target-ppc: rework exception code
[qemu/mini2440/sniper_sniper_test.git] / target-ppc / op_helper.c
blobe43865f77cd462840ceaa308efd4a8c55031e2d8
1 /*
2 * PowerPC emulation helpers for qemu.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "exec.h"
21 #include "host-utils.h"
22 #include "helper.h"
24 #include "helper_regs.h"
26 //#define DEBUG_OP
27 //#define DEBUG_EXCEPTIONS
28 //#define DEBUG_SOFTWARE_TLB
30 /*****************************************************************************/
31 /* Exceptions processing helpers */
33 void helper_raise_exception_err (uint32_t exception, uint32_t error_code)
35 #if 0
36 printf("Raise exception %3x code : %d\n", exception, error_code);
37 #endif
38 env->exception_index = exception;
39 env->error_code = error_code;
40 cpu_loop_exit();
43 void helper_raise_exception (uint32_t exception)
45 helper_raise_exception_err(exception, 0);
48 /*****************************************************************************/
49 /* Registers load and stores */
50 target_ulong helper_load_cr (void)
52 return (env->crf[0] << 28) |
53 (env->crf[1] << 24) |
54 (env->crf[2] << 20) |
55 (env->crf[3] << 16) |
56 (env->crf[4] << 12) |
57 (env->crf[5] << 8) |
58 (env->crf[6] << 4) |
59 (env->crf[7] << 0);
62 void helper_store_cr (target_ulong val, uint32_t mask)
64 int i, sh;
66 for (i = 0, sh = 7; i < 8; i++, sh--) {
67 if (mask & (1 << sh))
68 env->crf[i] = (val >> (sh * 4)) & 0xFUL;
72 /*****************************************************************************/
73 /* SPR accesses */
74 void helper_load_dump_spr (uint32_t sprn)
76 if (loglevel != 0) {
77 fprintf(logfile, "Read SPR %d %03x => " ADDRX "\n",
78 sprn, sprn, env->spr[sprn]);
82 void helper_store_dump_spr (uint32_t sprn)
84 if (loglevel != 0) {
85 fprintf(logfile, "Write SPR %d %03x <= " ADDRX "\n",
86 sprn, sprn, env->spr[sprn]);
90 target_ulong helper_load_tbl (void)
92 return cpu_ppc_load_tbl(env);
95 target_ulong helper_load_tbu (void)
97 return cpu_ppc_load_tbu(env);
100 target_ulong helper_load_atbl (void)
102 return cpu_ppc_load_atbl(env);
105 target_ulong helper_load_atbu (void)
107 return cpu_ppc_load_atbu(env);
110 target_ulong helper_load_601_rtcl (void)
112 return cpu_ppc601_load_rtcl(env);
115 target_ulong helper_load_601_rtcu (void)
117 return cpu_ppc601_load_rtcu(env);
120 #if !defined(CONFIG_USER_ONLY)
121 #if defined (TARGET_PPC64)
122 void helper_store_asr (target_ulong val)
124 ppc_store_asr(env, val);
126 #endif
128 void helper_store_sdr1 (target_ulong val)
130 ppc_store_sdr1(env, val);
133 void helper_store_tbl (target_ulong val)
135 cpu_ppc_store_tbl(env, val);
138 void helper_store_tbu (target_ulong val)
140 cpu_ppc_store_tbu(env, val);
143 void helper_store_atbl (target_ulong val)
145 cpu_ppc_store_atbl(env, val);
148 void helper_store_atbu (target_ulong val)
150 cpu_ppc_store_atbu(env, val);
153 void helper_store_601_rtcl (target_ulong val)
155 cpu_ppc601_store_rtcl(env, val);
158 void helper_store_601_rtcu (target_ulong val)
160 cpu_ppc601_store_rtcu(env, val);
163 target_ulong helper_load_decr (void)
165 return cpu_ppc_load_decr(env);
168 void helper_store_decr (target_ulong val)
170 cpu_ppc_store_decr(env, val);
173 void helper_store_hid0_601 (target_ulong val)
175 target_ulong hid0;
177 hid0 = env->spr[SPR_HID0];
178 if ((val ^ hid0) & 0x00000008) {
179 /* Change current endianness */
180 env->hflags &= ~(1 << MSR_LE);
181 env->hflags_nmsr &= ~(1 << MSR_LE);
182 env->hflags_nmsr |= (1 << MSR_LE) & (((val >> 3) & 1) << MSR_LE);
183 env->hflags |= env->hflags_nmsr;
184 if (loglevel != 0) {
185 fprintf(logfile, "%s: set endianness to %c => " ADDRX "\n",
186 __func__, val & 0x8 ? 'l' : 'b', env->hflags);
189 env->spr[SPR_HID0] = (uint32_t)val;
192 void helper_store_403_pbr (uint32_t num, target_ulong value)
194 if (likely(env->pb[num] != value)) {
195 env->pb[num] = value;
196 /* Should be optimized */
197 tlb_flush(env, 1);
201 target_ulong helper_load_40x_pit (void)
203 return load_40x_pit(env);
206 void helper_store_40x_pit (target_ulong val)
208 store_40x_pit(env, val);
211 void helper_store_40x_dbcr0 (target_ulong val)
213 store_40x_dbcr0(env, val);
216 void helper_store_40x_sler (target_ulong val)
218 store_40x_sler(env, val);
221 void helper_store_booke_tcr (target_ulong val)
223 store_booke_tcr(env, val);
226 void helper_store_booke_tsr (target_ulong val)
228 store_booke_tsr(env, val);
231 void helper_store_ibatu (uint32_t nr, target_ulong val)
233 ppc_store_ibatu(env, nr, val);
236 void helper_store_ibatl (uint32_t nr, target_ulong val)
238 ppc_store_ibatl(env, nr, val);
241 void helper_store_dbatu (uint32_t nr, target_ulong val)
243 ppc_store_dbatu(env, nr, val);
246 void helper_store_dbatl (uint32_t nr, target_ulong val)
248 ppc_store_dbatl(env, nr, val);
251 void helper_store_601_batl (uint32_t nr, target_ulong val)
253 ppc_store_ibatl_601(env, nr, val);
256 void helper_store_601_batu (uint32_t nr, target_ulong val)
258 ppc_store_ibatu_601(env, nr, val);
260 #endif
262 /*****************************************************************************/
263 /* Memory load and stores */
265 static always_inline target_ulong addr_add(target_ulong addr, target_long arg)
267 #if defined(TARGET_PPC64)
268 if (!msr_sf)
269 return (uint32_t)(addr + arg);
270 else
271 #endif
272 return addr + arg;
275 void helper_lmw (target_ulong addr, uint32_t reg)
277 for (; reg < 32; reg++) {
278 if (msr_le)
279 env->gpr[reg] = bswap32(ldl(addr));
280 else
281 env->gpr[reg] = ldl(addr);
282 addr = addr_add(addr, 4);
286 void helper_stmw (target_ulong addr, uint32_t reg)
288 for (; reg < 32; reg++) {
289 if (msr_le)
290 stl(addr, bswap32((uint32_t)env->gpr[reg]));
291 else
292 stl(addr, (uint32_t)env->gpr[reg]);
293 addr = addr_add(addr, 4);
297 void helper_lsw(target_ulong addr, uint32_t nb, uint32_t reg)
299 int sh;
300 for (; nb > 3; nb -= 4) {
301 env->gpr[reg] = ldl(addr);
302 reg = (reg + 1) % 32;
303 addr = addr_add(addr, 4);
305 if (unlikely(nb > 0)) {
306 env->gpr[reg] = 0;
307 for (sh = 24; nb > 0; nb--, sh -= 8) {
308 env->gpr[reg] |= ldub(addr) << sh;
309 addr = addr_add(addr, 1);
313 /* PPC32 specification says we must generate an exception if
314 * rA is in the range of registers to be loaded.
315 * In an other hand, IBM says this is valid, but rA won't be loaded.
316 * For now, I'll follow the spec...
318 void helper_lswx(target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb)
320 if (likely(xer_bc != 0)) {
321 if (unlikely((ra != 0 && reg < ra && (reg + xer_bc) > ra) ||
322 (reg < rb && (reg + xer_bc) > rb))) {
323 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
324 POWERPC_EXCP_INVAL |
325 POWERPC_EXCP_INVAL_LSWX);
326 } else {
327 helper_lsw(addr, xer_bc, reg);
332 void helper_stsw(target_ulong addr, uint32_t nb, uint32_t reg)
334 int sh;
335 for (; nb > 3; nb -= 4) {
336 stl(addr, env->gpr[reg]);
337 reg = (reg + 1) % 32;
338 addr = addr_add(addr, 4);
340 if (unlikely(nb > 0)) {
341 for (sh = 24; nb > 0; nb--, sh -= 8)
342 stb(addr, (env->gpr[reg] >> sh) & 0xFF);
343 addr = addr_add(addr, 1);
347 static void do_dcbz(target_ulong addr, int dcache_line_size)
349 addr &= ~(dcache_line_size - 1);
350 int i;
351 for (i = 0 ; i < dcache_line_size ; i += 4) {
352 stl(addr + i , 0);
354 if (env->reserve == addr)
355 env->reserve = (target_ulong)-1ULL;
358 void helper_dcbz(target_ulong addr)
360 do_dcbz(addr, env->dcache_line_size);
363 void helper_dcbz_970(target_ulong addr)
365 if (((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1)
366 do_dcbz(addr, 32);
367 else
368 do_dcbz(addr, env->dcache_line_size);
371 void helper_icbi(target_ulong addr)
373 uint32_t tmp;
375 addr &= ~(env->dcache_line_size - 1);
376 /* Invalidate one cache line :
377 * PowerPC specification says this is to be treated like a load
378 * (not a fetch) by the MMU. To be sure it will be so,
379 * do the load "by hand".
381 tmp = ldl(addr);
382 tb_invalidate_page_range(addr, addr + env->icache_line_size);
385 // XXX: to be tested
386 target_ulong helper_lscbx (target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb)
388 int i, c, d;
389 d = 24;
390 for (i = 0; i < xer_bc; i++) {
391 c = ldub(addr);
392 addr = addr_add(addr, 1);
393 /* ra (if not 0) and rb are never modified */
394 if (likely(reg != rb && (ra == 0 || reg != ra))) {
395 env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
397 if (unlikely(c == xer_cmp))
398 break;
399 if (likely(d != 0)) {
400 d -= 8;
401 } else {
402 d = 24;
403 reg++;
404 reg = reg & 0x1F;
407 return i;
410 /*****************************************************************************/
411 /* Fixed point operations helpers */
412 #if defined(TARGET_PPC64)
414 /* multiply high word */
415 uint64_t helper_mulhd (uint64_t arg1, uint64_t arg2)
417 uint64_t tl, th;
419 muls64(&tl, &th, arg1, arg2);
420 return th;
423 /* multiply high word unsigned */
424 uint64_t helper_mulhdu (uint64_t arg1, uint64_t arg2)
426 uint64_t tl, th;
428 mulu64(&tl, &th, arg1, arg2);
429 return th;
432 uint64_t helper_mulldo (uint64_t arg1, uint64_t arg2)
434 int64_t th;
435 uint64_t tl;
437 muls64(&tl, (uint64_t *)&th, arg1, arg2);
438 /* If th != 0 && th != -1, then we had an overflow */
439 if (likely((uint64_t)(th + 1) <= 1)) {
440 env->xer &= ~(1 << XER_OV);
441 } else {
442 env->xer |= (1 << XER_OV) | (1 << XER_SO);
444 return (int64_t)tl;
446 #endif
448 target_ulong helper_cntlzw (target_ulong t)
450 return clz32(t);
453 #if defined(TARGET_PPC64)
454 target_ulong helper_cntlzd (target_ulong t)
456 return clz64(t);
458 #endif
460 /* shift right arithmetic helper */
461 target_ulong helper_sraw (target_ulong value, target_ulong shift)
463 int32_t ret;
465 if (likely(!(shift & 0x20))) {
466 if (likely((uint32_t)shift != 0)) {
467 shift &= 0x1f;
468 ret = (int32_t)value >> shift;
469 if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
470 env->xer &= ~(1 << XER_CA);
471 } else {
472 env->xer |= (1 << XER_CA);
474 } else {
475 ret = (int32_t)value;
476 env->xer &= ~(1 << XER_CA);
478 } else {
479 ret = (int32_t)value >> 31;
480 if (ret) {
481 env->xer |= (1 << XER_CA);
482 } else {
483 env->xer &= ~(1 << XER_CA);
486 return (target_long)ret;
489 #if defined(TARGET_PPC64)
490 target_ulong helper_srad (target_ulong value, target_ulong shift)
492 int64_t ret;
494 if (likely(!(shift & 0x40))) {
495 if (likely((uint64_t)shift != 0)) {
496 shift &= 0x3f;
497 ret = (int64_t)value >> shift;
498 if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
499 env->xer &= ~(1 << XER_CA);
500 } else {
501 env->xer |= (1 << XER_CA);
503 } else {
504 ret = (int64_t)value;
505 env->xer &= ~(1 << XER_CA);
507 } else {
508 ret = (int64_t)value >> 63;
509 if (ret) {
510 env->xer |= (1 << XER_CA);
511 } else {
512 env->xer &= ~(1 << XER_CA);
515 return ret;
517 #endif
519 target_ulong helper_popcntb (target_ulong val)
521 val = (val & 0x55555555) + ((val >> 1) & 0x55555555);
522 val = (val & 0x33333333) + ((val >> 2) & 0x33333333);
523 val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f);
524 return val;
527 #if defined(TARGET_PPC64)
528 target_ulong helper_popcntb_64 (target_ulong val)
530 val = (val & 0x5555555555555555ULL) + ((val >> 1) & 0x5555555555555555ULL);
531 val = (val & 0x3333333333333333ULL) + ((val >> 2) & 0x3333333333333333ULL);
532 val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) & 0x0f0f0f0f0f0f0f0fULL);
533 return val;
535 #endif
537 /*****************************************************************************/
538 /* Floating point operations helpers */
539 uint64_t helper_float32_to_float64(uint32_t arg)
541 CPU_FloatU f;
542 CPU_DoubleU d;
543 f.l = arg;
544 d.d = float32_to_float64(f.f, &env->fp_status);
545 return d.ll;
548 uint32_t helper_float64_to_float32(uint64_t arg)
550 CPU_FloatU f;
551 CPU_DoubleU d;
552 d.ll = arg;
553 f.f = float64_to_float32(d.d, &env->fp_status);
554 return f.l;
557 static always_inline int fpisneg (float64 d)
559 CPU_DoubleU u;
561 u.d = d;
563 return u.ll >> 63 != 0;
566 static always_inline int isden (float64 d)
568 CPU_DoubleU u;
570 u.d = d;
572 return ((u.ll >> 52) & 0x7FF) == 0;
575 static always_inline int iszero (float64 d)
577 CPU_DoubleU u;
579 u.d = d;
581 return (u.ll & ~0x8000000000000000ULL) == 0;
584 static always_inline int isinfinity (float64 d)
586 CPU_DoubleU u;
588 u.d = d;
590 return ((u.ll >> 52) & 0x7FF) == 0x7FF &&
591 (u.ll & 0x000FFFFFFFFFFFFFULL) == 0;
594 #ifdef CONFIG_SOFTFLOAT
595 static always_inline int isfinite (float64 d)
597 CPU_DoubleU u;
599 u.d = d;
601 return (((u.ll >> 52) & 0x7FF) != 0x7FF);
604 static always_inline int isnormal (float64 d)
606 CPU_DoubleU u;
608 u.d = d;
610 uint32_t exp = (u.ll >> 52) & 0x7FF;
611 return ((0 < exp) && (exp < 0x7FF));
613 #endif
615 uint32_t helper_compute_fprf (uint64_t arg, uint32_t set_fprf)
617 CPU_DoubleU farg;
618 int isneg;
619 int ret;
620 farg.ll = arg;
621 isneg = fpisneg(farg.d);
622 if (unlikely(float64_is_nan(farg.d))) {
623 if (float64_is_signaling_nan(farg.d)) {
624 /* Signaling NaN: flags are undefined */
625 ret = 0x00;
626 } else {
627 /* Quiet NaN */
628 ret = 0x11;
630 } else if (unlikely(isinfinity(farg.d))) {
631 /* +/- infinity */
632 if (isneg)
633 ret = 0x09;
634 else
635 ret = 0x05;
636 } else {
637 if (iszero(farg.d)) {
638 /* +/- zero */
639 if (isneg)
640 ret = 0x12;
641 else
642 ret = 0x02;
643 } else {
644 if (isden(farg.d)) {
645 /* Denormalized numbers */
646 ret = 0x10;
647 } else {
648 /* Normalized numbers */
649 ret = 0x00;
651 if (isneg) {
652 ret |= 0x08;
653 } else {
654 ret |= 0x04;
658 if (set_fprf) {
659 /* We update FPSCR_FPRF */
660 env->fpscr &= ~(0x1F << FPSCR_FPRF);
661 env->fpscr |= ret << FPSCR_FPRF;
663 /* We just need fpcc to update Rc1 */
664 return ret & 0xF;
667 /* Floating-point invalid operations exception */
668 static always_inline uint64_t fload_invalid_op_excp (int op)
670 uint64_t ret = 0;
671 int ve;
673 ve = fpscr_ve;
674 if (op & POWERPC_EXCP_FP_VXSNAN) {
675 /* Operation on signaling NaN */
676 env->fpscr |= 1 << FPSCR_VXSNAN;
678 if (op & POWERPC_EXCP_FP_VXSOFT) {
679 /* Software-defined condition */
680 env->fpscr |= 1 << FPSCR_VXSOFT;
682 switch (op & ~(POWERPC_EXCP_FP_VXSOFT | POWERPC_EXCP_FP_VXSNAN)) {
683 case POWERPC_EXCP_FP_VXISI:
684 /* Magnitude subtraction of infinities */
685 env->fpscr |= 1 << FPSCR_VXISI;
686 goto update_arith;
687 case POWERPC_EXCP_FP_VXIDI:
688 /* Division of infinity by infinity */
689 env->fpscr |= 1 << FPSCR_VXIDI;
690 goto update_arith;
691 case POWERPC_EXCP_FP_VXZDZ:
692 /* Division of zero by zero */
693 env->fpscr |= 1 << FPSCR_VXZDZ;
694 goto update_arith;
695 case POWERPC_EXCP_FP_VXIMZ:
696 /* Multiplication of zero by infinity */
697 env->fpscr |= 1 << FPSCR_VXIMZ;
698 goto update_arith;
699 case POWERPC_EXCP_FP_VXVC:
700 /* Ordered comparison of NaN */
701 env->fpscr |= 1 << FPSCR_VXVC;
702 env->fpscr &= ~(0xF << FPSCR_FPCC);
703 env->fpscr |= 0x11 << FPSCR_FPCC;
704 /* We must update the target FPR before raising the exception */
705 if (ve != 0) {
706 env->exception_index = POWERPC_EXCP_PROGRAM;
707 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
708 /* Update the floating-point enabled exception summary */
709 env->fpscr |= 1 << FPSCR_FEX;
710 /* Exception is differed */
711 ve = 0;
713 break;
714 case POWERPC_EXCP_FP_VXSQRT:
715 /* Square root of a negative number */
716 env->fpscr |= 1 << FPSCR_VXSQRT;
717 update_arith:
718 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
719 if (ve == 0) {
720 /* Set the result to quiet NaN */
721 ret = UINT64_MAX;
722 env->fpscr &= ~(0xF << FPSCR_FPCC);
723 env->fpscr |= 0x11 << FPSCR_FPCC;
725 break;
726 case POWERPC_EXCP_FP_VXCVI:
727 /* Invalid conversion */
728 env->fpscr |= 1 << FPSCR_VXCVI;
729 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
730 if (ve == 0) {
731 /* Set the result to quiet NaN */
732 ret = UINT64_MAX;
733 env->fpscr &= ~(0xF << FPSCR_FPCC);
734 env->fpscr |= 0x11 << FPSCR_FPCC;
736 break;
738 /* Update the floating-point invalid operation summary */
739 env->fpscr |= 1 << FPSCR_VX;
740 /* Update the floating-point exception summary */
741 env->fpscr |= 1 << FPSCR_FX;
742 if (ve != 0) {
743 /* Update the floating-point enabled exception summary */
744 env->fpscr |= 1 << FPSCR_FEX;
745 if (msr_fe0 != 0 || msr_fe1 != 0)
746 helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op);
748 return ret;
751 static always_inline uint64_t float_zero_divide_excp (uint64_t arg1, uint64_t arg2)
753 env->fpscr |= 1 << FPSCR_ZX;
754 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
755 /* Update the floating-point exception summary */
756 env->fpscr |= 1 << FPSCR_FX;
757 if (fpscr_ze != 0) {
758 /* Update the floating-point enabled exception summary */
759 env->fpscr |= 1 << FPSCR_FEX;
760 if (msr_fe0 != 0 || msr_fe1 != 0) {
761 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
762 POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
764 } else {
765 /* Set the result to infinity */
766 arg1 = ((arg1 ^ arg2) & 0x8000000000000000ULL);
767 arg1 |= 0x7FFULL << 52;
769 return arg1;
772 static always_inline void float_overflow_excp (void)
774 env->fpscr |= 1 << FPSCR_OX;
775 /* Update the floating-point exception summary */
776 env->fpscr |= 1 << FPSCR_FX;
777 if (fpscr_oe != 0) {
778 /* XXX: should adjust the result */
779 /* Update the floating-point enabled exception summary */
780 env->fpscr |= 1 << FPSCR_FEX;
781 /* We must update the target FPR before raising the exception */
782 env->exception_index = POWERPC_EXCP_PROGRAM;
783 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
784 } else {
785 env->fpscr |= 1 << FPSCR_XX;
786 env->fpscr |= 1 << FPSCR_FI;
790 static always_inline void float_underflow_excp (void)
792 env->fpscr |= 1 << FPSCR_UX;
793 /* Update the floating-point exception summary */
794 env->fpscr |= 1 << FPSCR_FX;
795 if (fpscr_ue != 0) {
796 /* XXX: should adjust the result */
797 /* Update the floating-point enabled exception summary */
798 env->fpscr |= 1 << FPSCR_FEX;
799 /* We must update the target FPR before raising the exception */
800 env->exception_index = POWERPC_EXCP_PROGRAM;
801 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
805 static always_inline void float_inexact_excp (void)
807 env->fpscr |= 1 << FPSCR_XX;
808 /* Update the floating-point exception summary */
809 env->fpscr |= 1 << FPSCR_FX;
810 if (fpscr_xe != 0) {
811 /* Update the floating-point enabled exception summary */
812 env->fpscr |= 1 << FPSCR_FEX;
813 /* We must update the target FPR before raising the exception */
814 env->exception_index = POWERPC_EXCP_PROGRAM;
815 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
819 static always_inline void fpscr_set_rounding_mode (void)
821 int rnd_type;
823 /* Set rounding mode */
824 switch (fpscr_rn) {
825 case 0:
826 /* Best approximation (round to nearest) */
827 rnd_type = float_round_nearest_even;
828 break;
829 case 1:
830 /* Smaller magnitude (round toward zero) */
831 rnd_type = float_round_to_zero;
832 break;
833 case 2:
834 /* Round toward +infinite */
835 rnd_type = float_round_up;
836 break;
837 default:
838 case 3:
839 /* Round toward -infinite */
840 rnd_type = float_round_down;
841 break;
843 set_float_rounding_mode(rnd_type, &env->fp_status);
846 void helper_fpscr_setbit (uint32_t bit)
848 int prev;
850 prev = (env->fpscr >> bit) & 1;
851 env->fpscr |= 1 << bit;
852 if (prev == 0) {
853 switch (bit) {
854 case FPSCR_VX:
855 env->fpscr |= 1 << FPSCR_FX;
856 if (fpscr_ve)
857 goto raise_ve;
858 case FPSCR_OX:
859 env->fpscr |= 1 << FPSCR_FX;
860 if (fpscr_oe)
861 goto raise_oe;
862 break;
863 case FPSCR_UX:
864 env->fpscr |= 1 << FPSCR_FX;
865 if (fpscr_ue)
866 goto raise_ue;
867 break;
868 case FPSCR_ZX:
869 env->fpscr |= 1 << FPSCR_FX;
870 if (fpscr_ze)
871 goto raise_ze;
872 break;
873 case FPSCR_XX:
874 env->fpscr |= 1 << FPSCR_FX;
875 if (fpscr_xe)
876 goto raise_xe;
877 break;
878 case FPSCR_VXSNAN:
879 case FPSCR_VXISI:
880 case FPSCR_VXIDI:
881 case FPSCR_VXZDZ:
882 case FPSCR_VXIMZ:
883 case FPSCR_VXVC:
884 case FPSCR_VXSOFT:
885 case FPSCR_VXSQRT:
886 case FPSCR_VXCVI:
887 env->fpscr |= 1 << FPSCR_VX;
888 env->fpscr |= 1 << FPSCR_FX;
889 if (fpscr_ve != 0)
890 goto raise_ve;
891 break;
892 case FPSCR_VE:
893 if (fpscr_vx != 0) {
894 raise_ve:
895 env->error_code = POWERPC_EXCP_FP;
896 if (fpscr_vxsnan)
897 env->error_code |= POWERPC_EXCP_FP_VXSNAN;
898 if (fpscr_vxisi)
899 env->error_code |= POWERPC_EXCP_FP_VXISI;
900 if (fpscr_vxidi)
901 env->error_code |= POWERPC_EXCP_FP_VXIDI;
902 if (fpscr_vxzdz)
903 env->error_code |= POWERPC_EXCP_FP_VXZDZ;
904 if (fpscr_vximz)
905 env->error_code |= POWERPC_EXCP_FP_VXIMZ;
906 if (fpscr_vxvc)
907 env->error_code |= POWERPC_EXCP_FP_VXVC;
908 if (fpscr_vxsoft)
909 env->error_code |= POWERPC_EXCP_FP_VXSOFT;
910 if (fpscr_vxsqrt)
911 env->error_code |= POWERPC_EXCP_FP_VXSQRT;
912 if (fpscr_vxcvi)
913 env->error_code |= POWERPC_EXCP_FP_VXCVI;
914 goto raise_excp;
916 break;
917 case FPSCR_OE:
918 if (fpscr_ox != 0) {
919 raise_oe:
920 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
921 goto raise_excp;
923 break;
924 case FPSCR_UE:
925 if (fpscr_ux != 0) {
926 raise_ue:
927 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
928 goto raise_excp;
930 break;
931 case FPSCR_ZE:
932 if (fpscr_zx != 0) {
933 raise_ze:
934 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
935 goto raise_excp;
937 break;
938 case FPSCR_XE:
939 if (fpscr_xx != 0) {
940 raise_xe:
941 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
942 goto raise_excp;
944 break;
945 case FPSCR_RN1:
946 case FPSCR_RN:
947 fpscr_set_rounding_mode();
948 break;
949 default:
950 break;
951 raise_excp:
952 /* Update the floating-point enabled exception summary */
953 env->fpscr |= 1 << FPSCR_FEX;
954 /* We have to update Rc1 before raising the exception */
955 env->exception_index = POWERPC_EXCP_PROGRAM;
956 break;
961 void helper_store_fpscr (uint64_t arg, uint32_t mask)
964 * We use only the 32 LSB of the incoming fpr
966 uint32_t prev, new;
967 int i;
969 prev = env->fpscr;
970 new = (uint32_t)arg;
971 new &= ~0x90000000;
972 new |= prev & 0x90000000;
973 for (i = 0; i < 7; i++) {
974 if (mask & (1 << i)) {
975 env->fpscr &= ~(0xF << (4 * i));
976 env->fpscr |= new & (0xF << (4 * i));
979 /* Update VX and FEX */
980 if (fpscr_ix != 0)
981 env->fpscr |= 1 << FPSCR_VX;
982 else
983 env->fpscr &= ~(1 << FPSCR_VX);
984 if ((fpscr_ex & fpscr_eex) != 0) {
985 env->fpscr |= 1 << FPSCR_FEX;
986 env->exception_index = POWERPC_EXCP_PROGRAM;
987 /* XXX: we should compute it properly */
988 env->error_code = POWERPC_EXCP_FP;
990 else
991 env->fpscr &= ~(1 << FPSCR_FEX);
992 fpscr_set_rounding_mode();
995 void helper_float_check_status (void)
997 #ifdef CONFIG_SOFTFLOAT
998 if (env->exception_index == POWERPC_EXCP_PROGRAM &&
999 (env->error_code & POWERPC_EXCP_FP)) {
1000 /* Differred floating-point exception after target FPR update */
1001 if (msr_fe0 != 0 || msr_fe1 != 0)
1002 helper_raise_exception_err(env->exception_index, env->error_code);
1003 } else if (env->fp_status.float_exception_flags & float_flag_overflow) {
1004 float_overflow_excp();
1005 } else if (env->fp_status.float_exception_flags & float_flag_underflow) {
1006 float_underflow_excp();
1007 } else if (env->fp_status.float_exception_flags & float_flag_inexact) {
1008 float_inexact_excp();
1010 #else
1011 if (env->exception_index == POWERPC_EXCP_PROGRAM &&
1012 (env->error_code & POWERPC_EXCP_FP)) {
1013 /* Differred floating-point exception after target FPR update */
1014 if (msr_fe0 != 0 || msr_fe1 != 0)
1015 helper_raise_exception_err(env->exception_index, env->error_code);
1017 #endif
1020 #ifdef CONFIG_SOFTFLOAT
1021 void helper_reset_fpstatus (void)
1023 env->fp_status.float_exception_flags = 0;
1025 #endif
1027 /* fadd - fadd. */
1028 uint64_t helper_fadd (uint64_t arg1, uint64_t arg2)
1030 CPU_DoubleU farg1, farg2;
1032 farg1.ll = arg1;
1033 farg2.ll = arg2;
1034 #if USE_PRECISE_EMULATION
1035 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1036 float64_is_signaling_nan(farg2.d))) {
1037 /* sNaN addition */
1038 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1039 } else if (likely(isfinite(farg1.d) || isfinite(farg2.d) ||
1040 fpisneg(farg1.d) == fpisneg(farg2.d))) {
1041 farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
1042 } else {
1043 /* Magnitude subtraction of infinities */
1044 farg1.ll == fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1046 #else
1047 farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
1048 #endif
1049 return farg1.ll;
1052 /* fsub - fsub. */
1053 uint64_t helper_fsub (uint64_t arg1, uint64_t arg2)
1055 CPU_DoubleU farg1, farg2;
1057 farg1.ll = arg1;
1058 farg2.ll = arg2;
1059 #if USE_PRECISE_EMULATION
1061 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1062 float64_is_signaling_nan(farg2.d))) {
1063 /* sNaN subtraction */
1064 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1065 } else if (likely(isfinite(farg1.d) || isfinite(farg2.d) ||
1066 fpisneg(farg1.d) != fpisneg(farg2.d))) {
1067 farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
1068 } else {
1069 /* Magnitude subtraction of infinities */
1070 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1073 #else
1074 farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
1075 #endif
1076 return farg1.ll;
1079 /* fmul - fmul. */
1080 uint64_t helper_fmul (uint64_t arg1, uint64_t arg2)
1082 CPU_DoubleU farg1, farg2;
1084 farg1.ll = arg1;
1085 farg2.ll = arg2;
1086 #if USE_PRECISE_EMULATION
1087 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1088 float64_is_signaling_nan(farg2.d))) {
1089 /* sNaN multiplication */
1090 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1091 } else if (unlikely((isinfinity(farg1.d) && iszero(farg2.d)) ||
1092 (iszero(farg1.d) && isinfinity(farg2.d)))) {
1093 /* Multiplication of zero by infinity */
1094 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1095 } else {
1096 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1099 #else
1100 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1101 #endif
1102 return farg1.ll;
1105 /* fdiv - fdiv. */
1106 uint64_t helper_fdiv (uint64_t arg1, uint64_t arg2)
1108 CPU_DoubleU farg1, farg2;
1110 farg1.ll = arg1;
1111 farg2.ll = arg2;
1112 #if USE_PRECISE_EMULATION
1113 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1114 float64_is_signaling_nan(farg2.d))) {
1115 /* sNaN division */
1116 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1117 } else if (unlikely(isinfinity(farg1.d) && isinfinity(farg2.d))) {
1118 /* Division of infinity by infinity */
1119 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI);
1120 } else if (unlikely(iszero(farg2.d))) {
1121 if (iszero(farg1.d)) {
1122 /* Division of zero by zero */
1123 farg1.ll fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ);
1124 } else {
1125 /* Division by zero */
1126 farg1.ll = float_zero_divide_excp(farg1.d, farg2.d);
1128 } else {
1129 farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
1131 #else
1132 farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
1133 #endif
1134 return farg1.ll;
1137 /* fabs */
1138 uint64_t helper_fabs (uint64_t arg)
1140 CPU_DoubleU farg;
1142 farg.ll = arg;
1143 farg.d = float64_abs(farg.d);
1144 return farg.ll;
1147 /* fnabs */
1148 uint64_t helper_fnabs (uint64_t arg)
1150 CPU_DoubleU farg;
1152 farg.ll = arg;
1153 farg.d = float64_abs(farg.d);
1154 farg.d = float64_chs(farg.d);
1155 return farg.ll;
1158 /* fneg */
1159 uint64_t helper_fneg (uint64_t arg)
1161 CPU_DoubleU farg;
1163 farg.ll = arg;
1164 farg.d = float64_chs(farg.d);
1165 return farg.ll;
1168 /* fctiw - fctiw. */
1169 uint64_t helper_fctiw (uint64_t arg)
1171 CPU_DoubleU farg;
1172 farg.ll = arg;
1174 if (unlikely(float64_is_signaling_nan(farg.d))) {
1175 /* sNaN conversion */
1176 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1177 } else if (unlikely(float64_is_nan(farg.d) || isinfinity(farg.d))) {
1178 /* qNan / infinity conversion */
1179 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1180 } else {
1181 farg.ll = float64_to_int32(farg.d, &env->fp_status);
1182 #if USE_PRECISE_EMULATION
1183 /* XXX: higher bits are not supposed to be significant.
1184 * to make tests easier, return the same as a real PowerPC 750
1186 farg.ll |= 0xFFF80000ULL << 32;
1187 #endif
1189 return farg.ll;
1192 /* fctiwz - fctiwz. */
1193 uint64_t helper_fctiwz (uint64_t arg)
1195 CPU_DoubleU farg;
1196 farg.ll = arg;
1198 if (unlikely(float64_is_signaling_nan(farg.d))) {
1199 /* sNaN conversion */
1200 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1201 } else if (unlikely(float64_is_nan(farg.d) || isinfinity(farg.d))) {
1202 /* qNan / infinity conversion */
1203 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1204 } else {
1205 farg.ll = float64_to_int32_round_to_zero(farg.d, &env->fp_status);
1206 #if USE_PRECISE_EMULATION
1207 /* XXX: higher bits are not supposed to be significant.
1208 * to make tests easier, return the same as a real PowerPC 750
1210 farg.ll |= 0xFFF80000ULL << 32;
1211 #endif
1213 return farg.ll;
1216 #if defined(TARGET_PPC64)
1217 /* fcfid - fcfid. */
1218 uint64_t helper_fcfid (uint64_t arg)
1220 CPU_DoubleU farg;
1221 farg.d = int64_to_float64(arg, &env->fp_status);
1222 return farg.ll;
1225 /* fctid - fctid. */
1226 uint64_t helper_fctid (uint64_t arg)
1228 CPU_DoubleU farg;
1229 farg.ll = arg;
1231 if (unlikely(float64_is_signaling_nan(farg.d))) {
1232 /* sNaN conversion */
1233 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1234 } else if (unlikely(float64_is_nan(farg.d) || isinfinity(farg.d))) {
1235 /* qNan / infinity conversion */
1236 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1237 } else {
1238 farg.ll = float64_to_int64(farg.d, &env->fp_status);
1240 return farg.ll;
1243 /* fctidz - fctidz. */
1244 uint64_t helper_fctidz (uint64_t arg)
1246 CPU_DoubleU farg;
1247 farg.ll = arg;
1249 if (unlikely(float64_is_signaling_nan(farg.d))) {
1250 /* sNaN conversion */
1251 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1252 } else if (unlikely(float64_is_nan(farg.d) || isinfinity(farg.d))) {
1253 /* qNan / infinity conversion */
1254 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1255 } else {
1256 farg.ll = float64_to_int64_round_to_zero(farg.d, &env->fp_status);
1258 return farg.ll;
1261 #endif
1263 static always_inline uint64_t do_fri (uint64_t arg, int rounding_mode)
1265 CPU_DoubleU farg;
1266 farg.ll = arg;
1268 if (unlikely(float64_is_signaling_nan(farg.d))) {
1269 /* sNaN round */
1270 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1271 } else if (unlikely(float64_is_nan(farg.d) || isinfinity(farg.d))) {
1272 /* qNan / infinity round */
1273 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1274 } else {
1275 set_float_rounding_mode(rounding_mode, &env->fp_status);
1276 farg.ll = float64_round_to_int(farg.d, &env->fp_status);
1277 /* Restore rounding mode from FPSCR */
1278 fpscr_set_rounding_mode();
1280 return farg.ll;
1283 uint64_t helper_frin (uint64_t arg)
1285 return do_fri(arg, float_round_nearest_even);
1288 uint64_t helper_friz (uint64_t arg)
1290 return do_fri(arg, float_round_to_zero);
1293 uint64_t helper_frip (uint64_t arg)
1295 return do_fri(arg, float_round_up);
1298 uint64_t helper_frim (uint64_t arg)
1300 return do_fri(arg, float_round_down);
1303 /* fmadd - fmadd. */
1304 uint64_t helper_fmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1306 CPU_DoubleU farg1, farg2, farg3;
1308 farg1.ll = arg1;
1309 farg2.ll = arg2;
1310 farg3.ll = arg3;
1311 #if USE_PRECISE_EMULATION
1312 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1313 float64_is_signaling_nan(farg2.d) ||
1314 float64_is_signaling_nan(farg3.d))) {
1315 /* sNaN operation */
1316 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1317 } else {
1318 #ifdef FLOAT128
1319 /* This is the way the PowerPC specification defines it */
1320 float128 ft0_128, ft1_128;
1322 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1323 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1324 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1325 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1326 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1327 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1328 #else
1329 /* This is OK on x86 hosts */
1330 farg1.d = (farg1.d * farg2.d) + farg3.d;
1331 #endif
1333 #else
1334 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1335 farg1.d = float64_add(farg1.d, farg3.d, &env->fp_status);
1336 #endif
1337 return farg1.ll;
1340 /* fmsub - fmsub. */
1341 uint64_t helper_fmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1343 CPU_DoubleU farg1, farg2, farg3;
1345 farg1.ll = arg1;
1346 farg2.ll = arg2;
1347 farg3.ll = arg3;
1348 #if USE_PRECISE_EMULATION
1349 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1350 float64_is_signaling_nan(farg2.d) ||
1351 float64_is_signaling_nan(farg3.d))) {
1352 /* sNaN operation */
1353 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1354 } else {
1355 #ifdef FLOAT128
1356 /* This is the way the PowerPC specification defines it */
1357 float128 ft0_128, ft1_128;
1359 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1360 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1361 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1362 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1363 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1364 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1365 #else
1366 /* This is OK on x86 hosts */
1367 farg1.d = (farg1.d * farg2.d) - farg3.d;
1368 #endif
1370 #else
1371 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1372 farg1.d = float64_sub(farg1.d, farg3.d, &env->fp_status);
1373 #endif
1374 return farg1.ll;
1377 /* fnmadd - fnmadd. */
1378 uint64_t helper_fnmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1380 CPU_DoubleU farg1, farg2, farg3;
1382 farg1.ll = arg1;
1383 farg2.ll = arg2;
1384 farg3.ll = arg3;
1386 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1387 float64_is_signaling_nan(farg2.d) ||
1388 float64_is_signaling_nan(farg3.d))) {
1389 /* sNaN operation */
1390 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1391 } else {
1392 #if USE_PRECISE_EMULATION
1393 #ifdef FLOAT128
1394 /* This is the way the PowerPC specification defines it */
1395 float128 ft0_128, ft1_128;
1397 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1398 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1399 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1400 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1401 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1402 farg1.d= float128_to_float64(ft0_128, &env->fp_status);
1403 #else
1404 /* This is OK on x86 hosts */
1405 farg1.d = (farg1.d * farg2.d) + farg3.d;
1406 #endif
1407 #else
1408 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1409 farg1.d = float64_add(farg1.d, farg3.d, &env->fp_status);
1410 #endif
1411 if (likely(!isnan(farg1.d)))
1412 farg1.d = float64_chs(farg1.d);
1414 return farg1.ll;
1417 /* fnmsub - fnmsub. */
1418 uint64_t helper_fnmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1420 CPU_DoubleU farg1, farg2, farg3;
1422 farg1.ll = arg1;
1423 farg2.ll = arg2;
1424 farg3.ll = arg3;
1426 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1427 float64_is_signaling_nan(farg2.d) ||
1428 float64_is_signaling_nan(farg3.d))) {
1429 /* sNaN operation */
1430 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1431 } else {
1432 #if USE_PRECISE_EMULATION
1433 #ifdef FLOAT128
1434 /* This is the way the PowerPC specification defines it */
1435 float128 ft0_128, ft1_128;
1437 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1438 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1439 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1440 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1441 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1442 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1443 #else
1444 /* This is OK on x86 hosts */
1445 farg1.d = (farg1.d * farg2.d) - farg3.d;
1446 #endif
1447 #else
1448 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1449 farg1.d = float64_sub(farg1.d, farg3.d, &env->fp_status);
1450 #endif
1451 if (likely(!isnan(farg1.d)))
1452 farg1.d = float64_chs(farg1.d);
1454 return farg1.ll;
1457 /* frsp - frsp. */
1458 uint64_t helper_frsp (uint64_t arg)
1460 CPU_DoubleU farg;
1461 farg.ll = arg;
1463 #if USE_PRECISE_EMULATION
1464 if (unlikely(float64_is_signaling_nan(farg.d))) {
1465 /* sNaN square root */
1466 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1467 } else {
1468 fard.d = float64_to_float32(farg.d, &env->fp_status);
1470 #else
1471 farg.d = float64_to_float32(farg.d, &env->fp_status);
1472 #endif
1473 return farg.ll;
1476 /* fsqrt - fsqrt. */
1477 uint64_t helper_fsqrt (uint64_t arg)
1479 CPU_DoubleU farg;
1480 farg.ll = arg;
1482 if (unlikely(float64_is_signaling_nan(farg.d))) {
1483 /* sNaN square root */
1484 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1485 } else if (unlikely(fpisneg(farg.d) && !iszero(farg.d))) {
1486 /* Square root of a negative nonzero number */
1487 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1488 } else {
1489 farg.d = float64_sqrt(farg.d, &env->fp_status);
1491 return farg.ll;
1494 /* fre - fre. */
1495 uint64_t helper_fre (uint64_t arg)
1497 CPU_DoubleU farg;
1498 farg.ll = arg;
1500 if (unlikely(float64_is_signaling_nan(farg.d))) {
1501 /* sNaN reciprocal */
1502 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1503 } else if (unlikely(iszero(farg.d))) {
1504 /* Zero reciprocal */
1505 farg.ll = float_zero_divide_excp(1.0, farg.d);
1506 } else if (likely(isnormal(farg.d))) {
1507 farg.d = float64_div(1.0, farg.d, &env->fp_status);
1508 } else {
1509 if (farg.ll == 0x8000000000000000ULL) {
1510 farg.ll = 0xFFF0000000000000ULL;
1511 } else if (farg.ll == 0x0000000000000000ULL) {
1512 farg.ll = 0x7FF0000000000000ULL;
1513 } else if (isnan(farg.d)) {
1514 farg.ll = 0x7FF8000000000000ULL;
1515 } else if (fpisneg(farg.d)) {
1516 farg.ll = 0x8000000000000000ULL;
1517 } else {
1518 farg.ll = 0x0000000000000000ULL;
1521 return farg.d;
1524 /* fres - fres. */
1525 uint64_t helper_fres (uint64_t arg)
1527 CPU_DoubleU farg;
1528 farg.ll = arg;
1530 if (unlikely(float64_is_signaling_nan(farg.d))) {
1531 /* sNaN reciprocal */
1532 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1533 } else if (unlikely(iszero(farg.d))) {
1534 /* Zero reciprocal */
1535 farg.ll = float_zero_divide_excp(1.0, farg.d);
1536 } else if (likely(isnormal(farg.d))) {
1537 #if USE_PRECISE_EMULATION
1538 farg.d = float64_div(1.0, farg.d, &env->fp_status);
1539 farg.d = float64_to_float32(farg.d, &env->fp_status);
1540 #else
1541 farg.d = float32_div(1.0, farg.d, &env->fp_status);
1542 #endif
1543 } else {
1544 if (farg.ll == 0x8000000000000000ULL) {
1545 farg.ll = 0xFFF0000000000000ULL;
1546 } else if (farg.ll == 0x0000000000000000ULL) {
1547 farg.ll = 0x7FF0000000000000ULL;
1548 } else if (isnan(farg.d)) {
1549 farg.ll = 0x7FF8000000000000ULL;
1550 } else if (fpisneg(farg.d)) {
1551 farg.ll = 0x8000000000000000ULL;
1552 } else {
1553 farg.ll = 0x0000000000000000ULL;
1556 return farg.ll;
1559 /* frsqrte - frsqrte. */
1560 uint64_t helper_frsqrte (uint64_t arg)
1562 CPU_DoubleU farg;
1563 farg.ll = arg;
1565 if (unlikely(float64_is_signaling_nan(farg.d))) {
1566 /* sNaN reciprocal square root */
1567 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1568 } else if (unlikely(fpisneg(farg.d) && !iszero(farg.d))) {
1569 /* Reciprocal square root of a negative nonzero number */
1570 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1571 } else if (likely(isnormal(farg.d))) {
1572 farg.d = float64_sqrt(farg.d, &env->fp_status);
1573 farg.d = float32_div(1.0, farg.d, &env->fp_status);
1574 } else {
1575 if (farg.ll == 0x8000000000000000ULL) {
1576 farg.ll = 0xFFF0000000000000ULL;
1577 } else if (farg.ll == 0x0000000000000000ULL) {
1578 farg.ll = 0x7FF0000000000000ULL;
1579 } else if (isnan(farg.d)) {
1580 farg.ll |= 0x000FFFFFFFFFFFFFULL;
1581 } else if (fpisneg(farg.d)) {
1582 farg.ll = 0x7FF8000000000000ULL;
1583 } else {
1584 farg.ll = 0x0000000000000000ULL;
1587 return farg.ll;
1590 /* fsel - fsel. */
1591 uint64_t helper_fsel (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1593 CPU_DoubleU farg1, farg2, farg3;
1595 farg1.ll = arg1;
1596 farg2.ll = arg2;
1597 farg3.ll = arg3;
1599 if (!fpisneg(farg1.d) || iszero(farg1.d))
1600 return farg2.ll;
1601 else
1602 return farg2.ll;
1605 uint32_t helper_fcmpu (uint64_t arg1, uint64_t arg2)
1607 CPU_DoubleU farg1, farg2;
1608 uint32_t ret = 0;
1609 farg1.ll = arg1;
1610 farg2.ll = arg2;
1612 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1613 float64_is_signaling_nan(farg2.d))) {
1614 /* sNaN comparison */
1615 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1616 } else {
1617 if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1618 ret = 0x08UL;
1619 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1620 ret = 0x04UL;
1621 } else {
1622 ret = 0x02UL;
1625 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1626 env->fpscr |= ret << FPSCR_FPRF;
1627 return ret;
1630 uint32_t helper_fcmpo (uint64_t arg1, uint64_t arg2)
1632 CPU_DoubleU farg1, farg2;
1633 uint32_t ret = 0;
1634 farg1.ll = arg1;
1635 farg2.ll = arg2;
1637 if (unlikely(float64_is_nan(farg1.d) ||
1638 float64_is_nan(farg2.d))) {
1639 if (float64_is_signaling_nan(farg1.d) ||
1640 float64_is_signaling_nan(farg2.d)) {
1641 /* sNaN comparison */
1642 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN |
1643 POWERPC_EXCP_FP_VXVC);
1644 } else {
1645 /* qNaN comparison */
1646 fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC);
1648 } else {
1649 if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1650 ret = 0x08UL;
1651 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1652 ret = 0x04UL;
1653 } else {
1654 ret = 0x02UL;
1657 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1658 env->fpscr |= ret << FPSCR_FPRF;
1659 return ret;
1662 #if !defined (CONFIG_USER_ONLY)
1663 void helper_store_msr (target_ulong val)
1665 val = hreg_store_msr(env, val, 0);
1666 if (val != 0) {
1667 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1668 helper_raise_exception(val);
1672 void cpu_dump_rfi (target_ulong RA, target_ulong msr);
1674 static always_inline void do_rfi (target_ulong nip, target_ulong msr,
1675 target_ulong msrm, int keep_msrh)
1677 #if defined(TARGET_PPC64)
1678 if (msr & (1ULL << MSR_SF)) {
1679 nip = (uint64_t)nip;
1680 msr &= (uint64_t)msrm;
1681 } else {
1682 nip = (uint32_t)nip;
1683 msr = (uint32_t)(msr & msrm);
1684 if (keep_msrh)
1685 msr |= env->msr & ~((uint64_t)0xFFFFFFFF);
1687 #else
1688 nip = (uint32_t)nip;
1689 msr &= (uint32_t)msrm;
1690 #endif
1691 /* XXX: beware: this is false if VLE is supported */
1692 env->nip = nip & ~((target_ulong)0x00000003);
1693 hreg_store_msr(env, msr, 1);
1694 #if defined (DEBUG_OP)
1695 cpu_dump_rfi(env->nip, env->msr);
1696 #endif
1697 /* No need to raise an exception here,
1698 * as rfi is always the last insn of a TB
1700 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1703 void helper_rfi (void)
1705 do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1706 ~((target_ulong)0xFFFF0000), 1);
1709 #if defined(TARGET_PPC64)
1710 void helper_rfid (void)
1712 do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1713 ~((target_ulong)0xFFFF0000), 0);
1716 void helper_hrfid (void)
1718 do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1],
1719 ~((target_ulong)0xFFFF0000), 0);
1721 #endif
1722 #endif
1724 void helper_tw (target_ulong arg1, target_ulong arg2, uint32_t flags)
1726 if (!likely(!(((int32_t)arg1 < (int32_t)arg2 && (flags & 0x10)) ||
1727 ((int32_t)arg1 > (int32_t)arg2 && (flags & 0x08)) ||
1728 ((int32_t)arg1 == (int32_t)arg2 && (flags & 0x04)) ||
1729 ((uint32_t)arg1 < (uint32_t)arg2 && (flags & 0x02)) ||
1730 ((uint32_t)arg1 > (uint32_t)arg2 && (flags & 0x01))))) {
1731 helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
1735 #if defined(TARGET_PPC64)
1736 void helper_td (target_ulong arg1, target_ulong arg2, uint32_t flags)
1738 if (!likely(!(((int64_t)arg1 < (int64_t)arg2 && (flags & 0x10)) ||
1739 ((int64_t)arg1 > (int64_t)arg2 && (flags & 0x08)) ||
1740 ((int64_t)arg1 == (int64_t)arg2 && (flags & 0x04)) ||
1741 ((uint64_t)arg1 < (uint64_t)arg2 && (flags & 0x02)) ||
1742 ((uint64_t)arg1 > (uint64_t)arg2 && (flags & 0x01)))))
1743 helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
1745 #endif
1747 /*****************************************************************************/
1748 /* PowerPC 601 specific instructions (POWER bridge) */
1750 target_ulong helper_clcs (uint32_t arg)
1752 switch (arg) {
1753 case 0x0CUL:
1754 /* Instruction cache line size */
1755 return env->icache_line_size;
1756 break;
1757 case 0x0DUL:
1758 /* Data cache line size */
1759 return env->dcache_line_size;
1760 break;
1761 case 0x0EUL:
1762 /* Minimum cache line size */
1763 return (env->icache_line_size < env->dcache_line_size) ?
1764 env->icache_line_size : env->dcache_line_size;
1765 break;
1766 case 0x0FUL:
1767 /* Maximum cache line size */
1768 return (env->icache_line_size > env->dcache_line_size) ?
1769 env->icache_line_size : env->dcache_line_size;
1770 break;
1771 default:
1772 /* Undefined */
1773 return 0;
1774 break;
1778 target_ulong helper_div (target_ulong arg1, target_ulong arg2)
1780 uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
1782 if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1783 (int32_t)arg2 == 0) {
1784 env->spr[SPR_MQ] = 0;
1785 return INT32_MIN;
1786 } else {
1787 env->spr[SPR_MQ] = tmp % arg2;
1788 return tmp / (int32_t)arg2;
1792 target_ulong helper_divo (target_ulong arg1, target_ulong arg2)
1794 uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
1796 if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1797 (int32_t)arg2 == 0) {
1798 env->xer |= (1 << XER_OV) | (1 << XER_SO);
1799 env->spr[SPR_MQ] = 0;
1800 return INT32_MIN;
1801 } else {
1802 env->spr[SPR_MQ] = tmp % arg2;
1803 tmp /= (int32_t)arg2;
1804 if ((int32_t)tmp != tmp) {
1805 env->xer |= (1 << XER_OV) | (1 << XER_SO);
1806 } else {
1807 env->xer &= ~(1 << XER_OV);
1809 return tmp;
1813 target_ulong helper_divs (target_ulong arg1, target_ulong arg2)
1815 if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1816 (int32_t)arg2 == 0) {
1817 env->spr[SPR_MQ] = 0;
1818 return INT32_MIN;
1819 } else {
1820 env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
1821 return (int32_t)arg1 / (int32_t)arg2;
1825 target_ulong helper_divso (target_ulong arg1, target_ulong arg2)
1827 if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1828 (int32_t)arg2 == 0) {
1829 env->xer |= (1 << XER_OV) | (1 << XER_SO);
1830 env->spr[SPR_MQ] = 0;
1831 return INT32_MIN;
1832 } else {
1833 env->xer &= ~(1 << XER_OV);
1834 env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
1835 return (int32_t)arg1 / (int32_t)arg2;
1839 #if !defined (CONFIG_USER_ONLY)
1840 target_ulong helper_rac (target_ulong addr)
1842 mmu_ctx_t ctx;
1843 int nb_BATs;
1844 target_ulong ret = 0;
1846 /* We don't have to generate many instances of this instruction,
1847 * as rac is supervisor only.
1849 /* XXX: FIX THIS: Pretend we have no BAT */
1850 nb_BATs = env->nb_BATs;
1851 env->nb_BATs = 0;
1852 if (get_physical_address(env, &ctx, addr, 0, ACCESS_INT) == 0)
1853 ret = ctx.raddr;
1854 env->nb_BATs = nb_BATs;
1855 return ret;
1858 void helper_rfsvc (void)
1860 do_rfi(env->lr, env->ctr, 0x0000FFFF, 0);
1862 #endif
1864 /*****************************************************************************/
1865 /* 602 specific instructions */
1866 /* mfrom is the most crazy instruction ever seen, imho ! */
1867 /* Real implementation uses a ROM table. Do the same */
1868 #if !defined (CONFIG_USER_ONLY)
1869 #define USE_MFROM_ROM_TABLE
1870 target_ulong helper_602_mfrom (target_ulong arg)
1872 if (likely(arg < 602)) {
1873 #if defined(USE_MFROM_ROM_TABLE)
1874 #include "mfrom_table.c"
1875 return mfrom_ROM_table[arg];
1876 #else
1877 double d;
1878 /* Extremly decomposed:
1879 * -arg / 256
1880 * return 256 * log10(10 + 1.0) + 0.5
1882 d = arg;
1883 d = float64_div(d, 256, &env->fp_status);
1884 d = float64_chs(d);
1885 d = exp10(d); // XXX: use float emulation function
1886 d = float64_add(d, 1.0, &env->fp_status);
1887 d = log10(d); // XXX: use float emulation function
1888 d = float64_mul(d, 256, &env->fp_status);
1889 d = float64_add(d, 0.5, &env->fp_status);
1890 return float64_round_to_int(d, &env->fp_status);
1891 #endif
1892 } else {
1893 return 0;
1896 #endif
1898 /*****************************************************************************/
1899 /* Embedded PowerPC specific helpers */
1901 /* XXX: to be improved to check access rights when in user-mode */
1902 target_ulong helper_load_dcr (target_ulong dcrn)
1904 target_ulong val = 0;
1906 if (unlikely(env->dcr_env == NULL)) {
1907 if (loglevel != 0) {
1908 fprintf(logfile, "No DCR environment\n");
1910 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1911 POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
1912 } else if (unlikely(ppc_dcr_read(env->dcr_env, dcrn, &val) != 0)) {
1913 if (loglevel != 0) {
1914 fprintf(logfile, "DCR read error %d %03x\n", (int)dcrn, (int)dcrn);
1916 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1917 POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
1919 return val;
1922 void helper_store_dcr (target_ulong dcrn, target_ulong val)
1924 if (unlikely(env->dcr_env == NULL)) {
1925 if (loglevel != 0) {
1926 fprintf(logfile, "No DCR environment\n");
1928 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1929 POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
1930 } else if (unlikely(ppc_dcr_write(env->dcr_env, dcrn, val) != 0)) {
1931 if (loglevel != 0) {
1932 fprintf(logfile, "DCR write error %d %03x\n", (int)dcrn, (int)dcrn);
1934 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1935 POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
1939 #if !defined(CONFIG_USER_ONLY)
1940 void helper_40x_rfci (void)
1942 do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3],
1943 ~((target_ulong)0xFFFF0000), 0);
1946 void helper_rfci (void)
1948 do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1,
1949 ~((target_ulong)0x3FFF0000), 0);
1952 void helper_rfdi (void)
1954 do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1,
1955 ~((target_ulong)0x3FFF0000), 0);
1958 void helper_rfmci (void)
1960 do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1,
1961 ~((target_ulong)0x3FFF0000), 0);
1963 #endif
1965 /* 440 specific */
1966 target_ulong helper_dlmzb (target_ulong high, target_ulong low, uint32_t update_Rc)
1968 target_ulong mask;
1969 int i;
1971 i = 1;
1972 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1973 if ((high & mask) == 0) {
1974 if (update_Rc) {
1975 env->crf[0] = 0x4;
1977 goto done;
1979 i++;
1981 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1982 if ((low & mask) == 0) {
1983 if (update_Rc) {
1984 env->crf[0] = 0x8;
1986 goto done;
1988 i++;
1990 if (update_Rc) {
1991 env->crf[0] = 0x2;
1993 done:
1994 env->xer = (env->xer & ~0x7F) | i;
1995 if (update_Rc) {
1996 env->crf[0] |= xer_so;
1998 return i;
2001 /*****************************************************************************/
2002 /* SPE extension helpers */
2003 /* Use a table to make this quicker */
2004 static uint8_t hbrev[16] = {
2005 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
2006 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
2009 static always_inline uint8_t byte_reverse (uint8_t val)
2011 return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
2014 static always_inline uint32_t word_reverse (uint32_t val)
2016 return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
2017 (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
2020 #define MASKBITS 16 // Random value - to be fixed (implementation dependant)
2021 target_ulong helper_brinc (target_ulong arg1, target_ulong arg2)
2023 uint32_t a, b, d, mask;
2025 mask = UINT32_MAX >> (32 - MASKBITS);
2026 a = arg1 & mask;
2027 b = arg2 & mask;
2028 d = word_reverse(1 + word_reverse(a | ~b));
2029 return (arg1 & ~mask) | (d & b);
2032 uint32_t helper_cntlsw32 (uint32_t val)
2034 if (val & 0x80000000)
2035 return clz32(~val);
2036 else
2037 return clz32(val);
2040 uint32_t helper_cntlzw32 (uint32_t val)
2042 return clz32(val);
2045 /* Single-precision floating-point conversions */
2046 static always_inline uint32_t efscfsi (uint32_t val)
2048 CPU_FloatU u;
2050 u.f = int32_to_float32(val, &env->spe_status);
2052 return u.l;
2055 static always_inline uint32_t efscfui (uint32_t val)
2057 CPU_FloatU u;
2059 u.f = uint32_to_float32(val, &env->spe_status);
2061 return u.l;
2064 static always_inline int32_t efsctsi (uint32_t val)
2066 CPU_FloatU u;
2068 u.l = val;
2069 /* NaN are not treated the same way IEEE 754 does */
2070 if (unlikely(isnan(u.f)))
2071 return 0;
2073 return float32_to_int32(u.f, &env->spe_status);
2076 static always_inline uint32_t efsctui (uint32_t val)
2078 CPU_FloatU u;
2080 u.l = val;
2081 /* NaN are not treated the same way IEEE 754 does */
2082 if (unlikely(isnan(u.f)))
2083 return 0;
2085 return float32_to_uint32(u.f, &env->spe_status);
2088 static always_inline uint32_t efsctsiz (uint32_t val)
2090 CPU_FloatU u;
2092 u.l = val;
2093 /* NaN are not treated the same way IEEE 754 does */
2094 if (unlikely(isnan(u.f)))
2095 return 0;
2097 return float32_to_int32_round_to_zero(u.f, &env->spe_status);
2100 static always_inline uint32_t efsctuiz (uint32_t val)
2102 CPU_FloatU u;
2104 u.l = val;
2105 /* NaN are not treated the same way IEEE 754 does */
2106 if (unlikely(isnan(u.f)))
2107 return 0;
2109 return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
2112 static always_inline uint32_t efscfsf (uint32_t val)
2114 CPU_FloatU u;
2115 float32 tmp;
2117 u.f = int32_to_float32(val, &env->spe_status);
2118 tmp = int64_to_float32(1ULL << 32, &env->spe_status);
2119 u.f = float32_div(u.f, tmp, &env->spe_status);
2121 return u.l;
2124 static always_inline uint32_t efscfuf (uint32_t val)
2126 CPU_FloatU u;
2127 float32 tmp;
2129 u.f = uint32_to_float32(val, &env->spe_status);
2130 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2131 u.f = float32_div(u.f, tmp, &env->spe_status);
2133 return u.l;
2136 static always_inline uint32_t efsctsf (uint32_t val)
2138 CPU_FloatU u;
2139 float32 tmp;
2141 u.l = val;
2142 /* NaN are not treated the same way IEEE 754 does */
2143 if (unlikely(isnan(u.f)))
2144 return 0;
2145 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2146 u.f = float32_mul(u.f, tmp, &env->spe_status);
2148 return float32_to_int32(u.f, &env->spe_status);
2151 static always_inline uint32_t efsctuf (uint32_t val)
2153 CPU_FloatU u;
2154 float32 tmp;
2156 u.l = val;
2157 /* NaN are not treated the same way IEEE 754 does */
2158 if (unlikely(isnan(u.f)))
2159 return 0;
2160 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2161 u.f = float32_mul(u.f, tmp, &env->spe_status);
2163 return float32_to_uint32(u.f, &env->spe_status);
2166 #define HELPER_SPE_SINGLE_CONV(name) \
2167 uint32_t helper_e##name (uint32_t val) \
2169 return e##name(val); \
2171 /* efscfsi */
2172 HELPER_SPE_SINGLE_CONV(fscfsi);
2173 /* efscfui */
2174 HELPER_SPE_SINGLE_CONV(fscfui);
2175 /* efscfuf */
2176 HELPER_SPE_SINGLE_CONV(fscfuf);
2177 /* efscfsf */
2178 HELPER_SPE_SINGLE_CONV(fscfsf);
2179 /* efsctsi */
2180 HELPER_SPE_SINGLE_CONV(fsctsi);
2181 /* efsctui */
2182 HELPER_SPE_SINGLE_CONV(fsctui);
2183 /* efsctsiz */
2184 HELPER_SPE_SINGLE_CONV(fsctsiz);
2185 /* efsctuiz */
2186 HELPER_SPE_SINGLE_CONV(fsctuiz);
2187 /* efsctsf */
2188 HELPER_SPE_SINGLE_CONV(fsctsf);
2189 /* efsctuf */
2190 HELPER_SPE_SINGLE_CONV(fsctuf);
2192 #define HELPER_SPE_VECTOR_CONV(name) \
2193 uint64_t helper_ev##name (uint64_t val) \
2195 return ((uint64_t)e##name(val >> 32) << 32) | \
2196 (uint64_t)e##name(val); \
2198 /* evfscfsi */
2199 HELPER_SPE_VECTOR_CONV(fscfsi);
2200 /* evfscfui */
2201 HELPER_SPE_VECTOR_CONV(fscfui);
2202 /* evfscfuf */
2203 HELPER_SPE_VECTOR_CONV(fscfuf);
2204 /* evfscfsf */
2205 HELPER_SPE_VECTOR_CONV(fscfsf);
2206 /* evfsctsi */
2207 HELPER_SPE_VECTOR_CONV(fsctsi);
2208 /* evfsctui */
2209 HELPER_SPE_VECTOR_CONV(fsctui);
2210 /* evfsctsiz */
2211 HELPER_SPE_VECTOR_CONV(fsctsiz);
2212 /* evfsctuiz */
2213 HELPER_SPE_VECTOR_CONV(fsctuiz);
2214 /* evfsctsf */
2215 HELPER_SPE_VECTOR_CONV(fsctsf);
2216 /* evfsctuf */
2217 HELPER_SPE_VECTOR_CONV(fsctuf);
2219 /* Single-precision floating-point arithmetic */
2220 static always_inline uint32_t efsadd (uint32_t op1, uint32_t op2)
2222 CPU_FloatU u1, u2;
2223 u1.l = op1;
2224 u2.l = op2;
2225 u1.f = float32_add(u1.f, u2.f, &env->spe_status);
2226 return u1.l;
2229 static always_inline uint32_t efssub (uint32_t op1, uint32_t op2)
2231 CPU_FloatU u1, u2;
2232 u1.l = op1;
2233 u2.l = op2;
2234 u1.f = float32_sub(u1.f, u2.f, &env->spe_status);
2235 return u1.l;
2238 static always_inline uint32_t efsmul (uint32_t op1, uint32_t op2)
2240 CPU_FloatU u1, u2;
2241 u1.l = op1;
2242 u2.l = op2;
2243 u1.f = float32_mul(u1.f, u2.f, &env->spe_status);
2244 return u1.l;
2247 static always_inline uint32_t efsdiv (uint32_t op1, uint32_t op2)
2249 CPU_FloatU u1, u2;
2250 u1.l = op1;
2251 u2.l = op2;
2252 u1.f = float32_div(u1.f, u2.f, &env->spe_status);
2253 return u1.l;
2256 #define HELPER_SPE_SINGLE_ARITH(name) \
2257 uint32_t helper_e##name (uint32_t op1, uint32_t op2) \
2259 return e##name(op1, op2); \
2261 /* efsadd */
2262 HELPER_SPE_SINGLE_ARITH(fsadd);
2263 /* efssub */
2264 HELPER_SPE_SINGLE_ARITH(fssub);
2265 /* efsmul */
2266 HELPER_SPE_SINGLE_ARITH(fsmul);
2267 /* efsdiv */
2268 HELPER_SPE_SINGLE_ARITH(fsdiv);
2270 #define HELPER_SPE_VECTOR_ARITH(name) \
2271 uint64_t helper_ev##name (uint64_t op1, uint64_t op2) \
2273 return ((uint64_t)e##name(op1 >> 32, op2 >> 32) << 32) | \
2274 (uint64_t)e##name(op1, op2); \
2276 /* evfsadd */
2277 HELPER_SPE_VECTOR_ARITH(fsadd);
2278 /* evfssub */
2279 HELPER_SPE_VECTOR_ARITH(fssub);
2280 /* evfsmul */
2281 HELPER_SPE_VECTOR_ARITH(fsmul);
2282 /* evfsdiv */
2283 HELPER_SPE_VECTOR_ARITH(fsdiv);
2285 /* Single-precision floating-point comparisons */
2286 static always_inline uint32_t efststlt (uint32_t op1, uint32_t op2)
2288 CPU_FloatU u1, u2;
2289 u1.l = op1;
2290 u2.l = op2;
2291 return float32_lt(u1.f, u2.f, &env->spe_status) ? 4 : 0;
2294 static always_inline uint32_t efststgt (uint32_t op1, uint32_t op2)
2296 CPU_FloatU u1, u2;
2297 u1.l = op1;
2298 u2.l = op2;
2299 return float32_le(u1.f, u2.f, &env->spe_status) ? 0 : 4;
2302 static always_inline uint32_t efststeq (uint32_t op1, uint32_t op2)
2304 CPU_FloatU u1, u2;
2305 u1.l = op1;
2306 u2.l = op2;
2307 return float32_eq(u1.f, u2.f, &env->spe_status) ? 4 : 0;
2310 static always_inline uint32_t efscmplt (uint32_t op1, uint32_t op2)
2312 /* XXX: TODO: test special values (NaN, infinites, ...) */
2313 return efststlt(op1, op2);
2316 static always_inline uint32_t efscmpgt (uint32_t op1, uint32_t op2)
2318 /* XXX: TODO: test special values (NaN, infinites, ...) */
2319 return efststgt(op1, op2);
2322 static always_inline uint32_t efscmpeq (uint32_t op1, uint32_t op2)
2324 /* XXX: TODO: test special values (NaN, infinites, ...) */
2325 return efststeq(op1, op2);
2328 #define HELPER_SINGLE_SPE_CMP(name) \
2329 uint32_t helper_e##name (uint32_t op1, uint32_t op2) \
2331 return e##name(op1, op2) << 2; \
2333 /* efststlt */
2334 HELPER_SINGLE_SPE_CMP(fststlt);
2335 /* efststgt */
2336 HELPER_SINGLE_SPE_CMP(fststgt);
2337 /* efststeq */
2338 HELPER_SINGLE_SPE_CMP(fststeq);
2339 /* efscmplt */
2340 HELPER_SINGLE_SPE_CMP(fscmplt);
2341 /* efscmpgt */
2342 HELPER_SINGLE_SPE_CMP(fscmpgt);
2343 /* efscmpeq */
2344 HELPER_SINGLE_SPE_CMP(fscmpeq);
2346 static always_inline uint32_t evcmp_merge (int t0, int t1)
2348 return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
2351 #define HELPER_VECTOR_SPE_CMP(name) \
2352 uint32_t helper_ev##name (uint64_t op1, uint64_t op2) \
2354 return evcmp_merge(e##name(op1 >> 32, op2 >> 32), e##name(op1, op2)); \
2356 /* evfststlt */
2357 HELPER_VECTOR_SPE_CMP(fststlt);
2358 /* evfststgt */
2359 HELPER_VECTOR_SPE_CMP(fststgt);
2360 /* evfststeq */
2361 HELPER_VECTOR_SPE_CMP(fststeq);
2362 /* evfscmplt */
2363 HELPER_VECTOR_SPE_CMP(fscmplt);
2364 /* evfscmpgt */
2365 HELPER_VECTOR_SPE_CMP(fscmpgt);
2366 /* evfscmpeq */
2367 HELPER_VECTOR_SPE_CMP(fscmpeq);
2369 /* Double-precision floating-point conversion */
2370 uint64_t helper_efdcfsi (uint32_t val)
2372 CPU_DoubleU u;
2374 u.d = int32_to_float64(val, &env->spe_status);
2376 return u.ll;
2379 uint64_t helper_efdcfsid (uint64_t val)
2381 CPU_DoubleU u;
2383 u.d = int64_to_float64(val, &env->spe_status);
2385 return u.ll;
2388 uint64_t helper_efdcfui (uint32_t val)
2390 CPU_DoubleU u;
2392 u.d = uint32_to_float64(val, &env->spe_status);
2394 return u.ll;
2397 uint64_t helper_efdcfuid (uint64_t val)
2399 CPU_DoubleU u;
2401 u.d = uint64_to_float64(val, &env->spe_status);
2403 return u.ll;
2406 uint32_t helper_efdctsi (uint64_t val)
2408 CPU_DoubleU u;
2410 u.ll = val;
2411 /* NaN are not treated the same way IEEE 754 does */
2412 if (unlikely(isnan(u.d)))
2413 return 0;
2415 return float64_to_int32(u.d, &env->spe_status);
2418 uint32_t helper_efdctui (uint64_t val)
2420 CPU_DoubleU u;
2422 u.ll = val;
2423 /* NaN are not treated the same way IEEE 754 does */
2424 if (unlikely(isnan(u.d)))
2425 return 0;
2427 return float64_to_uint32(u.d, &env->spe_status);
2430 uint32_t helper_efdctsiz (uint64_t val)
2432 CPU_DoubleU u;
2434 u.ll = val;
2435 /* NaN are not treated the same way IEEE 754 does */
2436 if (unlikely(isnan(u.d)))
2437 return 0;
2439 return float64_to_int32_round_to_zero(u.d, &env->spe_status);
2442 uint64_t helper_efdctsidz (uint64_t val)
2444 CPU_DoubleU u;
2446 u.ll = val;
2447 /* NaN are not treated the same way IEEE 754 does */
2448 if (unlikely(isnan(u.d)))
2449 return 0;
2451 return float64_to_int64_round_to_zero(u.d, &env->spe_status);
2454 uint32_t helper_efdctuiz (uint64_t val)
2456 CPU_DoubleU u;
2458 u.ll = val;
2459 /* NaN are not treated the same way IEEE 754 does */
2460 if (unlikely(isnan(u.d)))
2461 return 0;
2463 return float64_to_uint32_round_to_zero(u.d, &env->spe_status);
2466 uint64_t helper_efdctuidz (uint64_t val)
2468 CPU_DoubleU u;
2470 u.ll = val;
2471 /* NaN are not treated the same way IEEE 754 does */
2472 if (unlikely(isnan(u.d)))
2473 return 0;
2475 return float64_to_uint64_round_to_zero(u.d, &env->spe_status);
2478 uint64_t helper_efdcfsf (uint32_t val)
2480 CPU_DoubleU u;
2481 float64 tmp;
2483 u.d = int32_to_float64(val, &env->spe_status);
2484 tmp = int64_to_float64(1ULL << 32, &env->spe_status);
2485 u.d = float64_div(u.d, tmp, &env->spe_status);
2487 return u.ll;
2490 uint64_t helper_efdcfuf (uint32_t val)
2492 CPU_DoubleU u;
2493 float64 tmp;
2495 u.d = uint32_to_float64(val, &env->spe_status);
2496 tmp = int64_to_float64(1ULL << 32, &env->spe_status);
2497 u.d = float64_div(u.d, tmp, &env->spe_status);
2499 return u.ll;
2502 uint32_t helper_efdctsf (uint64_t val)
2504 CPU_DoubleU u;
2505 float64 tmp;
2507 u.ll = val;
2508 /* NaN are not treated the same way IEEE 754 does */
2509 if (unlikely(isnan(u.d)))
2510 return 0;
2511 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2512 u.d = float64_mul(u.d, tmp, &env->spe_status);
2514 return float64_to_int32(u.d, &env->spe_status);
2517 uint32_t helper_efdctuf (uint64_t val)
2519 CPU_DoubleU u;
2520 float64 tmp;
2522 u.ll = val;
2523 /* NaN are not treated the same way IEEE 754 does */
2524 if (unlikely(isnan(u.d)))
2525 return 0;
2526 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2527 u.d = float64_mul(u.d, tmp, &env->spe_status);
2529 return float64_to_uint32(u.d, &env->spe_status);
2532 uint32_t helper_efscfd (uint64_t val)
2534 CPU_DoubleU u1;
2535 CPU_FloatU u2;
2537 u1.ll = val;
2538 u2.f = float64_to_float32(u1.d, &env->spe_status);
2540 return u2.l;
2543 uint64_t helper_efdcfs (uint32_t val)
2545 CPU_DoubleU u2;
2546 CPU_FloatU u1;
2548 u1.l = val;
2549 u2.d = float32_to_float64(u1.f, &env->spe_status);
2551 return u2.ll;
2554 /* Double precision fixed-point arithmetic */
2555 uint64_t helper_efdadd (uint64_t op1, uint64_t op2)
2557 CPU_DoubleU u1, u2;
2558 u1.ll = op1;
2559 u2.ll = op2;
2560 u1.d = float64_add(u1.d, u2.d, &env->spe_status);
2561 return u1.ll;
2564 uint64_t helper_efdsub (uint64_t op1, uint64_t op2)
2566 CPU_DoubleU u1, u2;
2567 u1.ll = op1;
2568 u2.ll = op2;
2569 u1.d = float64_sub(u1.d, u2.d, &env->spe_status);
2570 return u1.ll;
2573 uint64_t helper_efdmul (uint64_t op1, uint64_t op2)
2575 CPU_DoubleU u1, u2;
2576 u1.ll = op1;
2577 u2.ll = op2;
2578 u1.d = float64_mul(u1.d, u2.d, &env->spe_status);
2579 return u1.ll;
2582 uint64_t helper_efddiv (uint64_t op1, uint64_t op2)
2584 CPU_DoubleU u1, u2;
2585 u1.ll = op1;
2586 u2.ll = op2;
2587 u1.d = float64_div(u1.d, u2.d, &env->spe_status);
2588 return u1.ll;
2591 /* Double precision floating point helpers */
2592 uint32_t helper_efdtstlt (uint64_t op1, uint64_t op2)
2594 CPU_DoubleU u1, u2;
2595 u1.ll = op1;
2596 u2.ll = op2;
2597 return float64_lt(u1.d, u2.d, &env->spe_status) ? 4 : 0;
2600 uint32_t helper_efdtstgt (uint64_t op1, uint64_t op2)
2602 CPU_DoubleU u1, u2;
2603 u1.ll = op1;
2604 u2.ll = op2;
2605 return float64_le(u1.d, u2.d, &env->spe_status) ? 0 : 4;
2608 uint32_t helper_efdtsteq (uint64_t op1, uint64_t op2)
2610 CPU_DoubleU u1, u2;
2611 u1.ll = op1;
2612 u2.ll = op2;
2613 return float64_eq(u1.d, u2.d, &env->spe_status) ? 4 : 0;
2616 uint32_t helper_efdcmplt (uint64_t op1, uint64_t op2)
2618 /* XXX: TODO: test special values (NaN, infinites, ...) */
2619 return helper_efdtstlt(op1, op2);
2622 uint32_t helper_efdcmpgt (uint64_t op1, uint64_t op2)
2624 /* XXX: TODO: test special values (NaN, infinites, ...) */
2625 return helper_efdtstgt(op1, op2);
2628 uint32_t helper_efdcmpeq (uint64_t op1, uint64_t op2)
2630 /* XXX: TODO: test special values (NaN, infinites, ...) */
2631 return helper_efdtsteq(op1, op2);
2634 /*****************************************************************************/
2635 /* Softmmu support */
2636 #if !defined (CONFIG_USER_ONLY)
2638 #define MMUSUFFIX _mmu
2640 #define SHIFT 0
2641 #include "softmmu_template.h"
2643 #define SHIFT 1
2644 #include "softmmu_template.h"
2646 #define SHIFT 2
2647 #include "softmmu_template.h"
2649 #define SHIFT 3
2650 #include "softmmu_template.h"
2652 /* try to fill the TLB and return an exception if error. If retaddr is
2653 NULL, it means that the function was called in C code (i.e. not
2654 from generated code or from helper.c) */
2655 /* XXX: fix it to restore all registers */
2656 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
2658 TranslationBlock *tb;
2659 CPUState *saved_env;
2660 unsigned long pc;
2661 int ret;
2663 /* XXX: hack to restore env in all cases, even if not called from
2664 generated code */
2665 saved_env = env;
2666 env = cpu_single_env;
2667 ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
2668 if (unlikely(ret != 0)) {
2669 if (likely(retaddr)) {
2670 /* now we have a real cpu fault */
2671 pc = (unsigned long)retaddr;
2672 tb = tb_find_pc(pc);
2673 if (likely(tb)) {
2674 /* the PC is inside the translated code. It means that we have
2675 a virtual CPU fault */
2676 cpu_restore_state(tb, env, pc, NULL);
2679 helper_raise_exception_err(env->exception_index, env->error_code);
2681 env = saved_env;
2684 /* Segment registers load and store */
2685 target_ulong helper_load_sr (target_ulong sr_num)
2687 return env->sr[sr_num];
2690 void helper_store_sr (target_ulong sr_num, target_ulong val)
2692 ppc_store_sr(env, sr_num, val);
2695 /* SLB management */
2696 #if defined(TARGET_PPC64)
2697 target_ulong helper_load_slb (target_ulong slb_nr)
2699 return ppc_load_slb(env, slb_nr);
2702 void helper_store_slb (target_ulong slb_nr, target_ulong rs)
2704 ppc_store_slb(env, slb_nr, rs);
2707 void helper_slbia (void)
2709 ppc_slb_invalidate_all(env);
2712 void helper_slbie (target_ulong addr)
2714 ppc_slb_invalidate_one(env, addr);
2717 #endif /* defined(TARGET_PPC64) */
2719 /* TLB management */
2720 void helper_tlbia (void)
2722 ppc_tlb_invalidate_all(env);
2725 void helper_tlbie (target_ulong addr)
2727 ppc_tlb_invalidate_one(env, addr);
2730 /* Software driven TLBs management */
2731 /* PowerPC 602/603 software TLB load instructions helpers */
2732 static void do_6xx_tlb (target_ulong new_EPN, int is_code)
2734 target_ulong RPN, CMP, EPN;
2735 int way;
2737 RPN = env->spr[SPR_RPA];
2738 if (is_code) {
2739 CMP = env->spr[SPR_ICMP];
2740 EPN = env->spr[SPR_IMISS];
2741 } else {
2742 CMP = env->spr[SPR_DCMP];
2743 EPN = env->spr[SPR_DMISS];
2745 way = (env->spr[SPR_SRR1] >> 17) & 1;
2746 #if defined (DEBUG_SOFTWARE_TLB)
2747 if (loglevel != 0) {
2748 fprintf(logfile, "%s: EPN " ADDRX " " ADDRX " PTE0 " ADDRX
2749 " PTE1 " ADDRX " way %d\n",
2750 __func__, new_EPN, EPN, CMP, RPN, way);
2752 #endif
2753 /* Store this TLB */
2754 ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK),
2755 way, is_code, CMP, RPN);
2758 void helper_6xx_tlbd (target_ulong EPN)
2760 do_6xx_tlb(EPN, 0);
2763 void helper_6xx_tlbi (target_ulong EPN)
2765 do_6xx_tlb(EPN, 1);
2768 /* PowerPC 74xx software TLB load instructions helpers */
2769 static void do_74xx_tlb (target_ulong new_EPN, int is_code)
2771 target_ulong RPN, CMP, EPN;
2772 int way;
2774 RPN = env->spr[SPR_PTELO];
2775 CMP = env->spr[SPR_PTEHI];
2776 EPN = env->spr[SPR_TLBMISS] & ~0x3;
2777 way = env->spr[SPR_TLBMISS] & 0x3;
2778 #if defined (DEBUG_SOFTWARE_TLB)
2779 if (loglevel != 0) {
2780 fprintf(logfile, "%s: EPN " ADDRX " " ADDRX " PTE0 " ADDRX
2781 " PTE1 " ADDRX " way %d\n",
2782 __func__, new_EPN, EPN, CMP, RPN, way);
2784 #endif
2785 /* Store this TLB */
2786 ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK),
2787 way, is_code, CMP, RPN);
2790 void helper_74xx_tlbd (target_ulong EPN)
2792 do_74xx_tlb(EPN, 0);
2795 void helper_74xx_tlbi (target_ulong EPN)
2797 do_74xx_tlb(EPN, 1);
2800 static always_inline target_ulong booke_tlb_to_page_size (int size)
2802 return 1024 << (2 * size);
2805 static always_inline int booke_page_size_to_tlb (target_ulong page_size)
2807 int size;
2809 switch (page_size) {
2810 case 0x00000400UL:
2811 size = 0x0;
2812 break;
2813 case 0x00001000UL:
2814 size = 0x1;
2815 break;
2816 case 0x00004000UL:
2817 size = 0x2;
2818 break;
2819 case 0x00010000UL:
2820 size = 0x3;
2821 break;
2822 case 0x00040000UL:
2823 size = 0x4;
2824 break;
2825 case 0x00100000UL:
2826 size = 0x5;
2827 break;
2828 case 0x00400000UL:
2829 size = 0x6;
2830 break;
2831 case 0x01000000UL:
2832 size = 0x7;
2833 break;
2834 case 0x04000000UL:
2835 size = 0x8;
2836 break;
2837 case 0x10000000UL:
2838 size = 0x9;
2839 break;
2840 case 0x40000000UL:
2841 size = 0xA;
2842 break;
2843 #if defined (TARGET_PPC64)
2844 case 0x000100000000ULL:
2845 size = 0xB;
2846 break;
2847 case 0x000400000000ULL:
2848 size = 0xC;
2849 break;
2850 case 0x001000000000ULL:
2851 size = 0xD;
2852 break;
2853 case 0x004000000000ULL:
2854 size = 0xE;
2855 break;
2856 case 0x010000000000ULL:
2857 size = 0xF;
2858 break;
2859 #endif
2860 default:
2861 size = -1;
2862 break;
2865 return size;
2868 /* Helpers for 4xx TLB management */
2869 target_ulong helper_4xx_tlbre_lo (target_ulong entry)
2871 ppcemb_tlb_t *tlb;
2872 target_ulong ret;
2873 int size;
2875 entry &= 0x3F;
2876 tlb = &env->tlb[entry].tlbe;
2877 ret = tlb->EPN;
2878 if (tlb->prot & PAGE_VALID)
2879 ret |= 0x400;
2880 size = booke_page_size_to_tlb(tlb->size);
2881 if (size < 0 || size > 0x7)
2882 size = 1;
2883 ret |= size << 7;
2884 env->spr[SPR_40x_PID] = tlb->PID;
2885 return ret;
2888 target_ulong helper_4xx_tlbre_hi (target_ulong entry)
2890 ppcemb_tlb_t *tlb;
2891 target_ulong ret;
2893 entry &= 0x3F;
2894 tlb = &env->tlb[entry].tlbe;
2895 ret = tlb->RPN;
2896 if (tlb->prot & PAGE_EXEC)
2897 ret |= 0x200;
2898 if (tlb->prot & PAGE_WRITE)
2899 ret |= 0x100;
2900 return ret;
2903 void helper_4xx_tlbwe_hi (target_ulong entry, target_ulong val)
2905 ppcemb_tlb_t *tlb;
2906 target_ulong page, end;
2908 #if defined (DEBUG_SOFTWARE_TLB)
2909 if (loglevel != 0) {
2910 fprintf(logfile, "%s entry %d val " ADDRX "\n", __func__, (int)entry, val);
2912 #endif
2913 entry &= 0x3F;
2914 tlb = &env->tlb[entry].tlbe;
2915 /* Invalidate previous TLB (if it's valid) */
2916 if (tlb->prot & PAGE_VALID) {
2917 end = tlb->EPN + tlb->size;
2918 #if defined (DEBUG_SOFTWARE_TLB)
2919 if (loglevel != 0) {
2920 fprintf(logfile, "%s: invalidate old TLB %d start " ADDRX
2921 " end " ADDRX "\n", __func__, (int)entry, tlb->EPN, end);
2923 #endif
2924 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2925 tlb_flush_page(env, page);
2927 tlb->size = booke_tlb_to_page_size((val >> 7) & 0x7);
2928 /* We cannot handle TLB size < TARGET_PAGE_SIZE.
2929 * If this ever occurs, one should use the ppcemb target instead
2930 * of the ppc or ppc64 one
2932 if ((val & 0x40) && tlb->size < TARGET_PAGE_SIZE) {
2933 cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u "
2934 "are not supported (%d)\n",
2935 tlb->size, TARGET_PAGE_SIZE, (int)((val >> 7) & 0x7));
2937 tlb->EPN = val & ~(tlb->size - 1);
2938 if (val & 0x40)
2939 tlb->prot |= PAGE_VALID;
2940 else
2941 tlb->prot &= ~PAGE_VALID;
2942 if (val & 0x20) {
2943 /* XXX: TO BE FIXED */
2944 cpu_abort(env, "Little-endian TLB entries are not supported by now\n");
2946 tlb->PID = env->spr[SPR_40x_PID]; /* PID */
2947 tlb->attr = val & 0xFF;
2948 #if defined (DEBUG_SOFTWARE_TLB)
2949 if (loglevel != 0) {
2950 fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
2951 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
2952 (int)entry, tlb->RPN, tlb->EPN, tlb->size,
2953 tlb->prot & PAGE_READ ? 'r' : '-',
2954 tlb->prot & PAGE_WRITE ? 'w' : '-',
2955 tlb->prot & PAGE_EXEC ? 'x' : '-',
2956 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
2958 #endif
2959 /* Invalidate new TLB (if valid) */
2960 if (tlb->prot & PAGE_VALID) {
2961 end = tlb->EPN + tlb->size;
2962 #if defined (DEBUG_SOFTWARE_TLB)
2963 if (loglevel != 0) {
2964 fprintf(logfile, "%s: invalidate TLB %d start " ADDRX
2965 " end " ADDRX "\n", __func__, (int)entry, tlb->EPN, end);
2967 #endif
2968 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2969 tlb_flush_page(env, page);
2973 void helper_4xx_tlbwe_lo (target_ulong entry, target_ulong val)
2975 ppcemb_tlb_t *tlb;
2977 #if defined (DEBUG_SOFTWARE_TLB)
2978 if (loglevel != 0) {
2979 fprintf(logfile, "%s entry %i val " ADDRX "\n", __func__, (int)entry, val);
2981 #endif
2982 entry &= 0x3F;
2983 tlb = &env->tlb[entry].tlbe;
2984 tlb->RPN = val & 0xFFFFFC00;
2985 tlb->prot = PAGE_READ;
2986 if (val & 0x200)
2987 tlb->prot |= PAGE_EXEC;
2988 if (val & 0x100)
2989 tlb->prot |= PAGE_WRITE;
2990 #if defined (DEBUG_SOFTWARE_TLB)
2991 if (loglevel != 0) {
2992 fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
2993 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
2994 (int)entry, tlb->RPN, tlb->EPN, tlb->size,
2995 tlb->prot & PAGE_READ ? 'r' : '-',
2996 tlb->prot & PAGE_WRITE ? 'w' : '-',
2997 tlb->prot & PAGE_EXEC ? 'x' : '-',
2998 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
3000 #endif
3003 target_ulong helper_4xx_tlbsx (target_ulong address)
3005 return ppcemb_tlb_search(env, address, env->spr[SPR_40x_PID]);
3008 /* PowerPC 440 TLB management */
3009 void helper_440_tlbwe (uint32_t word, target_ulong entry, target_ulong value)
3011 ppcemb_tlb_t *tlb;
3012 target_ulong EPN, RPN, size;
3013 int do_flush_tlbs;
3015 #if defined (DEBUG_SOFTWARE_TLB)
3016 if (loglevel != 0) {
3017 fprintf(logfile, "%s word %d entry %d value " ADDRX "\n",
3018 __func__, word, (int)entry, value);
3020 #endif
3021 do_flush_tlbs = 0;
3022 entry &= 0x3F;
3023 tlb = &env->tlb[entry].tlbe;
3024 switch (word) {
3025 default:
3026 /* Just here to please gcc */
3027 case 0:
3028 EPN = value & 0xFFFFFC00;
3029 if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN)
3030 do_flush_tlbs = 1;
3031 tlb->EPN = EPN;
3032 size = booke_tlb_to_page_size((value >> 4) & 0xF);
3033 if ((tlb->prot & PAGE_VALID) && tlb->size < size)
3034 do_flush_tlbs = 1;
3035 tlb->size = size;
3036 tlb->attr &= ~0x1;
3037 tlb->attr |= (value >> 8) & 1;
3038 if (value & 0x200) {
3039 tlb->prot |= PAGE_VALID;
3040 } else {
3041 if (tlb->prot & PAGE_VALID) {
3042 tlb->prot &= ~PAGE_VALID;
3043 do_flush_tlbs = 1;
3046 tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF;
3047 if (do_flush_tlbs)
3048 tlb_flush(env, 1);
3049 break;
3050 case 1:
3051 RPN = value & 0xFFFFFC0F;
3052 if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN)
3053 tlb_flush(env, 1);
3054 tlb->RPN = RPN;
3055 break;
3056 case 2:
3057 tlb->attr = (tlb->attr & 0x1) | (value & 0x0000FF00);
3058 tlb->prot = tlb->prot & PAGE_VALID;
3059 if (value & 0x1)
3060 tlb->prot |= PAGE_READ << 4;
3061 if (value & 0x2)
3062 tlb->prot |= PAGE_WRITE << 4;
3063 if (value & 0x4)
3064 tlb->prot |= PAGE_EXEC << 4;
3065 if (value & 0x8)
3066 tlb->prot |= PAGE_READ;
3067 if (value & 0x10)
3068 tlb->prot |= PAGE_WRITE;
3069 if (value & 0x20)
3070 tlb->prot |= PAGE_EXEC;
3071 break;
3075 target_ulong helper_440_tlbre (uint32_t word, target_ulong entry)
3077 ppcemb_tlb_t *tlb;
3078 target_ulong ret;
3079 int size;
3081 entry &= 0x3F;
3082 tlb = &env->tlb[entry].tlbe;
3083 switch (word) {
3084 default:
3085 /* Just here to please gcc */
3086 case 0:
3087 ret = tlb->EPN;
3088 size = booke_page_size_to_tlb(tlb->size);
3089 if (size < 0 || size > 0xF)
3090 size = 1;
3091 ret |= size << 4;
3092 if (tlb->attr & 0x1)
3093 ret |= 0x100;
3094 if (tlb->prot & PAGE_VALID)
3095 ret |= 0x200;
3096 env->spr[SPR_440_MMUCR] &= ~0x000000FF;
3097 env->spr[SPR_440_MMUCR] |= tlb->PID;
3098 break;
3099 case 1:
3100 ret = tlb->RPN;
3101 break;
3102 case 2:
3103 ret = tlb->attr & ~0x1;
3104 if (tlb->prot & (PAGE_READ << 4))
3105 ret |= 0x1;
3106 if (tlb->prot & (PAGE_WRITE << 4))
3107 ret |= 0x2;
3108 if (tlb->prot & (PAGE_EXEC << 4))
3109 ret |= 0x4;
3110 if (tlb->prot & PAGE_READ)
3111 ret |= 0x8;
3112 if (tlb->prot & PAGE_WRITE)
3113 ret |= 0x10;
3114 if (tlb->prot & PAGE_EXEC)
3115 ret |= 0x20;
3116 break;
3118 return ret;
3121 target_ulong helper_440_tlbsx (target_ulong address)
3123 return ppcemb_tlb_search(env, address, env->spr[SPR_440_MMUCR] & 0xFF);
3126 #endif /* !CONFIG_USER_ONLY */