1107 if (p
->flags
& PAGE_WRITE
) {
1112 /* force the host page as non writable (writes will have a
1113 page fault + mprotect overhead) */
1114 page_addr
&= qemu_host_page_mask
;
1116 for(addr
= page_addr
; addr
< page_addr
+ qemu_host_page_size
;
1117 addr
+= TARGET_PAGE_SIZE
) {
1119 p2
= page_find (addr
>> TARGET_PAGE_BITS
);
1123 p2
->flags
&= ~PAGE_WRITE
;
1124 page_get_flags(addr
);
1126 mprotect(g2h(page_addr
), qemu_host_page_size
,
1127 (prot
& PAGE_BITS
) & ~PAGE_WRITE
);
1128 #ifdef DEBUG_TB_INVALIDATE
1129 printf("protecting code page: 0x" TARGET_FMT_lx
"\n",
1134 /* if some code is already present, then the pages are already
1135 protected. So we handle the case where only the first TB is
1136 allocated in a physical page */
1137 if (!last_first_tb
) {
1138 tlb_protect_code(page_addr
);
1142 #endif /* TARGET_HAS_SMC */
1145 /* Allocate a new translation block. Flush the translation buffer if
1146 too many translation blocks or too much generated code. */
1147 TranslationBlock
*tb_alloc(target_ulong pc
)
1149 TranslationBlock
*tb
;
1151 if (nb_tbs
>= code_gen_max_blocks
||
1152 (code_gen_ptr
- code_gen_buffer
) >= code_gen_buffer_max_size
)
1154 tb
= &tbs
[nb_tbs
++];
1160 void tb_free(TranslationBlock
*tb
)
1162 /* In practice this is mostly used for single use temporary TB
1163 Ignore the hard cases and just back up if this TB happens to
1164 be the last one generated. */
1165 if (nb_tbs
> 0 && tb
== &tbs
[nb_tbs
- 1]) {
1166 code_gen_ptr
= tb
->tc_ptr
;
1171 /* add a new TB and link it to the physical page tables. phys_page2 is
1172 (-1) to indicate that only one page contains the TB. */
1173 void tb_link_phys(TranslationBlock
*tb
,
1174 target_ulong phys_pc
, target_ulong phys_page2
)
1177 TranslationBlock
**ptb
;
1179 /* Grab the mmap lock to stop another thread invalidating this TB
1180 before we are done. */
1182 /* add in the physical hash table */
1183 h
= tb_phys_hash_func(phys_pc
);
1184 ptb
= &tb_phys_hash
[h
];
1185 tb
->phys_hash_next
= *ptb
;
1188 /* add in the page list */
1189 tb_alloc_page(tb
, 0, phys_pc
& TARGET_PAGE_MASK
);
1190 if (phys_page2
!= -1)
1191 tb_alloc_page(tb
, 1, phys_page2
);
1193 tb
->page_addr
[1] = -1;
1195 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2);
1196 tb
->jmp_next
[0] = NULL
;
1197 tb
->jmp_next
[1] = NULL
;
1199 /* init original jump addresses */
1200 if (tb
->tb_next_offset
[0] != 0xffff)
1201 tb_reset_jump(tb
, 0);
1202 if (tb
->tb_next_offset
[1] != 0xffff)
1203 tb_reset_jump(tb
, 1);
1205 #ifdef DEBUG_TB_CHECK
1211 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1212 tb[1].tc_ptr. Return NULL if not found */
1213 TranslationBlock
*tb_find_pc(unsigned long tc_ptr
)
1215 int m_min
, m_max
, m
;
1217 TranslationBlock
*tb
;
1221 if (tc_ptr
< (unsigned long)code_gen_buffer
||
1222 tc_ptr
>= (unsigned long)code_gen_ptr
)
1224 /* binary search (cf Knuth) */
1227 while (m_min
<= m_max
) {
1228 m
= (m_min
+ m_max
) >> 1;
1230 v
= (unsigned long)tb
->tc_ptr
;
1233 else if (tc_ptr
< v
) {
1242 static void tb_reset_jump_recursive(TranslationBlock
*tb
);
1244 static inline void tb_reset_jump_recursive2(TranslationBlock
*tb
, int n
)
1246 TranslationBlock
*tb1
, *tb_next
, **ptb
;
1249 tb1
= tb
->jmp_next
[n
];
1251 /* find head of list */
1254 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1257 tb1
= tb1
->jmp_next
[n1
];
1259 /* we are now sure now that tb jumps to tb1 */
1262 /* remove tb from the jmp_first list */
1263 ptb
= &tb_next
->jmp_first
;
1267 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1268 if (n1
== n
&& tb1
== tb
)
1270 ptb
= &tb1
->jmp_next
[n1
];
1272 *ptb
= tb
->jmp_next
[n
];
1273 tb
->jmp_next
[n
] = NULL
;
1275 /* suppress the jump to next tb in generated code */
1276 tb_reset_jump(tb
, n
);
1278 /* suppress jumps in the tb on which we could have jumped */
1279 tb_reset_jump_recursive(tb_next
);
1283 static void tb_reset_jump_recursive(TranslationBlock
*tb
)
1285 tb_reset_jump_recursive2(tb
, 0);
1286 tb_reset_jump_recursive2(tb
, 1);
1289 #if defined(TARGET_HAS_ICE)
1290 static void breakpoint_invalidate(CPUState
*env
, target_ulong pc
)
1292 target_phys_addr_t addr
;
1294 ram_addr_t ram_addr
;
1297 addr
= cpu_get_phys_page_debug(env
, pc
);
1298 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
1300 pd
= IO_MEM_UNASSIGNED
;
1302 pd
= p
->phys_offset
;
1304 ram_addr
= (pd
& TARGET_PAGE_MASK
) | (pc
& ~TARGET_PAGE_MASK
);
1305 tb_invalidate_phys_page_range(ram_addr
, ram_addr
+ 1, 0);
1309 /* Add a watchpoint. */
1310 int cpu_watchpoint_insert(CPUState
*env
, target_ulong addr
, target_ulong len
,
1311 int flags
, CPUWatchpoint
**watchpoint
)
1313 target_ulong len_mask
= ~(len
- 1);
1316 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1317 if ((len
!= 1 && len
!= 2 && len
!= 4 && len
!= 8) || (addr
& ~len_mask
)) {
1318 fprintf(stderr
, "qemu: tried to set invalid watchpoint at "
1319 TARGET_FMT_lx
", len=" TARGET_FMT_lu
"\n", addr
, len
);
1322 wp
= qemu_malloc(sizeof(*wp
));
1327 wp
->len_mask
= len_mask
;
1330 /* keep all GDB-injected watchpoints in front */
1332 TAILQ_INSERT_HEAD(&env
->watchpoints
, wp
, entry
);
1334 TAILQ_INSERT_TAIL(&env
->watchpoints
, wp
, entry
);
1336 tlb_flush_page(env
, addr
);
1343 /* Remove a specific watchpoint. */
1344 int cpu_watchpoint_remove(CPUState
*env
, target_ulong addr
, target_ulong len
,
1347 target_ulong len_mask
= ~(len
- 1);
1350 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1351 if (addr
== wp
->vaddr
&& len_mask
== wp
->len_mask
1352 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
1353 cpu_watchpoint_remove_by_ref(env
, wp
);
1360 /* Remove a specific watchpoint by reference. */
1361 void cpu_watchpoint_remove_by_ref(CPUState
*env
, CPUWatchpoint
*watchpoint
)
1363 TAILQ_REMOVE(&env
->watchpoints
, watchpoint
, entry
);
1365 tlb_flush_page(env
, watchpoint
->vaddr
);
1367 qemu_free(watchpoint
);
1370 /* Remove all matching watchpoints. */
1371 void cpu_watchpoint_remove_all(CPUState
*env
, int mask
)
1373 CPUWatchpoint
*wp
, *next
;
1375 TAILQ_FOREACH_SAFE(wp
, &env
->watchpoints
, entry
, next
) {
1376 if (wp
->flags
& mask
)
1377 cpu_watchpoint_remove_by_ref(env
, wp
);
1381 /* Add a breakpoint. */
1382 int cpu_breakpoint_insert(CPUState
*env
, target_ulong pc
, int flags
,
1383 CPUBreakpoint
**breakpoint
)
1385 #if defined(TARGET_HAS_ICE)
1388 bp
= qemu_malloc(sizeof(*bp
));
1395 /* keep all GDB-injected breakpoints in front */
1397 TAILQ_INSERT_HEAD(&env
->breakpoints
, bp
, entry
);
1399 TAILQ_INSERT_TAIL(&env
->breakpoints
, bp
, entry
);
1401 breakpoint_invalidate(env
, pc
);
1411 /* Remove a specific breakpoint. */
1412 int cpu_breakpoint_remove(CPUState
*env
, target_ulong pc
, int flags
)
1414 #if defined(TARGET_HAS_ICE)
1417 TAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1418 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
1419 cpu_breakpoint_remove_by_ref(env
, bp
);
1429 /* Remove a specific breakpoint by reference. */
1430 void cpu_breakpoint_remove_by_ref(CPUState
*env
, CPUBreakpoint
*breakpoint
)
1432 #if defined(TARGET_HAS_ICE)
1433 TAILQ_REMOVE(&env
->breakpoints
, breakpoint
, entry
);
1435 breakpoint_invalidate(env
, breakpoint
->pc
);
1437 qemu_free(breakpoint
);
1441 /* Remove all matching breakpoints. */
1442 void cpu_breakpoint_remove_all(CPUState
*env
, int mask
)
1444 #if defined(TARGET_HAS_ICE)
1445 CPUBreakpoint
*bp
, *next
;
1447 TAILQ_FOREACH_SAFE(bp
, &env
->breakpoints
, entry
, next
) {
1448 if (bp
->flags
& mask
)
1449 cpu_breakpoint_remove_by_ref(env
, bp
);
1454 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1455 CPU loop after each instruction */
1456 void cpu_single_step(CPUState
*env
, int enabled
)
1458 #if defined(TARGET_HAS_ICE)
1459 if (env
->singlestep_enabled
!= enabled
) {
1460 env
->singlestep_enabled
= enabled
;
1461 /* must flush all the translated code to avoid inconsistancies */
1462 /* XXX: only flush what is necessary */
1468 /* enable or disable low levels log */
1469 void cpu_set_log(int log_flags
)
1471 loglevel
= log_flags
;
1472 if (loglevel
&& !logfile
) {
1473 logfile
= fopen(logfilename
, log_append
? "a" : "w");
1475 perror(logfilename
);
1478 #if !defined(CONFIG_SOFTMMU)
1479 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1481 static char logfile_buf
[4096];
1482 setvbuf(logfile
, logfile_buf
, _IOLBF
, sizeof(logfile_buf
));
1485 setvbuf(logfile
, NULL
, _IOLBF
, 0);
1489 if (!loglevel
&& logfile
) {
1495 void cpu_set_log_filename(const char *filename
)
1497 logfilename
= strdup(filename
);
1502 cpu_set_log(loglevel
);
1505 /* mask must never be zero, except for A20 change call */
1506 void cpu_interrupt(CPUState
*env
, int mask
)
1508 #if !defined(USE_NPTL)
1509 TranslationBlock
*tb
;
1510 static spinlock_t interrupt_lock
= SPIN_LOCK_UNLOCKED
;
1514 old_mask
= env
->interrupt_request
;
1515 /* FIXME: This is probably not threadsafe. A different thread could
1516 be in the middle of a read-modify-write operation. */
1517 env
->interrupt_request
|= mask
;
1518 #if defined(USE_NPTL)
1519 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1520 problem and hope the cpu will stop of its own accord. For userspace
1521 emulation this often isn't actually as bad as it sounds. Often
1522 signals are used primarily to interrupt blocking syscalls. */
1525 env
->icount_decr
.u16
.high
= 0xffff;
1526 #ifndef CONFIG_USER_ONLY
1527 /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means
1528 an async event happened and we need to process it. */
1530 && (mask
& ~(old_mask
| CPU_INTERRUPT_EXIT
)) != 0) {
1531 cpu_abort(env
, "Raised interrupt while not in I/O function");
1535 tb
= env
->current_tb
;
1536 /* if the cpu is currently executing code, we must unlink it and
1537 all the potentially executing TB */
1538 if (tb
&& !testandset(&interrupt_lock
)) {
1539 env
->current_tb
= NULL
;
1540 tb_reset_jump_recursive(tb
);
1541 resetlock(&interrupt_lock
);
1547 void cpu_reset_interrupt(CPUState
*env
, int mask
)
1549 env
->interrupt_request
&= ~mask
;
1552 const CPULogItem cpu_log_items
[] = {
1553 { CPU_LOG_TB_OUT_ASM
, "out_asm",
1554 "show generated host assembly code for each compiled TB" },
1555 { CPU_LOG_TB_IN_ASM
, "in_asm",
1556 "show target assembly code for each compiled TB" },
1557 { CPU_LOG_TB_OP
, "op",
1558 "show micro ops for each compiled TB" },
1559 { CPU_LOG_TB_OP_OPT
, "op_opt",
1562 "before eflags optimization and "
1564 "after liveness analysis" },
1565 { CPU_LOG_INT
, "int",
1566 "show interrupts/exceptions in short format" },
1567 { CPU_LOG_EXEC
, "exec",
1568 "show trace before each executed TB (lots of logs)" },
1569 { CPU_LOG_TB_CPU
, "cpu",
1570 "show CPU state before block translation" },
1572 { CPU_LOG_PCALL
, "pcall",
1573 "show protected mode far calls/returns/exceptions" },
1576 { CPU_LOG_IOPORT
, "ioport",
1577 "show all i/o ports accesses" },
1582 static int cmp1(const char *s1
, int n
, const char *s2
)
1584 if (strlen(s2
) != n
)
1586 return memcmp(s1
, s2
, n
) == 0;
1589 /* takes a comma separated list of log masks. Return 0 if error. */
1590 int cpu_str_to_log_mask(const char *str
)
1592 const CPULogItem
*item
;
1599 p1
= strchr(p
, ',');
1602 if(cmp1(p
,p1
-p
,"all")) {
1603 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1607 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1608 if (cmp1(p
, p1
- p
, item
->name
))
1622 void cpu_abort(CPUState
*env
, const char *fmt
, ...)
1629 fprintf(stderr
, "qemu: fatal: ");
1630 vfprintf(stderr
, fmt
, ap
);
1631 fprintf(stderr
, "\n");
1633 cpu_dump_state(env
, stderr
, fprintf
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1635 cpu_dump_state(env
, stderr
, fprintf
, 0);
1638 fprintf(logfile
, "qemu: fatal: ");
1639 vfprintf(logfile
, fmt
, ap2
);
1640 fprintf(logfile
, "\n");
1642 cpu_dump_state(env
, logfile
, fprintf
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1644 cpu_dump_state(env
, logfile
, fprintf
, 0);
1654 CPUState
*cpu_copy(CPUState
*env
)
1656 CPUState
*new_env
= cpu_init(env
->cpu_model_str
);
1657 /* preserve chaining and index */
1658 CPUState
*next_cpu
= new_env
->next_cpu
;
1659 int cpu_index
= new_env
->cpu_index
;
1660 memcpy(new_env
, env
, sizeof(CPUState
));
1661 new_env
->next_cpu
= next_cpu
;
1662 new_env
->cpu_index
= cpu_index
;
1666 #if !defined(CONFIG_USER_ONLY)
1668 static inline void tlb_flush_jmp_cache(CPUState
*env
, target_ulong addr
)
1672 /* Discard jump cache entries for any tb which might potentially
1673 overlap the flushed page. */
1674 i
= tb_jmp_cache_hash_page(addr
- TARGET_PAGE_SIZE
);
1675 memset (&env
->tb_jmp_cache
[i
], 0,
1676 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1678 i
= tb_jmp_cache_hash_page(addr
);
1679 memset (&env
->tb_jmp_cache
[i
], 0,
1680 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1683 /* NOTE: if flush_global is true, also flush global entries (not
1685 void tlb_flush(CPUState
*env
, int flush_global
)
1689 #if defined(DEBUG_TLB)
1690 printf("tlb_flush:\n");
1692 /* must reset current TB so that interrupts cannot modify the
1693 links while we are modifying them */
1694 env
->current_tb
= NULL
;
1696 for(i
= 0; i
< CPU_TLB_SIZE
; i
++) {
1697 env
->tlb_table
[0][i
].addr_read
= -1;
1698 env
->tlb_table
[0][i
].addr_write
= -1;
1699 env
->tlb_table
[0][i
].addr_code
= -1;
1700 env
->tlb_table
[1][i
].addr_read
= -1;
1701 env
->tlb_table
[1][i
].addr_write
= -1;
1702 env
->tlb_table
[1][i
].addr_code
= -1;
1703 #if (NB_MMU_MODES >= 3)
1704 env
->tlb_table
[2][i
].addr_read
= -1;
1705 env
->tlb_table
[2][i
].addr_write
= -1;
1706 env
->tlb_table
[2][i
].addr_code
= -1;
1707 #if (NB_MMU_MODES == 4)
1708 env
->tlb_table
[3][i
].addr_read
= -1;
1709 env
->tlb_table
[3][i
].addr_write
= -1;
1710 env
->tlb_table
[3][i
].addr_code
= -1;
1715 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
1718 if (env
->kqemu_enabled
) {
1719 kqemu_flush(env
, flush_global
);
1725 static inline void tlb_flush_entry(CPUTLBEntry
*tlb_entry
, target_ulong addr
)
1727 if (addr
== (tlb_entry
->addr_read
&
1728 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1729 addr
== (tlb_entry
->addr_write
&
1730 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1731 addr
== (tlb_entry
->addr_code
&
1732 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
))) {
1733 tlb_entry
->addr_read
= -1;
1734 tlb_entry
->addr_write
= -1;
1735 tlb_entry
->addr_code
= -1;
1739 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
1743 #if defined(DEBUG_TLB)
1744 printf("tlb_flush_page: " TARGET_FMT_lx
"\n", addr
);
1746 /* must reset current TB so that interrupts cannot modify the
1747 links while we are modifying them */
1748 env
->current_tb
= NULL
;
1750 addr
&= TARGET_PAGE_MASK
;
1751 i
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
1752 tlb_flush_entry(&env
->tlb_table
[0][i
], addr
);
1753 tlb_flush_entry(&env
->tlb_table
[1][i
], addr
);
1754 #if (NB_MMU_MODES >= 3)
1755 tlb_flush_entry(&env
->tlb_table
[2][i
], addr
);
1756 #if (NB_MMU_MODES == 4)
1757 tlb_flush_entry(&env
->tlb_table
[3][i
], addr
);
1761 tlb_flush_jmp_cache(env
, addr
);
1764 if (env
->kqemu_enabled
) {
1765 kqemu_flush_page(env
, addr
);
1770 /* update the TLBs so that writes to code in the virtual page 'addr'
1772 static void tlb_protect_code(ram_addr_t ram_addr
)
1774 cpu_physical_memory_reset_dirty(ram_addr
,
1775 ram_addr
+ TARGET_PAGE_SIZE
,
1779 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1780 tested for self modifying code */
1781 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
1784 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] |= CODE_DIRTY_FLAG
;
1787 static inline void tlb_reset_dirty_range(CPUTLBEntry
*tlb_entry
,
1788 unsigned long start
, unsigned long length
)
1791 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
1792 addr
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) + tlb_entry
->addend
;
1793 if ((addr
- start
) < length
) {
1794 tlb_entry
->addr_write
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) | TLB_NOTDIRTY
;
1799 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
1803 unsigned long length
, start1
;
1807 start
&= TARGET_PAGE_MASK
;
1808 end
= TARGET_PAGE_ALIGN(end
);
1810 length
= end
- start
;
1813 len
= length
>> TARGET_PAGE_BITS
;
1815 /* XXX: should not depend on cpu context */
1817 if (env
->kqemu_enabled
) {
1820 for(i
= 0; i
< len
; i
++) {
1821 kqemu_set_notdirty(env
, addr
);
1822 addr
+= TARGET_PAGE_SIZE
;
1826 mask
= ~dirty_flags
;
1827 p
= phys_ram_dirty
+ (start
>> TARGET_PAGE_BITS
);
1828 for(i
= 0; i
< len
; i
++)
1831 /* we modify the TLB cache so that the dirty bit will be set again
1832 when accessing the range */
1833 start1
= start
+ (unsigned long)phys_ram_base
;
1834 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1835 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1836 tlb_reset_dirty_range(&env
->tlb_table
[0][i
], start1
, length
);
1837 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1838 tlb_reset_dirty_range(&env
->tlb_table
[1][i
], start1
, length
);
1839 #if (NB_MMU_MODES >= 3)
1840 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1841 tlb_reset_dirty_range(&env
->tlb_table
[2][i
], start1
, length
);
1842 #if (NB_MMU_MODES == 4)
1843 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1844 tlb_reset_dirty_range(&env
->tlb_table
[3][i
], start1
, length
);
1850 int cpu_physical_memory_set_dirty_tracking(int enable
)
1852 in_migration
= enable
;
1856 int cpu_physical_memory_get_dirty_tracking(void)
1858 return in_migration
;
1861 void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
, target_phys_addr_t end_addr
)
1864 kvm_physical_sync_dirty_bitmap(start_addr
, end_addr
);
1867 static inline void tlb_update_dirty(CPUTLBEntry
*tlb_entry
)
1869 ram_addr_t ram_addr
;
1871 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
1872 ram_addr
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) +
1873 tlb_entry
->addend
- (unsigned long)phys_ram_base
;
1874 if (!cpu_physical_memory_is_dirty(ram_addr
)) {
1875 tlb_entry
->addr_write
|= TLB_NOTDIRTY
;
1880 /* update the TLB according to the current state of the dirty bits */
1881 void cpu_tlb_update_dirty(CPUState
*env
)
1884 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1885 tlb_update_dirty(&env
->tlb_table
[0][i
]);
1886 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1887 tlb_update_dirty(&env
->tlb_table
[1][i
]);
1888 #if (NB_MMU_MODES >= 3)
1889 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1890 tlb_update_dirty(&env
->tlb_table
[2][i
]);
1891 #if (NB_MMU_MODES == 4)
1892 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1893 tlb_update_dirty(&env
->tlb_table
[3][i
]);
1898 static inline void tlb_set_dirty1(CPUTLBEntry
*tlb_entry
, target_ulong vaddr
)
1900 if (tlb_entry
->addr_write
== (vaddr
| TLB_NOTDIRTY
))
1901 tlb_entry
->addr_write
= vaddr
;
1904 /* update the TLB corresponding to virtual page vaddr
1905 so that it is no longer dirty */
1906 static inline void tlb_set_dirty(CPUState
*env
, target_ulong vaddr
)
1910 vaddr
&= TARGET_PAGE_MASK
;
1911 i
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
1912 tlb_set_dirty1(&env
->tlb_table
[0][i
], vaddr
);
1913 tlb_set_dirty1(&env
->tlb_table
[1][i
], vaddr
);
1914 #if (NB_MMU_MODES >= 3)
1915 tlb_set_dirty1(&env
->tlb_table
[2][i
], vaddr
);
1916 #if (NB_MMU_MODES == 4)
1917 tlb_set_dirty1(&env
->tlb_table
[3][i
], vaddr
);
1922 /* add a new TLB entry. At most one entry for a given virtual address
1923 is permitted. Return 0 if OK or 2 if the page could not be mapped
1924 (can only happen in non SOFTMMU mode for I/O pages or pages
1925 conflicting with the host address space). */
1926 int tlb_set_page_exec(CPUState
*env
, target_ulong vaddr
,
1927 target_phys_addr_t paddr
, int prot
,
1928 int mmu_idx
, int is_softmmu
)
1933 target_ulong address
;
1934 target_ulong code_address
;
1935 target_phys_addr_t addend
;
1939 target_phys_addr_t iotlb
;
1941 p
= phys_page_find(paddr
>> TARGET_PAGE_BITS
);
1943 pd
= IO_MEM_UNASSIGNED
;
1945 pd
= p
->phys_offset
;
1947 #if defined(DEBUG_TLB)
1948 printf("tlb_set_page: vaddr=" TARGET_FMT_lx
" paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1949 vaddr
, (int)paddr
, prot
, mmu_idx
, is_softmmu
, pd
);
1954 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&& !(pd
& IO_MEM_ROMD
)) {
1955 /* IO memory case (romd handled later) */
1956 address
|= TLB_MMIO
;
1958 addend
= (unsigned long)phys_ram_base
+ (pd
& TARGET_PAGE_MASK
);
1959 if ((pd
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
) {
1961 iotlb
= pd
& TARGET_PAGE_MASK
;
1962 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
)
1963 iotlb
|= IO_MEM_NOTDIRTY
;
1965 iotlb
|= IO_MEM_ROM
;
1967 /* IO handlers are currently passed a phsical address.
1968 It would be nice to pass an offset from the base address
1969 of that region. This would avoid having to special case RAM,
1970 and avoid full address decoding in every device.
1971 We can't use the high bits of pd for this because
1972 IO_MEM_ROMD uses these as a ram address. */
1973 iotlb
= (pd
& ~TARGET_PAGE_MASK
);
1975 iotlb
+= p
->region_offset
;
1981 code_address
= address
;
1982 /* Make accesses to pages with watchpoints go via the
1983 watchpoint trap routines. */
1984 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1985 if (vaddr
== (wp
->vaddr
& TARGET_PAGE_MASK
)) {
1986 iotlb
= io_mem_watch
+ paddr
;
1987 /* TODO: The memory case can be optimized by not trapping
1988 reads of pages with a write breakpoint. */
1989 address
|= TLB_MMIO
;
1993 index
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
1994 env
->iotlb
[mmu_idx
][index
] = iotlb
- vaddr
;
1995 te
= &env
->tlb_table
[mmu_idx
][index
];
1996 te
->addend
= addend
- vaddr
;
1997 if (prot
& PAGE_READ
) {
1998 te
->addr_read
= address
;
2003 if (prot
& PAGE_EXEC
) {
2004 te
->addr_code
= code_address
;
2008 if (prot
& PAGE_WRITE
) {
2009 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_ROM
||
2010 (pd
& IO_MEM_ROMD
)) {
2011 /* Write access calls the I/O callback. */
2012 te
->addr_write
= address
| TLB_MMIO
;
2013 } else if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
&&
2014 !cpu_physical_memory_is_dirty(pd
)) {
2015 te
->addr_write
= address
| TLB_NOTDIRTY
;
2017 te
->addr_write
= address
;
2020 te
->addr_write
= -1;
2027 void tlb_flush(CPUState
*env
, int flush_global
)
2031 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
2035 int tlb_set_page_exec(CPUState
*env
, target_ulong vaddr
,
2036 target_phys_addr_t paddr
, int prot
,
2037 int mmu_idx
, int is_softmmu
)
2042 /* dump memory mappings */
2043 void page_dump(FILE *f
)
2045 unsigned long start
, end
;
2046 int i
, j
, prot
, prot1
;
2049 fprintf(f
, "%-8s %-8s %-8s %s\n",
2050 "start", "end", "size", "prot");
2054 for(i
= 0; i
<= L1_SIZE
; i
++) {
2059 for(j
= 0;j
< L2_SIZE
; j
++) {
2064 if (prot1
!= prot
) {
2065 end
= (i
<< (32 - L1_BITS
)) | (j
<< TARGET_PAGE_BITS
);
2067 fprintf(f
, "%08lx-%08lx %08lx %c%c%c\n",
2068 start
, end
, end
- start
,
2069 prot
& PAGE_READ
? 'r' : '-',
2070 prot
& PAGE_WRITE
? 'w' : '-',
2071 prot
& PAGE_EXEC
? 'x' : '-');
2085 int page_get_flags(target_ulong address
)
2089 p
= page_find(address
>> TARGET_PAGE_BITS
);
2095 /* modify the flags of a page and invalidate the code if
2096 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2097 depending on PAGE_WRITE */
2098 void page_set_flags(target_ulong start
, target_ulong end
, int flags
)
2103 /* mmap_lock should already be held. */
2104 start
= start
& TARGET_PAGE_MASK
;
2105 end
= TARGET_PAGE_ALIGN(end
);
2106 if (flags
& PAGE_WRITE
)
2107 flags
|= PAGE_WRITE_ORG
;
2108 for(addr
= start
; addr
< end
; addr
+= TARGET_PAGE_SIZE
) {
2109 p
= page_find_alloc(addr
>> TARGET_PAGE_BITS
);
2110 /* We may be called for host regions that are outside guest
2114 /* if the write protection is set, then we invalidate the code
2116 if (!(p
->flags
& PAGE_WRITE
) &&
2117 (flags
& PAGE_WRITE
) &&
2119 tb_invalidate_phys_page(addr
, 0, NULL
);
2125 int page_check_range(target_ulong start
, target_ulong len
, int flags
)
2131 if (start
+ len
< start
)
2132 /* we've wrapped around */
2135 end
= TARGET_PAGE_ALIGN(start
+len
); /* must do before we loose bits in the next step */
2136 start
= start
& TARGET_PAGE_MASK
;
2138 for(addr
= start
; addr
< end
; addr
+= TARGET_PAGE_SIZE
) {
2139 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2142 if( !(p
->flags
& PAGE_VALID
) )
2145 if ((flags
& PAGE_READ
) && !(p
->flags
& PAGE_READ
))
2147 if (flags
& PAGE_WRITE
) {
2148 if (!(p
->flags
& PAGE_WRITE_ORG
))
2150 /* unprotect the page if it was put read-only because it
2151 contains translated code */
2152 if (!(p
->flags
& PAGE_WRITE
)) {
2153 if (!page_unprotect(addr
, 0, NULL
))
2162 /* called from signal handler: invalidate the code and unprotect the
2163 page. Return TRUE if the fault was succesfully handled. */
2164 int page_unprotect(target_ulong address
, unsigned long pc
, void *puc
)
2166 unsigned int page_index
, prot
, pindex
;
2168 target_ulong host_start
, host_end
, addr
;
2170 /* Technically this isn't safe inside a signal handler. However we
2171 know this only ever happens in a synchronous SEGV handler, so in
2172 practice it seems to be ok. */
2175 host_start
= address
& qemu_host_page_mask
;
2176 page_index
= host_start
>> TARGET_PAGE_BITS
;
2177 p1
= page_find(page_index
);
2182 host_end
= host_start
+ qemu_host_page_size
;
2185 for(addr
= host_start
;addr
< host_end
; addr
+= TARGET_PAGE_SIZE
) {
2189 /* if the page was really writable, then we change its
2190 protection back to writable */
2191 if (prot
& PAGE_WRITE_ORG
) {
2192 pindex
= (address
- host_start
) >> TARGET_PAGE_BITS
;
2193 if (!(p1
[pindex
].flags
& PAGE_WRITE
)) {
2194 mprotect((void *)g2h(host_start
), qemu_host_page_size
,
2195 (prot
& PAGE_BITS
) | PAGE_WRITE
);
2196 p1
[pindex
].flags
|= PAGE_WRITE
;
2197 /* and since the content will be modified, we must invalidate
2198 the corresponding translated code. */
2199 tb_invalidate_phys_page(address
, pc
, puc
);
2200 #ifdef DEBUG_TB_CHECK
2201 tb_invalidate_check(address
);
2211 static inline void tlb_set_dirty(CPUState
*env
,
2212 unsigned long addr
, target_ulong vaddr
)
2215 #endif /* defined(CONFIG_USER_ONLY) */
2217 #if !defined(CONFIG_USER_ONLY)
2219 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2220 ram_addr_t memory
, ram_addr_t region_offset
);
2221 static void *subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
2222 ram_addr_t orig_memory
, ram_addr_t region_offset
);
2223 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2226 if (addr > start_addr) \
2229 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2230 if (start_addr2 > 0) \
2234 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2235 end_addr2 = TARGET_PAGE_SIZE - 1; \
2237 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2238 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2243 /* register physical memory. 'size' must be a multiple of the target
2244 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2245 io memory page. The address used when calling the IO function is
2246 the offset from the start of the region, plus region_offset. Both
2247 start_region and regon_offset are rounded down to a page boundary
2248 before calculating this offset. This should not be a problem unless
2249 the low bits of start_addr and region_offset differ. */
2250 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr
,
2252 ram_addr_t phys_offset
,
2253 ram_addr_t region_offset
)
2255 target_phys_addr_t addr
, end_addr
;
2258 ram_addr_t orig_size
= size
;
2262 /* XXX: should not depend on cpu context */
2264 if (env
->kqemu_enabled
) {
2265 kqemu_set_phys_mem(start_addr
, size
, phys_offset
);
2269 kvm_set_phys_mem(start_addr
, size
, phys_offset
);
2271 region_offset
&= TARGET_PAGE_MASK
;
2272 size
= (size
+ TARGET_PAGE_SIZE
- 1) & TARGET_PAGE_MASK
;
2273 end_addr
= start_addr
+ (target_phys_addr_t
)size
;
2274 for(addr
= start_addr
; addr
!= end_addr
; addr
+= TARGET_PAGE_SIZE
) {
2275 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2276 if (p
&& p
->phys_offset
!= IO_MEM_UNASSIGNED
) {
2277 ram_addr_t orig_memory
= p
->phys_offset
;
2278 target_phys_addr_t start_addr2
, end_addr2
;
2279 int need_subpage
= 0;
2281 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
, end_addr2
,
2283 if (need_subpage
|| phys_offset
& IO_MEM_SUBWIDTH
) {
2284 if (!(orig_memory
& IO_MEM_SUBPAGE
)) {
2285 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2286 &p
->phys_offset
, orig_memory
,
2289 subpage
= io_mem_opaque
[(orig_memory
& ~TARGET_PAGE_MASK
)
2292 subpage_register(subpage
, start_addr2
, end_addr2
, phys_offset
,
2294 p
->region_offset
= 0;
2296 p
->phys_offset
= phys_offset
;
2297 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2298 (phys_offset
& IO_MEM_ROMD
))
2299 phys_offset
+= TARGET_PAGE_SIZE
;
2302 p
= phys_page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
2303 p
->phys_offset
= phys_offset
;
2304 p
->region_offset
= region_offset
;
2305 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2306 (phys_offset
& IO_MEM_ROMD
)) {
2307 phys_offset
+= TARGET_PAGE_SIZE
;
2309 target_phys_addr_t start_addr2
, end_addr2
;
2310 int need_subpage
= 0;
2312 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
,
2313 end_addr2
, need_subpage
);
2315 if (need_subpage
|| phys_offset
& IO_MEM_SUBWIDTH
) {
2316 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2317 &p
->phys_offset
, IO_MEM_UNASSIGNED
,
2319 subpage_register(subpage
, start_addr2
, end_addr2
,
2320 phys_offset
, region_offset
);
2321 p
->region_offset
= 0;
2325 region_offset
+= TARGET_PAGE_SIZE
;
2328 /* since each CPU stores ram addresses in its TLB cache, we must
2329 reset the modified entries */
2331 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2336 /* XXX: temporary until new memory mapping API */
2337 ram_addr_t
cpu_get_physical_page_desc(target_phys_addr_t addr
)
2341 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2343 return IO_MEM_UNASSIGNED
;
2344 return p
->phys_offset
;
2347 void qemu_register_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2350 kvm_coalesce_mmio_region(addr
, size
);
2353 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2356 kvm_uncoalesce_mmio_region(addr
, size
);
2359 /* XXX: better than nothing */
2360 ram_addr_t
qemu_ram_alloc(ram_addr_t size
)
2363 if ((phys_ram_alloc_offset
+ size
) > phys_ram_size
) {
2364 fprintf(stderr
, "Not enough memory (requested_size = %" PRIu64
", max memory = %" PRIu64
")\n",
2365 (uint64_t)size
, (uint64_t)phys_ram_size
);
2368 addr
= phys_ram_alloc_offset
;
2369 phys_ram_alloc_offset
= TARGET_PAGE_ALIGN(phys_ram_alloc_offset
+ size
);
2373 void qemu_ram_free(ram_addr_t addr
)
2377 static uint32_t unassigned_mem_readb(void *opaque
, target_phys_addr_t addr
)
2379 #ifdef DEBUG_UNASSIGNED
2380 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2382 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2383 do_unassigned_access(addr
, 0, 0, 0, 1);
2388 static uint32_t unassigned_mem_readw(void *opaque
, target_phys_addr_t addr
)
2390 #ifdef DEBUG_UNASSIGNED
2391 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2393 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2394 do_unassigned_access(addr
, 0, 0, 0, 2);
2399 static uint32_t unassigned_mem_readl(void *opaque
, target_phys_addr_t addr
)
2401 #ifdef DEBUG_UNASSIGNED
2402 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2404 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2405 do_unassigned_access(addr
, 0, 0, 0, 4);
2410 static void unassigned_mem_writeb(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2412 #ifdef DEBUG_UNASSIGNED
2413 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2415 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2416 do_unassigned_access(addr
, 1, 0, 0, 1);
2420 static void unassigned_mem_writew(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2422 #ifdef DEBUG_UNASSIGNED
2423 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2425 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2426 do_unassigned_access(addr
, 1, 0, 0, 2);
2430 static void unassigned_mem_writel(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2432 #ifdef DEBUG_UNASSIGNED
2433 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2435 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2436 do_unassigned_access(addr
, 1, 0, 0, 4);
2440 static CPUReadMemoryFunc
*unassigned_mem_read
[3] = {
2441 unassigned_mem_readb
,
2442 unassigned_mem_readw
,
2443 unassigned_mem_readl
,
2446 static CPUWriteMemoryFunc
*unassigned_mem_write
[3] = {
2447 unassigned_mem_writeb
,
2448 unassigned_mem_writew
,
2449 unassigned_mem_writel
,
2452 static void notdirty_mem_writeb(void *opaque
, target_phys_addr_t ram_addr
,
2456 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2457 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2458 #if !defined(CONFIG_USER_ONLY)
2459 tb_invalidate_phys_page_fast(ram_addr
, 1);
2460 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2463 stb_p(phys_ram_base
+ ram_addr
, val
);
2465 if (cpu_single_env
->kqemu_enabled
&&
2466 (dirty_flags
& KQEMU_MODIFY_PAGE_MASK
) != KQEMU_MODIFY_PAGE_MASK
)
2467 kqemu_modify_page(cpu_single_env
, ram_addr
);
2469 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2470 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2471 /* we remove the notdirty callback only if the code has been
2473 if (dirty_flags
== 0xff)
2474 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2477 static void notdirty_mem_writew(void *opaque
, target_phys_addr_t ram_addr
,
2481 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2482 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2483 #if !defined(CONFIG_USER_ONLY)
2484 tb_invalidate_phys_page_fast(ram_addr
, 2);
2485 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2488 stw_p(phys_ram_base
+ ram_addr
, val
);
2490 if (cpu_single_env
->kqemu_enabled
&&
2491 (dirty_flags
& KQEMU_MODIFY_PAGE_MASK
) != KQEMU_MODIFY_PAGE_MASK
)
2492 kqemu_modify_page(cpu_single_env
, ram_addr
);
2494 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2495 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2496 /* we remove the notdirty callback only if the code has been
2498 if (dirty_flags
== 0xff)
2499 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2502 static void notdirty_mem_writel(void *opaque
, target_phys_addr_t ram_addr
,
2506 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2507 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2508 #if !defined(CONFIG_USER_ONLY)
2509 tb_invalidate_phys_page_fast(ram_addr
, 4);
2510 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2513 stl_p(phys_ram_base
+ ram_addr
, val
);
2515 if (cpu_single_env
->kqemu_enabled
&&
2516 (dirty_flags
& KQEMU_MODIFY_PAGE_MASK
) != KQEMU_MODIFY_PAGE_MASK
)
2517 kqemu_modify_page(cpu_single_env
, ram_addr
);
2519 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2520 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2521 /* we remove the notdirty callback only if the code has been
2523 if (dirty_flags
== 0xff)
2524 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2527 static CPUReadMemoryFunc
*error_mem_read
[3] = {
2528 NULL
, /* never used */
2529 NULL
, /* never used */
2530 NULL
, /* never used */
2533 static CPUWriteMemoryFunc
*notdirty_mem_write
[3] = {
2534 notdirty_mem_writeb
,
2535 notdirty_mem_writew
,
2536 notdirty_mem_writel
,
2539 /* Generate a debug exception if a watchpoint has been hit. */
2540 static void check_watchpoint(int offset
, int len_mask
, int flags
)
2542 CPUState
*env
= cpu_single_env
;
2543 target_ulong pc
, cs_base
;
2544 TranslationBlock
*tb
;
2549 if (env
->watchpoint_hit
) {
2550 /* We re-entered the check after replacing the TB. Now raise
2551 * the debug interrupt so that is will trigger after the
2552 * current instruction. */
2553 cpu_interrupt(env
, CPU_INTERRUPT_DEBUG
);
2556 vaddr
= (env
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2557 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
2558 if ((vaddr
== (wp
->vaddr
& len_mask
) ||
2559 (vaddr
& wp
->len_mask
) == wp
->vaddr
) && (wp
->flags
& flags
)) {
2560 wp
->flags
|= BP_WATCHPOINT_HIT
;
2561 if (!env
->watchpoint_hit
) {
2562 env
->watchpoint_hit
= wp
;
2563 tb
= tb_find_pc(env
->mem_io_pc
);
2565 cpu_abort(env
, "check_watchpoint: could not find TB for "
2566 "pc=%p", (void *)env
->mem_io_pc
);
2568 cpu_restore_state(tb
, env
, env
->mem_io_pc
, NULL
);
2569 tb_phys_invalidate(tb
, -1);
2570 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2571 env
->exception_index
= EXCP_DEBUG
;
2573 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
2574 tb_gen_code(env
, pc
, cs_base
, cpu_flags
, 1);
2576 cpu_resume_from_signal(env
, NULL
);
2579 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2584 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2585 so these check for a hit then pass through to the normal out-of-line
2587 static uint32_t watch_mem_readb(void *opaque
, target_phys_addr_t addr
)
2589 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x0, BP_MEM_READ
);
2590 return ldub_phys(addr
);
2593 static uint32_t watch_mem_readw(void *opaque
, target_phys_addr_t addr
)
2595 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x1, BP_MEM_READ
);
2596 return lduw_phys(addr
);
2599 static uint32_t watch_mem_readl(void *opaque
, target_phys_addr_t addr
)
2601 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x3, BP_MEM_READ
);
2602 return ldl_phys(addr
);
2605 static void watch_mem_writeb(void *opaque
, target_phys_addr_t addr
,
2608 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x0, BP_MEM_WRITE
);
2609 stb_phys(addr
, val
);
2612 static void watch_mem_writew(void *opaque
, target_phys_addr_t addr
,
2615 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x1, BP_MEM_WRITE
);
2616 stw_phys(addr
, val
);
2619 static void watch_mem_writel(void *opaque
, target_phys_addr_t addr
,
2622 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x3, BP_MEM_WRITE
);
2623 stl_phys(addr
, val
);
2626 static CPUReadMemoryFunc
*watch_mem_read
[3] = {
2632 static CPUWriteMemoryFunc
*watch_mem_write
[3] = {
2638 static inline uint32_t subpage_readlen (subpage_t
*mmio
, target_phys_addr_t addr
,
2644 idx
= SUBPAGE_IDX(addr
);
2645 #if defined(DEBUG_SUBPAGE)
2646 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d\n", __func__
,
2647 mmio
, len
, addr
, idx
);
2649 ret
= (**mmio
->mem_read
[idx
][len
])(mmio
->opaque
[idx
][0][len
],
2650 addr
+ mmio
->region_offset
[idx
][0][len
]);
2655 static inline void subpage_writelen (subpage_t
*mmio
, target_phys_addr_t addr
,
2656 uint32_t value
, unsigned int len
)
2660 idx
= SUBPAGE_IDX(addr
);
2661 #if defined(DEBUG_SUBPAGE)
2662 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d value %08x\n", __func__
,
2663 mmio
, len
, addr
, idx
, value
);
2665 (**mmio
->mem_write
[idx
][len
])(mmio
->opaque
[idx
][1][len
],
2666 addr
+ mmio
->region_offset
[idx
][1][len
],
2670 static uint32_t subpage_readb (void *opaque
, target_phys_addr_t addr
)
2672 #if defined(DEBUG_SUBPAGE)
2673 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2676 return subpage_readlen(opaque
, addr
, 0);
2679 static void subpage_writeb (void *opaque
, target_phys_addr_t addr
,
2682 #if defined(DEBUG_SUBPAGE)
2683 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2685 subpage_writelen(opaque
, addr
, value
, 0);
2688 static uint32_t subpage_readw (void *opaque
, target_phys_addr_t addr
)
2690 #if defined(DEBUG_SUBPAGE)
2691 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2694 return subpage_readlen(opaque
, addr
, 1);
2697 static void subpage_writew (void *opaque
, target_phys_addr_t addr
,
2700 #if defined(DEBUG_SUBPAGE)
2701 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2703 subpage_writelen(opaque
, addr
, value
, 1);
2706 static uint32_t subpage_readl (void *opaque
, target_phys_addr_t addr
)
2708 #if defined(DEBUG_SUBPAGE)
2709 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2712 return subpage_readlen(opaque
, addr
, 2);
2715 static void subpage_writel (void *opaque
,
2716 target_phys_addr_t addr
, uint32_t value
)
2718 #if defined(DEBUG_SUBPAGE)
2719 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2721 subpage_writelen(opaque
, addr
, value
, 2);
2724 static CPUReadMemoryFunc
*subpage_read
[] = {
2730 static CPUWriteMemoryFunc
*subpage_write
[] = {
2736 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2737 ram_addr_t memory
, ram_addr_t region_offset
)
2742 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2744 idx
= SUBPAGE_IDX(start
);
2745 eidx
= SUBPAGE_IDX(end
);
2746 #if defined(DEBUG_SUBPAGE)
2747 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__
,
2748 mmio
, start
, end
, idx
, eidx
, memory
);
2750 memory
>>= IO_MEM_SHIFT
;
2751 for (; idx
<= eidx
; idx
++) {
2752 for (i
= 0; i
< 4; i
++) {
2753 if (io_mem_read
[memory
][i
]) {
2754 mmio
->mem_read
[idx
][i
] = &io_mem_read
[memory
][i
];
2755 mmio
->opaque
[idx
][0][i
] = io_mem_opaque
[memory
];
2756 mmio
->region_offset
[idx
][0][i
] = region_offset
;
2758 if (io_mem_write
[memory
][i
]) {
2759 mmio
->mem_write
[idx
][i
] = &io_mem_write
[memory
][i
];
2760 mmio
->opaque
[idx
][1][i
] = io_mem_opaque
[memory
];
2761 mmio
->region_offset
[idx
][1][i
] = region_offset
;
2769 static void *subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
2770 ram_addr_t orig_memory
, ram_addr_t region_offset
)
2775 mmio
= qemu_mallocz(sizeof(subpage_t
));
2778 subpage_memory
= cpu_register_io_memory(0, subpage_read
, subpage_write
, mmio
);
2779 #if defined(DEBUG_SUBPAGE)
2780 printf("%s: %p base " TARGET_FMT_plx
" len %08x %d\n", __func__
,
2781 mmio
, base
, TARGET_PAGE_SIZE
, subpage_memory
);
2783 *phys
= subpage_memory
| IO_MEM_SUBPAGE
;
2784 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
- 1, orig_memory
,
2791 static void io_mem_init(void)
2793 cpu_register_io_memory(IO_MEM_ROM
>> IO_MEM_SHIFT
, error_mem_read
, unassigned_mem_write
, NULL
);
2794 cpu_register_io_memory(IO_MEM_UNASSIGNED
>> IO_MEM_SHIFT
, unassigned_mem_read
, unassigned_mem_write
, NULL
);
2795 cpu_register_io_memory(IO_MEM_NOTDIRTY
>> IO_MEM_SHIFT
, error_mem_read
, notdirty_mem_write
, NULL
);
2798 io_mem_watch
= cpu_register_io_memory(0, watch_mem_read
,
2799 watch_mem_write
, NULL
);
2800 /* alloc dirty bits array */
2801 phys_ram_dirty
= qemu_vmalloc(phys_ram_size
>> TARGET_PAGE_BITS
);
2802 memset(phys_ram_dirty
, 0xff, phys_ram_size
>> TARGET_PAGE_BITS
);
2805 /* mem_read and mem_write are arrays of functions containing the
2806 function to access byte (index 0), word (index 1) and dword (index
2807 2). Functions can be omitted with a NULL function pointer. The
2808 registered functions may be modified dynamically later.
2809 If io_index is non zero, the corresponding io zone is
2810 modified. If it is zero, a new io zone is allocated. The return
2811 value can be used with cpu_register_physical_memory(). (-1) is
2812 returned if error. */
2813 int cpu_register_io_memory(int io_index
,
2814 CPUReadMemoryFunc
**mem_read
,
2815 CPUWriteMemoryFunc
**mem_write
,
2818 int i
, subwidth
= 0;
2820 if (io_index
<= 0) {
2821 if (io_mem_nb
>= IO_MEM_NB_ENTRIES
)
2823 io_index
= io_mem_nb
++;
2825 if (io_index
>= IO_MEM_NB_ENTRIES
)
2829 for(i
= 0;i
< 3; i
++) {
2830 if (!mem_read
[i
] || !mem_write
[i
])
2831 subwidth
= IO_MEM_SUBWIDTH
;
2832 io_mem_read
[io_index
][i
] = mem_read
[i
];
2833 io_mem_write
[io_index
][i
] = mem_write
[i
];
2835 io_mem_opaque
[io_index
] = opaque
;
2836 return (io_index
<< IO_MEM_SHIFT
) | subwidth
;
2839 CPUWriteMemoryFunc
**cpu_get_io_memory_write(int io_index
)
2841 return io_mem_write
[io_index
>> IO_MEM_SHIFT
];
2844 CPUReadMemoryFunc
**cpu_get_io_memory_read(int io_index
)
2846 return io_mem_read
[io_index
>> IO_MEM_SHIFT
];
2849 #endif /* !defined(CONFIG_USER_ONLY) */
2851 /* physical memory access (slow version, mainly for debug) */
2852 #if defined(CONFIG_USER_ONLY)
2853 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
2854 int len
, int is_write
)
2861 page
= addr
& TARGET_PAGE_MASK
;
2862 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2865 flags
= page_get_flags(page
);
2866 if (!(flags
& PAGE_VALID
))
2869 if (!(flags
& PAGE_WRITE
))
2871 /* XXX: this code should not depend on lock_user */
2872 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
2873 /* FIXME - should this return an error rather than just fail? */
2876 unlock_user(p
, addr
, l
);
2878 if (!(flags
& PAGE_READ
))
2880 /* XXX: this code should not depend on lock_user */
2881 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
2882 /* FIXME - should this return an error rather than just fail? */
2885 unlock_user(p
, addr
, 0);
2894 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
2895 int len
, int is_write
)
2900 target_phys_addr_t page
;
2905 page
= addr
& TARGET_PAGE_MASK
;
2906 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2909 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
2911 pd
= IO_MEM_UNASSIGNED
;
2913 pd
= p
->phys_offset
;
2917 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
2918 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
2920 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
2921 /* XXX: could force cpu_single_env to NULL to avoid
2923 if (l
>= 4 && ((addr
& 3) == 0)) {
2924 /* 32 bit write access */
2926 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
2928 } else if (l
>= 2 && ((addr
& 1) == 0)) {
2929 /* 16 bit write access */
2931 io_mem_write
[io_index
][1](io_mem_opaque
[io_index
], addr
, val
);
2934 /* 8 bit write access */
2936 io_mem_write
[io_index
][0](io_mem_opaque
[io_index
], addr
, val
);
2940 unsigned long addr1
;
2941 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
2943 ptr
= phys_ram_base
+ addr1
;
2944 memcpy(ptr
, buf
, l
);
2945 if (!cpu_physical_memory_is_dirty(addr1
)) {
2946 /* invalidate code */
2947 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
2949 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
2950 (0xff & ~CODE_DIRTY_FLAG
);
2954 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
2955 !(pd
& IO_MEM_ROMD
)) {
2957 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
2959 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
2960 if (l
>= 4 && ((addr
& 3) == 0)) {
2961 /* 32 bit read access */
2962 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
2965 } else if (l
>= 2 && ((addr
& 1) == 0)) {
2966 /* 16 bit read access */
2967 val
= io_mem_read
[io_index
][1](io_mem_opaque
[io_index
], addr
);
2971 /* 8 bit read access */
2972 val
= io_mem_read
[io_index
][0](io_mem_opaque
[io_index
], addr
);
2978 ptr
= phys_ram_base
+ (pd
& TARGET_PAGE_MASK
) +
2979 (addr
& ~TARGET_PAGE_MASK
);
2980 memcpy(buf
, ptr
, l
);
2989 /* used for ROM loading : can write in RAM and ROM */
2990 void cpu_physical_memory_write_rom(target_phys_addr_t addr
,
2991 const uint8_t *buf
, int len
)
2995 target_phys_addr_t page
;
3000 page
= addr
& TARGET_PAGE_MASK
;
3001 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3004 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3006 pd
= IO_MEM_UNASSIGNED
;
3008 pd
= p
->phys_offset
;
3011 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
&&
3012 (pd
& ~TARGET_PAGE_MASK
) != IO_MEM_ROM
&&
3013 !(pd
& IO_MEM_ROMD
)) {
3016 unsigned long addr1
;
3017 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3019 ptr
= phys_ram_base
+ addr1
;
3020 memcpy(ptr
, buf
, l
);
3029 /* warning: addr must be aligned */
3030 uint32_t ldl_phys(target_phys_addr_t addr
)
3038 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3040 pd
= IO_MEM_UNASSIGNED
;
3042 pd
= p
->phys_offset
;
3045 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3046 !(pd
& IO_MEM_ROMD
)) {
3048 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3050 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3051 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
3054 ptr
= phys_ram_base
+ (pd
& TARGET_PAGE_MASK
) +
3055 (addr
& ~TARGET_PAGE_MASK
);
3061 /* warning: addr must be aligned */
3062 uint64_t ldq_phys(target_phys_addr_t addr
)
3070 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3072 pd
= IO_MEM_UNASSIGNED
;
3074 pd
= p
->phys_offset
;
3077 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3078 !(pd
& IO_MEM_ROMD
)) {
3080 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3082 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3083 #ifdef TARGET_WORDS_BIGENDIAN
3084 val
= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
) << 32;
3085 val
|= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4);
3087 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
3088 val
|= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4) << 32;
3092 ptr
= phys_ram_base
+ (pd
& TARGET_PAGE_MASK
) +
3093 (addr
& ~TARGET_PAGE_MASK
);
3100 uint32_t ldub_phys(target_phys_addr_t addr
)
3103 cpu_physical_memory_read(addr
, &val
, 1);
3108 uint32_t lduw_phys(target_phys_addr_t addr
)
3111 cpu_physical_memory_read(addr
, (uint8_t *)&val
, 2);
3112 return tswap16(val
);
3115 /* warning: addr must be aligned. The ram page is not masked as dirty
3116 and the code inside is not invalidated. It is useful if the dirty
3117 bits are used to track modified PTEs */
3118 void stl_phys_notdirty(target_phys_addr_t addr
, uint32_t val
)
3125 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3127 pd
= IO_MEM_UNASSIGNED
;
3129 pd
= p
->phys_offset
;
3132 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3133 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3135 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3136 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3138 unsigned long addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3139 ptr
= phys_ram_base
+ addr1
;
3142 if (unlikely(in_migration
)) {
3143 if (!cpu_physical_memory_is_dirty(addr1
)) {
3144 /* invalidate code */
3145 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
3147 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3148 (0xff & ~CODE_DIRTY_FLAG
);
3154 void stq_phys_notdirty(target_phys_addr_t addr
, uint64_t val
)
3161 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3163 pd
= IO_MEM_UNASSIGNED
;
3165 pd
= p
->phys_offset
;
3168 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3169 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3171 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3172 #ifdef TARGET_WORDS_BIGENDIAN
3173 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
>> 32);
3174 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
);
3176 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3177 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
>> 32);
3180 ptr
= phys_ram_base
+ (pd
& TARGET_PAGE_MASK
) +
3181 (addr
& ~TARGET_PAGE_MASK
);
3186 /* warning: addr must be aligned */
3187 void stl_phys(target_phys_addr_t addr
, uint32_t val
)
3194 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3196 pd
= IO_MEM_UNASSIGNED
;
3198 pd
= p
->phys_offset
;
3201 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3202 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3204 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3205 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3207 unsigned long addr1
;
3208 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3210 ptr
= phys_ram_base
+ addr1
;
3212 if (!cpu_physical_memory_is_dirty(addr1
)) {
3213 /* invalidate code */
3214 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
3216 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3217 (0xff & ~CODE_DIRTY_FLAG
);
3223 void stb_phys(target_phys_addr_t addr
, uint32_t val
)
3226 cpu_physical_memory_write(addr
, &v
, 1);
3230 void stw_phys(target_phys_addr_t addr
, uint32_t val
)
3232 uint16_t v
= tswap16(val
);
3233 cpu_physical_memory_write(addr
, (const uint8_t *)&v
, 2);
3237 void stq_phys(target_phys_addr_t addr
, uint64_t val
)
3240 cpu_physical_memory_write(addr
, (const uint8_t *)&val
, 8);
3245 /* virtual memory access for debug */
3246 int cpu_memory_rw_debug(CPUState
*env
, target_ulong addr
,
3247 uint8_t *buf
, int len
, int is_write
)
3250 target_phys_addr_t phys_addr
;
3254 page
= addr
& TARGET_PAGE_MASK
;
3255 phys_addr
= cpu_get_phys_page_debug(env
, page
);
3256 /* if no physical page mapped, return an error */
3257 if (phys_addr
== -1)
3259 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3262 cpu_physical_memory_rw(phys_addr
+ (addr
& ~TARGET_PAGE_MASK
),
3271 /* in deterministic execution mode, instructions doing device I/Os
3272 must be at the end of the TB */
3273 void cpu_io_recompile(CPUState
*env
, void *retaddr
)
3275 TranslationBlock
*tb
;
3277 target_ulong pc
, cs_base
;
3280 tb
= tb_find_pc((unsigned long)retaddr
);
3282 cpu_abort(env
, "cpu_io_recompile: could not find TB for pc=%p",
3285 n
= env
->icount_decr
.u16
.low
+ tb
->icount
;
3286 cpu_restore_state(tb
, env
, (unsigned long)retaddr
, NULL
);
3287 /* Calculate how many instructions had been executed before the fault
3289 n
= n
- env
->icount_decr
.u16
.low
;
3290 /* Generate a new TB ending on the I/O insn. */
3292 /* On MIPS and SH, delay slot instructions can only be restarted if
3293 they were already the first instruction in the TB. If this is not
3294 the first instruction in a TB then re-execute the preceding
3296 #if defined(TARGET_MIPS)
3297 if ((env
->hflags
& MIPS_HFLAG_BMASK
) != 0 && n
> 1) {
3298 env
->active_tc
.PC
-= 4;
3299 env
->icount_decr
.u16
.low
++;
3300 env
->hflags
&= ~MIPS_HFLAG_BMASK
;
3302 #elif defined(TARGET_SH4)
3303 if ((env
->flags
& ((DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
))) != 0
3306 env
->icount_decr
.u16
.low
++;
3307 env
->flags
&= ~(DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
);
3310 /* This should never happen. */
3311 if (n
> CF_COUNT_MASK
)
3312 cpu_abort(env
, "TB too big during recompile");
3314 cflags
= n
| CF_LAST_IO
;
3316 cs_base
= tb
->cs_base
;
3318 tb_phys_invalidate(tb
, -1);
3319 /* FIXME: In theory this could raise an exception. In practice
3320 we have already translated the block once so it's probably ok. */
3321 tb_gen_code(env
, pc
, cs_base
, flags
, cflags
);
3322 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3323 the first in the TB) then we end up generating a whole new TB and
3324 repeating the fault, which is horribly inefficient.
3325 Better would be to execute just this insn uncached, or generate a
3327 cpu_resume_from_signal(env
, NULL
);
3330 void dump_exec_info(FILE *f
,
3331 int (*cpu_fprintf
)(FILE *f
, const char *fmt
, ...))
3333 int i
, target_code_size
, max_target_code_size
;
3334 int direct_jmp_count
, direct_jmp2_count
, cross_page
;
3335 TranslationBlock
*tb
;
3337 target_code_size
= 0;
3338 max_target_code_size
= 0;
3340 direct_jmp_count
= 0;
3341 direct_jmp2_count
= 0;
3342 for(i
= 0; i
< nb_tbs
; i
++) {
3344 target_code_size
+= tb
->size
;
3345 if (tb
->size
> max_target_code_size
)
3346 max_target_code_size
= tb
->size
;
3347 if (tb
->page_addr
[1] != -1)
3349 if (tb
->tb_next_offset
[0] != 0xffff) {
3351 if (tb
->tb_next_offset
[1] != 0xffff) {
3352 direct_jmp2_count
++;
3356 /* XXX: avoid using doubles ? */
3357 cpu_fprintf(f
, "Translation buffer state:\n");
3358 cpu_fprintf(f
, "gen code size %ld/%ld\n",
3359 code_gen_ptr
- code_gen_buffer
, code_gen_buffer_max_size
);
3360 cpu_fprintf(f
, "TB count %d/%d\n",
3361 nb_tbs
, code_gen_max_blocks
);
3362 cpu_fprintf(f
, "TB avg target size %d max=%d bytes\n",
3363 nb_tbs
? target_code_size
/ nb_tbs
: 0,
3364 max_target_code_size
);
3365 cpu_fprintf(f
, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3366 nb_tbs
? (code_gen_ptr
- code_gen_buffer
) / nb_tbs
: 0,
3367 target_code_size
? (double) (code_gen_ptr
- code_gen_buffer
) / target_code_size
: 0);
3368 cpu_fprintf(f
, "cross page TB count %d (%d%%)\n",
3370 nb_tbs
? (cross_page
* 100) / nb_tbs
: 0);
3371 cpu_fprintf(f
, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3373 nb_tbs
? (direct_jmp_count
* 100) / nb_tbs
: 0,
3375 nb_tbs
? (direct_jmp2_count
* 100) / nb_tbs
: 0);
3376 cpu_fprintf(f
, "\nStatistics:\n");
3377 cpu_fprintf(f
, "TB flush count %d\n", tb_flush_count
);
3378 cpu_fprintf(f
, "TB invalidate count %d\n", tb_phys_invalidate_count
);
3379 cpu_fprintf(f
, "TLB flush count %d\n", tlb_flush_count
);
3380 tcg_dump_info(f
, cpu_fprintf
);
3383 #if !defined(CONFIG_USER_ONLY)
3385 #define MMUSUFFIX _cmmu
3386 #define GETPC() NULL
3387 #define env cpu_single_env
3388 #define SOFTMMU_CODE_ACCESS
3391 #include "softmmu_template.h"
3394 #include "softmmu_template.h"
3397 #include "softmmu_template.h"
3400 #include "softmmu_template.h"