target-mips: remove dead code
[qemu/mini2440/sniper_sniper_test.git] / gdbstub.c
blobaddff2ee7a2ba453a2b756e18399c1d7f2438209
1 /*
2 * gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
20 #include "config.h"
21 #include "qemu-common.h"
22 #ifdef CONFIG_USER_ONLY
23 #include <stdlib.h>
24 #include <stdio.h>
25 #include <stdarg.h>
26 #include <string.h>
27 #include <errno.h>
28 #include <unistd.h>
29 #include <fcntl.h>
31 #include "qemu.h"
32 #else
33 #include "monitor.h"
34 #include "qemu-char.h"
35 #include "sysemu.h"
36 #include "gdbstub.h"
37 #endif
39 #define MAX_PACKET_LENGTH 4096
41 #include "qemu_socket.h"
44 enum {
45 GDB_SIGNAL_0 = 0,
46 GDB_SIGNAL_INT = 2,
47 GDB_SIGNAL_TRAP = 5,
48 GDB_SIGNAL_UNKNOWN = 143
51 #ifdef CONFIG_USER_ONLY
53 /* Map target signal numbers to GDB protocol signal numbers and vice
54 * versa. For user emulation's currently supported systems, we can
55 * assume most signals are defined.
58 static int gdb_signal_table[] = {
60 TARGET_SIGHUP,
61 TARGET_SIGINT,
62 TARGET_SIGQUIT,
63 TARGET_SIGILL,
64 TARGET_SIGTRAP,
65 TARGET_SIGABRT,
66 -1, /* SIGEMT */
67 TARGET_SIGFPE,
68 TARGET_SIGKILL,
69 TARGET_SIGBUS,
70 TARGET_SIGSEGV,
71 TARGET_SIGSYS,
72 TARGET_SIGPIPE,
73 TARGET_SIGALRM,
74 TARGET_SIGTERM,
75 TARGET_SIGURG,
76 TARGET_SIGSTOP,
77 TARGET_SIGTSTP,
78 TARGET_SIGCONT,
79 TARGET_SIGCHLD,
80 TARGET_SIGTTIN,
81 TARGET_SIGTTOU,
82 TARGET_SIGIO,
83 TARGET_SIGXCPU,
84 TARGET_SIGXFSZ,
85 TARGET_SIGVTALRM,
86 TARGET_SIGPROF,
87 TARGET_SIGWINCH,
88 -1, /* SIGLOST */
89 TARGET_SIGUSR1,
90 TARGET_SIGUSR2,
91 #ifdef TARGET_SIGPWR
92 TARGET_SIGPWR,
93 #else
94 -1,
95 #endif
96 -1, /* SIGPOLL */
97 -1,
98 -1,
99 -1,
108 #ifdef __SIGRTMIN
109 __SIGRTMIN + 1,
110 __SIGRTMIN + 2,
111 __SIGRTMIN + 3,
112 __SIGRTMIN + 4,
113 __SIGRTMIN + 5,
114 __SIGRTMIN + 6,
115 __SIGRTMIN + 7,
116 __SIGRTMIN + 8,
117 __SIGRTMIN + 9,
118 __SIGRTMIN + 10,
119 __SIGRTMIN + 11,
120 __SIGRTMIN + 12,
121 __SIGRTMIN + 13,
122 __SIGRTMIN + 14,
123 __SIGRTMIN + 15,
124 __SIGRTMIN + 16,
125 __SIGRTMIN + 17,
126 __SIGRTMIN + 18,
127 __SIGRTMIN + 19,
128 __SIGRTMIN + 20,
129 __SIGRTMIN + 21,
130 __SIGRTMIN + 22,
131 __SIGRTMIN + 23,
132 __SIGRTMIN + 24,
133 __SIGRTMIN + 25,
134 __SIGRTMIN + 26,
135 __SIGRTMIN + 27,
136 __SIGRTMIN + 28,
137 __SIGRTMIN + 29,
138 __SIGRTMIN + 30,
139 __SIGRTMIN + 31,
140 -1, /* SIGCANCEL */
141 __SIGRTMIN,
142 __SIGRTMIN + 32,
143 __SIGRTMIN + 33,
144 __SIGRTMIN + 34,
145 __SIGRTMIN + 35,
146 __SIGRTMIN + 36,
147 __SIGRTMIN + 37,
148 __SIGRTMIN + 38,
149 __SIGRTMIN + 39,
150 __SIGRTMIN + 40,
151 __SIGRTMIN + 41,
152 __SIGRTMIN + 42,
153 __SIGRTMIN + 43,
154 __SIGRTMIN + 44,
155 __SIGRTMIN + 45,
156 __SIGRTMIN + 46,
157 __SIGRTMIN + 47,
158 __SIGRTMIN + 48,
159 __SIGRTMIN + 49,
160 __SIGRTMIN + 50,
161 __SIGRTMIN + 51,
162 __SIGRTMIN + 52,
163 __SIGRTMIN + 53,
164 __SIGRTMIN + 54,
165 __SIGRTMIN + 55,
166 __SIGRTMIN + 56,
167 __SIGRTMIN + 57,
168 __SIGRTMIN + 58,
169 __SIGRTMIN + 59,
170 __SIGRTMIN + 60,
171 __SIGRTMIN + 61,
172 __SIGRTMIN + 62,
173 __SIGRTMIN + 63,
174 __SIGRTMIN + 64,
175 __SIGRTMIN + 65,
176 __SIGRTMIN + 66,
177 __SIGRTMIN + 67,
178 __SIGRTMIN + 68,
179 __SIGRTMIN + 69,
180 __SIGRTMIN + 70,
181 __SIGRTMIN + 71,
182 __SIGRTMIN + 72,
183 __SIGRTMIN + 73,
184 __SIGRTMIN + 74,
185 __SIGRTMIN + 75,
186 __SIGRTMIN + 76,
187 __SIGRTMIN + 77,
188 __SIGRTMIN + 78,
189 __SIGRTMIN + 79,
190 __SIGRTMIN + 80,
191 __SIGRTMIN + 81,
192 __SIGRTMIN + 82,
193 __SIGRTMIN + 83,
194 __SIGRTMIN + 84,
195 __SIGRTMIN + 85,
196 __SIGRTMIN + 86,
197 __SIGRTMIN + 87,
198 __SIGRTMIN + 88,
199 __SIGRTMIN + 89,
200 __SIGRTMIN + 90,
201 __SIGRTMIN + 91,
202 __SIGRTMIN + 92,
203 __SIGRTMIN + 93,
204 __SIGRTMIN + 94,
205 __SIGRTMIN + 95,
206 -1, /* SIGINFO */
207 -1, /* UNKNOWN */
208 -1, /* DEFAULT */
215 #endif
217 #else
218 /* In system mode we only need SIGINT and SIGTRAP; other signals
219 are not yet supported. */
221 enum {
222 TARGET_SIGINT = 2,
223 TARGET_SIGTRAP = 5
226 static int gdb_signal_table[] = {
229 TARGET_SIGINT,
232 TARGET_SIGTRAP
234 #endif
236 #ifdef CONFIG_USER_ONLY
237 static int target_signal_to_gdb (int sig)
239 int i;
240 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
241 if (gdb_signal_table[i] == sig)
242 return i;
243 return GDB_SIGNAL_UNKNOWN;
245 #endif
247 static int gdb_signal_to_target (int sig)
249 if (sig < ARRAY_SIZE (gdb_signal_table))
250 return gdb_signal_table[sig];
251 else
252 return -1;
255 //#define DEBUG_GDB
257 typedef struct GDBRegisterState {
258 int base_reg;
259 int num_regs;
260 gdb_reg_cb get_reg;
261 gdb_reg_cb set_reg;
262 const char *xml;
263 struct GDBRegisterState *next;
264 } GDBRegisterState;
266 enum RSState {
267 RS_IDLE,
268 RS_GETLINE,
269 RS_CHKSUM1,
270 RS_CHKSUM2,
271 RS_SYSCALL,
273 typedef struct GDBState {
274 CPUState *c_cpu; /* current CPU for step/continue ops */
275 CPUState *g_cpu; /* current CPU for other ops */
276 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
277 enum RSState state; /* parsing state */
278 char line_buf[MAX_PACKET_LENGTH];
279 int line_buf_index;
280 int line_csum;
281 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
282 int last_packet_len;
283 int signal;
284 #ifdef CONFIG_USER_ONLY
285 int fd;
286 int running_state;
287 #else
288 CharDriverState *chr;
289 CharDriverState *mon_chr;
290 #endif
291 } GDBState;
293 /* By default use no IRQs and no timers while single stepping so as to
294 * make single stepping like an ICE HW step.
296 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
298 static GDBState *gdbserver_state;
300 /* This is an ugly hack to cope with both new and old gdb.
301 If gdb sends qXfer:features:read then assume we're talking to a newish
302 gdb that understands target descriptions. */
303 static int gdb_has_xml;
305 #ifdef CONFIG_USER_ONLY
306 /* XXX: This is not thread safe. Do we care? */
307 static int gdbserver_fd = -1;
309 static int get_char(GDBState *s)
311 uint8_t ch;
312 int ret;
314 for(;;) {
315 ret = recv(s->fd, &ch, 1, 0);
316 if (ret < 0) {
317 if (errno == ECONNRESET)
318 s->fd = -1;
319 if (errno != EINTR && errno != EAGAIN)
320 return -1;
321 } else if (ret == 0) {
322 close(s->fd);
323 s->fd = -1;
324 return -1;
325 } else {
326 break;
329 return ch;
331 #endif
333 static gdb_syscall_complete_cb gdb_current_syscall_cb;
335 enum {
336 GDB_SYS_UNKNOWN,
337 GDB_SYS_ENABLED,
338 GDB_SYS_DISABLED,
339 } gdb_syscall_mode;
341 /* If gdb is connected when the first semihosting syscall occurs then use
342 remote gdb syscalls. Otherwise use native file IO. */
343 int use_gdb_syscalls(void)
345 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
346 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
347 : GDB_SYS_DISABLED);
349 return gdb_syscall_mode == GDB_SYS_ENABLED;
352 /* Resume execution. */
353 static inline void gdb_continue(GDBState *s)
355 #ifdef CONFIG_USER_ONLY
356 s->running_state = 1;
357 #else
358 vm_start();
359 #endif
362 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
364 #ifdef CONFIG_USER_ONLY
365 int ret;
367 while (len > 0) {
368 ret = send(s->fd, buf, len, 0);
369 if (ret < 0) {
370 if (errno != EINTR && errno != EAGAIN)
371 return;
372 } else {
373 buf += ret;
374 len -= ret;
377 #else
378 qemu_chr_write(s->chr, buf, len);
379 #endif
382 static inline int fromhex(int v)
384 if (v >= '0' && v <= '9')
385 return v - '0';
386 else if (v >= 'A' && v <= 'F')
387 return v - 'A' + 10;
388 else if (v >= 'a' && v <= 'f')
389 return v - 'a' + 10;
390 else
391 return 0;
394 static inline int tohex(int v)
396 if (v < 10)
397 return v + '0';
398 else
399 return v - 10 + 'a';
402 static void memtohex(char *buf, const uint8_t *mem, int len)
404 int i, c;
405 char *q;
406 q = buf;
407 for(i = 0; i < len; i++) {
408 c = mem[i];
409 *q++ = tohex(c >> 4);
410 *q++ = tohex(c & 0xf);
412 *q = '\0';
415 static void hextomem(uint8_t *mem, const char *buf, int len)
417 int i;
419 for(i = 0; i < len; i++) {
420 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
421 buf += 2;
425 /* return -1 if error, 0 if OK */
426 static int put_packet_binary(GDBState *s, const char *buf, int len)
428 int csum, i;
429 uint8_t *p;
431 for(;;) {
432 p = s->last_packet;
433 *(p++) = '$';
434 memcpy(p, buf, len);
435 p += len;
436 csum = 0;
437 for(i = 0; i < len; i++) {
438 csum += buf[i];
440 *(p++) = '#';
441 *(p++) = tohex((csum >> 4) & 0xf);
442 *(p++) = tohex((csum) & 0xf);
444 s->last_packet_len = p - s->last_packet;
445 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
447 #ifdef CONFIG_USER_ONLY
448 i = get_char(s);
449 if (i < 0)
450 return -1;
451 if (i == '+')
452 break;
453 #else
454 break;
455 #endif
457 return 0;
460 /* return -1 if error, 0 if OK */
461 static int put_packet(GDBState *s, const char *buf)
463 #ifdef DEBUG_GDB
464 printf("reply='%s'\n", buf);
465 #endif
467 return put_packet_binary(s, buf, strlen(buf));
470 /* The GDB remote protocol transfers values in target byte order. This means
471 we can use the raw memory access routines to access the value buffer.
472 Conveniently, these also handle the case where the buffer is mis-aligned.
474 #define GET_REG8(val) do { \
475 stb_p(mem_buf, val); \
476 return 1; \
477 } while(0)
478 #define GET_REG16(val) do { \
479 stw_p(mem_buf, val); \
480 return 2; \
481 } while(0)
482 #define GET_REG32(val) do { \
483 stl_p(mem_buf, val); \
484 return 4; \
485 } while(0)
486 #define GET_REG64(val) do { \
487 stq_p(mem_buf, val); \
488 return 8; \
489 } while(0)
491 #if TARGET_LONG_BITS == 64
492 #define GET_REGL(val) GET_REG64(val)
493 #define ldtul_p(addr) ldq_p(addr)
494 #else
495 #define GET_REGL(val) GET_REG32(val)
496 #define ldtul_p(addr) ldl_p(addr)
497 #endif
499 #if defined(TARGET_I386)
501 #ifdef TARGET_X86_64
502 static const int gpr_map[16] = {
503 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
504 8, 9, 10, 11, 12, 13, 14, 15
506 #else
507 static const int gpr_map[8] = {0, 1, 2, 3, 4, 5, 6, 7};
508 #endif
510 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
512 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
514 if (n < CPU_NB_REGS) {
515 GET_REGL(env->regs[gpr_map[n]]);
516 } else if (n >= CPU_NB_REGS + 8 && n < CPU_NB_REGS + 16) {
517 /* FIXME: byteswap float values. */
518 #ifdef USE_X86LDOUBLE
519 memcpy(mem_buf, &env->fpregs[n - (CPU_NB_REGS + 8)], 10);
520 #else
521 memset(mem_buf, 0, 10);
522 #endif
523 return 10;
524 } else if (n >= CPU_NB_REGS + 24) {
525 n -= CPU_NB_REGS + 24;
526 if (n < CPU_NB_REGS) {
527 stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
528 stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
529 return 16;
530 } else if (n == CPU_NB_REGS) {
531 GET_REG32(env->mxcsr);
533 } else {
534 n -= CPU_NB_REGS;
535 switch (n) {
536 case 0: GET_REGL(env->eip);
537 case 1: GET_REG32(env->eflags);
538 case 2: GET_REG32(env->segs[R_CS].selector);
539 case 3: GET_REG32(env->segs[R_SS].selector);
540 case 4: GET_REG32(env->segs[R_DS].selector);
541 case 5: GET_REG32(env->segs[R_ES].selector);
542 case 6: GET_REG32(env->segs[R_FS].selector);
543 case 7: GET_REG32(env->segs[R_GS].selector);
544 /* 8...15 x87 regs. */
545 case 16: GET_REG32(env->fpuc);
546 case 17: GET_REG32((env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11);
547 case 18: GET_REG32(0); /* ftag */
548 case 19: GET_REG32(0); /* fiseg */
549 case 20: GET_REG32(0); /* fioff */
550 case 21: GET_REG32(0); /* foseg */
551 case 22: GET_REG32(0); /* fooff */
552 case 23: GET_REG32(0); /* fop */
553 /* 24+ xmm regs. */
556 return 0;
559 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int i)
561 uint32_t tmp;
563 if (i < CPU_NB_REGS) {
564 env->regs[gpr_map[i]] = ldtul_p(mem_buf);
565 return sizeof(target_ulong);
566 } else if (i >= CPU_NB_REGS + 8 && i < CPU_NB_REGS + 16) {
567 i -= CPU_NB_REGS + 8;
568 #ifdef USE_X86LDOUBLE
569 memcpy(&env->fpregs[i], mem_buf, 10);
570 #endif
571 return 10;
572 } else if (i >= CPU_NB_REGS + 24) {
573 i -= CPU_NB_REGS + 24;
574 if (i < CPU_NB_REGS) {
575 env->xmm_regs[i].XMM_Q(0) = ldq_p(mem_buf);
576 env->xmm_regs[i].XMM_Q(1) = ldq_p(mem_buf + 8);
577 return 16;
578 } else if (i == CPU_NB_REGS) {
579 env->mxcsr = ldl_p(mem_buf);
580 return 4;
582 } else {
583 i -= CPU_NB_REGS;
584 switch (i) {
585 case 0: env->eip = ldtul_p(mem_buf); return sizeof(target_ulong);
586 case 1: env->eflags = ldl_p(mem_buf); return 4;
587 #if defined(CONFIG_USER_ONLY)
588 #define LOAD_SEG(index, sreg)\
589 tmp = ldl_p(mem_buf);\
590 if (tmp != env->segs[sreg].selector)\
591 cpu_x86_load_seg(env, sreg, tmp);
592 #else
593 /* FIXME: Honor segment registers. Needs to avoid raising an exception
594 when the selector is invalid. */
595 #define LOAD_SEG(index, sreg) do {} while(0)
596 #endif
597 case 2: LOAD_SEG(10, R_CS); return 4;
598 case 3: LOAD_SEG(11, R_SS); return 4;
599 case 4: LOAD_SEG(12, R_DS); return 4;
600 case 5: LOAD_SEG(13, R_ES); return 4;
601 case 6: LOAD_SEG(14, R_FS); return 4;
602 case 7: LOAD_SEG(15, R_GS); return 4;
603 /* 8...15 x87 regs. */
604 case 16: env->fpuc = ldl_p(mem_buf); return 4;
605 case 17:
606 tmp = ldl_p(mem_buf);
607 env->fpstt = (tmp >> 11) & 7;
608 env->fpus = tmp & ~0x3800;
609 return 4;
610 case 18: /* ftag */ return 4;
611 case 19: /* fiseg */ return 4;
612 case 20: /* fioff */ return 4;
613 case 21: /* foseg */ return 4;
614 case 22: /* fooff */ return 4;
615 case 23: /* fop */ return 4;
616 /* 24+ xmm regs. */
619 /* Unrecognised register. */
620 return 0;
623 #elif defined (TARGET_PPC)
625 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
626 expects whatever the target description contains. Due to a
627 historical mishap the FP registers appear in between core integer
628 regs and PC, MSR, CR, and so forth. We hack round this by giving the
629 FP regs zero size when talking to a newer gdb. */
630 #define NUM_CORE_REGS 71
631 #if defined (TARGET_PPC64)
632 #define GDB_CORE_XML "power64-core.xml"
633 #else
634 #define GDB_CORE_XML "power-core.xml"
635 #endif
637 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
639 if (n < 32) {
640 /* gprs */
641 GET_REGL(env->gpr[n]);
642 } else if (n < 64) {
643 /* fprs */
644 if (gdb_has_xml)
645 return 0;
646 stfq_p(mem_buf, env->fpr[n-32]);
647 return 8;
648 } else {
649 switch (n) {
650 case 64: GET_REGL(env->nip);
651 case 65: GET_REGL(env->msr);
652 case 66:
654 uint32_t cr = 0;
655 int i;
656 for (i = 0; i < 8; i++)
657 cr |= env->crf[i] << (32 - ((i + 1) * 4));
658 GET_REG32(cr);
660 case 67: GET_REGL(env->lr);
661 case 68: GET_REGL(env->ctr);
662 case 69: GET_REGL(env->xer);
663 case 70:
665 if (gdb_has_xml)
666 return 0;
667 GET_REG32(0); /* fpscr */
671 return 0;
674 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
676 if (n < 32) {
677 /* gprs */
678 env->gpr[n] = ldtul_p(mem_buf);
679 return sizeof(target_ulong);
680 } else if (n < 64) {
681 /* fprs */
682 if (gdb_has_xml)
683 return 0;
684 env->fpr[n-32] = ldfq_p(mem_buf);
685 return 8;
686 } else {
687 switch (n) {
688 case 64:
689 env->nip = ldtul_p(mem_buf);
690 return sizeof(target_ulong);
691 case 65:
692 ppc_store_msr(env, ldtul_p(mem_buf));
693 return sizeof(target_ulong);
694 case 66:
696 uint32_t cr = ldl_p(mem_buf);
697 int i;
698 for (i = 0; i < 8; i++)
699 env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
700 return 4;
702 case 67:
703 env->lr = ldtul_p(mem_buf);
704 return sizeof(target_ulong);
705 case 68:
706 env->ctr = ldtul_p(mem_buf);
707 return sizeof(target_ulong);
708 case 69:
709 env->xer = ldtul_p(mem_buf);
710 return sizeof(target_ulong);
711 case 70:
712 /* fpscr */
713 if (gdb_has_xml)
714 return 0;
715 return 4;
718 return 0;
721 #elif defined (TARGET_SPARC)
723 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
724 #define NUM_CORE_REGS 86
725 #else
726 #define NUM_CORE_REGS 72
727 #endif
729 #ifdef TARGET_ABI32
730 #define GET_REGA(val) GET_REG32(val)
731 #else
732 #define GET_REGA(val) GET_REGL(val)
733 #endif
735 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
737 if (n < 8) {
738 /* g0..g7 */
739 GET_REGA(env->gregs[n]);
741 if (n < 32) {
742 /* register window */
743 GET_REGA(env->regwptr[n - 8]);
745 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
746 if (n < 64) {
747 /* fprs */
748 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
750 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
751 switch (n) {
752 case 64: GET_REGA(env->y);
753 case 65: GET_REGA(GET_PSR(env));
754 case 66: GET_REGA(env->wim);
755 case 67: GET_REGA(env->tbr);
756 case 68: GET_REGA(env->pc);
757 case 69: GET_REGA(env->npc);
758 case 70: GET_REGA(env->fsr);
759 case 71: GET_REGA(0); /* csr */
760 default: GET_REGA(0);
762 #else
763 if (n < 64) {
764 /* f0-f31 */
765 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
767 if (n < 80) {
768 /* f32-f62 (double width, even numbers only) */
769 uint64_t val;
771 val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
772 val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
773 GET_REG64(val);
775 switch (n) {
776 case 80: GET_REGL(env->pc);
777 case 81: GET_REGL(env->npc);
778 case 82: GET_REGL(((uint64_t)GET_CCR(env) << 32) |
779 ((env->asi & 0xff) << 24) |
780 ((env->pstate & 0xfff) << 8) |
781 GET_CWP64(env));
782 case 83: GET_REGL(env->fsr);
783 case 84: GET_REGL(env->fprs);
784 case 85: GET_REGL(env->y);
786 #endif
787 return 0;
790 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
792 #if defined(TARGET_ABI32)
793 abi_ulong tmp;
795 tmp = ldl_p(mem_buf);
796 #else
797 target_ulong tmp;
799 tmp = ldtul_p(mem_buf);
800 #endif
802 if (n < 8) {
803 /* g0..g7 */
804 env->gregs[n] = tmp;
805 } else if (n < 32) {
806 /* register window */
807 env->regwptr[n - 8] = tmp;
809 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
810 else if (n < 64) {
811 /* fprs */
812 *((uint32_t *)&env->fpr[n - 32]) = tmp;
813 } else {
814 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
815 switch (n) {
816 case 64: env->y = tmp; break;
817 case 65: PUT_PSR(env, tmp); break;
818 case 66: env->wim = tmp; break;
819 case 67: env->tbr = tmp; break;
820 case 68: env->pc = tmp; break;
821 case 69: env->npc = tmp; break;
822 case 70: env->fsr = tmp; break;
823 default: return 0;
826 return 4;
827 #else
828 else if (n < 64) {
829 /* f0-f31 */
830 env->fpr[n] = ldfl_p(mem_buf);
831 return 4;
832 } else if (n < 80) {
833 /* f32-f62 (double width, even numbers only) */
834 *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
835 *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
836 } else {
837 switch (n) {
838 case 80: env->pc = tmp; break;
839 case 81: env->npc = tmp; break;
840 case 82:
841 PUT_CCR(env, tmp >> 32);
842 env->asi = (tmp >> 24) & 0xff;
843 env->pstate = (tmp >> 8) & 0xfff;
844 PUT_CWP64(env, tmp & 0xff);
845 break;
846 case 83: env->fsr = tmp; break;
847 case 84: env->fprs = tmp; break;
848 case 85: env->y = tmp; break;
849 default: return 0;
852 return 8;
853 #endif
855 #elif defined (TARGET_ARM)
857 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
858 whatever the target description contains. Due to a historical mishap
859 the FPA registers appear in between core integer regs and the CPSR.
860 We hack round this by giving the FPA regs zero size when talking to a
861 newer gdb. */
862 #define NUM_CORE_REGS 26
863 #define GDB_CORE_XML "arm-core.xml"
865 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
867 if (n < 16) {
868 /* Core integer register. */
869 GET_REG32(env->regs[n]);
871 if (n < 24) {
872 /* FPA registers. */
873 if (gdb_has_xml)
874 return 0;
875 memset(mem_buf, 0, 12);
876 return 12;
878 switch (n) {
879 case 24:
880 /* FPA status register. */
881 if (gdb_has_xml)
882 return 0;
883 GET_REG32(0);
884 case 25:
885 /* CPSR */
886 GET_REG32(cpsr_read(env));
888 /* Unknown register. */
889 return 0;
892 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
894 uint32_t tmp;
896 tmp = ldl_p(mem_buf);
898 /* Mask out low bit of PC to workaround gdb bugs. This will probably
899 cause problems if we ever implement the Jazelle DBX extensions. */
900 if (n == 15)
901 tmp &= ~1;
903 if (n < 16) {
904 /* Core integer register. */
905 env->regs[n] = tmp;
906 return 4;
908 if (n < 24) { /* 16-23 */
909 /* FPA registers (ignored). */
910 if (gdb_has_xml)
911 return 0;
912 return 12;
914 switch (n) {
915 case 24:
916 /* FPA status register (ignored). */
917 if (gdb_has_xml)
918 return 0;
919 return 4;
920 case 25:
921 /* CPSR */
922 cpsr_write (env, tmp, 0xffffffff);
923 return 4;
925 /* Unknown register. */
926 return 0;
929 #elif defined (TARGET_M68K)
931 #define NUM_CORE_REGS 18
933 #define GDB_CORE_XML "cf-core.xml"
935 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
937 if (n < 8) {
938 /* D0-D7 */
939 GET_REG32(env->dregs[n]);
940 } else if (n < 16) {
941 /* A0-A7 */
942 GET_REG32(env->aregs[n - 8]);
943 } else {
944 switch (n) {
945 case 16: GET_REG32(env->sr);
946 case 17: GET_REG32(env->pc);
949 /* FP registers not included here because they vary between
950 ColdFire and m68k. Use XML bits for these. */
951 return 0;
954 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
956 uint32_t tmp;
958 tmp = ldl_p(mem_buf);
960 if (n < 8) {
961 /* D0-D7 */
962 env->dregs[n] = tmp;
963 } else if (n < 8) {
964 /* A0-A7 */
965 env->aregs[n - 8] = tmp;
966 } else {
967 switch (n) {
968 case 16: env->sr = tmp; break;
969 case 17: env->pc = tmp; break;
970 default: return 0;
973 return 4;
975 #elif defined (TARGET_MIPS)
977 #define NUM_CORE_REGS 73
979 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
981 if (n < 32) {
982 GET_REGL(env->active_tc.gpr[n]);
984 if (env->CP0_Config1 & (1 << CP0C1_FP)) {
985 if (n >= 38 && n < 70) {
986 if (env->CP0_Status & (1 << CP0St_FR))
987 GET_REGL(env->active_fpu.fpr[n - 38].d);
988 else
989 GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
991 switch (n) {
992 case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
993 case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
996 switch (n) {
997 case 32: GET_REGL((int32_t)env->CP0_Status);
998 case 33: GET_REGL(env->active_tc.LO[0]);
999 case 34: GET_REGL(env->active_tc.HI[0]);
1000 case 35: GET_REGL(env->CP0_BadVAddr);
1001 case 36: GET_REGL((int32_t)env->CP0_Cause);
1002 case 37: GET_REGL(env->active_tc.PC);
1003 case 72: GET_REGL(0); /* fp */
1004 case 89: GET_REGL((int32_t)env->CP0_PRid);
1006 if (n >= 73 && n <= 88) {
1007 /* 16 embedded regs. */
1008 GET_REGL(0);
1011 return 0;
1014 /* convert MIPS rounding mode in FCR31 to IEEE library */
1015 static unsigned int ieee_rm[] =
1017 float_round_nearest_even,
1018 float_round_to_zero,
1019 float_round_up,
1020 float_round_down
1022 #define RESTORE_ROUNDING_MODE \
1023 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1025 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1027 target_ulong tmp;
1029 tmp = ldtul_p(mem_buf);
1031 if (n < 32) {
1032 env->active_tc.gpr[n] = tmp;
1033 return sizeof(target_ulong);
1035 if (env->CP0_Config1 & (1 << CP0C1_FP)
1036 && n >= 38 && n < 73) {
1037 if (n < 70) {
1038 if (env->CP0_Status & (1 << CP0St_FR))
1039 env->active_fpu.fpr[n - 38].d = tmp;
1040 else
1041 env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
1043 switch (n) {
1044 case 70:
1045 env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
1046 /* set rounding mode */
1047 RESTORE_ROUNDING_MODE;
1048 #ifndef CONFIG_SOFTFLOAT
1049 /* no floating point exception for native float */
1050 SET_FP_ENABLE(env->active_fpu.fcr31, 0);
1051 #endif
1052 break;
1053 case 71: env->active_fpu.fcr0 = tmp; break;
1055 return sizeof(target_ulong);
1057 switch (n) {
1058 case 32: env->CP0_Status = tmp; break;
1059 case 33: env->active_tc.LO[0] = tmp; break;
1060 case 34: env->active_tc.HI[0] = tmp; break;
1061 case 35: env->CP0_BadVAddr = tmp; break;
1062 case 36: env->CP0_Cause = tmp; break;
1063 case 37: env->active_tc.PC = tmp; break;
1064 case 72: /* fp, ignored */ break;
1065 default:
1066 if (n > 89)
1067 return 0;
1068 /* Other registers are readonly. Ignore writes. */
1069 break;
1072 return sizeof(target_ulong);
1074 #elif defined (TARGET_SH4)
1076 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1077 /* FIXME: We should use XML for this. */
1079 #define NUM_CORE_REGS 59
1081 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1083 if (n < 8) {
1084 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1085 GET_REGL(env->gregs[n + 16]);
1086 } else {
1087 GET_REGL(env->gregs[n]);
1089 } else if (n < 16) {
1090 GET_REGL(env->gregs[n - 8]);
1091 } else if (n >= 25 && n < 41) {
1092 GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
1093 } else if (n >= 43 && n < 51) {
1094 GET_REGL(env->gregs[n - 43]);
1095 } else if (n >= 51 && n < 59) {
1096 GET_REGL(env->gregs[n - (51 - 16)]);
1098 switch (n) {
1099 case 16: GET_REGL(env->pc);
1100 case 17: GET_REGL(env->pr);
1101 case 18: GET_REGL(env->gbr);
1102 case 19: GET_REGL(env->vbr);
1103 case 20: GET_REGL(env->mach);
1104 case 21: GET_REGL(env->macl);
1105 case 22: GET_REGL(env->sr);
1106 case 23: GET_REGL(env->fpul);
1107 case 24: GET_REGL(env->fpscr);
1108 case 41: GET_REGL(env->ssr);
1109 case 42: GET_REGL(env->spc);
1112 return 0;
1115 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1117 uint32_t tmp;
1119 tmp = ldl_p(mem_buf);
1121 if (n < 8) {
1122 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1123 env->gregs[n + 16] = tmp;
1124 } else {
1125 env->gregs[n] = tmp;
1127 return 4;
1128 } else if (n < 16) {
1129 env->gregs[n - 8] = tmp;
1130 return 4;
1131 } else if (n >= 25 && n < 41) {
1132 env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
1133 } else if (n >= 43 && n < 51) {
1134 env->gregs[n - 43] = tmp;
1135 return 4;
1136 } else if (n >= 51 && n < 59) {
1137 env->gregs[n - (51 - 16)] = tmp;
1138 return 4;
1140 switch (n) {
1141 case 16: env->pc = tmp;
1142 case 17: env->pr = tmp;
1143 case 18: env->gbr = tmp;
1144 case 19: env->vbr = tmp;
1145 case 20: env->mach = tmp;
1146 case 21: env->macl = tmp;
1147 case 22: env->sr = tmp;
1148 case 23: env->fpul = tmp;
1149 case 24: env->fpscr = tmp;
1150 case 41: env->ssr = tmp;
1151 case 42: env->spc = tmp;
1152 default: return 0;
1155 return 4;
1157 #elif defined (TARGET_CRIS)
1159 #define NUM_CORE_REGS 49
1161 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1163 uint8_t srs;
1165 srs = env->pregs[PR_SRS];
1166 if (n < 16) {
1167 GET_REG32(env->regs[n]);
1170 if (n >= 21 && n < 32) {
1171 GET_REG32(env->pregs[n - 16]);
1173 if (n >= 33 && n < 49) {
1174 GET_REG32(env->sregs[srs][n - 33]);
1176 switch (n) {
1177 case 16: GET_REG8(env->pregs[0]);
1178 case 17: GET_REG8(env->pregs[1]);
1179 case 18: GET_REG32(env->pregs[2]);
1180 case 19: GET_REG8(srs);
1181 case 20: GET_REG16(env->pregs[4]);
1182 case 32: GET_REG32(env->pc);
1185 return 0;
1188 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1190 uint32_t tmp;
1192 if (n > 49)
1193 return 0;
1195 tmp = ldl_p(mem_buf);
1197 if (n < 16) {
1198 env->regs[n] = tmp;
1201 if (n >= 21 && n < 32) {
1202 env->pregs[n - 16] = tmp;
1205 /* FIXME: Should support function regs be writable? */
1206 switch (n) {
1207 case 16: return 1;
1208 case 17: return 1;
1209 case 18: env->pregs[PR_PID] = tmp; break;
1210 case 19: return 1;
1211 case 20: return 2;
1212 case 32: env->pc = tmp; break;
1215 return 4;
1217 #elif defined (TARGET_ALPHA)
1219 #define NUM_CORE_REGS 65
1221 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1223 if (n < 31) {
1224 GET_REGL(env->ir[n]);
1226 else if (n == 31) {
1227 GET_REGL(0);
1229 else if (n<63) {
1230 uint64_t val;
1232 val=*((uint64_t *)&env->fir[n-32]);
1233 GET_REGL(val);
1235 else if (n==63) {
1236 GET_REGL(env->fpcr);
1238 else if (n==64) {
1239 GET_REGL(env->pc);
1241 else {
1242 GET_REGL(0);
1245 return 0;
1248 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1250 target_ulong tmp;
1251 tmp = ldtul_p(mem_buf);
1253 if (n < 31) {
1254 env->ir[n] = tmp;
1257 if (n > 31 && n < 63) {
1258 env->fir[n - 32] = ldfl_p(mem_buf);
1261 if (n == 64 ) {
1262 env->pc=tmp;
1265 return 8;
1267 #else
1269 #define NUM_CORE_REGS 0
1271 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1273 return 0;
1276 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1278 return 0;
1281 #endif
1283 static int num_g_regs = NUM_CORE_REGS;
1285 #ifdef GDB_CORE_XML
1286 /* Encode data using the encoding for 'x' packets. */
1287 static int memtox(char *buf, const char *mem, int len)
1289 char *p = buf;
1290 char c;
1292 while (len--) {
1293 c = *(mem++);
1294 switch (c) {
1295 case '#': case '$': case '*': case '}':
1296 *(p++) = '}';
1297 *(p++) = c ^ 0x20;
1298 break;
1299 default:
1300 *(p++) = c;
1301 break;
1304 return p - buf;
1307 static const char *get_feature_xml(const char *p, const char **newp)
1309 extern const char *const xml_builtin[][2];
1310 size_t len;
1311 int i;
1312 const char *name;
1313 static char target_xml[1024];
1315 len = 0;
1316 while (p[len] && p[len] != ':')
1317 len++;
1318 *newp = p + len;
1320 name = NULL;
1321 if (strncmp(p, "target.xml", len) == 0) {
1322 /* Generate the XML description for this CPU. */
1323 if (!target_xml[0]) {
1324 GDBRegisterState *r;
1326 snprintf(target_xml, sizeof(target_xml),
1327 "<?xml version=\"1.0\"?>"
1328 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1329 "<target>"
1330 "<xi:include href=\"%s\"/>",
1331 GDB_CORE_XML);
1333 for (r = first_cpu->gdb_regs; r; r = r->next) {
1334 strcat(target_xml, "<xi:include href=\"");
1335 strcat(target_xml, r->xml);
1336 strcat(target_xml, "\"/>");
1338 strcat(target_xml, "</target>");
1340 return target_xml;
1342 for (i = 0; ; i++) {
1343 name = xml_builtin[i][0];
1344 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
1345 break;
1347 return name ? xml_builtin[i][1] : NULL;
1349 #endif
1351 static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
1353 GDBRegisterState *r;
1355 if (reg < NUM_CORE_REGS)
1356 return cpu_gdb_read_register(env, mem_buf, reg);
1358 for (r = env->gdb_regs; r; r = r->next) {
1359 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1360 return r->get_reg(env, mem_buf, reg - r->base_reg);
1363 return 0;
1366 static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
1368 GDBRegisterState *r;
1370 if (reg < NUM_CORE_REGS)
1371 return cpu_gdb_write_register(env, mem_buf, reg);
1373 for (r = env->gdb_regs; r; r = r->next) {
1374 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1375 return r->set_reg(env, mem_buf, reg - r->base_reg);
1378 return 0;
1381 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1382 specifies the first register number and these registers are included in
1383 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1384 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1387 void gdb_register_coprocessor(CPUState * env,
1388 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
1389 int num_regs, const char *xml, int g_pos)
1391 GDBRegisterState *s;
1392 GDBRegisterState **p;
1393 static int last_reg = NUM_CORE_REGS;
1395 s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
1396 s->base_reg = last_reg;
1397 s->num_regs = num_regs;
1398 s->get_reg = get_reg;
1399 s->set_reg = set_reg;
1400 s->xml = xml;
1401 p = &env->gdb_regs;
1402 while (*p) {
1403 /* Check for duplicates. */
1404 if (strcmp((*p)->xml, xml) == 0)
1405 return;
1406 p = &(*p)->next;
1408 /* Add to end of list. */
1409 last_reg += num_regs;
1410 *p = s;
1411 if (g_pos) {
1412 if (g_pos != s->base_reg) {
1413 fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
1414 "Expected %d got %d\n", xml, g_pos, s->base_reg);
1415 } else {
1416 num_g_regs = last_reg;
1421 /* GDB breakpoint/watchpoint types */
1422 #define GDB_BREAKPOINT_SW 0
1423 #define GDB_BREAKPOINT_HW 1
1424 #define GDB_WATCHPOINT_WRITE 2
1425 #define GDB_WATCHPOINT_READ 3
1426 #define GDB_WATCHPOINT_ACCESS 4
1428 #ifndef CONFIG_USER_ONLY
1429 static const int xlat_gdb_type[] = {
1430 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
1431 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
1432 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
1434 #endif
1436 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1438 CPUState *env;
1439 int err = 0;
1441 switch (type) {
1442 case GDB_BREAKPOINT_SW:
1443 case GDB_BREAKPOINT_HW:
1444 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1445 err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
1446 if (err)
1447 break;
1449 return err;
1450 #ifndef CONFIG_USER_ONLY
1451 case GDB_WATCHPOINT_WRITE:
1452 case GDB_WATCHPOINT_READ:
1453 case GDB_WATCHPOINT_ACCESS:
1454 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1455 err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
1456 NULL);
1457 if (err)
1458 break;
1460 return err;
1461 #endif
1462 default:
1463 return -ENOSYS;
1467 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1469 CPUState *env;
1470 int err = 0;
1472 switch (type) {
1473 case GDB_BREAKPOINT_SW:
1474 case GDB_BREAKPOINT_HW:
1475 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1476 err = cpu_breakpoint_remove(env, addr, BP_GDB);
1477 if (err)
1478 break;
1480 return err;
1481 #ifndef CONFIG_USER_ONLY
1482 case GDB_WATCHPOINT_WRITE:
1483 case GDB_WATCHPOINT_READ:
1484 case GDB_WATCHPOINT_ACCESS:
1485 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1486 err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
1487 if (err)
1488 break;
1490 return err;
1491 #endif
1492 default:
1493 return -ENOSYS;
1497 static void gdb_breakpoint_remove_all(void)
1499 CPUState *env;
1501 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1502 cpu_breakpoint_remove_all(env, BP_GDB);
1503 #ifndef CONFIG_USER_ONLY
1504 cpu_watchpoint_remove_all(env, BP_GDB);
1505 #endif
1509 static int gdb_handle_packet(GDBState *s, const char *line_buf)
1511 CPUState *env;
1512 const char *p;
1513 int ch, reg_size, type, res, thread;
1514 char buf[MAX_PACKET_LENGTH];
1515 uint8_t mem_buf[MAX_PACKET_LENGTH];
1516 uint8_t *registers;
1517 target_ulong addr, len;
1519 #ifdef DEBUG_GDB
1520 printf("command='%s'\n", line_buf);
1521 #endif
1522 p = line_buf;
1523 ch = *p++;
1524 switch(ch) {
1525 case '?':
1526 /* TODO: Make this return the correct value for user-mode. */
1527 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
1528 s->c_cpu->cpu_index+1);
1529 put_packet(s, buf);
1530 /* Remove all the breakpoints when this query is issued,
1531 * because gdb is doing and initial connect and the state
1532 * should be cleaned up.
1534 gdb_breakpoint_remove_all();
1535 break;
1536 case 'c':
1537 if (*p != '\0') {
1538 addr = strtoull(p, (char **)&p, 16);
1539 #if defined(TARGET_I386)
1540 s->c_cpu->eip = addr;
1541 #elif defined (TARGET_PPC)
1542 s->c_cpu->nip = addr;
1543 #elif defined (TARGET_SPARC)
1544 s->c_cpu->pc = addr;
1545 s->c_cpu->npc = addr + 4;
1546 #elif defined (TARGET_ARM)
1547 s->c_cpu->regs[15] = addr;
1548 #elif defined (TARGET_SH4)
1549 s->c_cpu->pc = addr;
1550 #elif defined (TARGET_MIPS)
1551 s->c_cpu->active_tc.PC = addr;
1552 #elif defined (TARGET_CRIS)
1553 s->c_cpu->pc = addr;
1554 #elif defined (TARGET_ALPHA)
1555 s->c_cpu->pc = addr;
1556 #endif
1558 s->signal = 0;
1559 gdb_continue(s);
1560 return RS_IDLE;
1561 case 'C':
1562 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
1563 if (s->signal == -1)
1564 s->signal = 0;
1565 gdb_continue(s);
1566 return RS_IDLE;
1567 case 'k':
1568 /* Kill the target */
1569 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
1570 exit(0);
1571 case 'D':
1572 /* Detach packet */
1573 gdb_breakpoint_remove_all();
1574 gdb_continue(s);
1575 put_packet(s, "OK");
1576 break;
1577 case 's':
1578 if (*p != '\0') {
1579 addr = strtoull(p, (char **)&p, 16);
1580 #if defined(TARGET_I386)
1581 s->c_cpu->eip = addr;
1582 #elif defined (TARGET_PPC)
1583 s->c_cpu->nip = addr;
1584 #elif defined (TARGET_SPARC)
1585 s->c_cpu->pc = addr;
1586 s->c_cpu->npc = addr + 4;
1587 #elif defined (TARGET_ARM)
1588 s->c_cpu->regs[15] = addr;
1589 #elif defined (TARGET_SH4)
1590 s->c_cpu->pc = addr;
1591 #elif defined (TARGET_MIPS)
1592 s->c_cpu->active_tc.PC = addr;
1593 #elif defined (TARGET_CRIS)
1594 s->c_cpu->pc = addr;
1595 #elif defined (TARGET_ALPHA)
1596 s->c_cpu->pc = addr;
1597 #endif
1599 cpu_single_step(s->c_cpu, sstep_flags);
1600 gdb_continue(s);
1601 return RS_IDLE;
1602 case 'F':
1604 target_ulong ret;
1605 target_ulong err;
1607 ret = strtoull(p, (char **)&p, 16);
1608 if (*p == ',') {
1609 p++;
1610 err = strtoull(p, (char **)&p, 16);
1611 } else {
1612 err = 0;
1614 if (*p == ',')
1615 p++;
1616 type = *p;
1617 if (gdb_current_syscall_cb)
1618 gdb_current_syscall_cb(s->c_cpu, ret, err);
1619 if (type == 'C') {
1620 put_packet(s, "T02");
1621 } else {
1622 gdb_continue(s);
1625 break;
1626 case 'g':
1627 len = 0;
1628 for (addr = 0; addr < num_g_regs; addr++) {
1629 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1630 len += reg_size;
1632 memtohex(buf, mem_buf, len);
1633 put_packet(s, buf);
1634 break;
1635 case 'G':
1636 registers = mem_buf;
1637 len = strlen(p) / 2;
1638 hextomem((uint8_t *)registers, p, len);
1639 for (addr = 0; addr < num_g_regs && len > 0; addr++) {
1640 reg_size = gdb_write_register(s->g_cpu, registers, addr);
1641 len -= reg_size;
1642 registers += reg_size;
1644 put_packet(s, "OK");
1645 break;
1646 case 'm':
1647 addr = strtoull(p, (char **)&p, 16);
1648 if (*p == ',')
1649 p++;
1650 len = strtoull(p, NULL, 16);
1651 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
1652 put_packet (s, "E14");
1653 } else {
1654 memtohex(buf, mem_buf, len);
1655 put_packet(s, buf);
1657 break;
1658 case 'M':
1659 addr = strtoull(p, (char **)&p, 16);
1660 if (*p == ',')
1661 p++;
1662 len = strtoull(p, (char **)&p, 16);
1663 if (*p == ':')
1664 p++;
1665 hextomem(mem_buf, p, len);
1666 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0)
1667 put_packet(s, "E14");
1668 else
1669 put_packet(s, "OK");
1670 break;
1671 case 'p':
1672 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1673 This works, but can be very slow. Anything new enough to
1674 understand XML also knows how to use this properly. */
1675 if (!gdb_has_xml)
1676 goto unknown_command;
1677 addr = strtoull(p, (char **)&p, 16);
1678 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
1679 if (reg_size) {
1680 memtohex(buf, mem_buf, reg_size);
1681 put_packet(s, buf);
1682 } else {
1683 put_packet(s, "E14");
1685 break;
1686 case 'P':
1687 if (!gdb_has_xml)
1688 goto unknown_command;
1689 addr = strtoull(p, (char **)&p, 16);
1690 if (*p == '=')
1691 p++;
1692 reg_size = strlen(p) / 2;
1693 hextomem(mem_buf, p, reg_size);
1694 gdb_write_register(s->g_cpu, mem_buf, addr);
1695 put_packet(s, "OK");
1696 break;
1697 case 'Z':
1698 case 'z':
1699 type = strtoul(p, (char **)&p, 16);
1700 if (*p == ',')
1701 p++;
1702 addr = strtoull(p, (char **)&p, 16);
1703 if (*p == ',')
1704 p++;
1705 len = strtoull(p, (char **)&p, 16);
1706 if (ch == 'Z')
1707 res = gdb_breakpoint_insert(addr, len, type);
1708 else
1709 res = gdb_breakpoint_remove(addr, len, type);
1710 if (res >= 0)
1711 put_packet(s, "OK");
1712 else if (res == -ENOSYS)
1713 put_packet(s, "");
1714 else
1715 put_packet(s, "E22");
1716 break;
1717 case 'H':
1718 type = *p++;
1719 thread = strtoull(p, (char **)&p, 16);
1720 if (thread == -1 || thread == 0) {
1721 put_packet(s, "OK");
1722 break;
1724 for (env = first_cpu; env != NULL; env = env->next_cpu)
1725 if (env->cpu_index + 1 == thread)
1726 break;
1727 if (env == NULL) {
1728 put_packet(s, "E22");
1729 break;
1731 switch (type) {
1732 case 'c':
1733 s->c_cpu = env;
1734 put_packet(s, "OK");
1735 break;
1736 case 'g':
1737 s->g_cpu = env;
1738 put_packet(s, "OK");
1739 break;
1740 default:
1741 put_packet(s, "E22");
1742 break;
1744 break;
1745 case 'T':
1746 thread = strtoull(p, (char **)&p, 16);
1747 #ifndef CONFIG_USER_ONLY
1748 if (thread > 0 && thread < smp_cpus + 1)
1749 #else
1750 if (thread == 1)
1751 #endif
1752 put_packet(s, "OK");
1753 else
1754 put_packet(s, "E22");
1755 break;
1756 case 'q':
1757 case 'Q':
1758 /* parse any 'q' packets here */
1759 if (!strcmp(p,"qemu.sstepbits")) {
1760 /* Query Breakpoint bit definitions */
1761 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1762 SSTEP_ENABLE,
1763 SSTEP_NOIRQ,
1764 SSTEP_NOTIMER);
1765 put_packet(s, buf);
1766 break;
1767 } else if (strncmp(p,"qemu.sstep",10) == 0) {
1768 /* Display or change the sstep_flags */
1769 p += 10;
1770 if (*p != '=') {
1771 /* Display current setting */
1772 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
1773 put_packet(s, buf);
1774 break;
1776 p++;
1777 type = strtoul(p, (char **)&p, 16);
1778 sstep_flags = type;
1779 put_packet(s, "OK");
1780 break;
1781 } else if (strcmp(p,"C") == 0) {
1782 /* "Current thread" remains vague in the spec, so always return
1783 * the first CPU (gdb returns the first thread). */
1784 put_packet(s, "QC1");
1785 break;
1786 } else if (strcmp(p,"fThreadInfo") == 0) {
1787 s->query_cpu = first_cpu;
1788 goto report_cpuinfo;
1789 } else if (strcmp(p,"sThreadInfo") == 0) {
1790 report_cpuinfo:
1791 if (s->query_cpu) {
1792 snprintf(buf, sizeof(buf), "m%x", s->query_cpu->cpu_index+1);
1793 put_packet(s, buf);
1794 s->query_cpu = s->query_cpu->next_cpu;
1795 } else
1796 put_packet(s, "l");
1797 break;
1798 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
1799 thread = strtoull(p+16, (char **)&p, 16);
1800 for (env = first_cpu; env != NULL; env = env->next_cpu)
1801 if (env->cpu_index + 1 == thread) {
1802 len = snprintf((char *)mem_buf, sizeof(mem_buf),
1803 "CPU#%d [%s]", env->cpu_index,
1804 env->halted ? "halted " : "running");
1805 memtohex(buf, mem_buf, len);
1806 put_packet(s, buf);
1807 break;
1809 break;
1811 #ifdef CONFIG_USER_ONLY
1812 else if (strncmp(p, "Offsets", 7) == 0) {
1813 TaskState *ts = s->c_cpu->opaque;
1815 snprintf(buf, sizeof(buf),
1816 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
1817 ";Bss=" TARGET_ABI_FMT_lx,
1818 ts->info->code_offset,
1819 ts->info->data_offset,
1820 ts->info->data_offset);
1821 put_packet(s, buf);
1822 break;
1824 #else /* !CONFIG_USER_ONLY */
1825 else if (strncmp(p, "Rcmd,", 5) == 0) {
1826 int len = strlen(p + 5);
1828 if ((len % 2) != 0) {
1829 put_packet(s, "E01");
1830 break;
1832 hextomem(mem_buf, p + 5, len);
1833 len = len / 2;
1834 mem_buf[len++] = 0;
1835 qemu_chr_read(s->mon_chr, mem_buf, len);
1836 put_packet(s, "OK");
1837 break;
1839 #endif /* !CONFIG_USER_ONLY */
1840 if (strncmp(p, "Supported", 9) == 0) {
1841 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
1842 #ifdef GDB_CORE_XML
1843 strcat(buf, ";qXfer:features:read+");
1844 #endif
1845 put_packet(s, buf);
1846 break;
1848 #ifdef GDB_CORE_XML
1849 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
1850 const char *xml;
1851 target_ulong total_len;
1853 gdb_has_xml = 1;
1854 p += 19;
1855 xml = get_feature_xml(p, &p);
1856 if (!xml) {
1857 snprintf(buf, sizeof(buf), "E00");
1858 put_packet(s, buf);
1859 break;
1862 if (*p == ':')
1863 p++;
1864 addr = strtoul(p, (char **)&p, 16);
1865 if (*p == ',')
1866 p++;
1867 len = strtoul(p, (char **)&p, 16);
1869 total_len = strlen(xml);
1870 if (addr > total_len) {
1871 snprintf(buf, sizeof(buf), "E00");
1872 put_packet(s, buf);
1873 break;
1875 if (len > (MAX_PACKET_LENGTH - 5) / 2)
1876 len = (MAX_PACKET_LENGTH - 5) / 2;
1877 if (len < total_len - addr) {
1878 buf[0] = 'm';
1879 len = memtox(buf + 1, xml + addr, len);
1880 } else {
1881 buf[0] = 'l';
1882 len = memtox(buf + 1, xml + addr, total_len - addr);
1884 put_packet_binary(s, buf, len + 1);
1885 break;
1887 #endif
1888 /* Unrecognised 'q' command. */
1889 goto unknown_command;
1891 default:
1892 unknown_command:
1893 /* put empty packet */
1894 buf[0] = '\0';
1895 put_packet(s, buf);
1896 break;
1898 return RS_IDLE;
1901 void gdb_set_stop_cpu(CPUState *env)
1903 gdbserver_state->c_cpu = env;
1904 gdbserver_state->g_cpu = env;
1907 #ifndef CONFIG_USER_ONLY
1908 static void gdb_vm_state_change(void *opaque, int running, int reason)
1910 GDBState *s = gdbserver_state;
1911 CPUState *env = s->c_cpu;
1912 char buf[256];
1913 const char *type;
1914 int ret;
1916 if (running || (reason != EXCP_DEBUG && reason != EXCP_INTERRUPT) ||
1917 s->state == RS_SYSCALL)
1918 return;
1920 /* disable single step if it was enable */
1921 cpu_single_step(env, 0);
1923 if (reason == EXCP_DEBUG) {
1924 if (env->watchpoint_hit) {
1925 switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
1926 case BP_MEM_READ:
1927 type = "r";
1928 break;
1929 case BP_MEM_ACCESS:
1930 type = "a";
1931 break;
1932 default:
1933 type = "";
1934 break;
1936 snprintf(buf, sizeof(buf),
1937 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
1938 GDB_SIGNAL_TRAP, env->cpu_index+1, type,
1939 env->watchpoint_hit->vaddr);
1940 put_packet(s, buf);
1941 env->watchpoint_hit = NULL;
1942 return;
1944 tb_flush(env);
1945 ret = GDB_SIGNAL_TRAP;
1946 } else {
1947 ret = GDB_SIGNAL_INT;
1949 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, env->cpu_index+1);
1950 put_packet(s, buf);
1952 #endif
1954 /* Send a gdb syscall request.
1955 This accepts limited printf-style format specifiers, specifically:
1956 %x - target_ulong argument printed in hex.
1957 %lx - 64-bit argument printed in hex.
1958 %s - string pointer (target_ulong) and length (int) pair. */
1959 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
1961 va_list va;
1962 char buf[256];
1963 char *p;
1964 target_ulong addr;
1965 uint64_t i64;
1966 GDBState *s;
1968 s = gdbserver_state;
1969 if (!s)
1970 return;
1971 gdb_current_syscall_cb = cb;
1972 s->state = RS_SYSCALL;
1973 #ifndef CONFIG_USER_ONLY
1974 vm_stop(EXCP_DEBUG);
1975 #endif
1976 s->state = RS_IDLE;
1977 va_start(va, fmt);
1978 p = buf;
1979 *(p++) = 'F';
1980 while (*fmt) {
1981 if (*fmt == '%') {
1982 fmt++;
1983 switch (*fmt++) {
1984 case 'x':
1985 addr = va_arg(va, target_ulong);
1986 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
1987 break;
1988 case 'l':
1989 if (*(fmt++) != 'x')
1990 goto bad_format;
1991 i64 = va_arg(va, uint64_t);
1992 p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
1993 break;
1994 case 's':
1995 addr = va_arg(va, target_ulong);
1996 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
1997 addr, va_arg(va, int));
1998 break;
1999 default:
2000 bad_format:
2001 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
2002 fmt - 1);
2003 break;
2005 } else {
2006 *(p++) = *(fmt++);
2009 *p = 0;
2010 va_end(va);
2011 put_packet(s, buf);
2012 #ifdef CONFIG_USER_ONLY
2013 gdb_handlesig(s->c_cpu, 0);
2014 #else
2015 cpu_exit(s->c_cpu);
2016 #endif
2019 static void gdb_read_byte(GDBState *s, int ch)
2021 int i, csum;
2022 uint8_t reply;
2024 #ifndef CONFIG_USER_ONLY
2025 if (s->last_packet_len) {
2026 /* Waiting for a response to the last packet. If we see the start
2027 of a new command then abandon the previous response. */
2028 if (ch == '-') {
2029 #ifdef DEBUG_GDB
2030 printf("Got NACK, retransmitting\n");
2031 #endif
2032 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2034 #ifdef DEBUG_GDB
2035 else if (ch == '+')
2036 printf("Got ACK\n");
2037 else
2038 printf("Got '%c' when expecting ACK/NACK\n", ch);
2039 #endif
2040 if (ch == '+' || ch == '$')
2041 s->last_packet_len = 0;
2042 if (ch != '$')
2043 return;
2045 if (vm_running) {
2046 /* when the CPU is running, we cannot do anything except stop
2047 it when receiving a char */
2048 vm_stop(EXCP_INTERRUPT);
2049 } else
2050 #endif
2052 switch(s->state) {
2053 case RS_IDLE:
2054 if (ch == '$') {
2055 s->line_buf_index = 0;
2056 s->state = RS_GETLINE;
2058 break;
2059 case RS_GETLINE:
2060 if (ch == '#') {
2061 s->state = RS_CHKSUM1;
2062 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2063 s->state = RS_IDLE;
2064 } else {
2065 s->line_buf[s->line_buf_index++] = ch;
2067 break;
2068 case RS_CHKSUM1:
2069 s->line_buf[s->line_buf_index] = '\0';
2070 s->line_csum = fromhex(ch) << 4;
2071 s->state = RS_CHKSUM2;
2072 break;
2073 case RS_CHKSUM2:
2074 s->line_csum |= fromhex(ch);
2075 csum = 0;
2076 for(i = 0; i < s->line_buf_index; i++) {
2077 csum += s->line_buf[i];
2079 if (s->line_csum != (csum & 0xff)) {
2080 reply = '-';
2081 put_buffer(s, &reply, 1);
2082 s->state = RS_IDLE;
2083 } else {
2084 reply = '+';
2085 put_buffer(s, &reply, 1);
2086 s->state = gdb_handle_packet(s, s->line_buf);
2088 break;
2089 default:
2090 abort();
2095 #ifdef CONFIG_USER_ONLY
2097 gdb_queuesig (void)
2099 GDBState *s;
2101 s = gdbserver_state;
2103 if (gdbserver_fd < 0 || s->fd < 0)
2104 return 0;
2105 else
2106 return 1;
2110 gdb_handlesig (CPUState *env, int sig)
2112 GDBState *s;
2113 char buf[256];
2114 int n;
2116 s = gdbserver_state;
2117 if (gdbserver_fd < 0 || s->fd < 0)
2118 return sig;
2120 /* disable single step if it was enabled */
2121 cpu_single_step(env, 0);
2122 tb_flush(env);
2124 if (sig != 0)
2126 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig));
2127 put_packet(s, buf);
2129 /* put_packet() might have detected that the peer terminated the
2130 connection. */
2131 if (s->fd < 0)
2132 return sig;
2134 sig = 0;
2135 s->state = RS_IDLE;
2136 s->running_state = 0;
2137 while (s->running_state == 0) {
2138 n = read (s->fd, buf, 256);
2139 if (n > 0)
2141 int i;
2143 for (i = 0; i < n; i++)
2144 gdb_read_byte (s, buf[i]);
2146 else if (n == 0 || errno != EAGAIN)
2148 /* XXX: Connection closed. Should probably wait for annother
2149 connection before continuing. */
2150 return sig;
2153 sig = s->signal;
2154 s->signal = 0;
2155 return sig;
2158 /* Tell the remote gdb that the process has exited. */
2159 void gdb_exit(CPUState *env, int code)
2161 GDBState *s;
2162 char buf[4];
2164 s = gdbserver_state;
2165 if (gdbserver_fd < 0 || s->fd < 0)
2166 return;
2168 snprintf(buf, sizeof(buf), "W%02x", code);
2169 put_packet(s, buf);
2172 /* Tell the remote gdb that the process has exited due to SIG. */
2173 void gdb_signalled(CPUState *env, int sig)
2175 GDBState *s;
2176 char buf[4];
2178 s = gdbserver_state;
2179 if (gdbserver_fd < 0 || s->fd < 0)
2180 return;
2182 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig));
2183 put_packet(s, buf);
2186 static void gdb_accept(void)
2188 GDBState *s;
2189 struct sockaddr_in sockaddr;
2190 socklen_t len;
2191 int val, fd;
2193 for(;;) {
2194 len = sizeof(sockaddr);
2195 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2196 if (fd < 0 && errno != EINTR) {
2197 perror("accept");
2198 return;
2199 } else if (fd >= 0) {
2200 break;
2204 /* set short latency */
2205 val = 1;
2206 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2208 s = qemu_mallocz(sizeof(GDBState));
2210 memset (s, 0, sizeof (GDBState));
2211 s->c_cpu = first_cpu;
2212 s->g_cpu = first_cpu;
2213 s->fd = fd;
2214 gdb_has_xml = 0;
2216 gdbserver_state = s;
2218 fcntl(fd, F_SETFL, O_NONBLOCK);
2221 static int gdbserver_open(int port)
2223 struct sockaddr_in sockaddr;
2224 int fd, val, ret;
2226 fd = socket(PF_INET, SOCK_STREAM, 0);
2227 if (fd < 0) {
2228 perror("socket");
2229 return -1;
2232 /* allow fast reuse */
2233 val = 1;
2234 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
2236 sockaddr.sin_family = AF_INET;
2237 sockaddr.sin_port = htons(port);
2238 sockaddr.sin_addr.s_addr = 0;
2239 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2240 if (ret < 0) {
2241 perror("bind");
2242 return -1;
2244 ret = listen(fd, 0);
2245 if (ret < 0) {
2246 perror("listen");
2247 return -1;
2249 return fd;
2252 int gdbserver_start(int port)
2254 gdbserver_fd = gdbserver_open(port);
2255 if (gdbserver_fd < 0)
2256 return -1;
2257 /* accept connections */
2258 gdb_accept();
2259 return 0;
2262 /* Disable gdb stub for child processes. */
2263 void gdbserver_fork(CPUState *env)
2265 GDBState *s = gdbserver_state;
2266 if (gdbserver_fd < 0 || s->fd < 0)
2267 return;
2268 close(s->fd);
2269 s->fd = -1;
2270 cpu_breakpoint_remove_all(env, BP_GDB);
2271 cpu_watchpoint_remove_all(env, BP_GDB);
2273 #else
2274 static int gdb_chr_can_receive(void *opaque)
2276 /* We can handle an arbitrarily large amount of data.
2277 Pick the maximum packet size, which is as good as anything. */
2278 return MAX_PACKET_LENGTH;
2281 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2283 int i;
2285 for (i = 0; i < size; i++) {
2286 gdb_read_byte(gdbserver_state, buf[i]);
2290 static void gdb_chr_event(void *opaque, int event)
2292 switch (event) {
2293 case CHR_EVENT_RESET:
2294 vm_stop(EXCP_INTERRUPT);
2295 gdb_has_xml = 0;
2296 break;
2297 default:
2298 break;
2302 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
2304 char buf[MAX_PACKET_LENGTH];
2306 buf[0] = 'O';
2307 if (len > (MAX_PACKET_LENGTH/2) - 1)
2308 len = (MAX_PACKET_LENGTH/2) - 1;
2309 memtohex(buf + 1, (uint8_t *)msg, len);
2310 put_packet(s, buf);
2313 static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len)
2315 const char *p = (const char *)buf;
2316 int max_sz;
2318 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
2319 for (;;) {
2320 if (len <= max_sz) {
2321 gdb_monitor_output(gdbserver_state, p, len);
2322 break;
2324 gdb_monitor_output(gdbserver_state, p, max_sz);
2325 p += max_sz;
2326 len -= max_sz;
2328 return len;
2331 int gdbserver_start(const char *port)
2333 GDBState *s;
2334 char gdbstub_port_name[128];
2335 int port_num;
2336 char *p;
2337 CharDriverState *chr;
2339 if (!port || !*port)
2340 return -1;
2342 port_num = strtol(port, &p, 10);
2343 if (*p == 0) {
2344 /* A numeric value is interpreted as a port number. */
2345 snprintf(gdbstub_port_name, sizeof(gdbstub_port_name),
2346 "tcp::%d,nowait,nodelay,server", port_num);
2347 port = gdbstub_port_name;
2350 chr = qemu_chr_open("gdb", port, NULL);
2351 if (!chr)
2352 return -1;
2354 s = qemu_mallocz(sizeof(GDBState));
2355 s->c_cpu = first_cpu;
2356 s->g_cpu = first_cpu;
2357 s->chr = chr;
2358 gdbserver_state = s;
2359 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
2360 gdb_chr_event, NULL);
2361 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
2363 /* Initialize a monitor terminal for gdb */
2364 s->mon_chr = qemu_mallocz(sizeof(*s->mon_chr));
2365 s->mon_chr->chr_write = gdb_monitor_write;
2366 monitor_init(s->mon_chr, 0);
2368 return 0;
2370 #endif