Enhance sendkey with key hold time (Jan Kiszka).
[qemu/mini2440/sniper_sniper_test.git] / hw / musicpal.c
blobb0fcee25be8f252932305c8a2f733bcc203e3ff3
1 /*
2 * Marvell MV88W8618 / Freecom MusicPal emulation.
4 * Copyright (c) 2008 Jan Kiszka
6 * This code is licenced under the GNU GPL v2.
7 */
9 #include "hw.h"
10 #include "arm-misc.h"
11 #include "devices.h"
12 #include "net.h"
13 #include "sysemu.h"
14 #include "boards.h"
15 #include "pc.h"
16 #include "qemu-timer.h"
17 #include "block.h"
18 #include "flash.h"
19 #include "console.h"
20 #include "audio/audio.h"
21 #include "i2c.h"
23 #define MP_ETH_BASE 0x80008000
24 #define MP_ETH_SIZE 0x00001000
26 #define MP_UART1_BASE 0x8000C840
27 #define MP_UART2_BASE 0x8000C940
29 #define MP_FLASHCFG_BASE 0x90006000
30 #define MP_FLASHCFG_SIZE 0x00001000
32 #define MP_AUDIO_BASE 0x90007000
33 #define MP_AUDIO_SIZE 0x00001000
35 #define MP_PIC_BASE 0x90008000
36 #define MP_PIC_SIZE 0x00001000
38 #define MP_PIT_BASE 0x90009000
39 #define MP_PIT_SIZE 0x00001000
41 #define MP_LCD_BASE 0x9000c000
42 #define MP_LCD_SIZE 0x00001000
44 #define MP_SRAM_BASE 0xC0000000
45 #define MP_SRAM_SIZE 0x00020000
47 #define MP_RAM_DEFAULT_SIZE 32*1024*1024
48 #define MP_FLASH_SIZE_MAX 32*1024*1024
50 #define MP_TIMER1_IRQ 4
51 /* ... */
52 #define MP_TIMER4_IRQ 7
53 #define MP_EHCI_IRQ 8
54 #define MP_ETH_IRQ 9
55 #define MP_UART1_IRQ 11
56 #define MP_UART2_IRQ 11
57 #define MP_GPIO_IRQ 12
58 #define MP_RTC_IRQ 28
59 #define MP_AUDIO_IRQ 30
61 static uint32_t gpio_in_state = 0xffffffff;
62 static uint32_t gpio_isr;
63 static uint32_t gpio_out_state;
64 static ram_addr_t sram_off;
66 /* Address conversion helpers */
67 static void *target2host_addr(uint32_t addr)
69 if (addr < MP_SRAM_BASE) {
70 if (addr >= MP_RAM_DEFAULT_SIZE)
71 return NULL;
72 return (void *)(phys_ram_base + addr);
73 } else {
74 if (addr >= MP_SRAM_BASE + MP_SRAM_SIZE)
75 return NULL;
76 return (void *)(phys_ram_base + sram_off + addr - MP_SRAM_BASE);
80 static uint32_t host2target_addr(void *addr)
82 if (addr < ((void *)phys_ram_base) + sram_off)
83 return (unsigned long)addr - (unsigned long)phys_ram_base;
84 else
85 return (unsigned long)addr - (unsigned long)phys_ram_base -
86 sram_off + MP_SRAM_BASE;
90 typedef enum i2c_state {
91 STOPPED = 0,
92 INITIALIZING,
93 SENDING_BIT7,
94 SENDING_BIT6,
95 SENDING_BIT5,
96 SENDING_BIT4,
97 SENDING_BIT3,
98 SENDING_BIT2,
99 SENDING_BIT1,
100 SENDING_BIT0,
101 WAITING_FOR_ACK,
102 RECEIVING_BIT7,
103 RECEIVING_BIT6,
104 RECEIVING_BIT5,
105 RECEIVING_BIT4,
106 RECEIVING_BIT3,
107 RECEIVING_BIT2,
108 RECEIVING_BIT1,
109 RECEIVING_BIT0,
110 SENDING_ACK
111 } i2c_state;
113 typedef struct i2c_interface {
114 i2c_bus *bus;
115 i2c_state state;
116 int last_data;
117 int last_clock;
118 uint8_t buffer;
119 int current_addr;
120 } i2c_interface;
122 static void i2c_enter_stop(i2c_interface *i2c)
124 if (i2c->current_addr >= 0)
125 i2c_end_transfer(i2c->bus);
126 i2c->current_addr = -1;
127 i2c->state = STOPPED;
130 static void i2c_state_update(i2c_interface *i2c, int data, int clock)
132 if (!i2c)
133 return;
135 switch (i2c->state) {
136 case STOPPED:
137 if (data == 0 && i2c->last_data == 1 && clock == 1)
138 i2c->state = INITIALIZING;
139 break;
141 case INITIALIZING:
142 if (clock == 0 && i2c->last_clock == 1 && data == 0)
143 i2c->state = SENDING_BIT7;
144 else
145 i2c_enter_stop(i2c);
146 break;
148 case SENDING_BIT7 ... SENDING_BIT0:
149 if (clock == 0 && i2c->last_clock == 1) {
150 i2c->buffer = (i2c->buffer << 1) | data;
151 i2c->state++; /* will end up in WAITING_FOR_ACK */
152 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
153 i2c_enter_stop(i2c);
154 break;
156 case WAITING_FOR_ACK:
157 if (clock == 0 && i2c->last_clock == 1) {
158 if (i2c->current_addr < 0) {
159 i2c->current_addr = i2c->buffer;
160 i2c_start_transfer(i2c->bus, i2c->current_addr & 0xfe,
161 i2c->buffer & 1);
162 } else
163 i2c_send(i2c->bus, i2c->buffer);
164 if (i2c->current_addr & 1) {
165 i2c->state = RECEIVING_BIT7;
166 i2c->buffer = i2c_recv(i2c->bus);
167 } else
168 i2c->state = SENDING_BIT7;
169 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
170 i2c_enter_stop(i2c);
171 break;
173 case RECEIVING_BIT7 ... RECEIVING_BIT0:
174 if (clock == 0 && i2c->last_clock == 1) {
175 i2c->state++; /* will end up in SENDING_ACK */
176 i2c->buffer <<= 1;
177 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
178 i2c_enter_stop(i2c);
179 break;
181 case SENDING_ACK:
182 if (clock == 0 && i2c->last_clock == 1) {
183 i2c->state = RECEIVING_BIT7;
184 if (data == 0)
185 i2c->buffer = i2c_recv(i2c->bus);
186 else
187 i2c_nack(i2c->bus);
188 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
189 i2c_enter_stop(i2c);
190 break;
193 i2c->last_data = data;
194 i2c->last_clock = clock;
197 static int i2c_get_data(i2c_interface *i2c)
199 if (!i2c)
200 return 0;
202 switch (i2c->state) {
203 case RECEIVING_BIT7 ... RECEIVING_BIT0:
204 return (i2c->buffer >> 7);
206 case WAITING_FOR_ACK:
207 default:
208 return 0;
212 static i2c_interface *mixer_i2c;
214 #ifdef HAS_AUDIO
216 /* Audio register offsets */
217 #define MP_AUDIO_PLAYBACK_MODE 0x00
218 #define MP_AUDIO_CLOCK_DIV 0x18
219 #define MP_AUDIO_IRQ_STATUS 0x20
220 #define MP_AUDIO_IRQ_ENABLE 0x24
221 #define MP_AUDIO_TX_START_LO 0x28
222 #define MP_AUDIO_TX_THRESHOLD 0x2C
223 #define MP_AUDIO_TX_STATUS 0x38
224 #define MP_AUDIO_TX_START_HI 0x40
226 /* Status register and IRQ enable bits */
227 #define MP_AUDIO_TX_HALF (1 << 6)
228 #define MP_AUDIO_TX_FULL (1 << 7)
230 /* Playback mode bits */
231 #define MP_AUDIO_16BIT_SAMPLE (1 << 0)
232 #define MP_AUDIO_PLAYBACK_EN (1 << 7)
233 #define MP_AUDIO_CLOCK_24MHZ (1 << 9)
234 #define MP_AUDIO_MONO (1 << 14)
236 /* Wolfson 8750 I2C address */
237 #define MP_WM_ADDR 0x34
239 const char audio_name[] = "mv88w8618";
241 typedef struct musicpal_audio_state {
242 uint32_t base;
243 qemu_irq irq;
244 uint32_t playback_mode;
245 uint32_t status;
246 uint32_t irq_enable;
247 unsigned long phys_buf;
248 int8_t *target_buffer;
249 unsigned int threshold;
250 unsigned int play_pos;
251 unsigned int last_free;
252 uint32_t clock_div;
253 i2c_slave *wm;
254 } musicpal_audio_state;
256 static void audio_callback(void *opaque, int free_out, int free_in)
258 musicpal_audio_state *s = opaque;
259 int16_t *codec_buffer;
260 int8_t *mem_buffer;
261 int pos, block_size;
263 if (!(s->playback_mode & MP_AUDIO_PLAYBACK_EN))
264 return;
266 if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE)
267 free_out <<= 1;
269 if (!(s->playback_mode & MP_AUDIO_MONO))
270 free_out <<= 1;
272 block_size = s->threshold/2;
273 if (free_out - s->last_free < block_size)
274 return;
276 mem_buffer = s->target_buffer + s->play_pos;
277 if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE) {
278 if (s->playback_mode & MP_AUDIO_MONO) {
279 codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
280 for (pos = 0; pos < block_size; pos += 2) {
281 *codec_buffer++ = *(int16_t *)mem_buffer;
282 *codec_buffer++ = *(int16_t *)mem_buffer;
283 mem_buffer += 2;
285 } else
286 memcpy(wm8750_dac_buffer(s->wm, block_size >> 2),
287 (uint32_t *)mem_buffer, block_size);
288 } else {
289 if (s->playback_mode & MP_AUDIO_MONO) {
290 codec_buffer = wm8750_dac_buffer(s->wm, block_size);
291 for (pos = 0; pos < block_size; pos++) {
292 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer);
293 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
295 } else {
296 codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
297 for (pos = 0; pos < block_size; pos += 2) {
298 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
299 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
303 wm8750_dac_commit(s->wm);
305 s->last_free = free_out - block_size;
307 if (s->play_pos == 0) {
308 s->status |= MP_AUDIO_TX_HALF;
309 s->play_pos = block_size;
310 } else {
311 s->status |= MP_AUDIO_TX_FULL;
312 s->play_pos = 0;
315 if (s->status & s->irq_enable)
316 qemu_irq_raise(s->irq);
319 static void musicpal_audio_clock_update(musicpal_audio_state *s)
321 int rate;
323 if (s->playback_mode & MP_AUDIO_CLOCK_24MHZ)
324 rate = 24576000 / 64; /* 24.576MHz */
325 else
326 rate = 11289600 / 64; /* 11.2896MHz */
328 rate /= ((s->clock_div >> 8) & 0xff) + 1;
330 wm8750_set_bclk_in(s->wm, rate);
333 static uint32_t musicpal_audio_read(void *opaque, target_phys_addr_t offset)
335 musicpal_audio_state *s = opaque;
337 offset -= s->base;
338 switch (offset) {
339 case MP_AUDIO_PLAYBACK_MODE:
340 return s->playback_mode;
342 case MP_AUDIO_CLOCK_DIV:
343 return s->clock_div;
345 case MP_AUDIO_IRQ_STATUS:
346 return s->status;
348 case MP_AUDIO_IRQ_ENABLE:
349 return s->irq_enable;
351 case MP_AUDIO_TX_STATUS:
352 return s->play_pos >> 2;
354 default:
355 return 0;
359 static void musicpal_audio_write(void *opaque, target_phys_addr_t offset,
360 uint32_t value)
362 musicpal_audio_state *s = opaque;
364 offset -= s->base;
365 switch (offset) {
366 case MP_AUDIO_PLAYBACK_MODE:
367 if (value & MP_AUDIO_PLAYBACK_EN &&
368 !(s->playback_mode & MP_AUDIO_PLAYBACK_EN)) {
369 s->status = 0;
370 s->last_free = 0;
371 s->play_pos = 0;
373 s->playback_mode = value;
374 musicpal_audio_clock_update(s);
375 break;
377 case MP_AUDIO_CLOCK_DIV:
378 s->clock_div = value;
379 s->last_free = 0;
380 s->play_pos = 0;
381 musicpal_audio_clock_update(s);
382 break;
384 case MP_AUDIO_IRQ_STATUS:
385 s->status &= ~value;
386 break;
388 case MP_AUDIO_IRQ_ENABLE:
389 s->irq_enable = value;
390 if (s->status & s->irq_enable)
391 qemu_irq_raise(s->irq);
392 break;
394 case MP_AUDIO_TX_START_LO:
395 s->phys_buf = (s->phys_buf & 0xFFFF0000) | (value & 0xFFFF);
396 s->target_buffer = target2host_addr(s->phys_buf);
397 s->play_pos = 0;
398 s->last_free = 0;
399 break;
401 case MP_AUDIO_TX_THRESHOLD:
402 s->threshold = (value + 1) * 4;
403 break;
405 case MP_AUDIO_TX_START_HI:
406 s->phys_buf = (s->phys_buf & 0xFFFF) | (value << 16);
407 s->target_buffer = target2host_addr(s->phys_buf);
408 s->play_pos = 0;
409 s->last_free = 0;
410 break;
414 static void musicpal_audio_reset(void *opaque)
416 musicpal_audio_state *s = opaque;
418 s->playback_mode = 0;
419 s->status = 0;
420 s->irq_enable = 0;
423 static CPUReadMemoryFunc *musicpal_audio_readfn[] = {
424 musicpal_audio_read,
425 musicpal_audio_read,
426 musicpal_audio_read
429 static CPUWriteMemoryFunc *musicpal_audio_writefn[] = {
430 musicpal_audio_write,
431 musicpal_audio_write,
432 musicpal_audio_write
435 static i2c_interface *musicpal_audio_init(uint32_t base, qemu_irq irq)
437 AudioState *audio;
438 musicpal_audio_state *s;
439 i2c_interface *i2c;
440 int iomemtype;
442 audio = AUD_init();
443 if (!audio) {
444 AUD_log(audio_name, "No audio state\n");
445 return NULL;
448 s = qemu_mallocz(sizeof(musicpal_audio_state));
449 if (!s)
450 return NULL;
451 s->base = base;
452 s->irq = irq;
454 i2c = qemu_mallocz(sizeof(i2c_interface));
455 if (!i2c)
456 return NULL;
457 i2c->bus = i2c_init_bus();
458 i2c->current_addr = -1;
460 s->wm = wm8750_init(i2c->bus, audio);
461 if (!s->wm)
462 return NULL;
463 i2c_set_slave_address(s->wm, MP_WM_ADDR);
464 wm8750_data_req_set(s->wm, audio_callback, s);
466 iomemtype = cpu_register_io_memory(0, musicpal_audio_readfn,
467 musicpal_audio_writefn, s);
468 cpu_register_physical_memory(base, MP_AUDIO_SIZE, iomemtype);
470 qemu_register_reset(musicpal_audio_reset, s);
472 return i2c;
474 #else /* !HAS_AUDIO */
475 static i2c_interface *musicpal_audio_init(uint32_t base, qemu_irq irq)
477 return NULL;
479 #endif /* !HAS_AUDIO */
481 /* Ethernet register offsets */
482 #define MP_ETH_SMIR 0x010
483 #define MP_ETH_PCXR 0x408
484 #define MP_ETH_SDCMR 0x448
485 #define MP_ETH_ICR 0x450
486 #define MP_ETH_IMR 0x458
487 #define MP_ETH_FRDP0 0x480
488 #define MP_ETH_FRDP1 0x484
489 #define MP_ETH_FRDP2 0x488
490 #define MP_ETH_FRDP3 0x48C
491 #define MP_ETH_CRDP0 0x4A0
492 #define MP_ETH_CRDP1 0x4A4
493 #define MP_ETH_CRDP2 0x4A8
494 #define MP_ETH_CRDP3 0x4AC
495 #define MP_ETH_CTDP0 0x4E0
496 #define MP_ETH_CTDP1 0x4E4
497 #define MP_ETH_CTDP2 0x4E8
498 #define MP_ETH_CTDP3 0x4EC
500 /* MII PHY access */
501 #define MP_ETH_SMIR_DATA 0x0000FFFF
502 #define MP_ETH_SMIR_ADDR 0x03FF0000
503 #define MP_ETH_SMIR_OPCODE (1 << 26) /* Read value */
504 #define MP_ETH_SMIR_RDVALID (1 << 27)
506 /* PHY registers */
507 #define MP_ETH_PHY1_BMSR 0x00210000
508 #define MP_ETH_PHY1_PHYSID1 0x00410000
509 #define MP_ETH_PHY1_PHYSID2 0x00610000
511 #define MP_PHY_BMSR_LINK 0x0004
512 #define MP_PHY_BMSR_AUTONEG 0x0008
514 #define MP_PHY_88E3015 0x01410E20
516 /* TX descriptor status */
517 #define MP_ETH_TX_OWN (1 << 31)
519 /* RX descriptor status */
520 #define MP_ETH_RX_OWN (1 << 31)
522 /* Interrupt cause/mask bits */
523 #define MP_ETH_IRQ_RX_BIT 0
524 #define MP_ETH_IRQ_RX (1 << MP_ETH_IRQ_RX_BIT)
525 #define MP_ETH_IRQ_TXHI_BIT 2
526 #define MP_ETH_IRQ_TXLO_BIT 3
528 /* Port config bits */
529 #define MP_ETH_PCXR_2BSM_BIT 28 /* 2-byte incoming suffix */
531 /* SDMA command bits */
532 #define MP_ETH_CMD_TXHI (1 << 23)
533 #define MP_ETH_CMD_TXLO (1 << 22)
535 typedef struct mv88w8618_tx_desc {
536 uint32_t cmdstat;
537 uint16_t res;
538 uint16_t bytes;
539 uint32_t buffer;
540 uint32_t next;
541 } mv88w8618_tx_desc;
543 typedef struct mv88w8618_rx_desc {
544 uint32_t cmdstat;
545 uint16_t bytes;
546 uint16_t buffer_size;
547 uint32_t buffer;
548 uint32_t next;
549 } mv88w8618_rx_desc;
551 typedef struct mv88w8618_eth_state {
552 uint32_t base;
553 qemu_irq irq;
554 uint32_t smir;
555 uint32_t icr;
556 uint32_t imr;
557 int vlan_header;
558 mv88w8618_tx_desc *tx_queue[2];
559 mv88w8618_rx_desc *rx_queue[4];
560 mv88w8618_rx_desc *frx_queue[4];
561 mv88w8618_rx_desc *cur_rx[4];
562 VLANClientState *vc;
563 } mv88w8618_eth_state;
565 static int eth_can_receive(void *opaque)
567 return 1;
570 static void eth_receive(void *opaque, const uint8_t *buf, int size)
572 mv88w8618_eth_state *s = opaque;
573 mv88w8618_rx_desc *desc;
574 int i;
576 for (i = 0; i < 4; i++) {
577 desc = s->cur_rx[i];
578 if (!desc)
579 continue;
580 do {
581 if (le32_to_cpu(desc->cmdstat) & MP_ETH_RX_OWN &&
582 le16_to_cpu(desc->buffer_size) >= size) {
583 memcpy(target2host_addr(le32_to_cpu(desc->buffer) +
584 s->vlan_header),
585 buf, size);
586 desc->bytes = cpu_to_le16(size + s->vlan_header);
587 desc->cmdstat &= cpu_to_le32(~MP_ETH_RX_OWN);
588 s->cur_rx[i] = target2host_addr(le32_to_cpu(desc->next));
590 s->icr |= MP_ETH_IRQ_RX;
591 if (s->icr & s->imr)
592 qemu_irq_raise(s->irq);
593 return;
595 desc = target2host_addr(le32_to_cpu(desc->next));
596 } while (desc != s->rx_queue[i]);
600 static void eth_send(mv88w8618_eth_state *s, int queue_index)
602 mv88w8618_tx_desc *desc = s->tx_queue[queue_index];
604 do {
605 if (le32_to_cpu(desc->cmdstat) & MP_ETH_TX_OWN) {
606 qemu_send_packet(s->vc,
607 target2host_addr(le32_to_cpu(desc->buffer)),
608 le16_to_cpu(desc->bytes));
609 desc->cmdstat &= cpu_to_le32(~MP_ETH_TX_OWN);
610 s->icr |= 1 << (MP_ETH_IRQ_TXLO_BIT - queue_index);
612 desc = target2host_addr(le32_to_cpu(desc->next));
613 } while (desc != s->tx_queue[queue_index]);
616 static uint32_t mv88w8618_eth_read(void *opaque, target_phys_addr_t offset)
618 mv88w8618_eth_state *s = opaque;
620 offset -= s->base;
621 switch (offset) {
622 case MP_ETH_SMIR:
623 if (s->smir & MP_ETH_SMIR_OPCODE) {
624 switch (s->smir & MP_ETH_SMIR_ADDR) {
625 case MP_ETH_PHY1_BMSR:
626 return MP_PHY_BMSR_LINK | MP_PHY_BMSR_AUTONEG |
627 MP_ETH_SMIR_RDVALID;
628 case MP_ETH_PHY1_PHYSID1:
629 return (MP_PHY_88E3015 >> 16) | MP_ETH_SMIR_RDVALID;
630 case MP_ETH_PHY1_PHYSID2:
631 return (MP_PHY_88E3015 & 0xFFFF) | MP_ETH_SMIR_RDVALID;
632 default:
633 return MP_ETH_SMIR_RDVALID;
636 return 0;
638 case MP_ETH_ICR:
639 return s->icr;
641 case MP_ETH_IMR:
642 return s->imr;
644 case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
645 return host2target_addr(s->frx_queue[(offset - MP_ETH_FRDP0)/4]);
647 case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
648 return host2target_addr(s->rx_queue[(offset - MP_ETH_CRDP0)/4]);
650 case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
651 return host2target_addr(s->tx_queue[(offset - MP_ETH_CTDP0)/4]);
653 default:
654 return 0;
658 static void mv88w8618_eth_write(void *opaque, target_phys_addr_t offset,
659 uint32_t value)
661 mv88w8618_eth_state *s = opaque;
663 offset -= s->base;
664 switch (offset) {
665 case MP_ETH_SMIR:
666 s->smir = value;
667 break;
669 case MP_ETH_PCXR:
670 s->vlan_header = ((value >> MP_ETH_PCXR_2BSM_BIT) & 1) * 2;
671 break;
673 case MP_ETH_SDCMR:
674 if (value & MP_ETH_CMD_TXHI)
675 eth_send(s, 1);
676 if (value & MP_ETH_CMD_TXLO)
677 eth_send(s, 0);
678 if (value & (MP_ETH_CMD_TXHI | MP_ETH_CMD_TXLO) && s->icr & s->imr)
679 qemu_irq_raise(s->irq);
680 break;
682 case MP_ETH_ICR:
683 s->icr &= value;
684 break;
686 case MP_ETH_IMR:
687 s->imr = value;
688 if (s->icr & s->imr)
689 qemu_irq_raise(s->irq);
690 break;
692 case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
693 s->frx_queue[(offset - MP_ETH_FRDP0)/4] = target2host_addr(value);
694 break;
696 case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
697 s->rx_queue[(offset - MP_ETH_CRDP0)/4] =
698 s->cur_rx[(offset - MP_ETH_CRDP0)/4] = target2host_addr(value);
699 break;
701 case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
702 s->tx_queue[(offset - MP_ETH_CTDP0)/4] = target2host_addr(value);
703 break;
707 static CPUReadMemoryFunc *mv88w8618_eth_readfn[] = {
708 mv88w8618_eth_read,
709 mv88w8618_eth_read,
710 mv88w8618_eth_read
713 static CPUWriteMemoryFunc *mv88w8618_eth_writefn[] = {
714 mv88w8618_eth_write,
715 mv88w8618_eth_write,
716 mv88w8618_eth_write
719 static void mv88w8618_eth_init(NICInfo *nd, uint32_t base, qemu_irq irq)
721 mv88w8618_eth_state *s;
722 int iomemtype;
724 s = qemu_mallocz(sizeof(mv88w8618_eth_state));
725 if (!s)
726 return;
727 s->base = base;
728 s->irq = irq;
729 s->vc = qemu_new_vlan_client(nd->vlan, eth_receive, eth_can_receive, s);
730 iomemtype = cpu_register_io_memory(0, mv88w8618_eth_readfn,
731 mv88w8618_eth_writefn, s);
732 cpu_register_physical_memory(base, MP_ETH_SIZE, iomemtype);
735 /* LCD register offsets */
736 #define MP_LCD_IRQCTRL 0x180
737 #define MP_LCD_IRQSTAT 0x184
738 #define MP_LCD_SPICTRL 0x1ac
739 #define MP_LCD_INST 0x1bc
740 #define MP_LCD_DATA 0x1c0
742 /* Mode magics */
743 #define MP_LCD_SPI_DATA 0x00100011
744 #define MP_LCD_SPI_CMD 0x00104011
745 #define MP_LCD_SPI_INVALID 0x00000000
747 /* Commmands */
748 #define MP_LCD_INST_SETPAGE0 0xB0
749 /* ... */
750 #define MP_LCD_INST_SETPAGE7 0xB7
752 #define MP_LCD_TEXTCOLOR 0xe0e0ff /* RRGGBB */
754 typedef struct musicpal_lcd_state {
755 uint32_t base;
756 uint32_t mode;
757 uint32_t irqctrl;
758 int page;
759 int page_off;
760 DisplayState *ds;
761 uint8_t video_ram[128*64/8];
762 int invalidate;
763 } musicpal_lcd_state;
765 static uint32_t lcd_brightness;
767 static uint8_t scale_lcd_color(uint8_t col)
769 int tmp = col;
771 switch (lcd_brightness) {
772 case 0x00000007: /* 0 */
773 return 0;
775 case 0x00020000: /* 1 */
776 return (tmp * 1) / 7;
778 case 0x00020001: /* 2 */
779 return (tmp * 2) / 7;
781 case 0x00040000: /* 3 */
782 return (tmp * 3) / 7;
784 case 0x00010006: /* 4 */
785 return (tmp * 4) / 7;
787 case 0x00020005: /* 5 */
788 return (tmp * 5) / 7;
790 case 0x00040003: /* 6 */
791 return (tmp * 6) / 7;
793 case 0x00030004: /* 7 */
794 default:
795 return col;
799 #define SET_LCD_PIXEL(depth, type) \
800 static inline void glue(set_lcd_pixel, depth) \
801 (musicpal_lcd_state *s, int x, int y, type col) \
803 int dx, dy; \
804 type *pixel = &((type *) s->ds->data)[(y * 128 * 3 + x) * 3]; \
806 for (dy = 0; dy < 3; dy++, pixel += 127 * 3) \
807 for (dx = 0; dx < 3; dx++, pixel++) \
808 *pixel = col; \
810 SET_LCD_PIXEL(8, uint8_t)
811 SET_LCD_PIXEL(16, uint16_t)
812 SET_LCD_PIXEL(32, uint32_t)
814 #include "pixel_ops.h"
816 static void lcd_refresh(void *opaque)
818 musicpal_lcd_state *s = opaque;
819 int x, y, col;
821 if (s->invalidate && (s->ds->width != 128*3 || s->ds->height != 64*3)) {
822 dpy_resize(s->ds, 128*3, 64*3);
823 s->invalidate = 0;
826 switch (s->ds->depth) {
827 case 0:
828 return;
829 #define LCD_REFRESH(depth, func) \
830 case depth: \
831 col = func(scale_lcd_color((MP_LCD_TEXTCOLOR >> 16) & 0xff), \
832 scale_lcd_color((MP_LCD_TEXTCOLOR >> 8) & 0xff), \
833 scale_lcd_color(MP_LCD_TEXTCOLOR & 0xff)); \
834 for (x = 0; x < 128; x++) \
835 for (y = 0; y < 64; y++) \
836 if (s->video_ram[x + (y/8)*128] & (1 << (y % 8))) \
837 glue(set_lcd_pixel, depth)(s, x, y, col); \
838 else \
839 glue(set_lcd_pixel, depth)(s, x, y, 0); \
840 break;
841 LCD_REFRESH(8, rgb_to_pixel8)
842 LCD_REFRESH(16, rgb_to_pixel16)
843 LCD_REFRESH(32, (s->ds->bgr ? rgb_to_pixel32bgr : rgb_to_pixel32))
844 default:
845 cpu_abort(cpu_single_env, "unsupported colour depth %i\n",
846 s->ds->depth);
849 dpy_update(s->ds, 0, 0, 128*3, 64*3);
852 static void lcd_invalidate(void *opaque)
854 musicpal_lcd_state *s = opaque;
856 s->invalidate = 1;
859 static uint32_t musicpal_lcd_read(void *opaque, target_phys_addr_t offset)
861 musicpal_lcd_state *s = opaque;
863 offset -= s->base;
864 switch (offset) {
865 case MP_LCD_IRQCTRL:
866 return s->irqctrl;
868 default:
869 return 0;
873 static void musicpal_lcd_write(void *opaque, target_phys_addr_t offset,
874 uint32_t value)
876 musicpal_lcd_state *s = opaque;
878 offset -= s->base;
879 switch (offset) {
880 case MP_LCD_IRQCTRL:
881 s->irqctrl = value;
882 break;
884 case MP_LCD_SPICTRL:
885 if (value == MP_LCD_SPI_DATA || value == MP_LCD_SPI_CMD)
886 s->mode = value;
887 else
888 s->mode = MP_LCD_SPI_INVALID;
889 break;
891 case MP_LCD_INST:
892 if (value >= MP_LCD_INST_SETPAGE0 && value <= MP_LCD_INST_SETPAGE7) {
893 s->page = value - MP_LCD_INST_SETPAGE0;
894 s->page_off = 0;
896 break;
898 case MP_LCD_DATA:
899 if (s->mode == MP_LCD_SPI_CMD) {
900 if (value >= MP_LCD_INST_SETPAGE0 &&
901 value <= MP_LCD_INST_SETPAGE7) {
902 s->page = value - MP_LCD_INST_SETPAGE0;
903 s->page_off = 0;
905 } else if (s->mode == MP_LCD_SPI_DATA) {
906 s->video_ram[s->page*128 + s->page_off] = value;
907 s->page_off = (s->page_off + 1) & 127;
909 break;
913 static CPUReadMemoryFunc *musicpal_lcd_readfn[] = {
914 musicpal_lcd_read,
915 musicpal_lcd_read,
916 musicpal_lcd_read
919 static CPUWriteMemoryFunc *musicpal_lcd_writefn[] = {
920 musicpal_lcd_write,
921 musicpal_lcd_write,
922 musicpal_lcd_write
925 static void musicpal_lcd_init(DisplayState *ds, uint32_t base)
927 musicpal_lcd_state *s;
928 int iomemtype;
930 s = qemu_mallocz(sizeof(musicpal_lcd_state));
931 if (!s)
932 return;
933 s->base = base;
934 s->ds = ds;
935 s->invalidate = 1;
936 iomemtype = cpu_register_io_memory(0, musicpal_lcd_readfn,
937 musicpal_lcd_writefn, s);
938 cpu_register_physical_memory(base, MP_LCD_SIZE, iomemtype);
940 graphic_console_init(ds, lcd_refresh, lcd_invalidate, NULL, NULL, s);
943 /* PIC register offsets */
944 #define MP_PIC_STATUS 0x00
945 #define MP_PIC_ENABLE_SET 0x08
946 #define MP_PIC_ENABLE_CLR 0x0C
948 typedef struct mv88w8618_pic_state
950 uint32_t base;
951 uint32_t level;
952 uint32_t enabled;
953 qemu_irq parent_irq;
954 } mv88w8618_pic_state;
956 static void mv88w8618_pic_update(mv88w8618_pic_state *s)
958 qemu_set_irq(s->parent_irq, (s->level & s->enabled));
961 static void mv88w8618_pic_set_irq(void *opaque, int irq, int level)
963 mv88w8618_pic_state *s = opaque;
965 if (level)
966 s->level |= 1 << irq;
967 else
968 s->level &= ~(1 << irq);
969 mv88w8618_pic_update(s);
972 static uint32_t mv88w8618_pic_read(void *opaque, target_phys_addr_t offset)
974 mv88w8618_pic_state *s = opaque;
976 offset -= s->base;
977 switch (offset) {
978 case MP_PIC_STATUS:
979 return s->level & s->enabled;
981 default:
982 return 0;
986 static void mv88w8618_pic_write(void *opaque, target_phys_addr_t offset,
987 uint32_t value)
989 mv88w8618_pic_state *s = opaque;
991 offset -= s->base;
992 switch (offset) {
993 case MP_PIC_ENABLE_SET:
994 s->enabled |= value;
995 break;
997 case MP_PIC_ENABLE_CLR:
998 s->enabled &= ~value;
999 s->level &= ~value;
1000 break;
1002 mv88w8618_pic_update(s);
1005 static void mv88w8618_pic_reset(void *opaque)
1007 mv88w8618_pic_state *s = opaque;
1009 s->level = 0;
1010 s->enabled = 0;
1013 static CPUReadMemoryFunc *mv88w8618_pic_readfn[] = {
1014 mv88w8618_pic_read,
1015 mv88w8618_pic_read,
1016 mv88w8618_pic_read
1019 static CPUWriteMemoryFunc *mv88w8618_pic_writefn[] = {
1020 mv88w8618_pic_write,
1021 mv88w8618_pic_write,
1022 mv88w8618_pic_write
1025 static qemu_irq *mv88w8618_pic_init(uint32_t base, qemu_irq parent_irq)
1027 mv88w8618_pic_state *s;
1028 int iomemtype;
1029 qemu_irq *qi;
1031 s = qemu_mallocz(sizeof(mv88w8618_pic_state));
1032 if (!s)
1033 return NULL;
1034 qi = qemu_allocate_irqs(mv88w8618_pic_set_irq, s, 32);
1035 s->base = base;
1036 s->parent_irq = parent_irq;
1037 iomemtype = cpu_register_io_memory(0, mv88w8618_pic_readfn,
1038 mv88w8618_pic_writefn, s);
1039 cpu_register_physical_memory(base, MP_PIC_SIZE, iomemtype);
1041 qemu_register_reset(mv88w8618_pic_reset, s);
1043 return qi;
1046 /* PIT register offsets */
1047 #define MP_PIT_TIMER1_LENGTH 0x00
1048 /* ... */
1049 #define MP_PIT_TIMER4_LENGTH 0x0C
1050 #define MP_PIT_CONTROL 0x10
1051 #define MP_PIT_TIMER1_VALUE 0x14
1052 /* ... */
1053 #define MP_PIT_TIMER4_VALUE 0x20
1054 #define MP_BOARD_RESET 0x34
1056 /* Magic board reset value (probably some watchdog behind it) */
1057 #define MP_BOARD_RESET_MAGIC 0x10000
1059 typedef struct mv88w8618_timer_state {
1060 ptimer_state *timer;
1061 uint32_t limit;
1062 int freq;
1063 qemu_irq irq;
1064 } mv88w8618_timer_state;
1066 typedef struct mv88w8618_pit_state {
1067 void *timer[4];
1068 uint32_t control;
1069 uint32_t base;
1070 } mv88w8618_pit_state;
1072 static void mv88w8618_timer_tick(void *opaque)
1074 mv88w8618_timer_state *s = opaque;
1076 qemu_irq_raise(s->irq);
1079 static void *mv88w8618_timer_init(uint32_t freq, qemu_irq irq)
1081 mv88w8618_timer_state *s;
1082 QEMUBH *bh;
1084 s = qemu_mallocz(sizeof(mv88w8618_timer_state));
1085 s->irq = irq;
1086 s->freq = freq;
1088 bh = qemu_bh_new(mv88w8618_timer_tick, s);
1089 s->timer = ptimer_init(bh);
1091 return s;
1094 static uint32_t mv88w8618_pit_read(void *opaque, target_phys_addr_t offset)
1096 mv88w8618_pit_state *s = opaque;
1097 mv88w8618_timer_state *t;
1099 offset -= s->base;
1100 switch (offset) {
1101 case MP_PIT_TIMER1_VALUE ... MP_PIT_TIMER4_VALUE:
1102 t = s->timer[(offset-MP_PIT_TIMER1_VALUE) >> 2];
1103 return ptimer_get_count(t->timer);
1105 default:
1106 return 0;
1110 static void mv88w8618_pit_write(void *opaque, target_phys_addr_t offset,
1111 uint32_t value)
1113 mv88w8618_pit_state *s = opaque;
1114 mv88w8618_timer_state *t;
1115 int i;
1117 offset -= s->base;
1118 switch (offset) {
1119 case MP_PIT_TIMER1_LENGTH ... MP_PIT_TIMER4_LENGTH:
1120 t = s->timer[offset >> 2];
1121 t->limit = value;
1122 ptimer_set_limit(t->timer, t->limit, 1);
1123 break;
1125 case MP_PIT_CONTROL:
1126 for (i = 0; i < 4; i++) {
1127 if (value & 0xf) {
1128 t = s->timer[i];
1129 ptimer_set_limit(t->timer, t->limit, 0);
1130 ptimer_set_freq(t->timer, t->freq);
1131 ptimer_run(t->timer, 0);
1133 value >>= 4;
1135 break;
1137 case MP_BOARD_RESET:
1138 if (value == MP_BOARD_RESET_MAGIC)
1139 qemu_system_reset_request();
1140 break;
1144 static CPUReadMemoryFunc *mv88w8618_pit_readfn[] = {
1145 mv88w8618_pit_read,
1146 mv88w8618_pit_read,
1147 mv88w8618_pit_read
1150 static CPUWriteMemoryFunc *mv88w8618_pit_writefn[] = {
1151 mv88w8618_pit_write,
1152 mv88w8618_pit_write,
1153 mv88w8618_pit_write
1156 static void mv88w8618_pit_init(uint32_t base, qemu_irq *pic, int irq)
1158 int iomemtype;
1159 mv88w8618_pit_state *s;
1161 s = qemu_mallocz(sizeof(mv88w8618_pit_state));
1162 if (!s)
1163 return;
1165 s->base = base;
1166 /* Letting them all run at 1 MHz is likely just a pragmatic
1167 * simplification. */
1168 s->timer[0] = mv88w8618_timer_init(1000000, pic[irq]);
1169 s->timer[1] = mv88w8618_timer_init(1000000, pic[irq + 1]);
1170 s->timer[2] = mv88w8618_timer_init(1000000, pic[irq + 2]);
1171 s->timer[3] = mv88w8618_timer_init(1000000, pic[irq + 3]);
1173 iomemtype = cpu_register_io_memory(0, mv88w8618_pit_readfn,
1174 mv88w8618_pit_writefn, s);
1175 cpu_register_physical_memory(base, MP_PIT_SIZE, iomemtype);
1178 /* Flash config register offsets */
1179 #define MP_FLASHCFG_CFGR0 0x04
1181 typedef struct mv88w8618_flashcfg_state {
1182 uint32_t base;
1183 uint32_t cfgr0;
1184 } mv88w8618_flashcfg_state;
1186 static uint32_t mv88w8618_flashcfg_read(void *opaque,
1187 target_phys_addr_t offset)
1189 mv88w8618_flashcfg_state *s = opaque;
1191 offset -= s->base;
1192 switch (offset) {
1193 case MP_FLASHCFG_CFGR0:
1194 return s->cfgr0;
1196 default:
1197 return 0;
1201 static void mv88w8618_flashcfg_write(void *opaque, target_phys_addr_t offset,
1202 uint32_t value)
1204 mv88w8618_flashcfg_state *s = opaque;
1206 offset -= s->base;
1207 switch (offset) {
1208 case MP_FLASHCFG_CFGR0:
1209 s->cfgr0 = value;
1210 break;
1214 static CPUReadMemoryFunc *mv88w8618_flashcfg_readfn[] = {
1215 mv88w8618_flashcfg_read,
1216 mv88w8618_flashcfg_read,
1217 mv88w8618_flashcfg_read
1220 static CPUWriteMemoryFunc *mv88w8618_flashcfg_writefn[] = {
1221 mv88w8618_flashcfg_write,
1222 mv88w8618_flashcfg_write,
1223 mv88w8618_flashcfg_write
1226 static void mv88w8618_flashcfg_init(uint32_t base)
1228 int iomemtype;
1229 mv88w8618_flashcfg_state *s;
1231 s = qemu_mallocz(sizeof(mv88w8618_flashcfg_state));
1232 if (!s)
1233 return;
1235 s->base = base;
1236 s->cfgr0 = 0xfffe4285; /* Default as set by U-Boot for 8 MB flash */
1237 iomemtype = cpu_register_io_memory(0, mv88w8618_flashcfg_readfn,
1238 mv88w8618_flashcfg_writefn, s);
1239 cpu_register_physical_memory(base, MP_FLASHCFG_SIZE, iomemtype);
1242 /* Various registers in the 0x80000000 domain */
1243 #define MP_BOARD_REVISION 0x2018
1245 #define MP_WLAN_MAGIC1 0xc11c
1246 #define MP_WLAN_MAGIC2 0xc124
1248 #define MP_GPIO_OE_LO 0xd008
1249 #define MP_GPIO_OUT_LO 0xd00c
1250 #define MP_GPIO_IN_LO 0xd010
1251 #define MP_GPIO_ISR_LO 0xd020
1252 #define MP_GPIO_OE_HI 0xd508
1253 #define MP_GPIO_OUT_HI 0xd50c
1254 #define MP_GPIO_IN_HI 0xd510
1255 #define MP_GPIO_ISR_HI 0xd520
1257 /* GPIO bits & masks */
1258 #define MP_GPIO_WHEEL_VOL (1 << 8)
1259 #define MP_GPIO_WHEEL_VOL_INV (1 << 9)
1260 #define MP_GPIO_WHEEL_NAV (1 << 10)
1261 #define MP_GPIO_WHEEL_NAV_INV (1 << 11)
1262 #define MP_GPIO_LCD_BRIGHTNESS 0x00070000
1263 #define MP_GPIO_BTN_FAVORITS (1 << 19)
1264 #define MP_GPIO_BTN_MENU (1 << 20)
1265 #define MP_GPIO_BTN_VOLUME (1 << 21)
1266 #define MP_GPIO_BTN_NAVIGATION (1 << 22)
1267 #define MP_GPIO_I2C_DATA_BIT 29
1268 #define MP_GPIO_I2C_DATA (1 << MP_GPIO_I2C_DATA_BIT)
1269 #define MP_GPIO_I2C_CLOCK_BIT 30
1271 /* LCD brightness bits in GPIO_OE_HI */
1272 #define MP_OE_LCD_BRIGHTNESS 0x0007
1274 static uint32_t musicpal_read(void *opaque, target_phys_addr_t offset)
1276 offset -= 0x80000000;
1277 switch (offset) {
1278 case MP_BOARD_REVISION:
1279 return 0x0031;
1281 case MP_GPIO_OE_HI: /* used for LCD brightness control */
1282 return lcd_brightness & MP_OE_LCD_BRIGHTNESS;
1284 case MP_GPIO_OUT_LO:
1285 return gpio_out_state & 0xFFFF;
1286 case MP_GPIO_OUT_HI:
1287 return gpio_out_state >> 16;
1289 case MP_GPIO_IN_LO:
1290 return gpio_in_state & 0xFFFF;
1291 case MP_GPIO_IN_HI:
1292 /* Update received I2C data */
1293 gpio_in_state = (gpio_in_state & ~MP_GPIO_I2C_DATA) |
1294 (i2c_get_data(mixer_i2c) << MP_GPIO_I2C_DATA_BIT);
1295 return gpio_in_state >> 16;
1297 case MP_GPIO_ISR_LO:
1298 return gpio_isr & 0xFFFF;
1299 case MP_GPIO_ISR_HI:
1300 return gpio_isr >> 16;
1302 /* Workaround to allow loading the binary-only wlandrv.ko crap
1303 * from the original Freecom firmware. */
1304 case MP_WLAN_MAGIC1:
1305 return ~3;
1306 case MP_WLAN_MAGIC2:
1307 return -1;
1309 default:
1310 return 0;
1314 static void musicpal_write(void *opaque, target_phys_addr_t offset,
1315 uint32_t value)
1317 offset -= 0x80000000;
1318 switch (offset) {
1319 case MP_GPIO_OE_HI: /* used for LCD brightness control */
1320 lcd_brightness = (lcd_brightness & MP_GPIO_LCD_BRIGHTNESS) |
1321 (value & MP_OE_LCD_BRIGHTNESS);
1322 break;
1324 case MP_GPIO_OUT_LO:
1325 gpio_out_state = (gpio_out_state & 0xFFFF0000) | (value & 0xFFFF);
1326 break;
1327 case MP_GPIO_OUT_HI:
1328 gpio_out_state = (gpio_out_state & 0xFFFF) | (value << 16);
1329 lcd_brightness = (lcd_brightness & 0xFFFF) |
1330 (gpio_out_state & MP_GPIO_LCD_BRIGHTNESS);
1331 i2c_state_update(mixer_i2c,
1332 (gpio_out_state >> MP_GPIO_I2C_DATA_BIT) & 1,
1333 (gpio_out_state >> MP_GPIO_I2C_CLOCK_BIT) & 1);
1334 break;
1339 /* Keyboard codes & masks */
1340 #define KEY_RELEASED 0x80
1341 #define KEY_CODE 0x7f
1343 #define KEYCODE_TAB 0x0f
1344 #define KEYCODE_ENTER 0x1c
1345 #define KEYCODE_F 0x21
1346 #define KEYCODE_M 0x32
1348 #define KEYCODE_EXTENDED 0xe0
1349 #define KEYCODE_UP 0x48
1350 #define KEYCODE_DOWN 0x50
1351 #define KEYCODE_LEFT 0x4b
1352 #define KEYCODE_RIGHT 0x4d
1354 static void musicpal_key_event(void *opaque, int keycode)
1356 qemu_irq irq = opaque;
1357 uint32_t event = 0;
1358 static int kbd_extended;
1360 if (keycode == KEYCODE_EXTENDED) {
1361 kbd_extended = 1;
1362 return;
1365 if (kbd_extended)
1366 switch (keycode & KEY_CODE) {
1367 case KEYCODE_UP:
1368 event = MP_GPIO_WHEEL_NAV | MP_GPIO_WHEEL_NAV_INV;
1369 break;
1371 case KEYCODE_DOWN:
1372 event = MP_GPIO_WHEEL_NAV;
1373 break;
1375 case KEYCODE_LEFT:
1376 event = MP_GPIO_WHEEL_VOL | MP_GPIO_WHEEL_VOL_INV;
1377 break;
1379 case KEYCODE_RIGHT:
1380 event = MP_GPIO_WHEEL_VOL;
1381 break;
1383 else {
1384 switch (keycode & KEY_CODE) {
1385 case KEYCODE_F:
1386 event = MP_GPIO_BTN_FAVORITS;
1387 break;
1389 case KEYCODE_TAB:
1390 event = MP_GPIO_BTN_VOLUME;
1391 break;
1393 case KEYCODE_ENTER:
1394 event = MP_GPIO_BTN_NAVIGATION;
1395 break;
1397 case KEYCODE_M:
1398 event = MP_GPIO_BTN_MENU;
1399 break;
1401 /* Do not repeat already pressed buttons */
1402 if (!(keycode & KEY_RELEASED) && !(gpio_in_state & event))
1403 event = 0;
1406 if (event) {
1407 if (keycode & KEY_RELEASED) {
1408 gpio_in_state |= event;
1409 } else {
1410 gpio_in_state &= ~event;
1411 gpio_isr = event;
1412 qemu_irq_raise(irq);
1416 kbd_extended = 0;
1419 static CPUReadMemoryFunc *musicpal_readfn[] = {
1420 musicpal_read,
1421 musicpal_read,
1422 musicpal_read,
1425 static CPUWriteMemoryFunc *musicpal_writefn[] = {
1426 musicpal_write,
1427 musicpal_write,
1428 musicpal_write,
1431 static struct arm_boot_info musicpal_binfo = {
1432 .loader_start = 0x0,
1433 .board_id = 0x20e,
1436 static void musicpal_init(ram_addr_t ram_size, int vga_ram_size,
1437 const char *boot_device, DisplayState *ds,
1438 const char *kernel_filename, const char *kernel_cmdline,
1439 const char *initrd_filename, const char *cpu_model)
1441 CPUState *env;
1442 qemu_irq *pic;
1443 int index;
1444 int iomemtype;
1445 unsigned long flash_size;
1447 if (!cpu_model)
1448 cpu_model = "arm926";
1450 env = cpu_init(cpu_model);
1451 if (!env) {
1452 fprintf(stderr, "Unable to find CPU definition\n");
1453 exit(1);
1455 pic = arm_pic_init_cpu(env);
1457 /* For now we use a fixed - the original - RAM size */
1458 cpu_register_physical_memory(0, MP_RAM_DEFAULT_SIZE,
1459 qemu_ram_alloc(MP_RAM_DEFAULT_SIZE));
1461 sram_off = qemu_ram_alloc(MP_SRAM_SIZE);
1462 cpu_register_physical_memory(MP_SRAM_BASE, MP_SRAM_SIZE, sram_off);
1464 /* Catch various stuff not handled by separate subsystems */
1465 iomemtype = cpu_register_io_memory(0, musicpal_readfn,
1466 musicpal_writefn, env);
1467 cpu_register_physical_memory(0x80000000, 0x10000, iomemtype);
1469 pic = mv88w8618_pic_init(MP_PIC_BASE, pic[ARM_PIC_CPU_IRQ]);
1470 mv88w8618_pit_init(MP_PIT_BASE, pic, MP_TIMER1_IRQ);
1472 if (serial_hds[0])
1473 serial_mm_init(MP_UART1_BASE, 2, pic[MP_UART1_IRQ], 1825000,
1474 serial_hds[0], 1);
1475 if (serial_hds[1])
1476 serial_mm_init(MP_UART2_BASE, 2, pic[MP_UART2_IRQ], 1825000,
1477 serial_hds[1], 1);
1479 /* Register flash */
1480 index = drive_get_index(IF_PFLASH, 0, 0);
1481 if (index != -1) {
1482 flash_size = bdrv_getlength(drives_table[index].bdrv);
1483 if (flash_size != 8*1024*1024 && flash_size != 16*1024*1024 &&
1484 flash_size != 32*1024*1024) {
1485 fprintf(stderr, "Invalid flash image size\n");
1486 exit(1);
1490 * The original U-Boot accesses the flash at 0xFE000000 instead of
1491 * 0xFF800000 (if there is 8 MB flash). So remap flash access if the
1492 * image is smaller than 32 MB.
1494 pflash_cfi02_register(0-MP_FLASH_SIZE_MAX, qemu_ram_alloc(flash_size),
1495 drives_table[index].bdrv, 0x10000,
1496 (flash_size + 0xffff) >> 16,
1497 MP_FLASH_SIZE_MAX / flash_size,
1498 2, 0x00BF, 0x236D, 0x0000, 0x0000,
1499 0x5555, 0x2AAA);
1501 mv88w8618_flashcfg_init(MP_FLASHCFG_BASE);
1503 musicpal_lcd_init(ds, MP_LCD_BASE);
1505 qemu_add_kbd_event_handler(musicpal_key_event, pic[MP_GPIO_IRQ]);
1507 mv88w8618_eth_init(&nd_table[0], MP_ETH_BASE, pic[MP_ETH_IRQ]);
1509 mixer_i2c = musicpal_audio_init(MP_AUDIO_BASE, pic[MP_AUDIO_IRQ]);
1511 musicpal_binfo.ram_size = MP_RAM_DEFAULT_SIZE;
1512 musicpal_binfo.kernel_filename = kernel_filename;
1513 musicpal_binfo.kernel_cmdline = kernel_cmdline;
1514 musicpal_binfo.initrd_filename = initrd_filename;
1515 arm_load_kernel(env, &musicpal_binfo);
1518 QEMUMachine musicpal_machine = {
1519 "musicpal",
1520 "Marvell 88w8618 / MusicPal (ARM926EJ-S)",
1521 musicpal_init,
1522 MP_RAM_DEFAULT_SIZE + MP_SRAM_SIZE + MP_FLASH_SIZE_MAX + RAMSIZE_FIXED