4 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
5 * Copyright (c) 2008 Qumranet
6 * Based on work done by:
7 * Copyright (c) 2007 Dan Aloni
8 * Copyright (c) 2004 Antony T Curtis
10 * This library is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with this library; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
36 DEBUG_GENERAL
, DEBUG_IO
, DEBUG_MMIO
, DEBUG_INTERRUPT
,
37 DEBUG_RX
, DEBUG_TX
, DEBUG_MDIC
, DEBUG_EEPROM
,
38 DEBUG_UNKNOWN
, DEBUG_TXSUM
, DEBUG_TXERR
, DEBUG_RXERR
,
39 DEBUG_RXFILTER
, DEBUG_NOTYET
,
41 #define DBGBIT(x) (1<<DEBUG_##x)
42 static int debugflags
= DBGBIT(TXERR
) | DBGBIT(GENERAL
);
44 #define DBGOUT(what, fmt, params...) do { \
45 if (debugflags & DBGBIT(what)) \
46 fprintf(stderr, "e1000: " fmt, ##params); \
49 #define DBGOUT(what, fmt, params...) do {} while (0)
52 #define IOPORT_SIZE 0x40
53 #define PNPMMIO_SIZE 0x20000
57 * E1000_DEV_ID_82540EM works with Windows and Linux
58 * E1000_DEV_ID_82573L OK with windoze and Linux 2.6.22,
59 * appears to perform better than 82540EM, but breaks with Linux 2.6.18
60 * E1000_DEV_ID_82544GC_COPPER appears to work; not well tested
63 enum { E1000_DEVID
= E1000_DEV_ID_82540EM
};
66 * May need to specify additional MAC-to-PHY entries --
67 * Intel's Windows driver refuses to initialize unless they match
70 PHY_ID2_INIT
= E1000_DEVID
== E1000_DEV_ID_82573L
? 0xcc2 :
71 E1000_DEVID
== E1000_DEV_ID_82544GC_COPPER
? 0xc30 :
72 /* default to E1000_DEV_ID_82540EM */ 0xc20
75 typedef struct E1000State_st
{
82 uint32_t mac_reg
[0x8000];
83 uint16_t phy_reg
[0x20];
84 uint16_t eeprom_data
[64];
87 uint32_t rxbuf_min_shift
;
90 unsigned char header
[256];
91 unsigned char data
[0x10000];
93 unsigned char sum_needed
;
107 char cptse
; // current packet tse bit
111 uint32_t val_in
; // shifted in from guest driver
119 #define defreg(x) x = (E1000_##x>>2)
121 defreg(CTRL
), defreg(EECD
), defreg(EERD
), defreg(GPRC
),
122 defreg(GPTC
), defreg(ICR
), defreg(ICS
), defreg(IMC
),
123 defreg(IMS
), defreg(LEDCTL
), defreg(MANC
), defreg(MDIC
),
124 defreg(MPC
), defreg(PBA
), defreg(RCTL
), defreg(RDBAH
),
125 defreg(RDBAL
), defreg(RDH
), defreg(RDLEN
), defreg(RDT
),
126 defreg(STATUS
), defreg(SWSM
), defreg(TCTL
), defreg(TDBAH
),
127 defreg(TDBAL
), defreg(TDH
), defreg(TDLEN
), defreg(TDT
),
128 defreg(TORH
), defreg(TORL
), defreg(TOTH
), defreg(TOTL
),
129 defreg(TPR
), defreg(TPT
), defreg(TXDCTL
), defreg(WUFC
),
130 defreg(RA
), defreg(MTA
), defreg(CRCERRS
),
133 enum { PHY_R
= 1, PHY_W
= 2, PHY_RW
= PHY_R
| PHY_W
};
134 static char phy_regcap
[0x20] = {
135 [PHY_STATUS
] = PHY_R
, [M88E1000_EXT_PHY_SPEC_CTRL
] = PHY_RW
,
136 [PHY_ID1
] = PHY_R
, [M88E1000_PHY_SPEC_CTRL
] = PHY_RW
,
137 [PHY_CTRL
] = PHY_RW
, [PHY_1000T_CTRL
] = PHY_RW
,
138 [PHY_LP_ABILITY
] = PHY_R
, [PHY_1000T_STATUS
] = PHY_R
,
139 [PHY_AUTONEG_ADV
] = PHY_RW
, [M88E1000_RX_ERR_CNTR
] = PHY_R
,
140 [PHY_ID2
] = PHY_R
, [M88E1000_PHY_SPEC_STATUS
] = PHY_R
144 ioport_map(PCIDevice
*pci_dev
, int region_num
, uint32_t addr
,
145 uint32_t size
, int type
)
147 DBGOUT(IO
, "e1000_ioport_map addr=0x%04x size=0x%08x\n", addr
, size
);
151 set_interrupt_cause(E1000State
*s
, int index
, uint32_t val
)
154 val
|= E1000_ICR_INT_ASSERTED
;
155 s
->mac_reg
[ICR
] = val
;
156 qemu_set_irq(s
->dev
.irq
[0], (s
->mac_reg
[IMS
] & s
->mac_reg
[ICR
]) != 0);
160 set_ics(E1000State
*s
, int index
, uint32_t val
)
162 DBGOUT(INTERRUPT
, "set_ics %x, ICR %x, IMR %x\n", val
, s
->mac_reg
[ICR
],
164 set_interrupt_cause(s
, 0, val
| s
->mac_reg
[ICR
]);
168 rxbufsize(uint32_t v
)
170 v
&= E1000_RCTL_BSEX
| E1000_RCTL_SZ_16384
| E1000_RCTL_SZ_8192
|
171 E1000_RCTL_SZ_4096
| E1000_RCTL_SZ_2048
| E1000_RCTL_SZ_1024
|
172 E1000_RCTL_SZ_512
| E1000_RCTL_SZ_256
;
174 case E1000_RCTL_BSEX
| E1000_RCTL_SZ_16384
:
176 case E1000_RCTL_BSEX
| E1000_RCTL_SZ_8192
:
178 case E1000_RCTL_BSEX
| E1000_RCTL_SZ_4096
:
180 case E1000_RCTL_SZ_1024
:
182 case E1000_RCTL_SZ_512
:
184 case E1000_RCTL_SZ_256
:
191 set_rx_control(E1000State
*s
, int index
, uint32_t val
)
193 s
->mac_reg
[RCTL
] = val
;
194 s
->rxbuf_size
= rxbufsize(val
);
195 s
->rxbuf_min_shift
= ((val
/ E1000_RCTL_RDMTS_QUAT
) & 3) + 1;
196 DBGOUT(RX
, "RCTL: %d, mac_reg[RCTL] = 0x%x\n", s
->mac_reg
[RDT
],
201 set_mdic(E1000State
*s
, int index
, uint32_t val
)
203 uint32_t data
= val
& E1000_MDIC_DATA_MASK
;
204 uint32_t addr
= ((val
& E1000_MDIC_REG_MASK
) >> E1000_MDIC_REG_SHIFT
);
206 if ((val
& E1000_MDIC_PHY_MASK
) >> E1000_MDIC_PHY_SHIFT
!= 1) // phy #
207 val
= s
->mac_reg
[MDIC
] | E1000_MDIC_ERROR
;
208 else if (val
& E1000_MDIC_OP_READ
) {
209 DBGOUT(MDIC
, "MDIC read reg 0x%x\n", addr
);
210 if (!(phy_regcap
[addr
] & PHY_R
)) {
211 DBGOUT(MDIC
, "MDIC read reg %x unhandled\n", addr
);
212 val
|= E1000_MDIC_ERROR
;
214 val
= (val
^ data
) | s
->phy_reg
[addr
];
215 } else if (val
& E1000_MDIC_OP_WRITE
) {
216 DBGOUT(MDIC
, "MDIC write reg 0x%x, value 0x%x\n", addr
, data
);
217 if (!(phy_regcap
[addr
] & PHY_W
)) {
218 DBGOUT(MDIC
, "MDIC write reg %x unhandled\n", addr
);
219 val
|= E1000_MDIC_ERROR
;
221 s
->phy_reg
[addr
] = data
;
223 s
->mac_reg
[MDIC
] = val
| E1000_MDIC_READY
;
224 set_ics(s
, 0, E1000_ICR_MDAC
);
228 get_eecd(E1000State
*s
, int index
)
230 uint32_t ret
= E1000_EECD_PRES
|E1000_EECD_GNT
| s
->eecd_state
.old_eecd
;
232 DBGOUT(EEPROM
, "reading eeprom bit %d (reading %d)\n",
233 s
->eecd_state
.bitnum_out
, s
->eecd_state
.reading
);
234 if (!s
->eecd_state
.reading
||
235 ((s
->eeprom_data
[(s
->eecd_state
.bitnum_out
>> 4) & 0x3f] >>
236 ((s
->eecd_state
.bitnum_out
& 0xf) ^ 0xf))) & 1)
237 ret
|= E1000_EECD_DO
;
242 set_eecd(E1000State
*s
, int index
, uint32_t val
)
244 uint32_t oldval
= s
->eecd_state
.old_eecd
;
246 s
->eecd_state
.old_eecd
= val
& (E1000_EECD_SK
| E1000_EECD_CS
|
247 E1000_EECD_DI
|E1000_EECD_FWE_MASK
|E1000_EECD_REQ
);
248 if (!(E1000_EECD_SK
& (val
^ oldval
))) // no clock edge
250 if (!(E1000_EECD_SK
& val
)) { // falling edge
251 s
->eecd_state
.bitnum_out
++;
254 if (!(val
& E1000_EECD_CS
)) { // rising, no CS (EEPROM reset)
255 memset(&s
->eecd_state
, 0, sizeof s
->eecd_state
);
258 s
->eecd_state
.val_in
<<= 1;
259 if (val
& E1000_EECD_DI
)
260 s
->eecd_state
.val_in
|= 1;
261 if (++s
->eecd_state
.bitnum_in
== 9 && !s
->eecd_state
.reading
) {
262 s
->eecd_state
.bitnum_out
= ((s
->eecd_state
.val_in
& 0x3f)<<4)-1;
263 s
->eecd_state
.reading
= (((s
->eecd_state
.val_in
>> 6) & 7) ==
264 EEPROM_READ_OPCODE_MICROWIRE
);
266 DBGOUT(EEPROM
, "eeprom bitnum in %d out %d, reading %d\n",
267 s
->eecd_state
.bitnum_in
, s
->eecd_state
.bitnum_out
,
268 s
->eecd_state
.reading
);
272 flash_eerd_read(E1000State
*s
, int x
)
274 unsigned int index
, r
= s
->mac_reg
[EERD
] & ~E1000_EEPROM_RW_REG_START
;
276 if ((index
= r
>> E1000_EEPROM_RW_ADDR_SHIFT
) > EEPROM_CHECKSUM_REG
)
278 return (s
->eeprom_data
[index
] << E1000_EEPROM_RW_REG_DATA
) |
279 E1000_EEPROM_RW_REG_DONE
| r
;
283 do_cksum(uint8_t *dp
, uint8_t *de
)
285 unsigned int bsum
[2] = {0, 0}, i
, sum
;
287 for (i
= 1; dp
< de
; bsum
[i
^=1] += *dp
++)
289 sum
= (bsum
[0] << 8) + bsum
[1];
290 sum
= (sum
>> 16) + (sum
& 0xffff);
291 return ~(sum
+ (sum
>> 16));
295 putsum(uint8_t *data
, uint32_t n
, uint32_t sloc
, uint32_t css
, uint32_t cse
)
300 cpu_to_be16wu((uint16_t *)(data
+ sloc
),
301 do_cksum(data
+ css
, data
+ n
));
305 xmit_seg(E1000State
*s
)
308 unsigned int frames
= s
->tx
.tso_frames
, css
, sofar
, n
;
309 struct e1000_tx
*tp
= &s
->tx
;
311 if (tp
->tse
&& tp
->cptse
) {
313 DBGOUT(TXSUM
, "frames %d size %d ipcss %d\n",
314 frames
, tp
->size
, css
);
315 if (tp
->ip
) { // IPv4
316 cpu_to_be16wu((uint16_t *)(tp
->data
+css
+2),
318 cpu_to_be16wu((uint16_t *)(tp
->data
+css
+4),
319 be16_to_cpup((uint16_t *)(tp
->data
+css
+4))+frames
);
321 cpu_to_be16wu((uint16_t *)(tp
->data
+css
+4),
324 len
= tp
->size
- css
;
325 DBGOUT(TXSUM
, "tcp %d tucss %d len %d\n", tp
->tcp
, css
, len
);
327 sofar
= frames
* tp
->mss
;
328 cpu_to_be32wu((uint32_t *)(tp
->data
+css
+4), // seq
329 be32_to_cpupu((uint32_t *)(tp
->data
+css
+4))+sofar
);
330 if (tp
->paylen
- sofar
> tp
->mss
)
331 tp
->data
[css
+ 13] &= ~9; // PSH, FIN
333 cpu_to_be16wu((uint16_t *)(tp
->data
+css
+4), len
);
334 if (tp
->sum_needed
& E1000_TXD_POPTS_TXSM
) {
335 // add pseudo-header length before checksum calculation
336 sp
= (uint16_t *)(tp
->data
+ tp
->tucso
);
337 cpu_to_be16wu(sp
, be16_to_cpup(sp
) + len
);
342 if (tp
->sum_needed
& E1000_TXD_POPTS_TXSM
)
343 putsum(tp
->data
, tp
->size
, tp
->tucso
, tp
->tucss
, tp
->tucse
);
344 if (tp
->sum_needed
& E1000_TXD_POPTS_IXSM
)
345 putsum(tp
->data
, tp
->size
, tp
->ipcso
, tp
->ipcss
, tp
->ipcse
);
346 qemu_send_packet(s
->vc
, tp
->data
, tp
->size
);
349 n
= s
->mac_reg
[TOTL
];
350 if ((s
->mac_reg
[TOTL
] += s
->tx
.size
) < n
)
355 process_tx_desc(E1000State
*s
, struct e1000_tx_desc
*dp
)
357 uint32_t txd_lower
= le32_to_cpu(dp
->lower
.data
);
358 uint32_t dtype
= txd_lower
& (E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
);
359 unsigned int split_size
= txd_lower
& 0xffff, bytes
, sz
, op
;
360 unsigned int msh
= 0xfffff, hdr
= 0;
362 struct e1000_context_desc
*xp
= (struct e1000_context_desc
*)dp
;
363 struct e1000_tx
*tp
= &s
->tx
;
365 if (dtype
== E1000_TXD_CMD_DEXT
) { // context descriptor
366 op
= le32_to_cpu(xp
->cmd_and_length
);
367 tp
->ipcss
= xp
->lower_setup
.ip_fields
.ipcss
;
368 tp
->ipcso
= xp
->lower_setup
.ip_fields
.ipcso
;
369 tp
->ipcse
= le16_to_cpu(xp
->lower_setup
.ip_fields
.ipcse
);
370 tp
->tucss
= xp
->upper_setup
.tcp_fields
.tucss
;
371 tp
->tucso
= xp
->upper_setup
.tcp_fields
.tucso
;
372 tp
->tucse
= le16_to_cpu(xp
->upper_setup
.tcp_fields
.tucse
);
373 tp
->paylen
= op
& 0xfffff;
374 tp
->hdr_len
= xp
->tcp_seg_setup
.fields
.hdr_len
;
375 tp
->mss
= le16_to_cpu(xp
->tcp_seg_setup
.fields
.mss
);
376 tp
->ip
= (op
& E1000_TXD_CMD_IP
) ? 1 : 0;
377 tp
->tcp
= (op
& E1000_TXD_CMD_TCP
) ? 1 : 0;
378 tp
->tse
= (op
& E1000_TXD_CMD_TSE
) ? 1 : 0;
380 if (tp
->tucso
== 0) { // this is probably wrong
381 DBGOUT(TXSUM
, "TCP/UDP: cso 0!\n");
382 tp
->tucso
= tp
->tucss
+ (tp
->tcp
? 16 : 6);
385 } else if (dtype
== (E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
)) {
387 tp
->sum_needed
= le32_to_cpu(dp
->upper
.data
) >> 8;
388 tp
->cptse
= ( txd_lower
& E1000_TXD_CMD_TSE
) ? 1 : 0;
393 addr
= le64_to_cpu(dp
->buffer_addr
);
394 if (tp
->tse
&& tp
->cptse
) {
399 if (tp
->size
+ bytes
> msh
)
400 bytes
= msh
- tp
->size
;
401 cpu_physical_memory_read(addr
, tp
->data
+ tp
->size
, bytes
);
402 if ((sz
= tp
->size
+ bytes
) >= hdr
&& tp
->size
< hdr
)
403 memmove(tp
->header
, tp
->data
, hdr
);
408 memmove(tp
->data
, tp
->header
, hdr
);
411 } while (split_size
-= bytes
);
412 } else if (!tp
->tse
&& tp
->cptse
) {
413 // context descriptor TSE is not set, while data descriptor TSE is set
414 DBGOUT(TXERR
, "TCP segmentaion Error\n");
416 cpu_physical_memory_read(addr
, tp
->data
+ tp
->size
, split_size
);
417 tp
->size
+= split_size
;
420 if (!(txd_lower
& E1000_TXD_CMD_EOP
))
422 if (!(tp
->tse
&& tp
->cptse
&& tp
->size
< hdr
))
431 txdesc_writeback(target_phys_addr_t base
, struct e1000_tx_desc
*dp
)
433 uint32_t txd_upper
, txd_lower
= le32_to_cpu(dp
->lower
.data
);
435 if (!(txd_lower
& (E1000_TXD_CMD_RS
|E1000_TXD_CMD_RPS
)))
437 txd_upper
= (le32_to_cpu(dp
->upper
.data
) | E1000_TXD_STAT_DD
) &
438 ~(E1000_TXD_STAT_EC
| E1000_TXD_STAT_LC
| E1000_TXD_STAT_TU
);
439 dp
->upper
.data
= cpu_to_le32(txd_upper
);
440 cpu_physical_memory_write(base
+ ((char *)&dp
->upper
- (char *)dp
),
441 (void *)&dp
->upper
, sizeof(dp
->upper
));
442 return E1000_ICR_TXDW
;
446 start_xmit(E1000State
*s
)
448 target_phys_addr_t base
;
449 struct e1000_tx_desc desc
;
450 uint32_t tdh_start
= s
->mac_reg
[TDH
], cause
= E1000_ICS_TXQE
;
452 if (!(s
->mac_reg
[TCTL
] & E1000_TCTL_EN
)) {
453 DBGOUT(TX
, "tx disabled\n");
457 while (s
->mac_reg
[TDH
] != s
->mac_reg
[TDT
]) {
458 base
= ((uint64_t)s
->mac_reg
[TDBAH
] << 32) + s
->mac_reg
[TDBAL
] +
459 sizeof(struct e1000_tx_desc
) * s
->mac_reg
[TDH
];
460 cpu_physical_memory_read(base
, (void *)&desc
, sizeof(desc
));
462 DBGOUT(TX
, "index %d: %p : %x %x\n", s
->mac_reg
[TDH
],
463 (void *)(intptr_t)desc
.buffer_addr
, desc
.lower
.data
,
466 process_tx_desc(s
, &desc
);
467 cause
|= txdesc_writeback(base
, &desc
);
469 if (++s
->mac_reg
[TDH
] * sizeof(desc
) >= s
->mac_reg
[TDLEN
])
472 * the following could happen only if guest sw assigns
473 * bogus values to TDT/TDLEN.
474 * there's nothing too intelligent we could do about this.
476 if (s
->mac_reg
[TDH
] == tdh_start
) {
477 DBGOUT(TXERR
, "TDH wraparound @%x, TDT %x, TDLEN %x\n",
478 tdh_start
, s
->mac_reg
[TDT
], s
->mac_reg
[TDLEN
]);
482 set_ics(s
, 0, cause
);
486 receive_filter(E1000State
*s
, const uint8_t *buf
, int size
)
488 static uint8_t bcast
[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
489 static int mta_shift
[] = {4, 3, 2, 0};
490 uint32_t f
, rctl
= s
->mac_reg
[RCTL
], ra
[2], *rp
;
492 if (rctl
& E1000_RCTL_UPE
) // promiscuous
495 if ((buf
[0] & 1) && (rctl
& E1000_RCTL_MPE
)) // promiscuous mcast
498 if ((rctl
& E1000_RCTL_BAM
) && !memcmp(buf
, bcast
, sizeof bcast
))
501 for (rp
= s
->mac_reg
+ RA
; rp
< s
->mac_reg
+ RA
+ 32; rp
+= 2) {
502 if (!(rp
[1] & E1000_RAH_AV
))
504 ra
[0] = cpu_to_le32(rp
[0]);
505 ra
[1] = cpu_to_le32(rp
[1]);
506 if (!memcmp(buf
, (uint8_t *)ra
, 6)) {
508 "unicast match[%d]: %02x:%02x:%02x:%02x:%02x:%02x\n",
509 (int)(rp
- s
->mac_reg
- RA
)/2,
510 buf
[0], buf
[1], buf
[2], buf
[3], buf
[4], buf
[5]);
514 DBGOUT(RXFILTER
, "unicast mismatch: %02x:%02x:%02x:%02x:%02x:%02x\n",
515 buf
[0], buf
[1], buf
[2], buf
[3], buf
[4], buf
[5]);
517 f
= mta_shift
[(rctl
>> E1000_RCTL_MO_SHIFT
) & 3];
518 f
= (((buf
[5] << 8) | buf
[4]) >> f
) & 0xfff;
519 if (s
->mac_reg
[MTA
+ (f
>> 5)] & (1 << (f
& 0x1f)))
522 "dropping, inexact filter mismatch: %02x:%02x:%02x:%02x:%02x:%02x MO %d MTA[%d] %x\n",
523 buf
[0], buf
[1], buf
[2], buf
[3], buf
[4], buf
[5],
524 (rctl
>> E1000_RCTL_MO_SHIFT
) & 3, f
>> 5,
525 s
->mac_reg
[MTA
+ (f
>> 5)]);
531 e1000_can_receive(void *opaque
)
533 E1000State
*s
= opaque
;
535 return (!(s
->mac_reg
[RCTL
] & E1000_RCTL_EN
) ||
536 s
->mac_reg
[RDH
] != s
->mac_reg
[RDT
]);
540 e1000_receive(void *opaque
, const uint8_t *buf
, int size
)
542 E1000State
*s
= opaque
;
543 struct e1000_rx_desc desc
;
544 target_phys_addr_t base
;
548 if (!(s
->mac_reg
[RCTL
] & E1000_RCTL_EN
))
551 if (size
> s
->rxbuf_size
) {
552 DBGOUT(RX
, "packet too large for buffers (%d > %d)\n", size
,
557 if (!receive_filter(s
, buf
, size
))
560 rdh_start
= s
->mac_reg
[RDH
];
561 size
+= 4; // for the header
563 if (s
->mac_reg
[RDH
] == s
->mac_reg
[RDT
] && s
->check_rxov
) {
564 set_ics(s
, 0, E1000_ICS_RXO
);
567 base
= ((uint64_t)s
->mac_reg
[RDBAH
] << 32) + s
->mac_reg
[RDBAL
] +
568 sizeof(desc
) * s
->mac_reg
[RDH
];
569 cpu_physical_memory_read(base
, (void *)&desc
, sizeof(desc
));
570 desc
.status
|= E1000_RXD_STAT_DD
;
571 if (desc
.buffer_addr
) {
572 cpu_physical_memory_write(le64_to_cpu(desc
.buffer_addr
),
574 desc
.length
= cpu_to_le16(size
);
575 desc
.status
|= E1000_RXD_STAT_EOP
|E1000_RXD_STAT_IXSM
;
576 } else // as per intel docs; skip descriptors with null buf addr
577 DBGOUT(RX
, "Null RX descriptor!!\n");
578 cpu_physical_memory_write(base
, (void *)&desc
, sizeof(desc
));
580 if (++s
->mac_reg
[RDH
] * sizeof(desc
) >= s
->mac_reg
[RDLEN
])
583 /* see comment in start_xmit; same here */
584 if (s
->mac_reg
[RDH
] == rdh_start
) {
585 DBGOUT(RXERR
, "RDH wraparound @%x, RDT %x, RDLEN %x\n",
586 rdh_start
, s
->mac_reg
[RDT
], s
->mac_reg
[RDLEN
]);
587 set_ics(s
, 0, E1000_ICS_RXO
);
590 } while (desc
.buffer_addr
== 0);
594 n
= s
->mac_reg
[TORL
];
595 if ((s
->mac_reg
[TORL
] += size
) < n
)
599 if ((rdt
= s
->mac_reg
[RDT
]) < s
->mac_reg
[RDH
])
600 rdt
+= s
->mac_reg
[RDLEN
] / sizeof(desc
);
601 if (((rdt
- s
->mac_reg
[RDH
]) * sizeof(desc
)) << s
->rxbuf_min_shift
>=
603 n
|= E1000_ICS_RXDMT0
;
609 mac_readreg(E1000State
*s
, int index
)
611 return s
->mac_reg
[index
];
615 mac_icr_read(E1000State
*s
, int index
)
617 uint32_t ret
= s
->mac_reg
[ICR
];
619 DBGOUT(INTERRUPT
, "ICR read: %x\n", ret
);
620 set_interrupt_cause(s
, 0, 0);
625 mac_read_clr4(E1000State
*s
, int index
)
627 uint32_t ret
= s
->mac_reg
[index
];
629 s
->mac_reg
[index
] = 0;
634 mac_read_clr8(E1000State
*s
, int index
)
636 uint32_t ret
= s
->mac_reg
[index
];
638 s
->mac_reg
[index
] = 0;
639 s
->mac_reg
[index
-1] = 0;
644 mac_writereg(E1000State
*s
, int index
, uint32_t val
)
646 s
->mac_reg
[index
] = val
;
650 set_rdt(E1000State
*s
, int index
, uint32_t val
)
653 s
->mac_reg
[index
] = val
& 0xffff;
657 set_16bit(E1000State
*s
, int index
, uint32_t val
)
659 s
->mac_reg
[index
] = val
& 0xffff;
663 set_dlen(E1000State
*s
, int index
, uint32_t val
)
665 s
->mac_reg
[index
] = val
& 0xfff80;
669 set_tctl(E1000State
*s
, int index
, uint32_t val
)
671 s
->mac_reg
[index
] = val
;
672 s
->mac_reg
[TDT
] &= 0xffff;
677 set_icr(E1000State
*s
, int index
, uint32_t val
)
679 DBGOUT(INTERRUPT
, "set_icr %x\n", val
);
680 set_interrupt_cause(s
, 0, s
->mac_reg
[ICR
] & ~val
);
684 set_imc(E1000State
*s
, int index
, uint32_t val
)
686 s
->mac_reg
[IMS
] &= ~val
;
691 set_ims(E1000State
*s
, int index
, uint32_t val
)
693 s
->mac_reg
[IMS
] |= val
;
697 #define getreg(x) [x] = mac_readreg
698 static uint32_t (*macreg_readops
[])(E1000State
*, int) = {
699 getreg(PBA
), getreg(RCTL
), getreg(TDH
), getreg(TXDCTL
),
700 getreg(WUFC
), getreg(TDT
), getreg(CTRL
), getreg(LEDCTL
),
701 getreg(MANC
), getreg(MDIC
), getreg(SWSM
), getreg(STATUS
),
702 getreg(TORL
), getreg(TOTL
), getreg(IMS
), getreg(TCTL
),
703 getreg(RDH
), getreg(RDT
),
705 [TOTH
] = mac_read_clr8
, [TORH
] = mac_read_clr8
, [GPRC
] = mac_read_clr4
,
706 [GPTC
] = mac_read_clr4
, [TPR
] = mac_read_clr4
, [TPT
] = mac_read_clr4
,
707 [ICR
] = mac_icr_read
, [EECD
] = get_eecd
, [EERD
] = flash_eerd_read
,
708 [CRCERRS
... MPC
] = &mac_readreg
,
709 [RA
... RA
+31] = &mac_readreg
,
710 [MTA
... MTA
+127] = &mac_readreg
,
712 enum { NREADOPS
= sizeof(macreg_readops
) / sizeof(*macreg_readops
) };
714 #define putreg(x) [x] = mac_writereg
715 static void (*macreg_writeops
[])(E1000State
*, int, uint32_t) = {
716 putreg(PBA
), putreg(EERD
), putreg(SWSM
), putreg(WUFC
),
717 putreg(TDBAL
), putreg(TDBAH
), putreg(TXDCTL
), putreg(RDBAH
),
718 putreg(RDBAL
), putreg(LEDCTL
),
719 [TDLEN
] = set_dlen
, [RDLEN
] = set_dlen
, [TCTL
] = set_tctl
,
720 [TDT
] = set_tctl
, [MDIC
] = set_mdic
, [ICS
] = set_ics
,
721 [TDH
] = set_16bit
, [RDH
] = set_16bit
, [RDT
] = set_rdt
,
722 [IMC
] = set_imc
, [IMS
] = set_ims
, [ICR
] = set_icr
,
723 [EECD
] = set_eecd
, [RCTL
] = set_rx_control
,
724 [RA
... RA
+31] = &mac_writereg
,
725 [MTA
... MTA
+127] = &mac_writereg
,
727 enum { NWRITEOPS
= sizeof(macreg_writeops
) / sizeof(*macreg_writeops
) };
730 e1000_mmio_writel(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
732 E1000State
*s
= opaque
;
733 unsigned int index
= ((addr
- s
->mmio_base
) & 0x1ffff) >> 2;
735 #ifdef TARGET_WORDS_BIGENDIAN
738 if (index
< NWRITEOPS
&& macreg_writeops
[index
])
739 macreg_writeops
[index
](s
, index
, val
);
740 else if (index
< NREADOPS
&& macreg_readops
[index
])
741 DBGOUT(MMIO
, "e1000_mmio_writel RO %x: 0x%04x\n", index
<<2, val
);
743 DBGOUT(UNKNOWN
, "MMIO unknown write addr=0x%08x,val=0x%08x\n",
748 e1000_mmio_writew(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
750 // emulate hw without byte enables: no RMW
751 e1000_mmio_writel(opaque
, addr
& ~3,
752 (val
& 0xffff) << (8*(addr
& 3)));
756 e1000_mmio_writeb(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
758 // emulate hw without byte enables: no RMW
759 e1000_mmio_writel(opaque
, addr
& ~3,
760 (val
& 0xff) << (8*(addr
& 3)));
764 e1000_mmio_readl(void *opaque
, target_phys_addr_t addr
)
766 E1000State
*s
= opaque
;
767 unsigned int index
= ((addr
- s
->mmio_base
) & 0x1ffff) >> 2;
769 if (index
< NREADOPS
&& macreg_readops
[index
])
771 uint32_t val
= macreg_readops
[index
](s
, index
);
772 #ifdef TARGET_WORDS_BIGENDIAN
777 DBGOUT(UNKNOWN
, "MMIO unknown read addr=0x%08x\n", index
<<2);
782 e1000_mmio_readb(void *opaque
, target_phys_addr_t addr
)
784 return ((e1000_mmio_readl(opaque
, addr
& ~3)) >>
785 (8 * (addr
& 3))) & 0xff;
789 e1000_mmio_readw(void *opaque
, target_phys_addr_t addr
)
791 return ((e1000_mmio_readl(opaque
, addr
& ~3)) >>
792 (8 * (addr
& 3))) & 0xffff;
795 int mac_regtosave
[] = {
796 CTRL
, EECD
, EERD
, GPRC
, GPTC
, ICR
, ICS
, IMC
, IMS
,
797 LEDCTL
, MANC
, MDIC
, MPC
, PBA
, RCTL
, RDBAH
, RDBAL
, RDH
,
798 RDLEN
, RDT
, STATUS
, SWSM
, TCTL
, TDBAH
, TDBAL
, TDH
, TDLEN
,
799 TDT
, TORH
, TORL
, TOTH
, TOTL
, TPR
, TPT
, TXDCTL
, WUFC
,
801 enum { MAC_NSAVE
= sizeof mac_regtosave
/sizeof *mac_regtosave
};
806 } mac_regarraystosave
[] = { {32, RA
}, {128, MTA
} };
807 enum { MAC_NARRAYS
= sizeof mac_regarraystosave
/sizeof *mac_regarraystosave
};
810 nic_save(QEMUFile
*f
, void *opaque
)
812 E1000State
*s
= (E1000State
*)opaque
;
815 pci_device_save(&s
->dev
, f
);
816 qemu_put_be32s(f
, &s
->mmio_base
);
817 qemu_put_be32s(f
, &s
->rxbuf_size
);
818 qemu_put_be32s(f
, &s
->rxbuf_min_shift
);
819 qemu_put_be32s(f
, &s
->eecd_state
.val_in
);
820 qemu_put_be16s(f
, &s
->eecd_state
.bitnum_in
);
821 qemu_put_be16s(f
, &s
->eecd_state
.bitnum_out
);
822 qemu_put_be16s(f
, &s
->eecd_state
.reading
);
823 qemu_put_be32s(f
, &s
->eecd_state
.old_eecd
);
824 qemu_put_8s(f
, &s
->tx
.ipcss
);
825 qemu_put_8s(f
, &s
->tx
.ipcso
);
826 qemu_put_be16s(f
, &s
->tx
.ipcse
);
827 qemu_put_8s(f
, &s
->tx
.tucss
);
828 qemu_put_8s(f
, &s
->tx
.tucso
);
829 qemu_put_be16s(f
, &s
->tx
.tucse
);
830 qemu_put_be32s(f
, &s
->tx
.paylen
);
831 qemu_put_8s(f
, &s
->tx
.hdr_len
);
832 qemu_put_be16s(f
, &s
->tx
.mss
);
833 qemu_put_be16s(f
, &s
->tx
.size
);
834 qemu_put_be16s(f
, &s
->tx
.tso_frames
);
835 qemu_put_8s(f
, &s
->tx
.sum_needed
);
836 qemu_put_8s(f
, &s
->tx
.ip
);
837 qemu_put_8s(f
, &s
->tx
.tcp
);
838 qemu_put_buffer(f
, s
->tx
.header
, sizeof s
->tx
.header
);
839 qemu_put_buffer(f
, s
->tx
.data
, sizeof s
->tx
.data
);
840 for (i
= 0; i
< 64; i
++)
841 qemu_put_be16s(f
, s
->eeprom_data
+ i
);
842 for (i
= 0; i
< 0x20; i
++)
843 qemu_put_be16s(f
, s
->phy_reg
+ i
);
844 for (i
= 0; i
< MAC_NSAVE
; i
++)
845 qemu_put_be32s(f
, s
->mac_reg
+ mac_regtosave
[i
]);
846 for (i
= 0; i
< MAC_NARRAYS
; i
++)
847 for (j
= 0; j
< mac_regarraystosave
[i
].size
; j
++)
849 s
->mac_reg
+ mac_regarraystosave
[i
].array0
+ j
);
853 nic_load(QEMUFile
*f
, void *opaque
, int version_id
)
855 E1000State
*s
= (E1000State
*)opaque
;
858 if ((ret
= pci_device_load(&s
->dev
, f
)) < 0)
861 qemu_get_be32s(f
, &i
); /* once some unused instance id */
862 qemu_get_be32s(f
, &s
->mmio_base
);
863 qemu_get_be32s(f
, &s
->rxbuf_size
);
864 qemu_get_be32s(f
, &s
->rxbuf_min_shift
);
865 qemu_get_be32s(f
, &s
->eecd_state
.val_in
);
866 qemu_get_be16s(f
, &s
->eecd_state
.bitnum_in
);
867 qemu_get_be16s(f
, &s
->eecd_state
.bitnum_out
);
868 qemu_get_be16s(f
, &s
->eecd_state
.reading
);
869 qemu_get_be32s(f
, &s
->eecd_state
.old_eecd
);
870 qemu_get_8s(f
, &s
->tx
.ipcss
);
871 qemu_get_8s(f
, &s
->tx
.ipcso
);
872 qemu_get_be16s(f
, &s
->tx
.ipcse
);
873 qemu_get_8s(f
, &s
->tx
.tucss
);
874 qemu_get_8s(f
, &s
->tx
.tucso
);
875 qemu_get_be16s(f
, &s
->tx
.tucse
);
876 qemu_get_be32s(f
, &s
->tx
.paylen
);
877 qemu_get_8s(f
, &s
->tx
.hdr_len
);
878 qemu_get_be16s(f
, &s
->tx
.mss
);
879 qemu_get_be16s(f
, &s
->tx
.size
);
880 qemu_get_be16s(f
, &s
->tx
.tso_frames
);
881 qemu_get_8s(f
, &s
->tx
.sum_needed
);
882 qemu_get_8s(f
, &s
->tx
.ip
);
883 qemu_get_8s(f
, &s
->tx
.tcp
);
884 qemu_get_buffer(f
, s
->tx
.header
, sizeof s
->tx
.header
);
885 qemu_get_buffer(f
, s
->tx
.data
, sizeof s
->tx
.data
);
886 for (i
= 0; i
< 64; i
++)
887 qemu_get_be16s(f
, s
->eeprom_data
+ i
);
888 for (i
= 0; i
< 0x20; i
++)
889 qemu_get_be16s(f
, s
->phy_reg
+ i
);
890 for (i
= 0; i
< MAC_NSAVE
; i
++)
891 qemu_get_be32s(f
, s
->mac_reg
+ mac_regtosave
[i
]);
892 for (i
= 0; i
< MAC_NARRAYS
; i
++)
893 for (j
= 0; j
< mac_regarraystosave
[i
].size
; j
++)
895 s
->mac_reg
+ mac_regarraystosave
[i
].array0
+ j
);
899 static uint16_t e1000_eeprom_template
[64] = {
900 0x0000, 0x0000, 0x0000, 0x0000, 0xffff, 0x0000, 0x0000, 0x0000,
901 0x3000, 0x1000, 0x6403, E1000_DEVID
, 0x8086, E1000_DEVID
, 0x8086, 0x3040,
902 0x0008, 0x2000, 0x7e14, 0x0048, 0x1000, 0x00d8, 0x0000, 0x2700,
903 0x6cc9, 0x3150, 0x0722, 0x040b, 0x0984, 0x0000, 0xc000, 0x0706,
904 0x1008, 0x0000, 0x0f04, 0x7fff, 0x4d01, 0xffff, 0xffff, 0xffff,
905 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
906 0x0100, 0x4000, 0x121c, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
907 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0000,
910 static uint16_t phy_reg_init
[] = {
911 [PHY_CTRL
] = 0x1140, [PHY_STATUS
] = 0x796d, // link initially up
912 [PHY_ID1
] = 0x141, [PHY_ID2
] = PHY_ID2_INIT
,
913 [PHY_1000T_CTRL
] = 0x0e00, [M88E1000_PHY_SPEC_CTRL
] = 0x360,
914 [M88E1000_EXT_PHY_SPEC_CTRL
] = 0x0d60, [PHY_AUTONEG_ADV
] = 0xde1,
915 [PHY_LP_ABILITY
] = 0x1e0, [PHY_1000T_STATUS
] = 0x3c00,
916 [M88E1000_PHY_SPEC_STATUS
] = 0xac00,
919 static uint32_t mac_reg_init
[] = {
922 [CTRL
] = E1000_CTRL_SWDPIN2
| E1000_CTRL_SWDPIN0
|
923 E1000_CTRL_SPD_1000
| E1000_CTRL_SLU
,
924 [STATUS
] = 0x80000000 | E1000_STATUS_GIO_MASTER_ENABLE
|
925 E1000_STATUS_ASDV
| E1000_STATUS_MTXCKOK
|
926 E1000_STATUS_SPEED_1000
| E1000_STATUS_FD
|
928 [MANC
] = E1000_MANC_EN_MNG2HOST
| E1000_MANC_RCV_TCO_EN
|
929 E1000_MANC_ARP_EN
| E1000_MANC_0298_EN
|
935 static CPUWriteMemoryFunc
*e1000_mmio_write
[] = {
936 e1000_mmio_writeb
, e1000_mmio_writew
, e1000_mmio_writel
939 static CPUReadMemoryFunc
*e1000_mmio_read
[] = {
940 e1000_mmio_readb
, e1000_mmio_readw
, e1000_mmio_readl
944 e1000_mmio_map(PCIDevice
*pci_dev
, int region_num
,
945 uint32_t addr
, uint32_t size
, int type
)
947 E1000State
*d
= (E1000State
*)pci_dev
;
949 DBGOUT(MMIO
, "e1000_mmio_map addr=0x%08x 0x%08x\n", addr
, size
);
952 cpu_register_physical_memory(addr
, PNPMMIO_SIZE
, d
->mmio_index
);
956 pci_e1000_init(PCIBus
*bus
, NICInfo
*nd
, int devfn
)
960 uint16_t checksum
= 0;
961 char *info_str
= "e1000";
964 d
= (E1000State
*)pci_register_device(bus
, "e1000",
965 sizeof(E1000State
), devfn
, NULL
, NULL
);
967 pci_conf
= d
->dev
.config
;
968 memset(pci_conf
, 0, 256);
970 *(uint16_t *)(pci_conf
+0x00) = cpu_to_le16(0x8086);
971 *(uint16_t *)(pci_conf
+0x02) = cpu_to_le16(E1000_DEVID
);
972 *(uint16_t *)(pci_conf
+0x04) = cpu_to_le16(0x0407);
973 *(uint16_t *)(pci_conf
+0x06) = cpu_to_le16(0x0010);
974 pci_conf
[0x08] = 0x03;
975 pci_conf
[0x0a] = 0x00; // ethernet network controller
976 pci_conf
[0x0b] = 0x02;
977 pci_conf
[0x0c] = 0x10;
979 pci_conf
[0x3d] = 1; // interrupt pin 0
981 d
->mmio_index
= cpu_register_io_memory(0, e1000_mmio_read
,
982 e1000_mmio_write
, d
);
984 pci_register_io_region((PCIDevice
*)d
, 0, PNPMMIO_SIZE
,
985 PCI_ADDRESS_SPACE_MEM
, e1000_mmio_map
);
987 pci_register_io_region((PCIDevice
*)d
, 1, IOPORT_SIZE
,
988 PCI_ADDRESS_SPACE_IO
, ioport_map
);
991 memmove(d
->eeprom_data
, e1000_eeprom_template
,
992 sizeof e1000_eeprom_template
);
993 for (i
= 0; i
< 3; i
++)
994 d
->eeprom_data
[i
] = (nd
->macaddr
[2*i
+1]<<8) | nd
->macaddr
[2*i
];
995 for (i
= 0; i
< EEPROM_CHECKSUM_REG
; i
++)
996 checksum
+= d
->eeprom_data
[i
];
997 checksum
= (uint16_t) EEPROM_SUM
- checksum
;
998 d
->eeprom_data
[EEPROM_CHECKSUM_REG
] = checksum
;
1000 memset(d
->phy_reg
, 0, sizeof d
->phy_reg
);
1001 memmove(d
->phy_reg
, phy_reg_init
, sizeof phy_reg_init
);
1002 memset(d
->mac_reg
, 0, sizeof d
->mac_reg
);
1003 memmove(d
->mac_reg
, mac_reg_init
, sizeof mac_reg_init
);
1004 d
->rxbuf_min_shift
= 1;
1005 memset(&d
->tx
, 0, sizeof d
->tx
);
1007 d
->vc
= qemu_new_vlan_client(nd
->vlan
, e1000_receive
,
1008 e1000_can_receive
, d
);
1010 snprintf(d
->vc
->info_str
, sizeof(d
->vc
->info_str
),
1011 "%s macaddr=%02x:%02x:%02x:%02x:%02x:%02x", info_str
,
1012 d
->nd
->macaddr
[0], d
->nd
->macaddr
[1], d
->nd
->macaddr
[2],
1013 d
->nd
->macaddr
[3], d
->nd
->macaddr
[4], d
->nd
->macaddr
[5]);
1015 register_savevm(info_str
, -1, 2, nic_save
, nic_load
, d
);