2 * QEMU PowerPC 4xx embedded processors shared devices emulation
4 * Copyright (c) 2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
31 //#define DEBUG_UNASSIGNED
34 /*****************************************************************************/
35 /* Generic PowerPC 4xx processor instanciation */
36 CPUState
*ppc4xx_init (const char *cpu_model
,
37 clk_setup_t
*cpu_clk
, clk_setup_t
*tb_clk
,
43 env
= cpu_init(cpu_model
);
45 fprintf(stderr
, "Unable to find PowerPC %s CPU definition\n",
49 cpu_clk
->cb
= NULL
; /* We don't care about CPU clock frequency changes */
50 cpu_clk
->opaque
= env
;
51 /* Set time-base frequency to sysclk */
52 tb_clk
->cb
= ppc_emb_timers_init(env
, sysclk
);
54 ppc_dcr_init(env
, NULL
, NULL
);
55 /* Register qemu callbacks */
56 qemu_register_reset(&cpu_ppc_reset
, env
);
61 /*****************************************************************************/
62 /* Fake device used to map multiple devices in a single memory page */
63 #define MMIO_AREA_BITS 8
64 #define MMIO_AREA_LEN (1 << MMIO_AREA_BITS)
65 #define MMIO_AREA_NB (1 << (TARGET_PAGE_BITS - MMIO_AREA_BITS))
66 #define MMIO_IDX(addr) (((addr) >> MMIO_AREA_BITS) & (MMIO_AREA_NB - 1))
67 struct ppc4xx_mmio_t
{
68 target_phys_addr_t base
;
69 CPUReadMemoryFunc
**mem_read
[MMIO_AREA_NB
];
70 CPUWriteMemoryFunc
**mem_write
[MMIO_AREA_NB
];
71 void *opaque
[MMIO_AREA_NB
];
74 static uint32_t unassigned_mmio_readb (void *opaque
, target_phys_addr_t addr
)
76 #ifdef DEBUG_UNASSIGNED
80 printf("Unassigned mmio read 0x" PADDRX
" base " PADDRX
"\n",
87 static void unassigned_mmio_writeb (void *opaque
,
88 target_phys_addr_t addr
, uint32_t val
)
90 #ifdef DEBUG_UNASSIGNED
94 printf("Unassigned mmio write 0x" PADDRX
" = 0x%x base " PADDRX
"\n",
95 addr
, val
, mmio
->base
);
99 static CPUReadMemoryFunc
*unassigned_mmio_read
[3] = {
100 unassigned_mmio_readb
,
101 unassigned_mmio_readb
,
102 unassigned_mmio_readb
,
105 static CPUWriteMemoryFunc
*unassigned_mmio_write
[3] = {
106 unassigned_mmio_writeb
,
107 unassigned_mmio_writeb
,
108 unassigned_mmio_writeb
,
111 static uint32_t mmio_readlen (ppc4xx_mmio_t
*mmio
,
112 target_phys_addr_t addr
, int len
)
114 CPUReadMemoryFunc
**mem_read
;
118 idx
= MMIO_IDX(addr
);
119 #if defined(DEBUG_MMIO)
120 printf("%s: mmio %p len %d addr " PADDRX
" idx %d\n", __func__
,
121 mmio
, len
, addr
, idx
);
123 mem_read
= mmio
->mem_read
[idx
];
124 ret
= (*mem_read
[len
])(mmio
->opaque
[idx
], addr
);
129 static void mmio_writelen (ppc4xx_mmio_t
*mmio
,
130 target_phys_addr_t addr
, uint32_t value
, int len
)
132 CPUWriteMemoryFunc
**mem_write
;
135 idx
= MMIO_IDX(addr
);
136 #if defined(DEBUG_MMIO)
137 printf("%s: mmio %p len %d addr " PADDRX
" idx %d value %08" PRIx32
"\n",
138 __func__
, mmio
, len
, addr
, idx
, value
);
140 mem_write
= mmio
->mem_write
[idx
];
141 (*mem_write
[len
])(mmio
->opaque
[idx
], addr
, value
);
144 static uint32_t mmio_readb (void *opaque
, target_phys_addr_t addr
)
146 #if defined(DEBUG_MMIO)
147 printf("%s: addr " PADDRX
"\n", __func__
, addr
);
150 return mmio_readlen(opaque
, addr
, 0);
153 static void mmio_writeb (void *opaque
,
154 target_phys_addr_t addr
, uint32_t value
)
156 #if defined(DEBUG_MMIO)
157 printf("%s: addr " PADDRX
" val %08" PRIx32
"\n", __func__
, addr
, value
);
159 mmio_writelen(opaque
, addr
, value
, 0);
162 static uint32_t mmio_readw (void *opaque
, target_phys_addr_t addr
)
164 #if defined(DEBUG_MMIO)
165 printf("%s: addr " PADDRX
"\n", __func__
, addr
);
168 return mmio_readlen(opaque
, addr
, 1);
171 static void mmio_writew (void *opaque
,
172 target_phys_addr_t addr
, uint32_t value
)
174 #if defined(DEBUG_MMIO)
175 printf("%s: addr " PADDRX
" val %08" PRIx32
"\n", __func__
, addr
, value
);
177 mmio_writelen(opaque
, addr
, value
, 1);
180 static uint32_t mmio_readl (void *opaque
, target_phys_addr_t addr
)
182 #if defined(DEBUG_MMIO)
183 printf("%s: addr " PADDRX
"\n", __func__
, addr
);
186 return mmio_readlen(opaque
, addr
, 2);
189 static void mmio_writel (void *opaque
,
190 target_phys_addr_t addr
, uint32_t value
)
192 #if defined(DEBUG_MMIO)
193 printf("%s: addr " PADDRX
" val %08" PRIx32
"\n", __func__
, addr
, value
);
195 mmio_writelen(opaque
, addr
, value
, 2);
198 static CPUReadMemoryFunc
*mmio_read
[] = {
204 static CPUWriteMemoryFunc
*mmio_write
[] = {
210 int ppc4xx_mmio_register (CPUState
*env
, ppc4xx_mmio_t
*mmio
,
211 target_phys_addr_t offset
, uint32_t len
,
212 CPUReadMemoryFunc
**mem_read
,
213 CPUWriteMemoryFunc
**mem_write
, void *opaque
)
215 target_phys_addr_t end
;
218 if ((offset
+ len
) > TARGET_PAGE_SIZE
)
220 idx
= MMIO_IDX(offset
);
221 end
= offset
+ len
- 1;
222 eidx
= MMIO_IDX(end
);
223 #if defined(DEBUG_MMIO)
224 printf("%s: offset " PADDRX
" len %08" PRIx32
" " PADDRX
" %d %d\n",
225 __func__
, offset
, len
, end
, idx
, eidx
);
227 for (; idx
<= eidx
; idx
++) {
228 mmio
->mem_read
[idx
] = mem_read
;
229 mmio
->mem_write
[idx
] = mem_write
;
230 mmio
->opaque
[idx
] = opaque
;
236 ppc4xx_mmio_t
*ppc4xx_mmio_init (CPUState
*env
, target_phys_addr_t base
)
241 mmio
= qemu_mallocz(sizeof(ppc4xx_mmio_t
));
244 mmio_memory
= cpu_register_io_memory(0, mmio_read
, mmio_write
, mmio
);
245 #if defined(DEBUG_MMIO)
246 printf("%s: base " PADDRX
" len %08x %d\n", __func__
,
247 base
, TARGET_PAGE_SIZE
, mmio_memory
);
249 cpu_register_physical_memory(base
, TARGET_PAGE_SIZE
, mmio_memory
);
250 ppc4xx_mmio_register(env
, mmio
, 0, TARGET_PAGE_SIZE
,
251 unassigned_mmio_read
, unassigned_mmio_write
,
258 /*****************************************************************************/
259 /* "Universal" Interrupt controller */
273 #define UIC_MAX_IRQ 32
274 typedef struct ppcuic_t ppcuic_t
;
278 uint32_t level
; /* Remembers the state of level-triggered interrupts. */
279 uint32_t uicsr
; /* Status register */
280 uint32_t uicer
; /* Enable register */
281 uint32_t uiccr
; /* Critical register */
282 uint32_t uicpr
; /* Polarity register */
283 uint32_t uictr
; /* Triggering register */
284 uint32_t uicvcr
; /* Vector configuration register */
289 static void ppcuic_trigger_irq (ppcuic_t
*uic
)
292 int start
, end
, inc
, i
;
294 /* Trigger interrupt if any is pending */
295 ir
= uic
->uicsr
& uic
->uicer
& (~uic
->uiccr
);
296 cr
= uic
->uicsr
& uic
->uicer
& uic
->uiccr
;
298 if (loglevel
& CPU_LOG_INT
) {
299 fprintf(logfile
, "%s: uicsr %08" PRIx32
" uicer %08" PRIx32
300 " uiccr %08" PRIx32
"\n"
301 " %08" PRIx32
" ir %08" PRIx32
" cr %08" PRIx32
"\n",
302 __func__
, uic
->uicsr
, uic
->uicer
, uic
->uiccr
,
303 uic
->uicsr
& uic
->uicer
, ir
, cr
);
306 if (ir
!= 0x0000000) {
308 if (loglevel
& CPU_LOG_INT
) {
309 fprintf(logfile
, "Raise UIC interrupt\n");
312 qemu_irq_raise(uic
->irqs
[PPCUIC_OUTPUT_INT
]);
315 if (loglevel
& CPU_LOG_INT
) {
316 fprintf(logfile
, "Lower UIC interrupt\n");
319 qemu_irq_lower(uic
->irqs
[PPCUIC_OUTPUT_INT
]);
321 /* Trigger critical interrupt if any is pending and update vector */
322 if (cr
!= 0x0000000) {
323 qemu_irq_raise(uic
->irqs
[PPCUIC_OUTPUT_CINT
]);
324 if (uic
->use_vectors
) {
325 /* Compute critical IRQ vector */
326 if (uic
->uicvcr
& 1) {
335 uic
->uicvr
= uic
->uicvcr
& 0xFFFFFFFC;
336 for (i
= start
; i
<= end
; i
+= inc
) {
338 uic
->uicvr
+= (i
- start
) * 512 * inc
;
344 if (loglevel
& CPU_LOG_INT
) {
345 fprintf(logfile
, "Raise UIC critical interrupt - "
346 "vector %08" PRIx32
"\n", uic
->uicvr
);
351 if (loglevel
& CPU_LOG_INT
) {
352 fprintf(logfile
, "Lower UIC critical interrupt\n");
355 qemu_irq_lower(uic
->irqs
[PPCUIC_OUTPUT_CINT
]);
356 uic
->uicvr
= 0x00000000;
360 static void ppcuic_set_irq (void *opaque
, int irq_num
, int level
)
366 mask
= 1 << (31-irq_num
);
368 if (loglevel
& CPU_LOG_INT
) {
369 fprintf(logfile
, "%s: irq %d level %d uicsr %08" PRIx32
370 " mask %08" PRIx32
" => %08" PRIx32
" %08" PRIx32
"\n",
371 __func__
, irq_num
, level
,
372 uic
->uicsr
, mask
, uic
->uicsr
& mask
, level
<< irq_num
);
375 if (irq_num
< 0 || irq_num
> 31)
379 /* Update status register */
380 if (uic
->uictr
& mask
) {
381 /* Edge sensitive interrupt */
385 /* Level sensitive interrupt */
395 if (loglevel
& CPU_LOG_INT
) {
396 fprintf(logfile
, "%s: irq %d level %d sr %" PRIx32
" => "
397 "%08" PRIx32
"\n", __func__
, irq_num
, level
, uic
->uicsr
, sr
);
400 if (sr
!= uic
->uicsr
)
401 ppcuic_trigger_irq(uic
);
404 static target_ulong
dcr_read_uic (void *opaque
, int dcrn
)
410 dcrn
-= uic
->dcr_base
;
429 ret
= uic
->uicsr
& uic
->uicer
;
432 if (!uic
->use_vectors
)
437 if (!uic
->use_vectors
)
450 static void dcr_write_uic (void *opaque
, int dcrn
, target_ulong val
)
455 dcrn
-= uic
->dcr_base
;
457 if (loglevel
& CPU_LOG_INT
) {
458 fprintf(logfile
, "%s: dcr %d val " ADDRX
"\n", __func__
, dcrn
, val
);
464 uic
->uicsr
|= uic
->level
;
465 ppcuic_trigger_irq(uic
);
469 ppcuic_trigger_irq(uic
);
473 ppcuic_trigger_irq(uic
);
477 ppcuic_trigger_irq(uic
);
484 ppcuic_trigger_irq(uic
);
491 uic
->uicvcr
= val
& 0xFFFFFFFD;
492 ppcuic_trigger_irq(uic
);
497 static void ppcuic_reset (void *opaque
)
502 uic
->uiccr
= 0x00000000;
503 uic
->uicer
= 0x00000000;
504 uic
->uicpr
= 0x00000000;
505 uic
->uicsr
= 0x00000000;
506 uic
->uictr
= 0x00000000;
507 if (uic
->use_vectors
) {
508 uic
->uicvcr
= 0x00000000;
509 uic
->uicvr
= 0x0000000;
513 qemu_irq
*ppcuic_init (CPUState
*env
, qemu_irq
*irqs
,
514 uint32_t dcr_base
, int has_ssr
, int has_vr
)
519 uic
= qemu_mallocz(sizeof(ppcuic_t
));
521 uic
->dcr_base
= dcr_base
;
524 uic
->use_vectors
= 1;
525 for (i
= 0; i
< DCR_UICMAX
; i
++) {
526 ppc_dcr_register(env
, dcr_base
+ i
, uic
,
527 &dcr_read_uic
, &dcr_write_uic
);
529 qemu_register_reset(ppcuic_reset
, uic
);
533 return qemu_allocate_irqs(&ppcuic_set_irq
, uic
, UIC_MAX_IRQ
);
536 /*****************************************************************************/
537 /* SDRAM controller */
538 typedef struct ppc4xx_sdram_t ppc4xx_sdram_t
;
539 struct ppc4xx_sdram_t
{
542 target_phys_addr_t ram_bases
[4];
543 target_phys_addr_t ram_sizes
[4];
559 SDRAM0_CFGADDR
= 0x010,
560 SDRAM0_CFGDATA
= 0x011,
563 /* XXX: TOFIX: some patches have made this code become inconsistent:
564 * there are type inconsistencies, mixing target_phys_addr_t, target_ulong
567 static uint32_t sdram_bcr (target_phys_addr_t ram_base
,
568 target_phys_addr_t ram_size
)
573 case (4 * 1024 * 1024):
576 case (8 * 1024 * 1024):
579 case (16 * 1024 * 1024):
582 case (32 * 1024 * 1024):
585 case (64 * 1024 * 1024):
588 case (128 * 1024 * 1024):
591 case (256 * 1024 * 1024):
595 printf("%s: invalid RAM size " PADDRX
"\n", __func__
, ram_size
);
598 bcr
|= ram_base
& 0xFF800000;
604 static always_inline target_phys_addr_t
sdram_base (uint32_t bcr
)
606 return bcr
& 0xFF800000;
609 static target_ulong
sdram_size (uint32_t bcr
)
614 sh
= (bcr
>> 17) & 0x7;
618 size
= (4 * 1024 * 1024) << sh
;
623 static void sdram_set_bcr (uint32_t *bcrp
, uint32_t bcr
, int enabled
)
625 if (*bcrp
& 0x00000001) {
628 printf("%s: unmap RAM area " PADDRX
" " ADDRX
"\n",
629 __func__
, sdram_base(*bcrp
), sdram_size(*bcrp
));
631 cpu_register_physical_memory(sdram_base(*bcrp
), sdram_size(*bcrp
),
634 *bcrp
= bcr
& 0xFFDEE001;
635 if (enabled
&& (bcr
& 0x00000001)) {
637 printf("%s: Map RAM area " PADDRX
" " ADDRX
"\n",
638 __func__
, sdram_base(bcr
), sdram_size(bcr
));
640 cpu_register_physical_memory(sdram_base(bcr
), sdram_size(bcr
),
641 sdram_base(bcr
) | IO_MEM_RAM
);
645 static void sdram_map_bcr (ppc4xx_sdram_t
*sdram
)
649 for (i
= 0; i
< sdram
->nbanks
; i
++) {
650 if (sdram
->ram_sizes
[i
] != 0) {
651 sdram_set_bcr(&sdram
->bcr
[i
],
652 sdram_bcr(sdram
->ram_bases
[i
], sdram
->ram_sizes
[i
]),
655 sdram_set_bcr(&sdram
->bcr
[i
], 0x00000000, 0);
660 static void sdram_unmap_bcr (ppc4xx_sdram_t
*sdram
)
664 for (i
= 0; i
< sdram
->nbanks
; i
++) {
666 printf("%s: Unmap RAM area " PADDRX
" " ADDRX
"\n",
667 __func__
, sdram_base(sdram
->bcr
[i
]), sdram_size(sdram
->bcr
[i
]));
669 cpu_register_physical_memory(sdram_base(sdram
->bcr
[i
]),
670 sdram_size(sdram
->bcr
[i
]),
675 static target_ulong
dcr_read_sdram (void *opaque
, int dcrn
)
677 ppc4xx_sdram_t
*sdram
;
686 switch (sdram
->addr
) {
687 case 0x00: /* SDRAM_BESR0 */
690 case 0x08: /* SDRAM_BESR1 */
693 case 0x10: /* SDRAM_BEAR */
696 case 0x20: /* SDRAM_CFG */
699 case 0x24: /* SDRAM_STATUS */
702 case 0x30: /* SDRAM_RTR */
705 case 0x34: /* SDRAM_PMIT */
708 case 0x40: /* SDRAM_B0CR */
711 case 0x44: /* SDRAM_B1CR */
714 case 0x48: /* SDRAM_B2CR */
717 case 0x4C: /* SDRAM_B3CR */
720 case 0x80: /* SDRAM_TR */
723 case 0x94: /* SDRAM_ECCCFG */
726 case 0x98: /* SDRAM_ECCESR */
735 /* Avoid gcc warning */
743 static void dcr_write_sdram (void *opaque
, int dcrn
, target_ulong val
)
745 ppc4xx_sdram_t
*sdram
;
753 switch (sdram
->addr
) {
754 case 0x00: /* SDRAM_BESR0 */
755 sdram
->besr0
&= ~val
;
757 case 0x08: /* SDRAM_BESR1 */
758 sdram
->besr1
&= ~val
;
760 case 0x10: /* SDRAM_BEAR */
763 case 0x20: /* SDRAM_CFG */
765 if (!(sdram
->cfg
& 0x80000000) && (val
& 0x80000000)) {
767 printf("%s: enable SDRAM controller\n", __func__
);
769 /* validate all RAM mappings */
770 sdram_map_bcr(sdram
);
771 sdram
->status
&= ~0x80000000;
772 } else if ((sdram
->cfg
& 0x80000000) && !(val
& 0x80000000)) {
774 printf("%s: disable SDRAM controller\n", __func__
);
776 /* invalidate all RAM mappings */
777 sdram_unmap_bcr(sdram
);
778 sdram
->status
|= 0x80000000;
780 if (!(sdram
->cfg
& 0x40000000) && (val
& 0x40000000))
781 sdram
->status
|= 0x40000000;
782 else if ((sdram
->cfg
& 0x40000000) && !(val
& 0x40000000))
783 sdram
->status
&= ~0x40000000;
786 case 0x24: /* SDRAM_STATUS */
787 /* Read-only register */
789 case 0x30: /* SDRAM_RTR */
790 sdram
->rtr
= val
& 0x3FF80000;
792 case 0x34: /* SDRAM_PMIT */
793 sdram
->pmit
= (val
& 0xF8000000) | 0x07C00000;
795 case 0x40: /* SDRAM_B0CR */
796 sdram_set_bcr(&sdram
->bcr
[0], val
, sdram
->cfg
& 0x80000000);
798 case 0x44: /* SDRAM_B1CR */
799 sdram_set_bcr(&sdram
->bcr
[1], val
, sdram
->cfg
& 0x80000000);
801 case 0x48: /* SDRAM_B2CR */
802 sdram_set_bcr(&sdram
->bcr
[2], val
, sdram
->cfg
& 0x80000000);
804 case 0x4C: /* SDRAM_B3CR */
805 sdram_set_bcr(&sdram
->bcr
[3], val
, sdram
->cfg
& 0x80000000);
807 case 0x80: /* SDRAM_TR */
808 sdram
->tr
= val
& 0x018FC01F;
810 case 0x94: /* SDRAM_ECCCFG */
811 sdram
->ecccfg
= val
& 0x00F00000;
813 case 0x98: /* SDRAM_ECCESR */
815 if (sdram
->eccesr
== 0 && val
!= 0)
816 qemu_irq_raise(sdram
->irq
);
817 else if (sdram
->eccesr
!= 0 && val
== 0)
818 qemu_irq_lower(sdram
->irq
);
828 static void sdram_reset (void *opaque
)
830 ppc4xx_sdram_t
*sdram
;
833 sdram
->addr
= 0x00000000;
834 sdram
->bear
= 0x00000000;
835 sdram
->besr0
= 0x00000000; /* No error */
836 sdram
->besr1
= 0x00000000; /* No error */
837 sdram
->cfg
= 0x00000000;
838 sdram
->ecccfg
= 0x00000000; /* No ECC */
839 sdram
->eccesr
= 0x00000000; /* No error */
840 sdram
->pmit
= 0x07C00000;
841 sdram
->rtr
= 0x05F00000;
842 sdram
->tr
= 0x00854009;
843 /* We pre-initialize RAM banks */
844 sdram
->status
= 0x00000000;
845 sdram
->cfg
= 0x00800000;
846 sdram_unmap_bcr(sdram
);
849 void ppc4xx_sdram_init (CPUState
*env
, qemu_irq irq
, int nbanks
,
850 target_phys_addr_t
*ram_bases
,
851 target_phys_addr_t
*ram_sizes
,
854 ppc4xx_sdram_t
*sdram
;
856 sdram
= qemu_mallocz(sizeof(ppc4xx_sdram_t
));
859 sdram
->nbanks
= nbanks
;
860 memset(sdram
->ram_bases
, 0, 4 * sizeof(target_phys_addr_t
));
861 memcpy(sdram
->ram_bases
, ram_bases
,
862 nbanks
* sizeof(target_phys_addr_t
));
863 memset(sdram
->ram_sizes
, 0, 4 * sizeof(target_phys_addr_t
));
864 memcpy(sdram
->ram_sizes
, ram_sizes
,
865 nbanks
* sizeof(target_phys_addr_t
));
867 qemu_register_reset(&sdram_reset
, sdram
);
868 ppc_dcr_register(env
, SDRAM0_CFGADDR
,
869 sdram
, &dcr_read_sdram
, &dcr_write_sdram
);
870 ppc_dcr_register(env
, SDRAM0_CFGDATA
,
871 sdram
, &dcr_read_sdram
, &dcr_write_sdram
);
873 sdram_map_bcr(sdram
);
877 /* Fill in consecutive SDRAM banks with 'ram_size' bytes of memory.
879 * sdram_bank_sizes[] must be 0-terminated.
881 * The 4xx SDRAM controller supports a small number of banks, and each bank
882 * must be one of a small set of sizes. The number of banks and the supported
883 * sizes varies by SoC. */
884 ram_addr_t
ppc4xx_sdram_adjust(ram_addr_t ram_size
, int nr_banks
,
885 target_phys_addr_t ram_bases
[],
886 target_phys_addr_t ram_sizes
[],
887 const unsigned int sdram_bank_sizes
[])
889 ram_addr_t ram_end
= 0;
893 for (i
= 0; i
< nr_banks
; i
++) {
894 for (j
= 0; sdram_bank_sizes
[j
] != 0; j
++) {
895 unsigned int bank_size
= sdram_bank_sizes
[j
];
897 if (bank_size
<= ram_size
) {
898 ram_bases
[i
] = ram_end
;
899 ram_sizes
[i
] = bank_size
;
900 ram_end
+= bank_size
;
901 ram_size
-= bank_size
;
907 /* No need to use the remaining banks. */
913 printf("Truncating memory to %d MiB to fit SDRAM controller limits.\n",
914 (int)(ram_end
>> 20));