2 * "Inventra" High-speed Dual-Role Controller (MUSB-HDRC), Mentor Graphics,
3 * USB2.0 OTG compliant core used in various chips.
5 * Copyright (C) 2008 Nokia Corporation
6 * Written by Andrzej Zaborowski <andrew@openedhand.com>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 or
11 * (at your option) version 3 of the License.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, write to the Free Software Foundation, Inc.,
20 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
22 * Only host-mode and non-DMA accesses are currently supported.
24 #include "qemu-common.h"
25 #include "qemu-timer.h"
29 /* Common USB registers */
30 #define MUSB_HDRC_FADDR 0x00 /* 8-bit */
31 #define MUSB_HDRC_POWER 0x01 /* 8-bit */
33 #define MUSB_HDRC_INTRTX 0x02 /* 16-bit */
34 #define MUSB_HDRC_INTRRX 0x04
35 #define MUSB_HDRC_INTRTXE 0x06
36 #define MUSB_HDRC_INTRRXE 0x08
37 #define MUSB_HDRC_INTRUSB 0x0a /* 8 bit */
38 #define MUSB_HDRC_INTRUSBE 0x0b /* 8 bit */
39 #define MUSB_HDRC_FRAME 0x0c /* 16-bit */
40 #define MUSB_HDRC_INDEX 0x0e /* 8 bit */
41 #define MUSB_HDRC_TESTMODE 0x0f /* 8 bit */
43 /* Per-EP registers in indexed mode */
44 #define MUSB_HDRC_EP_IDX 0x10 /* 8-bit */
47 #define MUSB_HDRC_FIFO 0x20
49 /* Additional Control Registers */
50 #define MUSB_HDRC_DEVCTL 0x60 /* 8 bit */
52 /* These are indexed */
53 #define MUSB_HDRC_TXFIFOSZ 0x62 /* 8 bit (see masks) */
54 #define MUSB_HDRC_RXFIFOSZ 0x63 /* 8 bit (see masks) */
55 #define MUSB_HDRC_TXFIFOADDR 0x64 /* 16 bit offset shifted right 3 */
56 #define MUSB_HDRC_RXFIFOADDR 0x66 /* 16 bit offset shifted right 3 */
58 /* Some more registers */
59 #define MUSB_HDRC_VCTRL 0x68 /* 8 bit */
60 #define MUSB_HDRC_HWVERS 0x6c /* 8 bit */
62 /* Added in HDRC 1.9(?) & MHDRC 1.4 */
63 /* ULPI pass-through */
64 #define MUSB_HDRC_ULPI_VBUSCTL 0x70
65 #define MUSB_HDRC_ULPI_REGDATA 0x74
66 #define MUSB_HDRC_ULPI_REGADDR 0x75
67 #define MUSB_HDRC_ULPI_REGCTL 0x76
69 /* Extended config & PHY control */
70 #define MUSB_HDRC_ENDCOUNT 0x78 /* 8 bit */
71 #define MUSB_HDRC_DMARAMCFG 0x79 /* 8 bit */
72 #define MUSB_HDRC_PHYWAIT 0x7a /* 8 bit */
73 #define MUSB_HDRC_PHYVPLEN 0x7b /* 8 bit */
74 #define MUSB_HDRC_HS_EOF1 0x7c /* 8 bit, units of 546.1 us */
75 #define MUSB_HDRC_FS_EOF1 0x7d /* 8 bit, units of 533.3 ns */
76 #define MUSB_HDRC_LS_EOF1 0x7e /* 8 bit, units of 1.067 us */
78 /* Per-EP BUSCTL registers */
79 #define MUSB_HDRC_BUSCTL 0x80
81 /* Per-EP registers in flat mode */
82 #define MUSB_HDRC_EP 0x100
84 /* offsets to registers in flat model */
85 #define MUSB_HDRC_TXMAXP 0x00 /* 16 bit apparently */
86 #define MUSB_HDRC_TXCSR 0x02 /* 16 bit apparently */
87 #define MUSB_HDRC_CSR0 MUSB_HDRC_TXCSR /* re-used for EP0 */
88 #define MUSB_HDRC_RXMAXP 0x04 /* 16 bit apparently */
89 #define MUSB_HDRC_RXCSR 0x06 /* 16 bit apparently */
90 #define MUSB_HDRC_RXCOUNT 0x08 /* 16 bit apparently */
91 #define MUSB_HDRC_COUNT0 MUSB_HDRC_RXCOUNT /* re-used for EP0 */
92 #define MUSB_HDRC_TXTYPE 0x0a /* 8 bit apparently */
93 #define MUSB_HDRC_TYPE0 MUSB_HDRC_TXTYPE /* re-used for EP0 */
94 #define MUSB_HDRC_TXINTERVAL 0x0b /* 8 bit apparently */
95 #define MUSB_HDRC_NAKLIMIT0 MUSB_HDRC_TXINTERVAL /* re-used for EP0 */
96 #define MUSB_HDRC_RXTYPE 0x0c /* 8 bit apparently */
97 #define MUSB_HDRC_RXINTERVAL 0x0d /* 8 bit apparently */
98 #define MUSB_HDRC_FIFOSIZE 0x0f /* 8 bit apparently */
99 #define MUSB_HDRC_CONFIGDATA MGC_O_HDRC_FIFOSIZE /* re-used for EP0 */
101 /* "Bus control" registers */
102 #define MUSB_HDRC_TXFUNCADDR 0x00
103 #define MUSB_HDRC_TXHUBADDR 0x02
104 #define MUSB_HDRC_TXHUBPORT 0x03
106 #define MUSB_HDRC_RXFUNCADDR 0x04
107 #define MUSB_HDRC_RXHUBADDR 0x06
108 #define MUSB_HDRC_RXHUBPORT 0x07
111 * MUSBHDRC Register bit masks
115 #define MGC_M_POWER_ISOUPDATE 0x80
116 #define MGC_M_POWER_SOFTCONN 0x40
117 #define MGC_M_POWER_HSENAB 0x20
118 #define MGC_M_POWER_HSMODE 0x10
119 #define MGC_M_POWER_RESET 0x08
120 #define MGC_M_POWER_RESUME 0x04
121 #define MGC_M_POWER_SUSPENDM 0x02
122 #define MGC_M_POWER_ENSUSPEND 0x01
125 #define MGC_M_INTR_SUSPEND 0x01
126 #define MGC_M_INTR_RESUME 0x02
127 #define MGC_M_INTR_RESET 0x04
128 #define MGC_M_INTR_BABBLE 0x04
129 #define MGC_M_INTR_SOF 0x08
130 #define MGC_M_INTR_CONNECT 0x10
131 #define MGC_M_INTR_DISCONNECT 0x20
132 #define MGC_M_INTR_SESSREQ 0x40
133 #define MGC_M_INTR_VBUSERROR 0x80 /* FOR SESSION END */
134 #define MGC_M_INTR_EP0 0x01 /* FOR EP0 INTERRUPT */
137 #define MGC_M_DEVCTL_BDEVICE 0x80
138 #define MGC_M_DEVCTL_FSDEV 0x40
139 #define MGC_M_DEVCTL_LSDEV 0x20
140 #define MGC_M_DEVCTL_VBUS 0x18
141 #define MGC_S_DEVCTL_VBUS 3
142 #define MGC_M_DEVCTL_HM 0x04
143 #define MGC_M_DEVCTL_HR 0x02
144 #define MGC_M_DEVCTL_SESSION 0x01
147 #define MGC_M_TEST_FORCE_HOST 0x80
148 #define MGC_M_TEST_FIFO_ACCESS 0x40
149 #define MGC_M_TEST_FORCE_FS 0x20
150 #define MGC_M_TEST_FORCE_HS 0x10
151 #define MGC_M_TEST_PACKET 0x08
152 #define MGC_M_TEST_K 0x04
153 #define MGC_M_TEST_J 0x02
154 #define MGC_M_TEST_SE0_NAK 0x01
157 #define MGC_M_CSR0_FLUSHFIFO 0x0100
158 #define MGC_M_CSR0_TXPKTRDY 0x0002
159 #define MGC_M_CSR0_RXPKTRDY 0x0001
161 /* CSR0 in Peripheral mode */
162 #define MGC_M_CSR0_P_SVDSETUPEND 0x0080
163 #define MGC_M_CSR0_P_SVDRXPKTRDY 0x0040
164 #define MGC_M_CSR0_P_SENDSTALL 0x0020
165 #define MGC_M_CSR0_P_SETUPEND 0x0010
166 #define MGC_M_CSR0_P_DATAEND 0x0008
167 #define MGC_M_CSR0_P_SENTSTALL 0x0004
169 /* CSR0 in Host mode */
170 #define MGC_M_CSR0_H_NO_PING 0x0800
171 #define MGC_M_CSR0_H_WR_DATATOGGLE 0x0400 /* set to allow setting: */
172 #define MGC_M_CSR0_H_DATATOGGLE 0x0200 /* data toggle control */
173 #define MGC_M_CSR0_H_NAKTIMEOUT 0x0080
174 #define MGC_M_CSR0_H_STATUSPKT 0x0040
175 #define MGC_M_CSR0_H_REQPKT 0x0020
176 #define MGC_M_CSR0_H_ERROR 0x0010
177 #define MGC_M_CSR0_H_SETUPPKT 0x0008
178 #define MGC_M_CSR0_H_RXSTALL 0x0004
181 #define MGC_M_CONFIGDATA_MPRXE 0x80 /* auto bulk pkt combining */
182 #define MGC_M_CONFIGDATA_MPTXE 0x40 /* auto bulk pkt splitting */
183 #define MGC_M_CONFIGDATA_BIGENDIAN 0x20
184 #define MGC_M_CONFIGDATA_HBRXE 0x10 /* HB-ISO for RX */
185 #define MGC_M_CONFIGDATA_HBTXE 0x08 /* HB-ISO for TX */
186 #define MGC_M_CONFIGDATA_DYNFIFO 0x04 /* dynamic FIFO sizing */
187 #define MGC_M_CONFIGDATA_SOFTCONE 0x02 /* SoftConnect */
188 #define MGC_M_CONFIGDATA_UTMIDW 0x01 /* Width, 0 => 8b, 1 => 16b */
190 /* TXCSR in Peripheral and Host mode */
191 #define MGC_M_TXCSR_AUTOSET 0x8000
192 #define MGC_M_TXCSR_ISO 0x4000
193 #define MGC_M_TXCSR_MODE 0x2000
194 #define MGC_M_TXCSR_DMAENAB 0x1000
195 #define MGC_M_TXCSR_FRCDATATOG 0x0800
196 #define MGC_M_TXCSR_DMAMODE 0x0400
197 #define MGC_M_TXCSR_CLRDATATOG 0x0040
198 #define MGC_M_TXCSR_FLUSHFIFO 0x0008
199 #define MGC_M_TXCSR_FIFONOTEMPTY 0x0002
200 #define MGC_M_TXCSR_TXPKTRDY 0x0001
202 /* TXCSR in Peripheral mode */
203 #define MGC_M_TXCSR_P_INCOMPTX 0x0080
204 #define MGC_M_TXCSR_P_SENTSTALL 0x0020
205 #define MGC_M_TXCSR_P_SENDSTALL 0x0010
206 #define MGC_M_TXCSR_P_UNDERRUN 0x0004
208 /* TXCSR in Host mode */
209 #define MGC_M_TXCSR_H_WR_DATATOGGLE 0x0200
210 #define MGC_M_TXCSR_H_DATATOGGLE 0x0100
211 #define MGC_M_TXCSR_H_NAKTIMEOUT 0x0080
212 #define MGC_M_TXCSR_H_RXSTALL 0x0020
213 #define MGC_M_TXCSR_H_ERROR 0x0004
215 /* RXCSR in Peripheral and Host mode */
216 #define MGC_M_RXCSR_AUTOCLEAR 0x8000
217 #define MGC_M_RXCSR_DMAENAB 0x2000
218 #define MGC_M_RXCSR_DISNYET 0x1000
219 #define MGC_M_RXCSR_DMAMODE 0x0800
220 #define MGC_M_RXCSR_INCOMPRX 0x0100
221 #define MGC_M_RXCSR_CLRDATATOG 0x0080
222 #define MGC_M_RXCSR_FLUSHFIFO 0x0010
223 #define MGC_M_RXCSR_DATAERROR 0x0008
224 #define MGC_M_RXCSR_FIFOFULL 0x0002
225 #define MGC_M_RXCSR_RXPKTRDY 0x0001
227 /* RXCSR in Peripheral mode */
228 #define MGC_M_RXCSR_P_ISO 0x4000
229 #define MGC_M_RXCSR_P_SENTSTALL 0x0040
230 #define MGC_M_RXCSR_P_SENDSTALL 0x0020
231 #define MGC_M_RXCSR_P_OVERRUN 0x0004
233 /* RXCSR in Host mode */
234 #define MGC_M_RXCSR_H_AUTOREQ 0x4000
235 #define MGC_M_RXCSR_H_WR_DATATOGGLE 0x0400
236 #define MGC_M_RXCSR_H_DATATOGGLE 0x0200
237 #define MGC_M_RXCSR_H_RXSTALL 0x0040
238 #define MGC_M_RXCSR_H_REQPKT 0x0020
239 #define MGC_M_RXCSR_H_ERROR 0x0004
242 #define MGC_M_HUBADDR_MULTI_TT 0x80
244 /* ULPI: Added in HDRC 1.9(?) & MHDRC 1.4 */
245 #define MGC_M_ULPI_VBCTL_USEEXTVBUSIND 0x02
246 #define MGC_M_ULPI_VBCTL_USEEXTVBUS 0x01
247 #define MGC_M_ULPI_REGCTL_INT_ENABLE 0x08
248 #define MGC_M_ULPI_REGCTL_READNOTWRITE 0x04
249 #define MGC_M_ULPI_REGCTL_COMPLETE 0x02
250 #define MGC_M_ULPI_REGCTL_REG 0x01
252 static void musb_attach(USBPort
*port
, USBDevice
*dev
);
273 uint32_t buf
[0x2000];
286 int timeout
[2]; /* Always in microframes */
296 /* For callbacks' use */
300 USBCallback
*delayed_cb
[2];
301 QEMUTimer
*intv_timer
[2];
302 /* Duplicating the world since 2008!... probably we should have 32
303 * logical, single endpoints instead. */
305 } *musb_init(qemu_irq
*irqs
)
307 struct musb_s
*s
= qemu_mallocz(sizeof(*s
));
313 s
->power
= MGC_M_POWER_HSENAB
;
323 s
->ep
[0].config
= MGC_M_CONFIGDATA_SOFTCONE
| MGC_M_CONFIGDATA_DYNFIFO
;
324 for (i
= 0; i
< 16; i
++) {
325 s
->ep
[i
].fifosize
= 64;
326 s
->ep
[i
].maxp
[0] = 0x40;
327 s
->ep
[i
].maxp
[1] = 0x40;
332 qemu_register_usb_port(&s
->port
, s
, 0, musb_attach
);
337 static void musb_vbus_set(struct musb_s
*s
, int level
)
340 s
->devctl
|= 3 << MGC_S_DEVCTL_VBUS
;
342 s
->devctl
&= ~MGC_M_DEVCTL_VBUS
;
344 qemu_set_irq(s
->irqs
[musb_set_vbus
], level
);
347 static void musb_intr_set(struct musb_s
*s
, int line
, int level
)
350 s
->intr
&= ~(1 << line
);
351 qemu_irq_lower(s
->irqs
[line
]);
352 } else if (s
->mask
& (1 << line
)) {
353 s
->intr
|= 1 << line
;
354 qemu_irq_raise(s
->irqs
[line
]);
358 static void musb_tx_intr_set(struct musb_s
*s
, int line
, int level
)
361 s
->tx_intr
&= ~(1 << line
);
363 qemu_irq_lower(s
->irqs
[musb_irq_tx
]);
364 } else if (s
->tx_mask
& (1 << line
)) {
365 s
->tx_intr
|= 1 << line
;
366 qemu_irq_raise(s
->irqs
[musb_irq_tx
]);
370 static void musb_rx_intr_set(struct musb_s
*s
, int line
, int level
)
374 s
->rx_intr
&= ~(1 << line
);
376 qemu_irq_lower(s
->irqs
[musb_irq_rx
]);
377 } else if (s
->rx_mask
& (1 << line
)) {
378 s
->rx_intr
|= 1 << line
;
379 qemu_irq_raise(s
->irqs
[musb_irq_rx
]);
382 musb_tx_intr_set(s
, line
, level
);
385 uint32_t musb_core_intr_get(struct musb_s
*s
)
387 return (s
->rx_intr
<< 15) | s
->tx_intr
;
390 void musb_core_intr_clear(struct musb_s
*s
, uint32_t mask
)
393 s
->rx_intr
&= mask
>> 15;
395 qemu_irq_lower(s
->irqs
[musb_irq_rx
]);
399 s
->tx_intr
&= mask
& 0xffff;
401 qemu_irq_lower(s
->irqs
[musb_irq_tx
]);
405 void musb_set_size(struct musb_s
*s
, int epnum
, int size
, int is_tx
)
407 s
->ep
[epnum
].ext_size
[!is_tx
] = size
;
408 s
->ep
[epnum
].fifostart
[0] = 0;
409 s
->ep
[epnum
].fifostart
[1] = 0;
410 s
->ep
[epnum
].fifolen
[0] = 0;
411 s
->ep
[epnum
].fifolen
[1] = 0;
414 static void musb_session_update(struct musb_s
*s
, int prev_dev
, int prev_sess
)
416 int detect_prev
= prev_dev
&& prev_sess
;
417 int detect
= !!s
->port
.dev
&& s
->session
;
419 if (detect
&& !detect_prev
) {
420 /* Let's skip the ID pin sense and VBUS sense formalities and
421 * and signal a successful SRP directly. This should work at least
422 * for the Linux driver stack. */
423 musb_intr_set(s
, musb_irq_connect
, 1);
425 if (s
->port
.dev
->speed
== USB_SPEED_LOW
) {
426 s
->devctl
&= ~MGC_M_DEVCTL_FSDEV
;
427 s
->devctl
|= MGC_M_DEVCTL_LSDEV
;
429 s
->devctl
|= MGC_M_DEVCTL_FSDEV
;
430 s
->devctl
&= ~MGC_M_DEVCTL_LSDEV
;
434 s
->devctl
&= ~MGC_M_DEVCTL_BDEVICE
;
437 s
->devctl
|= MGC_M_DEVCTL_HM
;
441 } else if (!detect
&& detect_prev
) {
448 /* Attach or detach a device on our only port. */
449 static void musb_attach(USBPort
*port
, USBDevice
*dev
)
451 struct musb_s
*s
= (struct musb_s
*) port
->opaque
;
459 usb_attach(port
, NULL
);
460 /* TODO: signal some interrupts */
463 musb_intr_set(s
, musb_irq_vbus_request
, 1);
465 /* Send the attach message to device */
466 usb_send_msg(dev
, USB_MSG_ATTACH
);
468 /* Send the detach message */
469 usb_send_msg(curr
, USB_MSG_DETACH
);
471 musb_intr_set(s
, musb_irq_disconnect
, 1);
476 musb_session_update(s
, !!curr
, s
->session
);
479 static inline void musb_cb_tick0(void *opaque
)
481 struct musb_ep_s
*ep
= (struct musb_ep_s
*) opaque
;
483 ep
->delayed_cb
[0](&ep
->packey
[0], opaque
);
486 static inline void musb_cb_tick1(void *opaque
)
488 struct musb_ep_s
*ep
= (struct musb_ep_s
*) opaque
;
490 ep
->delayed_cb
[1](&ep
->packey
[1], opaque
);
493 #define musb_cb_tick (dir ? musb_cb_tick1 : musb_cb_tick0)
495 static inline void musb_schedule_cb(USBPacket
*packey
, void *opaque
, int dir
)
497 struct musb_ep_s
*ep
= (struct musb_ep_s
*) opaque
;
500 if (ep
->status
[dir
] == USB_RET_NAK
)
501 timeout
= ep
->timeout
[dir
];
502 else if (ep
->interrupt
[dir
])
505 return musb_cb_tick(opaque
);
507 if (!ep
->intv_timer
[dir
])
508 ep
->intv_timer
[dir
] = qemu_new_timer(vm_clock
, musb_cb_tick
, opaque
);
510 qemu_mod_timer(ep
->intv_timer
[dir
], qemu_get_clock(vm_clock
) +
511 muldiv64(timeout
, ticks_per_sec
, 8000));
514 static void musb_schedule0_cb(USBPacket
*packey
, void *opaque
)
516 return musb_schedule_cb(packey
, opaque
, 0);
519 static void musb_schedule1_cb(USBPacket
*packey
, void *opaque
)
521 return musb_schedule_cb(packey
, opaque
, 1);
524 static int musb_timeout(int ttype
, int speed
, int val
)
531 case USB_ENDPOINT_XFER_CONTROL
:
534 else if (speed
== USB_SPEED_HIGH
)
535 return 1 << (val
- 1);
537 return 8 << (val
- 1);
539 case USB_ENDPOINT_XFER_INT
:
540 if (speed
== USB_SPEED_HIGH
)
544 return 1 << (val
- 1);
548 case USB_ENDPOINT_XFER_BULK
:
549 case USB_ENDPOINT_XFER_ISOC
:
552 else if (speed
== USB_SPEED_HIGH
)
553 return 1 << (val
- 1);
555 return 8 << (val
- 1);
556 /* TODO: what with low-speed Bulk and Isochronous? */
559 cpu_abort(cpu_single_env
, "bad interval\n");
562 static inline void musb_packet(struct musb_s
*s
, struct musb_ep_s
*ep
,
563 int epnum
, int pid
, int len
, USBCallback cb
, int dir
)
566 int idx
= epnum
&& dir
;
569 /* ep->type[0,1] contains:
570 * in bits 7:6 the speed (0 - invalid, 1 - high, 2 - full, 3 - slow)
571 * in bits 5:4 the transfer type (BULK / INT)
572 * in bits 3:0 the EP num
574 ttype
= epnum
? (ep
->type
[idx
] >> 4) & 3 : 0;
576 ep
->timeout
[dir
] = musb_timeout(ttype
,
577 ep
->type
[idx
] >> 6, ep
->interval
[idx
]);
578 ep
->interrupt
[dir
] = ttype
== USB_ENDPOINT_XFER_INT
;
579 ep
->delayed_cb
[dir
] = cb
;
580 cb
= dir
? musb_schedule1_cb
: musb_schedule0_cb
;
582 ep
->packey
[dir
].pid
= pid
;
583 /* A wild guess on the FADDR semantics... */
584 ep
->packey
[dir
].devaddr
= ep
->faddr
[idx
];
585 ep
->packey
[dir
].devep
= ep
->type
[idx
] & 0xf;
586 ep
->packey
[dir
].data
= (void *) ep
->buf
[idx
];
587 ep
->packey
[dir
].len
= len
;
588 ep
->packey
[dir
].complete_cb
= cb
;
589 ep
->packey
[dir
].complete_opaque
= ep
;
592 ret
= s
->port
.dev
->handle_packet(s
->port
.dev
, &ep
->packey
[dir
]);
596 if (ret
== USB_RET_ASYNC
) {
597 ep
->status
[dir
] = len
;
601 ep
->status
[dir
] = ret
;
602 usb_packet_complete(&ep
->packey
[dir
]);
605 static void musb_tx_packet_complete(USBPacket
*packey
, void *opaque
)
607 /* Unfortunately we can't use packey->devep because that's the remote
608 * endpoint number and may be different than our local. */
609 struct musb_ep_s
*ep
= (struct musb_ep_s
*) opaque
;
610 int epnum
= ep
->epnum
;
611 struct musb_s
*s
= ep
->musb
;
613 ep
->fifostart
[0] = 0;
616 if (ep
->status
[0] != USB_RET_NAK
) {
619 ep
->csr
[0] &= ~(MGC_M_TXCSR_FIFONOTEMPTY
| MGC_M_TXCSR_TXPKTRDY
);
621 ep
->csr
[0] &= ~MGC_M_CSR0_TXPKTRDY
;
626 /* Clear all of the error bits first */
628 ep
->csr
[0] &= ~(MGC_M_TXCSR_H_ERROR
| MGC_M_TXCSR_H_RXSTALL
|
629 MGC_M_TXCSR_H_NAKTIMEOUT
);
631 ep
->csr
[0] &= ~(MGC_M_CSR0_H_ERROR
| MGC_M_CSR0_H_RXSTALL
|
632 MGC_M_CSR0_H_NAKTIMEOUT
| MGC_M_CSR0_H_NO_PING
);
634 if (ep
->status
[0] == USB_RET_STALL
) {
635 /* Command not supported by target! */
639 ep
->csr
[0] |= MGC_M_TXCSR_H_RXSTALL
;
641 ep
->csr
[0] |= MGC_M_CSR0_H_RXSTALL
;
644 if (ep
->status
[0] == USB_RET_NAK
) {
647 /* NAK timeouts are only generated in Bulk transfers and
648 * Data-errors in Isochronous. */
649 if (ep
->interrupt
[0]) {
654 ep
->csr
[0] |= MGC_M_TXCSR_H_NAKTIMEOUT
;
656 ep
->csr
[0] |= MGC_M_CSR0_H_NAKTIMEOUT
;
659 if (ep
->status
[0] < 0) {
660 if (ep
->status
[0] == USB_RET_BABBLE
)
661 musb_intr_set(s
, musb_irq_rst_babble
, 1);
663 /* Pretend we've tried three times already and failed (in
664 * case of USB_TOKEN_SETUP). */
666 ep
->csr
[0] |= MGC_M_TXCSR_H_ERROR
;
668 ep
->csr
[0] |= MGC_M_CSR0_H_ERROR
;
670 musb_tx_intr_set(s
, epnum
, 1);
673 /* TODO: check len for over/underruns of an OUT packet? */
676 if (!epnum
&& ep
->packey
[0].pid
== USB_TOKEN_SETUP
)
677 s
->setup_len
= ep
->packey
[0].data
[6];
680 /* In DMA mode: if no error, assert DMA request for this EP,
681 * and skip the interrupt. */
682 musb_tx_intr_set(s
, epnum
, 1);
685 static void musb_rx_packet_complete(USBPacket
*packey
, void *opaque
)
687 /* Unfortunately we can't use packey->devep because that's the remote
688 * endpoint number and may be different than our local. */
689 struct musb_ep_s
*ep
= (struct musb_ep_s
*) opaque
;
690 int epnum
= ep
->epnum
;
691 struct musb_s
*s
= ep
->musb
;
693 ep
->fifostart
[1] = 0;
697 if (ep
->status
[1] != USB_RET_NAK
) {
699 ep
->csr
[1] &= ~MGC_M_RXCSR_H_REQPKT
;
701 ep
->csr
[0] &= ~MGC_M_CSR0_H_REQPKT
;
706 /* Clear all of the imaginable error bits first */
707 ep
->csr
[1] &= ~(MGC_M_RXCSR_H_ERROR
| MGC_M_RXCSR_H_RXSTALL
|
708 MGC_M_RXCSR_DATAERROR
);
710 ep
->csr
[0] &= ~(MGC_M_CSR0_H_ERROR
| MGC_M_CSR0_H_RXSTALL
|
711 MGC_M_CSR0_H_NAKTIMEOUT
| MGC_M_CSR0_H_NO_PING
);
713 if (ep
->status
[1] == USB_RET_STALL
) {
717 ep
->csr
[1] |= MGC_M_RXCSR_H_RXSTALL
;
719 ep
->csr
[0] |= MGC_M_CSR0_H_RXSTALL
;
722 if (ep
->status
[1] == USB_RET_NAK
) {
725 /* NAK timeouts are only generated in Bulk transfers and
726 * Data-errors in Isochronous. */
727 if (ep
->interrupt
[1])
728 return musb_packet(s
, ep
, epnum
, USB_TOKEN_IN
,
729 packey
->len
, musb_rx_packet_complete
, 1);
731 ep
->csr
[1] |= MGC_M_RXCSR_DATAERROR
;
733 ep
->csr
[0] |= MGC_M_CSR0_H_NAKTIMEOUT
;
736 if (ep
->status
[1] < 0) {
737 if (ep
->status
[1] == USB_RET_BABBLE
) {
738 musb_intr_set(s
, musb_irq_rst_babble
, 1);
742 /* Pretend we've tried three times already and failed (in
743 * case of a control transfer). */
744 ep
->csr
[1] |= MGC_M_RXCSR_H_ERROR
;
746 ep
->csr
[0] |= MGC_M_CSR0_H_ERROR
;
748 musb_rx_intr_set(s
, epnum
, 1);
751 /* TODO: check len for over/underruns of an OUT packet? */
752 /* TODO: perhaps make use of e->ext_size[1] here. */
754 packey
->len
= ep
->status
[1];
756 if (!(ep
->csr
[1] & (MGC_M_RXCSR_H_RXSTALL
| MGC_M_RXCSR_DATAERROR
))) {
757 ep
->csr
[1] |= MGC_M_RXCSR_FIFOFULL
| MGC_M_RXCSR_RXPKTRDY
;
759 ep
->csr
[0] |= MGC_M_CSR0_RXPKTRDY
;
761 ep
->rxcount
= packey
->len
; /* XXX: MIN(packey->len, ep->maxp[1]); */
762 /* In DMA mode: assert DMA request for this EP */
765 /* Only if DMA has not been asserted */
766 musb_rx_intr_set(s
, epnum
, 1);
769 static void musb_tx_rdy(struct musb_s
*s
, int epnum
)
771 struct musb_ep_s
*ep
= s
->ep
+ epnum
;
773 int total
, valid
= 0;
775 ep
->fifostart
[0] += ep
->fifolen
[0];
778 /* XXX: how's the total size of the packet retrieved exactly in
779 * the generic case? */
780 total
= ep
->maxp
[0] & 0x3ff;
782 if (ep
->ext_size
[0]) {
783 total
= ep
->ext_size
[0];
788 /* If the packet is not fully ready yet, wait for a next segment. */
789 if (epnum
&& (ep
->fifostart
[0] << 2) < total
)
793 total
= ep
->fifostart
[0] << 2;
796 if (!epnum
&& (ep
->csr
[0] & MGC_M_CSR0_H_SETUPPKT
)) {
797 pid
= USB_TOKEN_SETUP
;
799 printf("%s: illegal SETUPPKT length of %i bytes\n",
800 __FUNCTION__
, total
);
801 /* Controller should retry SETUP packets three times on errors
802 * but it doesn't make sense for us to do that. */
805 return musb_packet(s
, ep
, epnum
, pid
,
806 total
, musb_tx_packet_complete
, 0);
809 static void musb_rx_req(struct musb_s
*s
, int epnum
)
811 struct musb_ep_s
*ep
= s
->ep
+ epnum
;
814 /* If we already have a packet, which didn't fit into the
815 * 64 bytes of the FIFO, only move the FIFO start and return. (Obsolete) */
816 if (ep
->packey
[1].pid
== USB_TOKEN_IN
&& ep
->status
[1] >= 0 &&
817 (ep
->fifostart
[1] << 2) + ep
->rxcount
<
819 ep
->fifostart
[1] += ep
->rxcount
>> 2;
822 ep
->rxcount
= MIN(ep
->packey
[0].len
- (ep
->fifostart
[1] << 2),
825 ep
->csr
[1] &= ~MGC_M_RXCSR_H_REQPKT
;
827 ep
->csr
[0] &= ~MGC_M_CSR0_H_REQPKT
;
829 /* Clear all of the error bits first */
830 ep
->csr
[1] &= ~(MGC_M_RXCSR_H_ERROR
| MGC_M_RXCSR_H_RXSTALL
|
831 MGC_M_RXCSR_DATAERROR
);
833 ep
->csr
[0] &= ~(MGC_M_CSR0_H_ERROR
| MGC_M_CSR0_H_RXSTALL
|
834 MGC_M_CSR0_H_NAKTIMEOUT
| MGC_M_CSR0_H_NO_PING
);
836 ep
->csr
[1] |= MGC_M_RXCSR_FIFOFULL
| MGC_M_RXCSR_RXPKTRDY
;
838 ep
->csr
[0] |= MGC_M_CSR0_RXPKTRDY
;
839 musb_rx_intr_set(s
, epnum
, 1);
843 /* The driver sets maxp[1] to 64 or less because it knows the hardware
844 * FIFO is this deep. Bigger packets get split in
845 * usb_generic_handle_packet but we can also do the splitting locally
846 * for performance. It turns out we can also have a bigger FIFO and
847 * ignore the limit set in ep->maxp[1]. The Linux MUSB driver deals
848 * OK with single packets of even 32KB and we avoid splitting, however
849 * usb_msd.c sometimes sends a packet bigger than what Linux expects
850 * (e.g. 8192 bytes instead of 4096) and we get an OVERRUN. Splitting
851 * hides this overrun from Linux. Up to 4096 everything is fine
852 * though. Currently this is disabled.
854 * XXX: mind ep->fifosize. */
855 total
= MIN(ep
->maxp
[1] & 0x3ff, sizeof(s
->buf
));
858 /* Why should *we* do that instead of Linux? */
860 if (ep
->packey
[0].devaddr
== 2)
861 total
= MIN(s
->setup_len
, 8);
863 total
= MIN(s
->setup_len
, 64);
864 s
->setup_len
-= total
;
868 return musb_packet(s
, ep
, epnum
, USB_TOKEN_IN
,
869 total
, musb_rx_packet_complete
, 1);
872 static void musb_ep_frame_cancel(struct musb_ep_s
*ep
, int dir
)
874 if (ep
->intv_timer
[dir
])
875 qemu_del_timer(ep
->intv_timer
[dir
]);
879 static uint8_t musb_busctl_readb(void *opaque
, int ep
, int addr
)
881 struct musb_s
*s
= (struct musb_s
*) opaque
;
884 /* For USB2.0 HS hubs only */
885 case MUSB_HDRC_TXHUBADDR
:
886 return s
->ep
[ep
].haddr
[0];
887 case MUSB_HDRC_TXHUBPORT
:
888 return s
->ep
[ep
].hport
[0];
889 case MUSB_HDRC_RXHUBADDR
:
890 return s
->ep
[ep
].haddr
[1];
891 case MUSB_HDRC_RXHUBPORT
:
892 return s
->ep
[ep
].hport
[1];
895 printf("%s: unknown register at %02x\n", __FUNCTION__
, addr
);
900 static void musb_busctl_writeb(void *opaque
, int ep
, int addr
, uint8_t value
)
902 struct musb_s
*s
= (struct musb_s
*) opaque
;
905 case MUSB_HDRC_TXHUBADDR
:
906 s
->ep
[ep
].haddr
[0] = value
;
908 case MUSB_HDRC_TXHUBPORT
:
909 s
->ep
[ep
].hport
[0] = value
;
911 case MUSB_HDRC_RXHUBADDR
:
912 s
->ep
[ep
].haddr
[1] = value
;
914 case MUSB_HDRC_RXHUBPORT
:
915 s
->ep
[ep
].hport
[1] = value
;
919 printf("%s: unknown register at %02x\n", __FUNCTION__
, addr
);
923 static uint16_t musb_busctl_readh(void *opaque
, int ep
, int addr
)
925 struct musb_s
*s
= (struct musb_s
*) opaque
;
928 case MUSB_HDRC_TXFUNCADDR
:
929 return s
->ep
[ep
].faddr
[0];
930 case MUSB_HDRC_RXFUNCADDR
:
931 return s
->ep
[ep
].faddr
[1];
934 return musb_busctl_readb(s
, ep
, addr
) |
935 (musb_busctl_readb(s
, ep
, addr
| 1) << 8);
939 static void musb_busctl_writeh(void *opaque
, int ep
, int addr
, uint16_t value
)
941 struct musb_s
*s
= (struct musb_s
*) opaque
;
944 case MUSB_HDRC_TXFUNCADDR
:
945 s
->ep
[ep
].faddr
[0] = value
;
947 case MUSB_HDRC_RXFUNCADDR
:
948 s
->ep
[ep
].faddr
[1] = value
;
952 musb_busctl_writeb(s
, ep
, addr
, value
& 0xff);
953 musb_busctl_writeb(s
, ep
, addr
| 1, value
>> 8);
957 /* Endpoint control */
958 static uint8_t musb_ep_readb(void *opaque
, int ep
, int addr
)
960 struct musb_s
*s
= (struct musb_s
*) opaque
;
963 case MUSB_HDRC_TXTYPE
:
964 return s
->ep
[ep
].type
[0];
965 case MUSB_HDRC_TXINTERVAL
:
966 return s
->ep
[ep
].interval
[0];
967 case MUSB_HDRC_RXTYPE
:
968 return s
->ep
[ep
].type
[1];
969 case MUSB_HDRC_RXINTERVAL
:
970 return s
->ep
[ep
].interval
[1];
971 case (MUSB_HDRC_FIFOSIZE
& ~1):
973 case MUSB_HDRC_FIFOSIZE
:
974 return ep
? s
->ep
[ep
].fifosize
: s
->ep
[ep
].config
;
977 printf("%s: unknown register at %02x\n", __FUNCTION__
, addr
);
982 static void musb_ep_writeb(void *opaque
, int ep
, int addr
, uint8_t value
)
984 struct musb_s
*s
= (struct musb_s
*) opaque
;
987 case MUSB_HDRC_TXTYPE
:
988 s
->ep
[ep
].type
[0] = value
;
990 case MUSB_HDRC_TXINTERVAL
:
991 s
->ep
[ep
].interval
[0] = value
;
992 musb_ep_frame_cancel(&s
->ep
[ep
], 0);
994 case MUSB_HDRC_RXTYPE
:
995 s
->ep
[ep
].type
[1] = value
;
997 case MUSB_HDRC_RXINTERVAL
:
998 s
->ep
[ep
].interval
[1] = value
;
999 musb_ep_frame_cancel(&s
->ep
[ep
], 1);
1001 case (MUSB_HDRC_FIFOSIZE
& ~1):
1003 case MUSB_HDRC_FIFOSIZE
:
1004 printf("%s: somebody messes with fifosize (now %i bytes)\n",
1005 __FUNCTION__
, value
);
1006 s
->ep
[ep
].fifosize
= value
;
1010 printf("%s: unknown register at %02x\n", __FUNCTION__
, addr
);
1014 static uint16_t musb_ep_readh(void *opaque
, int ep
, int addr
)
1016 struct musb_s
*s
= (struct musb_s
*) opaque
;
1020 case MUSB_HDRC_TXMAXP
:
1021 return s
->ep
[ep
].maxp
[0];
1022 case MUSB_HDRC_TXCSR
:
1023 return s
->ep
[ep
].csr
[0];
1024 case MUSB_HDRC_RXMAXP
:
1025 return s
->ep
[ep
].maxp
[1];
1026 case MUSB_HDRC_RXCSR
:
1027 ret
= s
->ep
[ep
].csr
[1];
1029 /* TODO: This and other bits probably depend on
1030 * ep->csr[1] & MGC_M_RXCSR_AUTOCLEAR. */
1031 if (s
->ep
[ep
].csr
[1] & MGC_M_RXCSR_AUTOCLEAR
)
1032 s
->ep
[ep
].csr
[1] &= ~MGC_M_RXCSR_RXPKTRDY
;
1035 case MUSB_HDRC_RXCOUNT
:
1036 return s
->ep
[ep
].rxcount
;
1039 return musb_ep_readb(s
, ep
, addr
) |
1040 (musb_ep_readb(s
, ep
, addr
| 1) << 8);
1044 static void musb_ep_writeh(void *opaque
, int ep
, int addr
, uint16_t value
)
1046 struct musb_s
*s
= (struct musb_s
*) opaque
;
1049 case MUSB_HDRC_TXMAXP
:
1050 s
->ep
[ep
].maxp
[0] = value
;
1052 case MUSB_HDRC_TXCSR
:
1054 s
->ep
[ep
].csr
[0] &= value
& 0xa6;
1055 s
->ep
[ep
].csr
[0] |= value
& 0xff59;
1057 s
->ep
[ep
].csr
[0] &= value
& 0x85;
1058 s
->ep
[ep
].csr
[0] |= value
& 0xf7a;
1061 musb_ep_frame_cancel(&s
->ep
[ep
], 0);
1063 if ((ep
&& (value
& MGC_M_TXCSR_FLUSHFIFO
)) ||
1064 (!ep
&& (value
& MGC_M_CSR0_FLUSHFIFO
))) {
1065 s
->ep
[ep
].fifolen
[0] = 0;
1066 s
->ep
[ep
].fifostart
[0] = 0;
1069 ~(MGC_M_TXCSR_FIFONOTEMPTY
| MGC_M_TXCSR_TXPKTRDY
);
1072 ~(MGC_M_CSR0_TXPKTRDY
| MGC_M_CSR0_RXPKTRDY
);
1077 (value
& MGC_M_TXCSR_TXPKTRDY
) &&
1078 !(value
& MGC_M_TXCSR_H_NAKTIMEOUT
)) ||
1080 (value
& MGC_M_TXCSR_TXPKTRDY
)) ||
1084 (value
& MGC_M_CSR0_TXPKTRDY
) &&
1085 !(value
& MGC_M_CSR0_H_NAKTIMEOUT
)))
1087 (value
& MGC_M_CSR0_TXPKTRDY
)))
1091 (value
& MGC_M_CSR0_H_REQPKT
) &&
1093 !(value
& (MGC_M_CSR0_H_NAKTIMEOUT
|
1094 MGC_M_CSR0_RXPKTRDY
)))
1096 !(value
& MGC_M_CSR0_RXPKTRDY
))
1101 case MUSB_HDRC_RXMAXP
:
1102 s
->ep
[ep
].maxp
[1] = value
;
1104 case MUSB_HDRC_RXCSR
:
1105 /* (DMA mode only) */
1107 (value
& MGC_M_RXCSR_H_AUTOREQ
) &&
1108 !(value
& MGC_M_RXCSR_RXPKTRDY
) &&
1109 (s
->ep
[ep
].csr
[1] & MGC_M_RXCSR_RXPKTRDY
))
1110 value
|= MGC_M_RXCSR_H_REQPKT
;
1112 s
->ep
[ep
].csr
[1] &= 0x102 | (value
& 0x4d);
1113 s
->ep
[ep
].csr
[1] |= value
& 0xfeb0;
1115 musb_ep_frame_cancel(&s
->ep
[ep
], 1);
1117 if (value
& MGC_M_RXCSR_FLUSHFIFO
) {
1118 s
->ep
[ep
].fifolen
[1] = 0;
1119 s
->ep
[ep
].fifostart
[1] = 0;
1120 s
->ep
[ep
].csr
[1] &= ~(MGC_M_RXCSR_FIFOFULL
| MGC_M_RXCSR_RXPKTRDY
);
1121 /* If double buffering and we have two packets ready, flush
1122 * only the first one and set up the fifo at the second packet. */
1125 if ((value
& MGC_M_RXCSR_H_REQPKT
) && !(value
& MGC_M_RXCSR_DATAERROR
))
1127 if (value
& MGC_M_RXCSR_H_REQPKT
)
1131 case MUSB_HDRC_RXCOUNT
:
1132 s
->ep
[ep
].rxcount
= value
;
1136 musb_ep_writeb(s
, ep
, addr
, value
& 0xff);
1137 musb_ep_writeb(s
, ep
, addr
| 1, value
>> 8);
1141 /* Generic control */
1142 static uint32_t musb_readb(void *opaque
, target_phys_addr_t addr
)
1144 struct musb_s
*s
= (struct musb_s
*) opaque
;
1149 case MUSB_HDRC_FADDR
:
1151 case MUSB_HDRC_POWER
:
1153 case MUSB_HDRC_INTRUSB
:
1155 for (i
= 0; i
< sizeof(ret
) * 8; i
++)
1157 musb_intr_set(s
, i
, 0);
1159 case MUSB_HDRC_INTRUSBE
:
1161 case MUSB_HDRC_INDEX
:
1163 case MUSB_HDRC_TESTMODE
:
1166 case MUSB_HDRC_EP_IDX
... (MUSB_HDRC_EP_IDX
+ 0xf):
1167 return musb_ep_readb(s
, s
->idx
, addr
& 0xf);
1169 case MUSB_HDRC_DEVCTL
:
1172 case MUSB_HDRC_TXFIFOSZ
:
1173 case MUSB_HDRC_RXFIFOSZ
:
1174 case MUSB_HDRC_VCTRL
:
1178 case MUSB_HDRC_HWVERS
:
1179 return (1 << 10) | 400;
1181 case (MUSB_HDRC_VCTRL
| 1):
1182 case (MUSB_HDRC_HWVERS
| 1):
1183 case (MUSB_HDRC_DEVCTL
| 1):
1186 case MUSB_HDRC_BUSCTL
... (MUSB_HDRC_BUSCTL
+ 0x7f):
1187 ep
= (addr
>> 3) & 0xf;
1188 return musb_busctl_readb(s
, ep
, addr
& 0x7);
1190 case MUSB_HDRC_EP
... (MUSB_HDRC_EP
+ 0xff):
1191 ep
= (addr
>> 4) & 0xf;
1192 return musb_ep_readb(s
, ep
, addr
& 0xf);
1195 printf("%s: unknown register at %02x\n", __FUNCTION__
, (int) addr
);
1200 static void musb_writeb(void *opaque
, target_phys_addr_t addr
, uint32_t value
)
1202 struct musb_s
*s
= (struct musb_s
*) opaque
;
1206 case MUSB_HDRC_FADDR
:
1207 s
->faddr
= value
& 0x7f;
1209 case MUSB_HDRC_POWER
:
1210 s
->power
= (value
& 0xef) | (s
->power
& 0x10);
1211 /* MGC_M_POWER_RESET is also read-only in Peripheral Mode */
1212 if ((value
& MGC_M_POWER_RESET
) && s
->port
.dev
) {
1213 usb_send_msg(s
->port
.dev
, USB_MSG_RESET
);
1214 /* Negotiate high-speed operation if MGC_M_POWER_HSENAB is set. */
1215 if ((value
& MGC_M_POWER_HSENAB
) &&
1216 s
->port
.dev
->speed
== USB_SPEED_HIGH
)
1217 s
->power
|= MGC_M_POWER_HSMODE
; /* Success */
1218 /* Restart frame counting. */
1220 if (value
& MGC_M_POWER_SUSPENDM
) {
1221 /* When all transfers finish, suspend and if MGC_M_POWER_ENSUSPEND
1222 * is set, also go into low power mode. Frame counting stops. */
1223 /* XXX: Cleared when the interrupt register is read */
1225 if (value
& MGC_M_POWER_RESUME
) {
1226 /* Wait 20ms and signal resuming on the bus. Frame counting
1230 case MUSB_HDRC_INTRUSB
:
1232 case MUSB_HDRC_INTRUSBE
:
1233 s
->mask
= value
& 0xff;
1235 case MUSB_HDRC_INDEX
:
1236 s
->idx
= value
& 0xf;
1238 case MUSB_HDRC_TESTMODE
:
1241 case MUSB_HDRC_EP_IDX
... (MUSB_HDRC_EP_IDX
+ 0xf):
1242 musb_ep_writeb(s
, s
->idx
, addr
& 0xf, value
);
1245 case MUSB_HDRC_DEVCTL
:
1246 s
->session
= !!(value
& MGC_M_DEVCTL_SESSION
);
1247 musb_session_update(s
,
1249 !!(s
->devctl
& MGC_M_DEVCTL_SESSION
));
1251 /* It seems this is the only R/W bit in this register? */
1252 s
->devctl
&= ~MGC_M_DEVCTL_SESSION
;
1253 s
->devctl
|= value
& MGC_M_DEVCTL_SESSION
;
1256 case MUSB_HDRC_TXFIFOSZ
:
1257 case MUSB_HDRC_RXFIFOSZ
:
1258 case MUSB_HDRC_VCTRL
:
1262 case (MUSB_HDRC_VCTRL
| 1):
1263 case (MUSB_HDRC_DEVCTL
| 1):
1266 case MUSB_HDRC_BUSCTL
... (MUSB_HDRC_BUSCTL
+ 0x7f):
1267 ep
= (addr
>> 3) & 0xf;
1268 musb_busctl_writeb(s
, ep
, addr
& 0x7, value
);
1271 case MUSB_HDRC_EP
... (MUSB_HDRC_EP
+ 0xff):
1272 ep
= (addr
>> 4) & 0xf;
1273 musb_ep_writeb(s
, ep
, addr
& 0xf, value
);
1277 printf("%s: unknown register at %02x\n", __FUNCTION__
, (int) addr
);
1281 static uint32_t musb_readh(void *opaque
, target_phys_addr_t addr
)
1283 struct musb_s
*s
= (struct musb_s
*) opaque
;
1288 case MUSB_HDRC_INTRTX
:
1291 for (i
= 0; i
< sizeof(ret
) * 8; i
++)
1293 musb_tx_intr_set(s
, i
, 0);
1295 case MUSB_HDRC_INTRRX
:
1298 for (i
= 0; i
< sizeof(ret
) * 8; i
++)
1300 musb_rx_intr_set(s
, i
, 0);
1302 case MUSB_HDRC_INTRTXE
:
1304 case MUSB_HDRC_INTRRXE
:
1307 case MUSB_HDRC_FRAME
:
1310 case MUSB_HDRC_TXFIFOADDR
:
1311 return s
->ep
[s
->idx
].fifoaddr
[0];
1312 case MUSB_HDRC_RXFIFOADDR
:
1313 return s
->ep
[s
->idx
].fifoaddr
[1];
1315 case MUSB_HDRC_EP_IDX
... (MUSB_HDRC_EP_IDX
+ 0xf):
1316 return musb_ep_readh(s
, s
->idx
, addr
& 0xf);
1318 case MUSB_HDRC_BUSCTL
... (MUSB_HDRC_BUSCTL
+ 0x7f):
1319 ep
= (addr
>> 3) & 0xf;
1320 return musb_busctl_readh(s
, ep
, addr
& 0x7);
1322 case MUSB_HDRC_EP
... (MUSB_HDRC_EP
+ 0xff):
1323 ep
= (addr
>> 4) & 0xf;
1324 return musb_ep_readh(s
, ep
, addr
& 0xf);
1327 return musb_readb(s
, addr
) | (musb_readb(s
, addr
| 1) << 8);
1331 static void musb_writeh(void *opaque
, target_phys_addr_t addr
, uint32_t value
)
1333 struct musb_s
*s
= (struct musb_s
*) opaque
;
1337 case MUSB_HDRC_INTRTXE
:
1339 /* XXX: the masks seem to apply on the raising edge like with
1340 * edge-triggered interrupts, thus no need to update. I may be
1343 case MUSB_HDRC_INTRRXE
:
1347 case MUSB_HDRC_FRAME
:
1350 case MUSB_HDRC_TXFIFOADDR
:
1351 s
->ep
[s
->idx
].fifoaddr
[0] = value
;
1352 s
->ep
[s
->idx
].buf
[0] =
1353 s
->buf
+ ((value
<< 1) & (sizeof(s
->buf
) / 4 - 1));
1355 case MUSB_HDRC_RXFIFOADDR
:
1356 s
->ep
[s
->idx
].fifoaddr
[1] = value
;
1357 s
->ep
[s
->idx
].buf
[1] =
1358 s
->buf
+ ((value
<< 1) & (sizeof(s
->buf
) / 4 - 1));
1361 case MUSB_HDRC_EP_IDX
... (MUSB_HDRC_EP_IDX
+ 0xf):
1362 musb_ep_writeh(s
, s
->idx
, addr
& 0xf, value
);
1365 case MUSB_HDRC_BUSCTL
... (MUSB_HDRC_BUSCTL
+ 0x7f):
1366 ep
= (addr
>> 3) & 0xf;
1367 musb_busctl_writeh(s
, ep
, addr
& 0x7, value
);
1370 case MUSB_HDRC_EP
... (MUSB_HDRC_EP
+ 0xff):
1371 ep
= (addr
>> 4) & 0xf;
1372 musb_ep_writeh(s
, ep
, addr
& 0xf, value
);
1376 musb_writeb(s
, addr
, value
& 0xff);
1377 musb_writeb(s
, addr
| 1, value
>> 8);
1381 static uint32_t musb_readw(void *opaque
, target_phys_addr_t addr
)
1383 struct musb_s
*s
= (struct musb_s
*) opaque
;
1384 struct musb_ep_s
*ep
;
1388 case MUSB_HDRC_FIFO
... (MUSB_HDRC_FIFO
+ 0x3f):
1389 epnum
= ((addr
- MUSB_HDRC_FIFO
) >> 2) & 0xf;
1392 if (ep
->fifolen
[1] >= 16) {
1393 /* We have a FIFO underrun */
1394 printf("%s: EP%i FIFO is now empty, stop reading\n",
1395 __FUNCTION__
, epnum
);
1398 /* In DMA mode clear RXPKTRDY and set REQPKT automatically
1399 * (if AUTOREQ is set) */
1401 ep
->csr
[1] &= ~MGC_M_RXCSR_FIFOFULL
;
1402 return ep
->buf
[1][ep
->fifostart
[1] + ep
->fifolen
[1] ++];
1405 printf("%s: unknown register at %02x\n", __FUNCTION__
, (int) addr
);
1410 static void musb_writew(void *opaque
, target_phys_addr_t addr
, uint32_t value
)
1412 struct musb_s
*s
= (struct musb_s
*) opaque
;
1413 struct musb_ep_s
*ep
;
1417 case MUSB_HDRC_FIFO
... (MUSB_HDRC_FIFO
+ 0x3f):
1418 epnum
= ((addr
- MUSB_HDRC_FIFO
) >> 2) & 0xf;
1421 if (ep
->fifolen
[0] >= 16) {
1422 /* We have a FIFO overrun */
1423 printf("%s: EP%i FIFO exceeded 64 bytes, stop feeding data\n",
1424 __FUNCTION__
, epnum
);
1428 ep
->buf
[0][ep
->fifostart
[0] + ep
->fifolen
[0] ++] = value
;
1430 ep
->csr
[0] |= MGC_M_TXCSR_FIFONOTEMPTY
;
1434 printf("%s: unknown register at %02x\n", __FUNCTION__
, (int) addr
);
1438 CPUReadMemoryFunc
*musb_read
[] = {
1444 CPUWriteMemoryFunc
*musb_write
[] = {