Add GEN_VXFORM_NOA macro for subsequent instructions.
[qemu/mini2440/sniper_sniper_test.git] / target-sparc / op_helper.c
blob0cde695869f3ad65d2a074efe486f605798869b6
1 #include "exec.h"
2 #include "host-utils.h"
3 #include "helper.h"
4 #if !defined(CONFIG_USER_ONLY)
5 #include "softmmu_exec.h"
6 #endif /* !defined(CONFIG_USER_ONLY) */
8 //#define DEBUG_MMU
9 //#define DEBUG_MXCC
10 //#define DEBUG_UNALIGNED
11 //#define DEBUG_UNASSIGNED
12 //#define DEBUG_ASI
13 //#define DEBUG_PCALL
15 #ifdef DEBUG_MMU
16 #define DPRINTF_MMU(fmt, args...) \
17 do { printf("MMU: " fmt , ##args); } while (0)
18 #else
19 #define DPRINTF_MMU(fmt, args...) do {} while (0)
20 #endif
22 #ifdef DEBUG_MXCC
23 #define DPRINTF_MXCC(fmt, args...) \
24 do { printf("MXCC: " fmt , ##args); } while (0)
25 #else
26 #define DPRINTF_MXCC(fmt, args...) do {} while (0)
27 #endif
29 #ifdef DEBUG_ASI
30 #define DPRINTF_ASI(fmt, args...) \
31 do { printf("ASI: " fmt , ##args); } while (0)
32 #else
33 #define DPRINTF_ASI(fmt, args...) do {} while (0)
34 #endif
36 #ifdef TARGET_SPARC64
37 #ifndef TARGET_ABI32
38 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
39 #else
40 #define AM_CHECK(env1) (1)
41 #endif
42 #endif
44 static inline void address_mask(CPUState *env1, target_ulong *addr)
46 #ifdef TARGET_SPARC64
47 if (AM_CHECK(env1))
48 *addr &= 0xffffffffULL;
49 #endif
52 static void raise_exception(int tt)
54 env->exception_index = tt;
55 cpu_loop_exit();
58 void HELPER(raise_exception)(int tt)
60 raise_exception(tt);
63 static inline void set_cwp(int new_cwp)
65 cpu_set_cwp(env, new_cwp);
68 void helper_check_align(target_ulong addr, uint32_t align)
70 if (addr & align) {
71 #ifdef DEBUG_UNALIGNED
72 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
73 "\n", addr, env->pc);
74 #endif
75 raise_exception(TT_UNALIGNED);
79 #define F_HELPER(name, p) void helper_f##name##p(void)
81 #define F_BINOP(name) \
82 float32 helper_f ## name ## s (float32 src1, float32 src2) \
83 { \
84 return float32_ ## name (src1, src2, &env->fp_status); \
85 } \
86 F_HELPER(name, d) \
87 { \
88 DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \
89 } \
90 F_HELPER(name, q) \
91 { \
92 QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \
95 F_BINOP(add);
96 F_BINOP(sub);
97 F_BINOP(mul);
98 F_BINOP(div);
99 #undef F_BINOP
101 void helper_fsmuld(float32 src1, float32 src2)
103 DT0 = float64_mul(float32_to_float64(src1, &env->fp_status),
104 float32_to_float64(src2, &env->fp_status),
105 &env->fp_status);
108 void helper_fdmulq(void)
110 QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
111 float64_to_float128(DT1, &env->fp_status),
112 &env->fp_status);
115 float32 helper_fnegs(float32 src)
117 return float32_chs(src);
120 #ifdef TARGET_SPARC64
121 F_HELPER(neg, d)
123 DT0 = float64_chs(DT1);
126 F_HELPER(neg, q)
128 QT0 = float128_chs(QT1);
130 #endif
132 /* Integer to float conversion. */
133 float32 helper_fitos(int32_t src)
135 return int32_to_float32(src, &env->fp_status);
138 void helper_fitod(int32_t src)
140 DT0 = int32_to_float64(src, &env->fp_status);
143 void helper_fitoq(int32_t src)
145 QT0 = int32_to_float128(src, &env->fp_status);
148 #ifdef TARGET_SPARC64
149 float32 helper_fxtos(void)
151 return int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
154 F_HELPER(xto, d)
156 DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
159 F_HELPER(xto, q)
161 QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
163 #endif
164 #undef F_HELPER
166 /* floating point conversion */
167 float32 helper_fdtos(void)
169 return float64_to_float32(DT1, &env->fp_status);
172 void helper_fstod(float32 src)
174 DT0 = float32_to_float64(src, &env->fp_status);
177 float32 helper_fqtos(void)
179 return float128_to_float32(QT1, &env->fp_status);
182 void helper_fstoq(float32 src)
184 QT0 = float32_to_float128(src, &env->fp_status);
187 void helper_fqtod(void)
189 DT0 = float128_to_float64(QT1, &env->fp_status);
192 void helper_fdtoq(void)
194 QT0 = float64_to_float128(DT1, &env->fp_status);
197 /* Float to integer conversion. */
198 int32_t helper_fstoi(float32 src)
200 return float32_to_int32_round_to_zero(src, &env->fp_status);
203 int32_t helper_fdtoi(void)
205 return float64_to_int32_round_to_zero(DT1, &env->fp_status);
208 int32_t helper_fqtoi(void)
210 return float128_to_int32_round_to_zero(QT1, &env->fp_status);
213 #ifdef TARGET_SPARC64
214 void helper_fstox(float32 src)
216 *((int64_t *)&DT0) = float32_to_int64_round_to_zero(src, &env->fp_status);
219 void helper_fdtox(void)
221 *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
224 void helper_fqtox(void)
226 *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
229 void helper_faligndata(void)
231 uint64_t tmp;
233 tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
234 /* on many architectures a shift of 64 does nothing */
235 if ((env->gsr & 7) != 0) {
236 tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
238 *((uint64_t *)&DT0) = tmp;
241 #ifdef WORDS_BIGENDIAN
242 #define VIS_B64(n) b[7 - (n)]
243 #define VIS_W64(n) w[3 - (n)]
244 #define VIS_SW64(n) sw[3 - (n)]
245 #define VIS_L64(n) l[1 - (n)]
246 #define VIS_B32(n) b[3 - (n)]
247 #define VIS_W32(n) w[1 - (n)]
248 #else
249 #define VIS_B64(n) b[n]
250 #define VIS_W64(n) w[n]
251 #define VIS_SW64(n) sw[n]
252 #define VIS_L64(n) l[n]
253 #define VIS_B32(n) b[n]
254 #define VIS_W32(n) w[n]
255 #endif
257 typedef union {
258 uint8_t b[8];
259 uint16_t w[4];
260 int16_t sw[4];
261 uint32_t l[2];
262 float64 d;
263 } vis64;
265 typedef union {
266 uint8_t b[4];
267 uint16_t w[2];
268 uint32_t l;
269 float32 f;
270 } vis32;
272 void helper_fpmerge(void)
274 vis64 s, d;
276 s.d = DT0;
277 d.d = DT1;
279 // Reverse calculation order to handle overlap
280 d.VIS_B64(7) = s.VIS_B64(3);
281 d.VIS_B64(6) = d.VIS_B64(3);
282 d.VIS_B64(5) = s.VIS_B64(2);
283 d.VIS_B64(4) = d.VIS_B64(2);
284 d.VIS_B64(3) = s.VIS_B64(1);
285 d.VIS_B64(2) = d.VIS_B64(1);
286 d.VIS_B64(1) = s.VIS_B64(0);
287 //d.VIS_B64(0) = d.VIS_B64(0);
289 DT0 = d.d;
292 void helper_fmul8x16(void)
294 vis64 s, d;
295 uint32_t tmp;
297 s.d = DT0;
298 d.d = DT1;
300 #define PMUL(r) \
301 tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \
302 if ((tmp & 0xff) > 0x7f) \
303 tmp += 0x100; \
304 d.VIS_W64(r) = tmp >> 8;
306 PMUL(0);
307 PMUL(1);
308 PMUL(2);
309 PMUL(3);
310 #undef PMUL
312 DT0 = d.d;
315 void helper_fmul8x16al(void)
317 vis64 s, d;
318 uint32_t tmp;
320 s.d = DT0;
321 d.d = DT1;
323 #define PMUL(r) \
324 tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \
325 if ((tmp & 0xff) > 0x7f) \
326 tmp += 0x100; \
327 d.VIS_W64(r) = tmp >> 8;
329 PMUL(0);
330 PMUL(1);
331 PMUL(2);
332 PMUL(3);
333 #undef PMUL
335 DT0 = d.d;
338 void helper_fmul8x16au(void)
340 vis64 s, d;
341 uint32_t tmp;
343 s.d = DT0;
344 d.d = DT1;
346 #define PMUL(r) \
347 tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \
348 if ((tmp & 0xff) > 0x7f) \
349 tmp += 0x100; \
350 d.VIS_W64(r) = tmp >> 8;
352 PMUL(0);
353 PMUL(1);
354 PMUL(2);
355 PMUL(3);
356 #undef PMUL
358 DT0 = d.d;
361 void helper_fmul8sux16(void)
363 vis64 s, d;
364 uint32_t tmp;
366 s.d = DT0;
367 d.d = DT1;
369 #define PMUL(r) \
370 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
371 if ((tmp & 0xff) > 0x7f) \
372 tmp += 0x100; \
373 d.VIS_W64(r) = tmp >> 8;
375 PMUL(0);
376 PMUL(1);
377 PMUL(2);
378 PMUL(3);
379 #undef PMUL
381 DT0 = d.d;
384 void helper_fmul8ulx16(void)
386 vis64 s, d;
387 uint32_t tmp;
389 s.d = DT0;
390 d.d = DT1;
392 #define PMUL(r) \
393 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
394 if ((tmp & 0xff) > 0x7f) \
395 tmp += 0x100; \
396 d.VIS_W64(r) = tmp >> 8;
398 PMUL(0);
399 PMUL(1);
400 PMUL(2);
401 PMUL(3);
402 #undef PMUL
404 DT0 = d.d;
407 void helper_fmuld8sux16(void)
409 vis64 s, d;
410 uint32_t tmp;
412 s.d = DT0;
413 d.d = DT1;
415 #define PMUL(r) \
416 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
417 if ((tmp & 0xff) > 0x7f) \
418 tmp += 0x100; \
419 d.VIS_L64(r) = tmp;
421 // Reverse calculation order to handle overlap
422 PMUL(1);
423 PMUL(0);
424 #undef PMUL
426 DT0 = d.d;
429 void helper_fmuld8ulx16(void)
431 vis64 s, d;
432 uint32_t tmp;
434 s.d = DT0;
435 d.d = DT1;
437 #define PMUL(r) \
438 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
439 if ((tmp & 0xff) > 0x7f) \
440 tmp += 0x100; \
441 d.VIS_L64(r) = tmp;
443 // Reverse calculation order to handle overlap
444 PMUL(1);
445 PMUL(0);
446 #undef PMUL
448 DT0 = d.d;
451 void helper_fexpand(void)
453 vis32 s;
454 vis64 d;
456 s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
457 d.d = DT1;
458 d.VIS_W64(0) = s.VIS_B32(0) << 4;
459 d.VIS_W64(1) = s.VIS_B32(1) << 4;
460 d.VIS_W64(2) = s.VIS_B32(2) << 4;
461 d.VIS_W64(3) = s.VIS_B32(3) << 4;
463 DT0 = d.d;
466 #define VIS_HELPER(name, F) \
467 void name##16(void) \
469 vis64 s, d; \
471 s.d = DT0; \
472 d.d = DT1; \
474 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0)); \
475 d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1)); \
476 d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2)); \
477 d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3)); \
479 DT0 = d.d; \
482 uint32_t name##16s(uint32_t src1, uint32_t src2) \
484 vis32 s, d; \
486 s.l = src1; \
487 d.l = src2; \
489 d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0)); \
490 d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1)); \
492 return d.l; \
495 void name##32(void) \
497 vis64 s, d; \
499 s.d = DT0; \
500 d.d = DT1; \
502 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0)); \
503 d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1)); \
505 DT0 = d.d; \
508 uint32_t name##32s(uint32_t src1, uint32_t src2) \
510 vis32 s, d; \
512 s.l = src1; \
513 d.l = src2; \
515 d.l = F(d.l, s.l); \
517 return d.l; \
520 #define FADD(a, b) ((a) + (b))
521 #define FSUB(a, b) ((a) - (b))
522 VIS_HELPER(helper_fpadd, FADD)
523 VIS_HELPER(helper_fpsub, FSUB)
525 #define VIS_CMPHELPER(name, F) \
526 void name##16(void) \
528 vis64 s, d; \
530 s.d = DT0; \
531 d.d = DT1; \
533 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0; \
534 d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0; \
535 d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0; \
536 d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0; \
538 DT0 = d.d; \
541 void name##32(void) \
543 vis64 s, d; \
545 s.d = DT0; \
546 d.d = DT1; \
548 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0; \
549 d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0; \
551 DT0 = d.d; \
554 #define FCMPGT(a, b) ((a) > (b))
555 #define FCMPEQ(a, b) ((a) == (b))
556 #define FCMPLE(a, b) ((a) <= (b))
557 #define FCMPNE(a, b) ((a) != (b))
559 VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
560 VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
561 VIS_CMPHELPER(helper_fcmple, FCMPLE)
562 VIS_CMPHELPER(helper_fcmpne, FCMPNE)
563 #endif
565 void helper_check_ieee_exceptions(void)
567 target_ulong status;
569 status = get_float_exception_flags(&env->fp_status);
570 if (status) {
571 /* Copy IEEE 754 flags into FSR */
572 if (status & float_flag_invalid)
573 env->fsr |= FSR_NVC;
574 if (status & float_flag_overflow)
575 env->fsr |= FSR_OFC;
576 if (status & float_flag_underflow)
577 env->fsr |= FSR_UFC;
578 if (status & float_flag_divbyzero)
579 env->fsr |= FSR_DZC;
580 if (status & float_flag_inexact)
581 env->fsr |= FSR_NXC;
583 if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
584 /* Unmasked exception, generate a trap */
585 env->fsr |= FSR_FTT_IEEE_EXCP;
586 raise_exception(TT_FP_EXCP);
587 } else {
588 /* Accumulate exceptions */
589 env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
594 void helper_clear_float_exceptions(void)
596 set_float_exception_flags(0, &env->fp_status);
599 float32 helper_fabss(float32 src)
601 return float32_abs(src);
604 #ifdef TARGET_SPARC64
605 void helper_fabsd(void)
607 DT0 = float64_abs(DT1);
610 void helper_fabsq(void)
612 QT0 = float128_abs(QT1);
614 #endif
616 float32 helper_fsqrts(float32 src)
618 return float32_sqrt(src, &env->fp_status);
621 void helper_fsqrtd(void)
623 DT0 = float64_sqrt(DT1, &env->fp_status);
626 void helper_fsqrtq(void)
628 QT0 = float128_sqrt(QT1, &env->fp_status);
631 #define GEN_FCMP(name, size, reg1, reg2, FS, TRAP) \
632 void glue(helper_, name) (void) \
634 target_ulong new_fsr; \
636 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
637 switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \
638 case float_relation_unordered: \
639 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
640 if ((env->fsr & FSR_NVM) || TRAP) { \
641 env->fsr |= new_fsr; \
642 env->fsr |= FSR_NVC; \
643 env->fsr |= FSR_FTT_IEEE_EXCP; \
644 raise_exception(TT_FP_EXCP); \
645 } else { \
646 env->fsr |= FSR_NVA; \
648 break; \
649 case float_relation_less: \
650 new_fsr = FSR_FCC0 << FS; \
651 break; \
652 case float_relation_greater: \
653 new_fsr = FSR_FCC1 << FS; \
654 break; \
655 default: \
656 new_fsr = 0; \
657 break; \
659 env->fsr |= new_fsr; \
661 #define GEN_FCMPS(name, size, FS, TRAP) \
662 void glue(helper_, name)(float32 src1, float32 src2) \
664 target_ulong new_fsr; \
666 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
667 switch (glue(size, _compare) (src1, src2, &env->fp_status)) { \
668 case float_relation_unordered: \
669 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
670 if ((env->fsr & FSR_NVM) || TRAP) { \
671 env->fsr |= new_fsr; \
672 env->fsr |= FSR_NVC; \
673 env->fsr |= FSR_FTT_IEEE_EXCP; \
674 raise_exception(TT_FP_EXCP); \
675 } else { \
676 env->fsr |= FSR_NVA; \
678 break; \
679 case float_relation_less: \
680 new_fsr = FSR_FCC0 << FS; \
681 break; \
682 case float_relation_greater: \
683 new_fsr = FSR_FCC1 << FS; \
684 break; \
685 default: \
686 new_fsr = 0; \
687 break; \
689 env->fsr |= new_fsr; \
692 GEN_FCMPS(fcmps, float32, 0, 0);
693 GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
695 GEN_FCMPS(fcmpes, float32, 0, 1);
696 GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
698 GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
699 GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
701 #ifdef TARGET_SPARC64
702 GEN_FCMPS(fcmps_fcc1, float32, 22, 0);
703 GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
704 GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
706 GEN_FCMPS(fcmps_fcc2, float32, 24, 0);
707 GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
708 GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
710 GEN_FCMPS(fcmps_fcc3, float32, 26, 0);
711 GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
712 GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
714 GEN_FCMPS(fcmpes_fcc1, float32, 22, 1);
715 GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
716 GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
718 GEN_FCMPS(fcmpes_fcc2, float32, 24, 1);
719 GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
720 GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
722 GEN_FCMPS(fcmpes_fcc3, float32, 26, 1);
723 GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
724 GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
725 #endif
726 #undef GEN_FCMPS
728 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
729 defined(DEBUG_MXCC)
730 static void dump_mxcc(CPUState *env)
732 printf("mxccdata: %016llx %016llx %016llx %016llx\n",
733 env->mxccdata[0], env->mxccdata[1],
734 env->mxccdata[2], env->mxccdata[3]);
735 printf("mxccregs: %016llx %016llx %016llx %016llx\n"
736 " %016llx %016llx %016llx %016llx\n",
737 env->mxccregs[0], env->mxccregs[1],
738 env->mxccregs[2], env->mxccregs[3],
739 env->mxccregs[4], env->mxccregs[5],
740 env->mxccregs[6], env->mxccregs[7]);
742 #endif
744 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
745 && defined(DEBUG_ASI)
746 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
747 uint64_t r1)
749 switch (size)
751 case 1:
752 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
753 addr, asi, r1 & 0xff);
754 break;
755 case 2:
756 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
757 addr, asi, r1 & 0xffff);
758 break;
759 case 4:
760 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
761 addr, asi, r1 & 0xffffffff);
762 break;
763 case 8:
764 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
765 addr, asi, r1);
766 break;
769 #endif
771 #ifndef TARGET_SPARC64
772 #ifndef CONFIG_USER_ONLY
773 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
775 uint64_t ret = 0;
776 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
777 uint32_t last_addr = addr;
778 #endif
780 helper_check_align(addr, size - 1);
781 switch (asi) {
782 case 2: /* SuperSparc MXCC registers */
783 switch (addr) {
784 case 0x01c00a00: /* MXCC control register */
785 if (size == 8)
786 ret = env->mxccregs[3];
787 else
788 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
789 size);
790 break;
791 case 0x01c00a04: /* MXCC control register */
792 if (size == 4)
793 ret = env->mxccregs[3];
794 else
795 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
796 size);
797 break;
798 case 0x01c00c00: /* Module reset register */
799 if (size == 8) {
800 ret = env->mxccregs[5];
801 // should we do something here?
802 } else
803 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
804 size);
805 break;
806 case 0x01c00f00: /* MBus port address register */
807 if (size == 8)
808 ret = env->mxccregs[7];
809 else
810 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
811 size);
812 break;
813 default:
814 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
815 size);
816 break;
818 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
819 "addr = %08x -> ret = %" PRIx64 ","
820 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
821 #ifdef DEBUG_MXCC
822 dump_mxcc(env);
823 #endif
824 break;
825 case 3: /* MMU probe */
827 int mmulev;
829 mmulev = (addr >> 8) & 15;
830 if (mmulev > 4)
831 ret = 0;
832 else
833 ret = mmu_probe(env, addr, mmulev);
834 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
835 addr, mmulev, ret);
837 break;
838 case 4: /* read MMU regs */
840 int reg = (addr >> 8) & 0x1f;
842 ret = env->mmuregs[reg];
843 if (reg == 3) /* Fault status cleared on read */
844 env->mmuregs[3] = 0;
845 else if (reg == 0x13) /* Fault status read */
846 ret = env->mmuregs[3];
847 else if (reg == 0x14) /* Fault address read */
848 ret = env->mmuregs[4];
849 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
851 break;
852 case 5: // Turbosparc ITLB Diagnostic
853 case 6: // Turbosparc DTLB Diagnostic
854 case 7: // Turbosparc IOTLB Diagnostic
855 break;
856 case 9: /* Supervisor code access */
857 switch(size) {
858 case 1:
859 ret = ldub_code(addr);
860 break;
861 case 2:
862 ret = lduw_code(addr);
863 break;
864 default:
865 case 4:
866 ret = ldl_code(addr);
867 break;
868 case 8:
869 ret = ldq_code(addr);
870 break;
872 break;
873 case 0xa: /* User data access */
874 switch(size) {
875 case 1:
876 ret = ldub_user(addr);
877 break;
878 case 2:
879 ret = lduw_user(addr);
880 break;
881 default:
882 case 4:
883 ret = ldl_user(addr);
884 break;
885 case 8:
886 ret = ldq_user(addr);
887 break;
889 break;
890 case 0xb: /* Supervisor data access */
891 switch(size) {
892 case 1:
893 ret = ldub_kernel(addr);
894 break;
895 case 2:
896 ret = lduw_kernel(addr);
897 break;
898 default:
899 case 4:
900 ret = ldl_kernel(addr);
901 break;
902 case 8:
903 ret = ldq_kernel(addr);
904 break;
906 break;
907 case 0xc: /* I-cache tag */
908 case 0xd: /* I-cache data */
909 case 0xe: /* D-cache tag */
910 case 0xf: /* D-cache data */
911 break;
912 case 0x20: /* MMU passthrough */
913 switch(size) {
914 case 1:
915 ret = ldub_phys(addr);
916 break;
917 case 2:
918 ret = lduw_phys(addr);
919 break;
920 default:
921 case 4:
922 ret = ldl_phys(addr);
923 break;
924 case 8:
925 ret = ldq_phys(addr);
926 break;
928 break;
929 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
930 switch(size) {
931 case 1:
932 ret = ldub_phys((target_phys_addr_t)addr
933 | ((target_phys_addr_t)(asi & 0xf) << 32));
934 break;
935 case 2:
936 ret = lduw_phys((target_phys_addr_t)addr
937 | ((target_phys_addr_t)(asi & 0xf) << 32));
938 break;
939 default:
940 case 4:
941 ret = ldl_phys((target_phys_addr_t)addr
942 | ((target_phys_addr_t)(asi & 0xf) << 32));
943 break;
944 case 8:
945 ret = ldq_phys((target_phys_addr_t)addr
946 | ((target_phys_addr_t)(asi & 0xf) << 32));
947 break;
949 break;
950 case 0x30: // Turbosparc secondary cache diagnostic
951 case 0x31: // Turbosparc RAM snoop
952 case 0x32: // Turbosparc page table descriptor diagnostic
953 case 0x39: /* data cache diagnostic register */
954 ret = 0;
955 break;
956 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
958 int reg = (addr >> 8) & 3;
960 switch(reg) {
961 case 0: /* Breakpoint Value (Addr) */
962 ret = env->mmubpregs[reg];
963 break;
964 case 1: /* Breakpoint Mask */
965 ret = env->mmubpregs[reg];
966 break;
967 case 2: /* Breakpoint Control */
968 ret = env->mmubpregs[reg];
969 break;
970 case 3: /* Breakpoint Status */
971 ret = env->mmubpregs[reg];
972 env->mmubpregs[reg] = 0ULL;
973 break;
975 DPRINTF_MMU("read breakpoint reg[%d] 0x%016llx\n", reg, ret);
977 break;
978 case 8: /* User code access, XXX */
979 default:
980 do_unassigned_access(addr, 0, 0, asi, size);
981 ret = 0;
982 break;
984 if (sign) {
985 switch(size) {
986 case 1:
987 ret = (int8_t) ret;
988 break;
989 case 2:
990 ret = (int16_t) ret;
991 break;
992 case 4:
993 ret = (int32_t) ret;
994 break;
995 default:
996 break;
999 #ifdef DEBUG_ASI
1000 dump_asi("read ", last_addr, asi, size, ret);
1001 #endif
1002 return ret;
1005 void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
1007 helper_check_align(addr, size - 1);
1008 switch(asi) {
1009 case 2: /* SuperSparc MXCC registers */
1010 switch (addr) {
1011 case 0x01c00000: /* MXCC stream data register 0 */
1012 if (size == 8)
1013 env->mxccdata[0] = val;
1014 else
1015 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1016 size);
1017 break;
1018 case 0x01c00008: /* MXCC stream data register 1 */
1019 if (size == 8)
1020 env->mxccdata[1] = val;
1021 else
1022 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1023 size);
1024 break;
1025 case 0x01c00010: /* MXCC stream data register 2 */
1026 if (size == 8)
1027 env->mxccdata[2] = val;
1028 else
1029 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1030 size);
1031 break;
1032 case 0x01c00018: /* MXCC stream data register 3 */
1033 if (size == 8)
1034 env->mxccdata[3] = val;
1035 else
1036 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1037 size);
1038 break;
1039 case 0x01c00100: /* MXCC stream source */
1040 if (size == 8)
1041 env->mxccregs[0] = val;
1042 else
1043 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1044 size);
1045 env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1047 env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1049 env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1050 16);
1051 env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1052 24);
1053 break;
1054 case 0x01c00200: /* MXCC stream destination */
1055 if (size == 8)
1056 env->mxccregs[1] = val;
1057 else
1058 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1059 size);
1060 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0,
1061 env->mxccdata[0]);
1062 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8,
1063 env->mxccdata[1]);
1064 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
1065 env->mxccdata[2]);
1066 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
1067 env->mxccdata[3]);
1068 break;
1069 case 0x01c00a00: /* MXCC control register */
1070 if (size == 8)
1071 env->mxccregs[3] = val;
1072 else
1073 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1074 size);
1075 break;
1076 case 0x01c00a04: /* MXCC control register */
1077 if (size == 4)
1078 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
1079 | val;
1080 else
1081 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1082 size);
1083 break;
1084 case 0x01c00e00: /* MXCC error register */
1085 // writing a 1 bit clears the error
1086 if (size == 8)
1087 env->mxccregs[6] &= ~val;
1088 else
1089 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1090 size);
1091 break;
1092 case 0x01c00f00: /* MBus port address register */
1093 if (size == 8)
1094 env->mxccregs[7] = val;
1095 else
1096 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1097 size);
1098 break;
1099 default:
1100 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1101 size);
1102 break;
1104 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
1105 asi, size, addr, val);
1106 #ifdef DEBUG_MXCC
1107 dump_mxcc(env);
1108 #endif
1109 break;
1110 case 3: /* MMU flush */
1112 int mmulev;
1114 mmulev = (addr >> 8) & 15;
1115 DPRINTF_MMU("mmu flush level %d\n", mmulev);
1116 switch (mmulev) {
1117 case 0: // flush page
1118 tlb_flush_page(env, addr & 0xfffff000);
1119 break;
1120 case 1: // flush segment (256k)
1121 case 2: // flush region (16M)
1122 case 3: // flush context (4G)
1123 case 4: // flush entire
1124 tlb_flush(env, 1);
1125 break;
1126 default:
1127 break;
1129 #ifdef DEBUG_MMU
1130 dump_mmu(env);
1131 #endif
1133 break;
1134 case 4: /* write MMU regs */
1136 int reg = (addr >> 8) & 0x1f;
1137 uint32_t oldreg;
1139 oldreg = env->mmuregs[reg];
1140 switch(reg) {
1141 case 0: // Control Register
1142 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1143 (val & 0x00ffffff);
1144 // Mappings generated during no-fault mode or MMU
1145 // disabled mode are invalid in normal mode
1146 if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
1147 (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm)))
1148 tlb_flush(env, 1);
1149 break;
1150 case 1: // Context Table Pointer Register
1151 env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
1152 break;
1153 case 2: // Context Register
1154 env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
1155 if (oldreg != env->mmuregs[reg]) {
1156 /* we flush when the MMU context changes because
1157 QEMU has no MMU context support */
1158 tlb_flush(env, 1);
1160 break;
1161 case 3: // Synchronous Fault Status Register with Clear
1162 case 4: // Synchronous Fault Address Register
1163 break;
1164 case 0x10: // TLB Replacement Control Register
1165 env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
1166 break;
1167 case 0x13: // Synchronous Fault Status Register with Read and Clear
1168 env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
1169 break;
1170 case 0x14: // Synchronous Fault Address Register
1171 env->mmuregs[4] = val;
1172 break;
1173 default:
1174 env->mmuregs[reg] = val;
1175 break;
1177 if (oldreg != env->mmuregs[reg]) {
1178 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1179 reg, oldreg, env->mmuregs[reg]);
1181 #ifdef DEBUG_MMU
1182 dump_mmu(env);
1183 #endif
1185 break;
1186 case 5: // Turbosparc ITLB Diagnostic
1187 case 6: // Turbosparc DTLB Diagnostic
1188 case 7: // Turbosparc IOTLB Diagnostic
1189 break;
1190 case 0xa: /* User data access */
1191 switch(size) {
1192 case 1:
1193 stb_user(addr, val);
1194 break;
1195 case 2:
1196 stw_user(addr, val);
1197 break;
1198 default:
1199 case 4:
1200 stl_user(addr, val);
1201 break;
1202 case 8:
1203 stq_user(addr, val);
1204 break;
1206 break;
1207 case 0xb: /* Supervisor data access */
1208 switch(size) {
1209 case 1:
1210 stb_kernel(addr, val);
1211 break;
1212 case 2:
1213 stw_kernel(addr, val);
1214 break;
1215 default:
1216 case 4:
1217 stl_kernel(addr, val);
1218 break;
1219 case 8:
1220 stq_kernel(addr, val);
1221 break;
1223 break;
1224 case 0xc: /* I-cache tag */
1225 case 0xd: /* I-cache data */
1226 case 0xe: /* D-cache tag */
1227 case 0xf: /* D-cache data */
1228 case 0x10: /* I/D-cache flush page */
1229 case 0x11: /* I/D-cache flush segment */
1230 case 0x12: /* I/D-cache flush region */
1231 case 0x13: /* I/D-cache flush context */
1232 case 0x14: /* I/D-cache flush user */
1233 break;
1234 case 0x17: /* Block copy, sta access */
1236 // val = src
1237 // addr = dst
1238 // copy 32 bytes
1239 unsigned int i;
1240 uint32_t src = val & ~3, dst = addr & ~3, temp;
1242 for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
1243 temp = ldl_kernel(src);
1244 stl_kernel(dst, temp);
1247 break;
1248 case 0x1f: /* Block fill, stda access */
1250 // addr = dst
1251 // fill 32 bytes with val
1252 unsigned int i;
1253 uint32_t dst = addr & 7;
1255 for (i = 0; i < 32; i += 8, dst += 8)
1256 stq_kernel(dst, val);
1258 break;
1259 case 0x20: /* MMU passthrough */
1261 switch(size) {
1262 case 1:
1263 stb_phys(addr, val);
1264 break;
1265 case 2:
1266 stw_phys(addr, val);
1267 break;
1268 case 4:
1269 default:
1270 stl_phys(addr, val);
1271 break;
1272 case 8:
1273 stq_phys(addr, val);
1274 break;
1277 break;
1278 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1280 switch(size) {
1281 case 1:
1282 stb_phys((target_phys_addr_t)addr
1283 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1284 break;
1285 case 2:
1286 stw_phys((target_phys_addr_t)addr
1287 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1288 break;
1289 case 4:
1290 default:
1291 stl_phys((target_phys_addr_t)addr
1292 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1293 break;
1294 case 8:
1295 stq_phys((target_phys_addr_t)addr
1296 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1297 break;
1300 break;
1301 case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
1302 case 0x31: // store buffer data, Ross RT620 I-cache flush or
1303 // Turbosparc snoop RAM
1304 case 0x32: // store buffer control or Turbosparc page table
1305 // descriptor diagnostic
1306 case 0x36: /* I-cache flash clear */
1307 case 0x37: /* D-cache flash clear */
1308 case 0x4c: /* breakpoint action */
1309 break;
1310 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1312 int reg = (addr >> 8) & 3;
1314 switch(reg) {
1315 case 0: /* Breakpoint Value (Addr) */
1316 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1317 break;
1318 case 1: /* Breakpoint Mask */
1319 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1320 break;
1321 case 2: /* Breakpoint Control */
1322 env->mmubpregs[reg] = (val & 0x7fULL);
1323 break;
1324 case 3: /* Breakpoint Status */
1325 env->mmubpregs[reg] = (val & 0xfULL);
1326 break;
1328 DPRINTF_MMU("write breakpoint reg[%d] 0x%016llx\n", reg,
1329 env->mmuregs[reg]);
1331 break;
1332 case 8: /* User code access, XXX */
1333 case 9: /* Supervisor code access, XXX */
1334 default:
1335 do_unassigned_access(addr, 1, 0, asi, size);
1336 break;
1338 #ifdef DEBUG_ASI
1339 dump_asi("write", addr, asi, size, val);
1340 #endif
1343 #endif /* CONFIG_USER_ONLY */
1344 #else /* TARGET_SPARC64 */
1346 #ifdef CONFIG_USER_ONLY
1347 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1349 uint64_t ret = 0;
1350 #if defined(DEBUG_ASI)
1351 target_ulong last_addr = addr;
1352 #endif
1354 if (asi < 0x80)
1355 raise_exception(TT_PRIV_ACT);
1357 helper_check_align(addr, size - 1);
1358 address_mask(env, &addr);
1360 switch (asi) {
1361 case 0x82: // Primary no-fault
1362 case 0x8a: // Primary no-fault LE
1363 if (page_check_range(addr, size, PAGE_READ) == -1) {
1364 #ifdef DEBUG_ASI
1365 dump_asi("read ", last_addr, asi, size, ret);
1366 #endif
1367 return 0;
1369 // Fall through
1370 case 0x80: // Primary
1371 case 0x88: // Primary LE
1373 switch(size) {
1374 case 1:
1375 ret = ldub_raw(addr);
1376 break;
1377 case 2:
1378 ret = lduw_raw(addr);
1379 break;
1380 case 4:
1381 ret = ldl_raw(addr);
1382 break;
1383 default:
1384 case 8:
1385 ret = ldq_raw(addr);
1386 break;
1389 break;
1390 case 0x83: // Secondary no-fault
1391 case 0x8b: // Secondary no-fault LE
1392 if (page_check_range(addr, size, PAGE_READ) == -1) {
1393 #ifdef DEBUG_ASI
1394 dump_asi("read ", last_addr, asi, size, ret);
1395 #endif
1396 return 0;
1398 // Fall through
1399 case 0x81: // Secondary
1400 case 0x89: // Secondary LE
1401 // XXX
1402 break;
1403 default:
1404 break;
1407 /* Convert from little endian */
1408 switch (asi) {
1409 case 0x88: // Primary LE
1410 case 0x89: // Secondary LE
1411 case 0x8a: // Primary no-fault LE
1412 case 0x8b: // Secondary no-fault LE
1413 switch(size) {
1414 case 2:
1415 ret = bswap16(ret);
1416 break;
1417 case 4:
1418 ret = bswap32(ret);
1419 break;
1420 case 8:
1421 ret = bswap64(ret);
1422 break;
1423 default:
1424 break;
1426 default:
1427 break;
1430 /* Convert to signed number */
1431 if (sign) {
1432 switch(size) {
1433 case 1:
1434 ret = (int8_t) ret;
1435 break;
1436 case 2:
1437 ret = (int16_t) ret;
1438 break;
1439 case 4:
1440 ret = (int32_t) ret;
1441 break;
1442 default:
1443 break;
1446 #ifdef DEBUG_ASI
1447 dump_asi("read ", last_addr, asi, size, ret);
1448 #endif
1449 return ret;
1452 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
1454 #ifdef DEBUG_ASI
1455 dump_asi("write", addr, asi, size, val);
1456 #endif
1457 if (asi < 0x80)
1458 raise_exception(TT_PRIV_ACT);
1460 helper_check_align(addr, size - 1);
1461 address_mask(env, &addr);
1463 /* Convert to little endian */
1464 switch (asi) {
1465 case 0x88: // Primary LE
1466 case 0x89: // Secondary LE
1467 switch(size) {
1468 case 2:
1469 addr = bswap16(addr);
1470 break;
1471 case 4:
1472 addr = bswap32(addr);
1473 break;
1474 case 8:
1475 addr = bswap64(addr);
1476 break;
1477 default:
1478 break;
1480 default:
1481 break;
1484 switch(asi) {
1485 case 0x80: // Primary
1486 case 0x88: // Primary LE
1488 switch(size) {
1489 case 1:
1490 stb_raw(addr, val);
1491 break;
1492 case 2:
1493 stw_raw(addr, val);
1494 break;
1495 case 4:
1496 stl_raw(addr, val);
1497 break;
1498 case 8:
1499 default:
1500 stq_raw(addr, val);
1501 break;
1504 break;
1505 case 0x81: // Secondary
1506 case 0x89: // Secondary LE
1507 // XXX
1508 return;
1510 case 0x82: // Primary no-fault, RO
1511 case 0x83: // Secondary no-fault, RO
1512 case 0x8a: // Primary no-fault LE, RO
1513 case 0x8b: // Secondary no-fault LE, RO
1514 default:
1515 do_unassigned_access(addr, 1, 0, 1, size);
1516 return;
1520 #else /* CONFIG_USER_ONLY */
1522 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1524 uint64_t ret = 0;
1525 #if defined(DEBUG_ASI)
1526 target_ulong last_addr = addr;
1527 #endif
1529 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1530 || ((env->def->features & CPU_FEATURE_HYPV)
1531 && asi >= 0x30 && asi < 0x80
1532 && !(env->hpstate & HS_PRIV)))
1533 raise_exception(TT_PRIV_ACT);
1535 helper_check_align(addr, size - 1);
1536 switch (asi) {
1537 case 0x82: // Primary no-fault
1538 case 0x8a: // Primary no-fault LE
1539 if (cpu_get_phys_page_debug(env, addr) == -1ULL) {
1540 #ifdef DEBUG_ASI
1541 dump_asi("read ", last_addr, asi, size, ret);
1542 #endif
1543 return 0;
1545 // Fall through
1546 case 0x10: // As if user primary
1547 case 0x18: // As if user primary LE
1548 case 0x80: // Primary
1549 case 0x88: // Primary LE
1550 case 0xe2: // UA2007 Primary block init
1551 case 0xe3: // UA2007 Secondary block init
1552 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1553 if ((env->def->features & CPU_FEATURE_HYPV)
1554 && env->hpstate & HS_PRIV) {
1555 switch(size) {
1556 case 1:
1557 ret = ldub_hypv(addr);
1558 break;
1559 case 2:
1560 ret = lduw_hypv(addr);
1561 break;
1562 case 4:
1563 ret = ldl_hypv(addr);
1564 break;
1565 default:
1566 case 8:
1567 ret = ldq_hypv(addr);
1568 break;
1570 } else {
1571 switch(size) {
1572 case 1:
1573 ret = ldub_kernel(addr);
1574 break;
1575 case 2:
1576 ret = lduw_kernel(addr);
1577 break;
1578 case 4:
1579 ret = ldl_kernel(addr);
1580 break;
1581 default:
1582 case 8:
1583 ret = ldq_kernel(addr);
1584 break;
1587 } else {
1588 switch(size) {
1589 case 1:
1590 ret = ldub_user(addr);
1591 break;
1592 case 2:
1593 ret = lduw_user(addr);
1594 break;
1595 case 4:
1596 ret = ldl_user(addr);
1597 break;
1598 default:
1599 case 8:
1600 ret = ldq_user(addr);
1601 break;
1604 break;
1605 case 0x14: // Bypass
1606 case 0x15: // Bypass, non-cacheable
1607 case 0x1c: // Bypass LE
1608 case 0x1d: // Bypass, non-cacheable LE
1610 switch(size) {
1611 case 1:
1612 ret = ldub_phys(addr);
1613 break;
1614 case 2:
1615 ret = lduw_phys(addr);
1616 break;
1617 case 4:
1618 ret = ldl_phys(addr);
1619 break;
1620 default:
1621 case 8:
1622 ret = ldq_phys(addr);
1623 break;
1625 break;
1627 case 0x24: // Nucleus quad LDD 128 bit atomic
1628 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
1629 // Only ldda allowed
1630 raise_exception(TT_ILL_INSN);
1631 return 0;
1632 case 0x83: // Secondary no-fault
1633 case 0x8b: // Secondary no-fault LE
1634 if (cpu_get_phys_page_debug(env, addr) == -1ULL) {
1635 #ifdef DEBUG_ASI
1636 dump_asi("read ", last_addr, asi, size, ret);
1637 #endif
1638 return 0;
1640 // Fall through
1641 case 0x04: // Nucleus
1642 case 0x0c: // Nucleus Little Endian (LE)
1643 case 0x11: // As if user secondary
1644 case 0x19: // As if user secondary LE
1645 case 0x4a: // UPA config
1646 case 0x81: // Secondary
1647 case 0x89: // Secondary LE
1648 // XXX
1649 break;
1650 case 0x45: // LSU
1651 ret = env->lsu;
1652 break;
1653 case 0x50: // I-MMU regs
1655 int reg = (addr >> 3) & 0xf;
1657 ret = env->immuregs[reg];
1658 break;
1660 case 0x51: // I-MMU 8k TSB pointer
1661 case 0x52: // I-MMU 64k TSB pointer
1662 // XXX
1663 break;
1664 case 0x55: // I-MMU data access
1666 int reg = (addr >> 3) & 0x3f;
1668 ret = env->itlb_tte[reg];
1669 break;
1671 case 0x56: // I-MMU tag read
1673 int reg = (addr >> 3) & 0x3f;
1675 ret = env->itlb_tag[reg];
1676 break;
1678 case 0x58: // D-MMU regs
1680 int reg = (addr >> 3) & 0xf;
1682 ret = env->dmmuregs[reg];
1683 break;
1685 case 0x5d: // D-MMU data access
1687 int reg = (addr >> 3) & 0x3f;
1689 ret = env->dtlb_tte[reg];
1690 break;
1692 case 0x5e: // D-MMU tag read
1694 int reg = (addr >> 3) & 0x3f;
1696 ret = env->dtlb_tag[reg];
1697 break;
1699 case 0x46: // D-cache data
1700 case 0x47: // D-cache tag access
1701 case 0x4b: // E-cache error enable
1702 case 0x4c: // E-cache asynchronous fault status
1703 case 0x4d: // E-cache asynchronous fault address
1704 case 0x4e: // E-cache tag data
1705 case 0x66: // I-cache instruction access
1706 case 0x67: // I-cache tag access
1707 case 0x6e: // I-cache predecode
1708 case 0x6f: // I-cache LRU etc.
1709 case 0x76: // E-cache tag
1710 case 0x7e: // E-cache tag
1711 break;
1712 case 0x59: // D-MMU 8k TSB pointer
1713 case 0x5a: // D-MMU 64k TSB pointer
1714 case 0x5b: // D-MMU data pointer
1715 case 0x48: // Interrupt dispatch, RO
1716 case 0x49: // Interrupt data receive
1717 case 0x7f: // Incoming interrupt vector, RO
1718 // XXX
1719 break;
1720 case 0x54: // I-MMU data in, WO
1721 case 0x57: // I-MMU demap, WO
1722 case 0x5c: // D-MMU data in, WO
1723 case 0x5f: // D-MMU demap, WO
1724 case 0x77: // Interrupt vector, WO
1725 default:
1726 do_unassigned_access(addr, 0, 0, 1, size);
1727 ret = 0;
1728 break;
1731 /* Convert from little endian */
1732 switch (asi) {
1733 case 0x0c: // Nucleus Little Endian (LE)
1734 case 0x18: // As if user primary LE
1735 case 0x19: // As if user secondary LE
1736 case 0x1c: // Bypass LE
1737 case 0x1d: // Bypass, non-cacheable LE
1738 case 0x88: // Primary LE
1739 case 0x89: // Secondary LE
1740 case 0x8a: // Primary no-fault LE
1741 case 0x8b: // Secondary no-fault LE
1742 switch(size) {
1743 case 2:
1744 ret = bswap16(ret);
1745 break;
1746 case 4:
1747 ret = bswap32(ret);
1748 break;
1749 case 8:
1750 ret = bswap64(ret);
1751 break;
1752 default:
1753 break;
1755 default:
1756 break;
1759 /* Convert to signed number */
1760 if (sign) {
1761 switch(size) {
1762 case 1:
1763 ret = (int8_t) ret;
1764 break;
1765 case 2:
1766 ret = (int16_t) ret;
1767 break;
1768 case 4:
1769 ret = (int32_t) ret;
1770 break;
1771 default:
1772 break;
1775 #ifdef DEBUG_ASI
1776 dump_asi("read ", last_addr, asi, size, ret);
1777 #endif
1778 return ret;
1781 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
1783 #ifdef DEBUG_ASI
1784 dump_asi("write", addr, asi, size, val);
1785 #endif
1786 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1787 || ((env->def->features & CPU_FEATURE_HYPV)
1788 && asi >= 0x30 && asi < 0x80
1789 && !(env->hpstate & HS_PRIV)))
1790 raise_exception(TT_PRIV_ACT);
1792 helper_check_align(addr, size - 1);
1793 /* Convert to little endian */
1794 switch (asi) {
1795 case 0x0c: // Nucleus Little Endian (LE)
1796 case 0x18: // As if user primary LE
1797 case 0x19: // As if user secondary LE
1798 case 0x1c: // Bypass LE
1799 case 0x1d: // Bypass, non-cacheable LE
1800 case 0x88: // Primary LE
1801 case 0x89: // Secondary LE
1802 switch(size) {
1803 case 2:
1804 addr = bswap16(addr);
1805 break;
1806 case 4:
1807 addr = bswap32(addr);
1808 break;
1809 case 8:
1810 addr = bswap64(addr);
1811 break;
1812 default:
1813 break;
1815 default:
1816 break;
1819 switch(asi) {
1820 case 0x10: // As if user primary
1821 case 0x18: // As if user primary LE
1822 case 0x80: // Primary
1823 case 0x88: // Primary LE
1824 case 0xe2: // UA2007 Primary block init
1825 case 0xe3: // UA2007 Secondary block init
1826 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1827 if ((env->def->features & CPU_FEATURE_HYPV)
1828 && env->hpstate & HS_PRIV) {
1829 switch(size) {
1830 case 1:
1831 stb_hypv(addr, val);
1832 break;
1833 case 2:
1834 stw_hypv(addr, val);
1835 break;
1836 case 4:
1837 stl_hypv(addr, val);
1838 break;
1839 case 8:
1840 default:
1841 stq_hypv(addr, val);
1842 break;
1844 } else {
1845 switch(size) {
1846 case 1:
1847 stb_kernel(addr, val);
1848 break;
1849 case 2:
1850 stw_kernel(addr, val);
1851 break;
1852 case 4:
1853 stl_kernel(addr, val);
1854 break;
1855 case 8:
1856 default:
1857 stq_kernel(addr, val);
1858 break;
1861 } else {
1862 switch(size) {
1863 case 1:
1864 stb_user(addr, val);
1865 break;
1866 case 2:
1867 stw_user(addr, val);
1868 break;
1869 case 4:
1870 stl_user(addr, val);
1871 break;
1872 case 8:
1873 default:
1874 stq_user(addr, val);
1875 break;
1878 break;
1879 case 0x14: // Bypass
1880 case 0x15: // Bypass, non-cacheable
1881 case 0x1c: // Bypass LE
1882 case 0x1d: // Bypass, non-cacheable LE
1884 switch(size) {
1885 case 1:
1886 stb_phys(addr, val);
1887 break;
1888 case 2:
1889 stw_phys(addr, val);
1890 break;
1891 case 4:
1892 stl_phys(addr, val);
1893 break;
1894 case 8:
1895 default:
1896 stq_phys(addr, val);
1897 break;
1900 return;
1901 case 0x24: // Nucleus quad LDD 128 bit atomic
1902 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
1903 // Only ldda allowed
1904 raise_exception(TT_ILL_INSN);
1905 return;
1906 case 0x04: // Nucleus
1907 case 0x0c: // Nucleus Little Endian (LE)
1908 case 0x11: // As if user secondary
1909 case 0x19: // As if user secondary LE
1910 case 0x4a: // UPA config
1911 case 0x81: // Secondary
1912 case 0x89: // Secondary LE
1913 // XXX
1914 return;
1915 case 0x45: // LSU
1917 uint64_t oldreg;
1919 oldreg = env->lsu;
1920 env->lsu = val & (DMMU_E | IMMU_E);
1921 // Mappings generated during D/I MMU disabled mode are
1922 // invalid in normal mode
1923 if (oldreg != env->lsu) {
1924 DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
1925 oldreg, env->lsu);
1926 #ifdef DEBUG_MMU
1927 dump_mmu(env);
1928 #endif
1929 tlb_flush(env, 1);
1931 return;
1933 case 0x50: // I-MMU regs
1935 int reg = (addr >> 3) & 0xf;
1936 uint64_t oldreg;
1938 oldreg = env->immuregs[reg];
1939 switch(reg) {
1940 case 0: // RO
1941 case 4:
1942 return;
1943 case 1: // Not in I-MMU
1944 case 2:
1945 case 7:
1946 case 8:
1947 return;
1948 case 3: // SFSR
1949 if ((val & 1) == 0)
1950 val = 0; // Clear SFSR
1951 break;
1952 case 5: // TSB access
1953 case 6: // Tag access
1954 default:
1955 break;
1957 env->immuregs[reg] = val;
1958 if (oldreg != env->immuregs[reg]) {
1959 DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08"
1960 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1962 #ifdef DEBUG_MMU
1963 dump_mmu(env);
1964 #endif
1965 return;
1967 case 0x54: // I-MMU data in
1969 unsigned int i;
1971 // Try finding an invalid entry
1972 for (i = 0; i < 64; i++) {
1973 if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
1974 env->itlb_tag[i] = env->immuregs[6];
1975 env->itlb_tte[i] = val;
1976 return;
1979 // Try finding an unlocked entry
1980 for (i = 0; i < 64; i++) {
1981 if ((env->itlb_tte[i] & 0x40) == 0) {
1982 env->itlb_tag[i] = env->immuregs[6];
1983 env->itlb_tte[i] = val;
1984 return;
1987 // error state?
1988 return;
1990 case 0x55: // I-MMU data access
1992 // TODO: auto demap
1994 unsigned int i = (addr >> 3) & 0x3f;
1996 env->itlb_tag[i] = env->immuregs[6];
1997 env->itlb_tte[i] = val;
1998 return;
2000 case 0x57: // I-MMU demap
2002 unsigned int i;
2004 for (i = 0; i < 64; i++) {
2005 if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0) {
2006 target_ulong mask = 0xffffffffffffe000ULL;
2008 mask <<= 3 * ((env->itlb_tte[i] >> 61) & 3);
2009 if ((val & mask) == (env->itlb_tag[i] & mask)) {
2010 env->itlb_tag[i] = 0;
2011 env->itlb_tte[i] = 0;
2013 return;
2017 return;
2018 case 0x58: // D-MMU regs
2020 int reg = (addr >> 3) & 0xf;
2021 uint64_t oldreg;
2023 oldreg = env->dmmuregs[reg];
2024 switch(reg) {
2025 case 0: // RO
2026 case 4:
2027 return;
2028 case 3: // SFSR
2029 if ((val & 1) == 0) {
2030 val = 0; // Clear SFSR, Fault address
2031 env->dmmuregs[4] = 0;
2033 env->dmmuregs[reg] = val;
2034 break;
2035 case 1: // Primary context
2036 case 2: // Secondary context
2037 case 5: // TSB access
2038 case 6: // Tag access
2039 case 7: // Virtual Watchpoint
2040 case 8: // Physical Watchpoint
2041 default:
2042 break;
2044 env->dmmuregs[reg] = val;
2045 if (oldreg != env->dmmuregs[reg]) {
2046 DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08"
2047 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
2049 #ifdef DEBUG_MMU
2050 dump_mmu(env);
2051 #endif
2052 return;
2054 case 0x5c: // D-MMU data in
2056 unsigned int i;
2058 // Try finding an invalid entry
2059 for (i = 0; i < 64; i++) {
2060 if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
2061 env->dtlb_tag[i] = env->dmmuregs[6];
2062 env->dtlb_tte[i] = val;
2063 return;
2066 // Try finding an unlocked entry
2067 for (i = 0; i < 64; i++) {
2068 if ((env->dtlb_tte[i] & 0x40) == 0) {
2069 env->dtlb_tag[i] = env->dmmuregs[6];
2070 env->dtlb_tte[i] = val;
2071 return;
2074 // error state?
2075 return;
2077 case 0x5d: // D-MMU data access
2079 unsigned int i = (addr >> 3) & 0x3f;
2081 env->dtlb_tag[i] = env->dmmuregs[6];
2082 env->dtlb_tte[i] = val;
2083 return;
2085 case 0x5f: // D-MMU demap
2087 unsigned int i;
2089 for (i = 0; i < 64; i++) {
2090 if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0) {
2091 target_ulong mask = 0xffffffffffffe000ULL;
2093 mask <<= 3 * ((env->dtlb_tte[i] >> 61) & 3);
2094 if ((val & mask) == (env->dtlb_tag[i] & mask)) {
2095 env->dtlb_tag[i] = 0;
2096 env->dtlb_tte[i] = 0;
2098 return;
2102 return;
2103 case 0x49: // Interrupt data receive
2104 // XXX
2105 return;
2106 case 0x46: // D-cache data
2107 case 0x47: // D-cache tag access
2108 case 0x4b: // E-cache error enable
2109 case 0x4c: // E-cache asynchronous fault status
2110 case 0x4d: // E-cache asynchronous fault address
2111 case 0x4e: // E-cache tag data
2112 case 0x66: // I-cache instruction access
2113 case 0x67: // I-cache tag access
2114 case 0x6e: // I-cache predecode
2115 case 0x6f: // I-cache LRU etc.
2116 case 0x76: // E-cache tag
2117 case 0x7e: // E-cache tag
2118 return;
2119 case 0x51: // I-MMU 8k TSB pointer, RO
2120 case 0x52: // I-MMU 64k TSB pointer, RO
2121 case 0x56: // I-MMU tag read, RO
2122 case 0x59: // D-MMU 8k TSB pointer, RO
2123 case 0x5a: // D-MMU 64k TSB pointer, RO
2124 case 0x5b: // D-MMU data pointer, RO
2125 case 0x5e: // D-MMU tag read, RO
2126 case 0x48: // Interrupt dispatch, RO
2127 case 0x7f: // Incoming interrupt vector, RO
2128 case 0x82: // Primary no-fault, RO
2129 case 0x83: // Secondary no-fault, RO
2130 case 0x8a: // Primary no-fault LE, RO
2131 case 0x8b: // Secondary no-fault LE, RO
2132 default:
2133 do_unassigned_access(addr, 1, 0, 1, size);
2134 return;
2137 #endif /* CONFIG_USER_ONLY */
2139 void helper_ldda_asi(target_ulong addr, int asi, int rd)
2141 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2142 || ((env->def->features & CPU_FEATURE_HYPV)
2143 && asi >= 0x30 && asi < 0x80
2144 && !(env->hpstate & HS_PRIV)))
2145 raise_exception(TT_PRIV_ACT);
2147 switch (asi) {
2148 case 0x24: // Nucleus quad LDD 128 bit atomic
2149 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2150 helper_check_align(addr, 0xf);
2151 if (rd == 0) {
2152 env->gregs[1] = ldq_kernel(addr + 8);
2153 if (asi == 0x2c)
2154 bswap64s(&env->gregs[1]);
2155 } else if (rd < 8) {
2156 env->gregs[rd] = ldq_kernel(addr);
2157 env->gregs[rd + 1] = ldq_kernel(addr + 8);
2158 if (asi == 0x2c) {
2159 bswap64s(&env->gregs[rd]);
2160 bswap64s(&env->gregs[rd + 1]);
2162 } else {
2163 env->regwptr[rd] = ldq_kernel(addr);
2164 env->regwptr[rd + 1] = ldq_kernel(addr + 8);
2165 if (asi == 0x2c) {
2166 bswap64s(&env->regwptr[rd]);
2167 bswap64s(&env->regwptr[rd + 1]);
2170 break;
2171 default:
2172 helper_check_align(addr, 0x3);
2173 if (rd == 0)
2174 env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
2175 else if (rd < 8) {
2176 env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
2177 env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2178 } else {
2179 env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0);
2180 env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2182 break;
2186 void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
2188 unsigned int i;
2189 target_ulong val;
2191 helper_check_align(addr, 3);
2192 switch (asi) {
2193 case 0xf0: // Block load primary
2194 case 0xf1: // Block load secondary
2195 case 0xf8: // Block load primary LE
2196 case 0xf9: // Block load secondary LE
2197 if (rd & 7) {
2198 raise_exception(TT_ILL_INSN);
2199 return;
2201 helper_check_align(addr, 0x3f);
2202 for (i = 0; i < 16; i++) {
2203 *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
2205 addr += 4;
2208 return;
2209 default:
2210 break;
2213 val = helper_ld_asi(addr, asi, size, 0);
2214 switch(size) {
2215 default:
2216 case 4:
2217 *((uint32_t *)&env->fpr[rd]) = val;
2218 break;
2219 case 8:
2220 *((int64_t *)&DT0) = val;
2221 break;
2222 case 16:
2223 // XXX
2224 break;
2228 void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
2230 unsigned int i;
2231 target_ulong val = 0;
2233 helper_check_align(addr, 3);
2234 switch (asi) {
2235 case 0xe0: // UA2007 Block commit store primary (cache flush)
2236 case 0xe1: // UA2007 Block commit store secondary (cache flush)
2237 case 0xf0: // Block store primary
2238 case 0xf1: // Block store secondary
2239 case 0xf8: // Block store primary LE
2240 case 0xf9: // Block store secondary LE
2241 if (rd & 7) {
2242 raise_exception(TT_ILL_INSN);
2243 return;
2245 helper_check_align(addr, 0x3f);
2246 for (i = 0; i < 16; i++) {
2247 val = *(uint32_t *)&env->fpr[rd++];
2248 helper_st_asi(addr, val, asi & 0x8f, 4);
2249 addr += 4;
2252 return;
2253 default:
2254 break;
2257 switch(size) {
2258 default:
2259 case 4:
2260 val = *((uint32_t *)&env->fpr[rd]);
2261 break;
2262 case 8:
2263 val = *((int64_t *)&DT0);
2264 break;
2265 case 16:
2266 // XXX
2267 break;
2269 helper_st_asi(addr, val, asi, size);
2272 target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
2273 target_ulong val2, uint32_t asi)
2275 target_ulong ret;
2277 val2 &= 0xffffffffUL;
2278 ret = helper_ld_asi(addr, asi, 4, 0);
2279 ret &= 0xffffffffUL;
2280 if (val2 == ret)
2281 helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4);
2282 return ret;
2285 target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
2286 target_ulong val2, uint32_t asi)
2288 target_ulong ret;
2290 ret = helper_ld_asi(addr, asi, 8, 0);
2291 if (val2 == ret)
2292 helper_st_asi(addr, val1, asi, 8);
2293 return ret;
2295 #endif /* TARGET_SPARC64 */
2297 #ifndef TARGET_SPARC64
2298 void helper_rett(void)
2300 unsigned int cwp;
2302 if (env->psret == 1)
2303 raise_exception(TT_ILL_INSN);
2305 env->psret = 1;
2306 cwp = cpu_cwp_inc(env, env->cwp + 1) ;
2307 if (env->wim & (1 << cwp)) {
2308 raise_exception(TT_WIN_UNF);
2310 set_cwp(cwp);
2311 env->psrs = env->psrps;
2313 #endif
2315 target_ulong helper_udiv(target_ulong a, target_ulong b)
2317 uint64_t x0;
2318 uint32_t x1;
2320 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
2321 x1 = b;
2323 if (x1 == 0) {
2324 raise_exception(TT_DIV_ZERO);
2327 x0 = x0 / x1;
2328 if (x0 > 0xffffffff) {
2329 env->cc_src2 = 1;
2330 return 0xffffffff;
2331 } else {
2332 env->cc_src2 = 0;
2333 return x0;
2337 target_ulong helper_sdiv(target_ulong a, target_ulong b)
2339 int64_t x0;
2340 int32_t x1;
2342 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
2343 x1 = b;
2345 if (x1 == 0) {
2346 raise_exception(TT_DIV_ZERO);
2349 x0 = x0 / x1;
2350 if ((int32_t) x0 != x0) {
2351 env->cc_src2 = 1;
2352 return x0 < 0? 0x80000000: 0x7fffffff;
2353 } else {
2354 env->cc_src2 = 0;
2355 return x0;
2359 void helper_stdf(target_ulong addr, int mem_idx)
2361 helper_check_align(addr, 7);
2362 #if !defined(CONFIG_USER_ONLY)
2363 switch (mem_idx) {
2364 case 0:
2365 stfq_user(addr, DT0);
2366 break;
2367 case 1:
2368 stfq_kernel(addr, DT0);
2369 break;
2370 #ifdef TARGET_SPARC64
2371 case 2:
2372 stfq_hypv(addr, DT0);
2373 break;
2374 #endif
2375 default:
2376 break;
2378 #else
2379 address_mask(env, &addr);
2380 stfq_raw(addr, DT0);
2381 #endif
2384 void helper_lddf(target_ulong addr, int mem_idx)
2386 helper_check_align(addr, 7);
2387 #if !defined(CONFIG_USER_ONLY)
2388 switch (mem_idx) {
2389 case 0:
2390 DT0 = ldfq_user(addr);
2391 break;
2392 case 1:
2393 DT0 = ldfq_kernel(addr);
2394 break;
2395 #ifdef TARGET_SPARC64
2396 case 2:
2397 DT0 = ldfq_hypv(addr);
2398 break;
2399 #endif
2400 default:
2401 break;
2403 #else
2404 address_mask(env, &addr);
2405 DT0 = ldfq_raw(addr);
2406 #endif
2409 void helper_ldqf(target_ulong addr, int mem_idx)
2411 // XXX add 128 bit load
2412 CPU_QuadU u;
2414 helper_check_align(addr, 7);
2415 #if !defined(CONFIG_USER_ONLY)
2416 switch (mem_idx) {
2417 case 0:
2418 u.ll.upper = ldq_user(addr);
2419 u.ll.lower = ldq_user(addr + 8);
2420 QT0 = u.q;
2421 break;
2422 case 1:
2423 u.ll.upper = ldq_kernel(addr);
2424 u.ll.lower = ldq_kernel(addr + 8);
2425 QT0 = u.q;
2426 break;
2427 #ifdef TARGET_SPARC64
2428 case 2:
2429 u.ll.upper = ldq_hypv(addr);
2430 u.ll.lower = ldq_hypv(addr + 8);
2431 QT0 = u.q;
2432 break;
2433 #endif
2434 default:
2435 break;
2437 #else
2438 address_mask(env, &addr);
2439 u.ll.upper = ldq_raw(addr);
2440 u.ll.lower = ldq_raw((addr + 8) & 0xffffffffULL);
2441 QT0 = u.q;
2442 #endif
2445 void helper_stqf(target_ulong addr, int mem_idx)
2447 // XXX add 128 bit store
2448 CPU_QuadU u;
2450 helper_check_align(addr, 7);
2451 #if !defined(CONFIG_USER_ONLY)
2452 switch (mem_idx) {
2453 case 0:
2454 u.q = QT0;
2455 stq_user(addr, u.ll.upper);
2456 stq_user(addr + 8, u.ll.lower);
2457 break;
2458 case 1:
2459 u.q = QT0;
2460 stq_kernel(addr, u.ll.upper);
2461 stq_kernel(addr + 8, u.ll.lower);
2462 break;
2463 #ifdef TARGET_SPARC64
2464 case 2:
2465 u.q = QT0;
2466 stq_hypv(addr, u.ll.upper);
2467 stq_hypv(addr + 8, u.ll.lower);
2468 break;
2469 #endif
2470 default:
2471 break;
2473 #else
2474 u.q = QT0;
2475 address_mask(env, &addr);
2476 stq_raw(addr, u.ll.upper);
2477 stq_raw((addr + 8) & 0xffffffffULL, u.ll.lower);
2478 #endif
2481 static inline void set_fsr(void)
2483 int rnd_mode;
2485 switch (env->fsr & FSR_RD_MASK) {
2486 case FSR_RD_NEAREST:
2487 rnd_mode = float_round_nearest_even;
2488 break;
2489 default:
2490 case FSR_RD_ZERO:
2491 rnd_mode = float_round_to_zero;
2492 break;
2493 case FSR_RD_POS:
2494 rnd_mode = float_round_up;
2495 break;
2496 case FSR_RD_NEG:
2497 rnd_mode = float_round_down;
2498 break;
2500 set_float_rounding_mode(rnd_mode, &env->fp_status);
2503 void helper_ldfsr(uint32_t new_fsr)
2505 env->fsr = (new_fsr & FSR_LDFSR_MASK) | (env->fsr & FSR_LDFSR_OLDMASK);
2506 set_fsr();
2509 #ifdef TARGET_SPARC64
2510 void helper_ldxfsr(uint64_t new_fsr)
2512 env->fsr = (new_fsr & FSR_LDXFSR_MASK) | (env->fsr & FSR_LDXFSR_OLDMASK);
2513 set_fsr();
2515 #endif
2517 void helper_debug(void)
2519 env->exception_index = EXCP_DEBUG;
2520 cpu_loop_exit();
2523 #ifndef TARGET_SPARC64
2524 /* XXX: use another pointer for %iN registers to avoid slow wrapping
2525 handling ? */
2526 void helper_save(void)
2528 uint32_t cwp;
2530 cwp = cpu_cwp_dec(env, env->cwp - 1);
2531 if (env->wim & (1 << cwp)) {
2532 raise_exception(TT_WIN_OVF);
2534 set_cwp(cwp);
2537 void helper_restore(void)
2539 uint32_t cwp;
2541 cwp = cpu_cwp_inc(env, env->cwp + 1);
2542 if (env->wim & (1 << cwp)) {
2543 raise_exception(TT_WIN_UNF);
2545 set_cwp(cwp);
2548 void helper_wrpsr(target_ulong new_psr)
2550 if ((new_psr & PSR_CWP) >= env->nwindows)
2551 raise_exception(TT_ILL_INSN);
2552 else
2553 PUT_PSR(env, new_psr);
2556 target_ulong helper_rdpsr(void)
2558 return GET_PSR(env);
2561 #else
2562 /* XXX: use another pointer for %iN registers to avoid slow wrapping
2563 handling ? */
2564 void helper_save(void)
2566 uint32_t cwp;
2568 cwp = cpu_cwp_dec(env, env->cwp - 1);
2569 if (env->cansave == 0) {
2570 raise_exception(TT_SPILL | (env->otherwin != 0 ?
2571 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2572 ((env->wstate & 0x7) << 2)));
2573 } else {
2574 if (env->cleanwin - env->canrestore == 0) {
2575 // XXX Clean windows without trap
2576 raise_exception(TT_CLRWIN);
2577 } else {
2578 env->cansave--;
2579 env->canrestore++;
2580 set_cwp(cwp);
2585 void helper_restore(void)
2587 uint32_t cwp;
2589 cwp = cpu_cwp_inc(env, env->cwp + 1);
2590 if (env->canrestore == 0) {
2591 raise_exception(TT_FILL | (env->otherwin != 0 ?
2592 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2593 ((env->wstate & 0x7) << 2)));
2594 } else {
2595 env->cansave++;
2596 env->canrestore--;
2597 set_cwp(cwp);
2601 void helper_flushw(void)
2603 if (env->cansave != env->nwindows - 2) {
2604 raise_exception(TT_SPILL | (env->otherwin != 0 ?
2605 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2606 ((env->wstate & 0x7) << 2)));
2610 void helper_saved(void)
2612 env->cansave++;
2613 if (env->otherwin == 0)
2614 env->canrestore--;
2615 else
2616 env->otherwin--;
2619 void helper_restored(void)
2621 env->canrestore++;
2622 if (env->cleanwin < env->nwindows - 1)
2623 env->cleanwin++;
2624 if (env->otherwin == 0)
2625 env->cansave--;
2626 else
2627 env->otherwin--;
2630 target_ulong helper_rdccr(void)
2632 return GET_CCR(env);
2635 void helper_wrccr(target_ulong new_ccr)
2637 PUT_CCR(env, new_ccr);
2640 // CWP handling is reversed in V9, but we still use the V8 register
2641 // order.
2642 target_ulong helper_rdcwp(void)
2644 return GET_CWP64(env);
2647 void helper_wrcwp(target_ulong new_cwp)
2649 PUT_CWP64(env, new_cwp);
2652 // This function uses non-native bit order
2653 #define GET_FIELD(X, FROM, TO) \
2654 ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
2656 // This function uses the order in the manuals, i.e. bit 0 is 2^0
2657 #define GET_FIELD_SP(X, FROM, TO) \
2658 GET_FIELD(X, 63 - (TO), 63 - (FROM))
2660 target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
2662 return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
2663 (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
2664 (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
2665 (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
2666 (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
2667 (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
2668 (((pixel_addr >> 55) & 1) << 4) |
2669 (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
2670 GET_FIELD_SP(pixel_addr, 11, 12);
2673 target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
2675 uint64_t tmp;
2677 tmp = addr + offset;
2678 env->gsr &= ~7ULL;
2679 env->gsr |= tmp & 7ULL;
2680 return tmp & ~7ULL;
2683 target_ulong helper_popc(target_ulong val)
2685 return ctpop64(val);
2688 static inline uint64_t *get_gregset(uint64_t pstate)
2690 switch (pstate) {
2691 default:
2692 case 0:
2693 return env->bgregs;
2694 case PS_AG:
2695 return env->agregs;
2696 case PS_MG:
2697 return env->mgregs;
2698 case PS_IG:
2699 return env->igregs;
2703 static inline void change_pstate(uint64_t new_pstate)
2705 uint64_t pstate_regs, new_pstate_regs;
2706 uint64_t *src, *dst;
2708 pstate_regs = env->pstate & 0xc01;
2709 new_pstate_regs = new_pstate & 0xc01;
2710 if (new_pstate_regs != pstate_regs) {
2711 // Switch global register bank
2712 src = get_gregset(new_pstate_regs);
2713 dst = get_gregset(pstate_regs);
2714 memcpy32(dst, env->gregs);
2715 memcpy32(env->gregs, src);
2717 env->pstate = new_pstate;
2720 void helper_wrpstate(target_ulong new_state)
2722 if (!(env->def->features & CPU_FEATURE_GL))
2723 change_pstate(new_state & 0xf3f);
2726 void helper_done(void)
2728 env->pc = env->tsptr->tpc;
2729 env->npc = env->tsptr->tnpc + 4;
2730 PUT_CCR(env, env->tsptr->tstate >> 32);
2731 env->asi = (env->tsptr->tstate >> 24) & 0xff;
2732 change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
2733 PUT_CWP64(env, env->tsptr->tstate & 0xff);
2734 env->tl--;
2735 env->tsptr = &env->ts[env->tl & MAXTL_MASK];
2738 void helper_retry(void)
2740 env->pc = env->tsptr->tpc;
2741 env->npc = env->tsptr->tnpc;
2742 PUT_CCR(env, env->tsptr->tstate >> 32);
2743 env->asi = (env->tsptr->tstate >> 24) & 0xff;
2744 change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
2745 PUT_CWP64(env, env->tsptr->tstate & 0xff);
2746 env->tl--;
2747 env->tsptr = &env->ts[env->tl & MAXTL_MASK];
2750 void helper_set_softint(uint64_t value)
2752 env->softint |= (uint32_t)value;
2755 void helper_clear_softint(uint64_t value)
2757 env->softint &= (uint32_t)~value;
2760 void helper_write_softint(uint64_t value)
2762 env->softint = (uint32_t)value;
2764 #endif
2766 void helper_flush(target_ulong addr)
2768 addr &= ~7;
2769 tb_invalidate_page_range(addr, addr + 8);
2772 #ifdef TARGET_SPARC64
2773 #ifdef DEBUG_PCALL
2774 static const char * const excp_names[0x80] = {
2775 [TT_TFAULT] = "Instruction Access Fault",
2776 [TT_TMISS] = "Instruction Access MMU Miss",
2777 [TT_CODE_ACCESS] = "Instruction Access Error",
2778 [TT_ILL_INSN] = "Illegal Instruction",
2779 [TT_PRIV_INSN] = "Privileged Instruction",
2780 [TT_NFPU_INSN] = "FPU Disabled",
2781 [TT_FP_EXCP] = "FPU Exception",
2782 [TT_TOVF] = "Tag Overflow",
2783 [TT_CLRWIN] = "Clean Windows",
2784 [TT_DIV_ZERO] = "Division By Zero",
2785 [TT_DFAULT] = "Data Access Fault",
2786 [TT_DMISS] = "Data Access MMU Miss",
2787 [TT_DATA_ACCESS] = "Data Access Error",
2788 [TT_DPROT] = "Data Protection Error",
2789 [TT_UNALIGNED] = "Unaligned Memory Access",
2790 [TT_PRIV_ACT] = "Privileged Action",
2791 [TT_EXTINT | 0x1] = "External Interrupt 1",
2792 [TT_EXTINT | 0x2] = "External Interrupt 2",
2793 [TT_EXTINT | 0x3] = "External Interrupt 3",
2794 [TT_EXTINT | 0x4] = "External Interrupt 4",
2795 [TT_EXTINT | 0x5] = "External Interrupt 5",
2796 [TT_EXTINT | 0x6] = "External Interrupt 6",
2797 [TT_EXTINT | 0x7] = "External Interrupt 7",
2798 [TT_EXTINT | 0x8] = "External Interrupt 8",
2799 [TT_EXTINT | 0x9] = "External Interrupt 9",
2800 [TT_EXTINT | 0xa] = "External Interrupt 10",
2801 [TT_EXTINT | 0xb] = "External Interrupt 11",
2802 [TT_EXTINT | 0xc] = "External Interrupt 12",
2803 [TT_EXTINT | 0xd] = "External Interrupt 13",
2804 [TT_EXTINT | 0xe] = "External Interrupt 14",
2805 [TT_EXTINT | 0xf] = "External Interrupt 15",
2807 #endif
2809 void do_interrupt(CPUState *env)
2811 int intno = env->exception_index;
2813 #ifdef DEBUG_PCALL
2814 if (loglevel & CPU_LOG_INT) {
2815 static int count;
2816 const char *name;
2818 if (intno < 0 || intno >= 0x180)
2819 name = "Unknown";
2820 else if (intno >= 0x100)
2821 name = "Trap Instruction";
2822 else if (intno >= 0xc0)
2823 name = "Window Fill";
2824 else if (intno >= 0x80)
2825 name = "Window Spill";
2826 else {
2827 name = excp_names[intno];
2828 if (!name)
2829 name = "Unknown";
2832 fprintf(logfile, "%6d: %s (v=%04x) pc=%016" PRIx64 " npc=%016" PRIx64
2833 " SP=%016" PRIx64 "\n",
2834 count, name, intno,
2835 env->pc,
2836 env->npc, env->regwptr[6]);
2837 cpu_dump_state(env, logfile, fprintf, 0);
2838 #if 0
2840 int i;
2841 uint8_t *ptr;
2843 fprintf(logfile, " code=");
2844 ptr = (uint8_t *)env->pc;
2845 for(i = 0; i < 16; i++) {
2846 fprintf(logfile, " %02x", ldub(ptr + i));
2848 fprintf(logfile, "\n");
2850 #endif
2851 count++;
2853 #endif
2854 #if !defined(CONFIG_USER_ONLY)
2855 if (env->tl >= env->maxtl) {
2856 cpu_abort(env, "Trap 0x%04x while trap level (%d) >= MAXTL (%d),"
2857 " Error state", env->exception_index, env->tl, env->maxtl);
2858 return;
2860 #endif
2861 if (env->tl < env->maxtl - 1) {
2862 env->tl++;
2863 } else {
2864 env->pstate |= PS_RED;
2865 if (env->tl < env->maxtl)
2866 env->tl++;
2868 env->tsptr = &env->ts[env->tl & MAXTL_MASK];
2869 env->tsptr->tstate = ((uint64_t)GET_CCR(env) << 32) |
2870 ((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) |
2871 GET_CWP64(env);
2872 env->tsptr->tpc = env->pc;
2873 env->tsptr->tnpc = env->npc;
2874 env->tsptr->tt = intno;
2875 if (!(env->def->features & CPU_FEATURE_GL)) {
2876 switch (intno) {
2877 case TT_IVEC:
2878 change_pstate(PS_PEF | PS_PRIV | PS_IG);
2879 break;
2880 case TT_TFAULT:
2881 case TT_TMISS:
2882 case TT_DFAULT:
2883 case TT_DMISS:
2884 case TT_DPROT:
2885 change_pstate(PS_PEF | PS_PRIV | PS_MG);
2886 break;
2887 default:
2888 change_pstate(PS_PEF | PS_PRIV | PS_AG);
2889 break;
2892 if (intno == TT_CLRWIN)
2893 cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - 1));
2894 else if ((intno & 0x1c0) == TT_SPILL)
2895 cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - env->cansave - 2));
2896 else if ((intno & 0x1c0) == TT_FILL)
2897 cpu_set_cwp(env, cpu_cwp_inc(env, env->cwp + 1));
2898 env->tbr &= ~0x7fffULL;
2899 env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
2900 env->pc = env->tbr;
2901 env->npc = env->pc + 4;
2902 env->exception_index = 0;
2904 #else
2905 #ifdef DEBUG_PCALL
2906 static const char * const excp_names[0x80] = {
2907 [TT_TFAULT] = "Instruction Access Fault",
2908 [TT_ILL_INSN] = "Illegal Instruction",
2909 [TT_PRIV_INSN] = "Privileged Instruction",
2910 [TT_NFPU_INSN] = "FPU Disabled",
2911 [TT_WIN_OVF] = "Window Overflow",
2912 [TT_WIN_UNF] = "Window Underflow",
2913 [TT_UNALIGNED] = "Unaligned Memory Access",
2914 [TT_FP_EXCP] = "FPU Exception",
2915 [TT_DFAULT] = "Data Access Fault",
2916 [TT_TOVF] = "Tag Overflow",
2917 [TT_EXTINT | 0x1] = "External Interrupt 1",
2918 [TT_EXTINT | 0x2] = "External Interrupt 2",
2919 [TT_EXTINT | 0x3] = "External Interrupt 3",
2920 [TT_EXTINT | 0x4] = "External Interrupt 4",
2921 [TT_EXTINT | 0x5] = "External Interrupt 5",
2922 [TT_EXTINT | 0x6] = "External Interrupt 6",
2923 [TT_EXTINT | 0x7] = "External Interrupt 7",
2924 [TT_EXTINT | 0x8] = "External Interrupt 8",
2925 [TT_EXTINT | 0x9] = "External Interrupt 9",
2926 [TT_EXTINT | 0xa] = "External Interrupt 10",
2927 [TT_EXTINT | 0xb] = "External Interrupt 11",
2928 [TT_EXTINT | 0xc] = "External Interrupt 12",
2929 [TT_EXTINT | 0xd] = "External Interrupt 13",
2930 [TT_EXTINT | 0xe] = "External Interrupt 14",
2931 [TT_EXTINT | 0xf] = "External Interrupt 15",
2932 [TT_TOVF] = "Tag Overflow",
2933 [TT_CODE_ACCESS] = "Instruction Access Error",
2934 [TT_DATA_ACCESS] = "Data Access Error",
2935 [TT_DIV_ZERO] = "Division By Zero",
2936 [TT_NCP_INSN] = "Coprocessor Disabled",
2938 #endif
2940 void do_interrupt(CPUState *env)
2942 int cwp, intno = env->exception_index;
2944 #ifdef DEBUG_PCALL
2945 if (loglevel & CPU_LOG_INT) {
2946 static int count;
2947 const char *name;
2949 if (intno < 0 || intno >= 0x100)
2950 name = "Unknown";
2951 else if (intno >= 0x80)
2952 name = "Trap Instruction";
2953 else {
2954 name = excp_names[intno];
2955 if (!name)
2956 name = "Unknown";
2959 fprintf(logfile, "%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n",
2960 count, name, intno,
2961 env->pc,
2962 env->npc, env->regwptr[6]);
2963 cpu_dump_state(env, logfile, fprintf, 0);
2964 #if 0
2966 int i;
2967 uint8_t *ptr;
2969 fprintf(logfile, " code=");
2970 ptr = (uint8_t *)env->pc;
2971 for(i = 0; i < 16; i++) {
2972 fprintf(logfile, " %02x", ldub(ptr + i));
2974 fprintf(logfile, "\n");
2976 #endif
2977 count++;
2979 #endif
2980 #if !defined(CONFIG_USER_ONLY)
2981 if (env->psret == 0) {
2982 cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state",
2983 env->exception_index);
2984 return;
2986 #endif
2987 env->psret = 0;
2988 cwp = cpu_cwp_dec(env, env->cwp - 1);
2989 cpu_set_cwp(env, cwp);
2990 env->regwptr[9] = env->pc;
2991 env->regwptr[10] = env->npc;
2992 env->psrps = env->psrs;
2993 env->psrs = 1;
2994 env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
2995 env->pc = env->tbr;
2996 env->npc = env->pc + 4;
2997 env->exception_index = 0;
2999 #endif
3001 #if !defined(CONFIG_USER_ONLY)
3003 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
3004 void *retaddr);
3006 #define MMUSUFFIX _mmu
3007 #define ALIGNED_ONLY
3009 #define SHIFT 0
3010 #include "softmmu_template.h"
3012 #define SHIFT 1
3013 #include "softmmu_template.h"
3015 #define SHIFT 2
3016 #include "softmmu_template.h"
3018 #define SHIFT 3
3019 #include "softmmu_template.h"
3021 /* XXX: make it generic ? */
3022 static void cpu_restore_state2(void *retaddr)
3024 TranslationBlock *tb;
3025 unsigned long pc;
3027 if (retaddr) {
3028 /* now we have a real cpu fault */
3029 pc = (unsigned long)retaddr;
3030 tb = tb_find_pc(pc);
3031 if (tb) {
3032 /* the PC is inside the translated code. It means that we have
3033 a virtual CPU fault */
3034 cpu_restore_state(tb, env, pc, (void *)(long)env->cond);
3039 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
3040 void *retaddr)
3042 #ifdef DEBUG_UNALIGNED
3043 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
3044 "\n", addr, env->pc);
3045 #endif
3046 cpu_restore_state2(retaddr);
3047 raise_exception(TT_UNALIGNED);
3050 /* try to fill the TLB and return an exception if error. If retaddr is
3051 NULL, it means that the function was called in C code (i.e. not
3052 from generated code or from helper.c) */
3053 /* XXX: fix it to restore all registers */
3054 void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
3056 int ret;
3057 CPUState *saved_env;
3059 /* XXX: hack to restore env in all cases, even if not called from
3060 generated code */
3061 saved_env = env;
3062 env = cpu_single_env;
3064 ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
3065 if (ret) {
3066 cpu_restore_state2(retaddr);
3067 cpu_loop_exit();
3069 env = saved_env;
3072 #endif
3074 #ifndef TARGET_SPARC64
3075 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
3076 int is_asi, int size)
3078 CPUState *saved_env;
3080 /* XXX: hack to restore env in all cases, even if not called from
3081 generated code */
3082 saved_env = env;
3083 env = cpu_single_env;
3084 #ifdef DEBUG_UNASSIGNED
3085 if (is_asi)
3086 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
3087 " asi 0x%02x from " TARGET_FMT_lx "\n",
3088 is_exec ? "exec" : is_write ? "write" : "read", size,
3089 size == 1 ? "" : "s", addr, is_asi, env->pc);
3090 else
3091 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
3092 " from " TARGET_FMT_lx "\n",
3093 is_exec ? "exec" : is_write ? "write" : "read", size,
3094 size == 1 ? "" : "s", addr, env->pc);
3095 #endif
3096 if (env->mmuregs[3]) /* Fault status register */
3097 env->mmuregs[3] = 1; /* overflow (not read before another fault) */
3098 if (is_asi)
3099 env->mmuregs[3] |= 1 << 16;
3100 if (env->psrs)
3101 env->mmuregs[3] |= 1 << 5;
3102 if (is_exec)
3103 env->mmuregs[3] |= 1 << 6;
3104 if (is_write)
3105 env->mmuregs[3] |= 1 << 7;
3106 env->mmuregs[3] |= (5 << 2) | 2;
3107 env->mmuregs[4] = addr; /* Fault address register */
3108 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
3109 if (is_exec)
3110 raise_exception(TT_CODE_ACCESS);
3111 else
3112 raise_exception(TT_DATA_ACCESS);
3114 env = saved_env;
3116 #else
3117 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
3118 int is_asi, int size)
3120 #ifdef DEBUG_UNASSIGNED
3121 CPUState *saved_env;
3123 /* XXX: hack to restore env in all cases, even if not called from
3124 generated code */
3125 saved_env = env;
3126 env = cpu_single_env;
3127 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
3128 "\n", addr, env->pc);
3129 env = saved_env;
3130 #endif
3131 if (is_exec)
3132 raise_exception(TT_CODE_ACCESS);
3133 else
3134 raise_exception(TT_DATA_ACCESS);
3136 #endif
3138 #ifdef TARGET_SPARC64
3139 void helper_tick_set_count(void *opaque, uint64_t count)
3141 #if !defined(CONFIG_USER_ONLY)
3142 cpu_tick_set_count(opaque, count);
3143 #endif
3146 uint64_t helper_tick_get_count(void *opaque)
3148 #if !defined(CONFIG_USER_ONLY)
3149 return cpu_tick_get_count(opaque);
3150 #else
3151 return 0;
3152 #endif
3155 void helper_tick_set_limit(void *opaque, uint64_t limit)
3157 #if !defined(CONFIG_USER_ONLY)
3158 cpu_tick_set_limit(opaque, limit);
3159 #endif
3161 #endif