qemu: zero ioport_opaque on isa_unassign_ioport (Marcelo Tosatti)
[qemu/mini2440/sniper_sniper_test.git] / hw / pxa2xx.c
blob53d9b0b205f2872f9cfc3b1eb1f42c1ae7c298ed
1 /*
2 * Intel XScale PXA255/270 processor support.
4 * Copyright (c) 2006 Openedhand Ltd.
5 * Written by Andrzej Zaborowski <balrog@zabor.org>
7 * This code is licenced under the GPL.
8 */
10 #include "hw.h"
11 #include "pxa.h"
12 #include "sysemu.h"
13 #include "pc.h"
14 #include "i2c.h"
15 #include "qemu-timer.h"
16 #include "qemu-char.h"
18 static struct {
19 target_phys_addr_t io_base;
20 int irqn;
21 } pxa255_serial[] = {
22 { 0x40100000, PXA2XX_PIC_FFUART },
23 { 0x40200000, PXA2XX_PIC_BTUART },
24 { 0x40700000, PXA2XX_PIC_STUART },
25 { 0x41600000, PXA25X_PIC_HWUART },
26 { 0, 0 }
27 }, pxa270_serial[] = {
28 { 0x40100000, PXA2XX_PIC_FFUART },
29 { 0x40200000, PXA2XX_PIC_BTUART },
30 { 0x40700000, PXA2XX_PIC_STUART },
31 { 0, 0 }
34 typedef struct PXASSPDef {
35 target_phys_addr_t io_base;
36 int irqn;
37 } PXASSPDef;
39 #if 0
40 static PXASSPDef pxa250_ssp[] = {
41 { 0x41000000, PXA2XX_PIC_SSP },
42 { 0, 0 }
44 #endif
46 static PXASSPDef pxa255_ssp[] = {
47 { 0x41000000, PXA2XX_PIC_SSP },
48 { 0x41400000, PXA25X_PIC_NSSP },
49 { 0, 0 }
52 #if 0
53 static PXASSPDef pxa26x_ssp[] = {
54 { 0x41000000, PXA2XX_PIC_SSP },
55 { 0x41400000, PXA25X_PIC_NSSP },
56 { 0x41500000, PXA26X_PIC_ASSP },
57 { 0, 0 }
59 #endif
61 static PXASSPDef pxa27x_ssp[] = {
62 { 0x41000000, PXA2XX_PIC_SSP },
63 { 0x41700000, PXA27X_PIC_SSP2 },
64 { 0x41900000, PXA2XX_PIC_SSP3 },
65 { 0, 0 }
68 #define PMCR 0x00 /* Power Manager Control register */
69 #define PSSR 0x04 /* Power Manager Sleep Status register */
70 #define PSPR 0x08 /* Power Manager Scratch-Pad register */
71 #define PWER 0x0c /* Power Manager Wake-Up Enable register */
72 #define PRER 0x10 /* Power Manager Rising-Edge Detect Enable register */
73 #define PFER 0x14 /* Power Manager Falling-Edge Detect Enable register */
74 #define PEDR 0x18 /* Power Manager Edge-Detect Status register */
75 #define PCFR 0x1c /* Power Manager General Configuration register */
76 #define PGSR0 0x20 /* Power Manager GPIO Sleep-State register 0 */
77 #define PGSR1 0x24 /* Power Manager GPIO Sleep-State register 1 */
78 #define PGSR2 0x28 /* Power Manager GPIO Sleep-State register 2 */
79 #define PGSR3 0x2c /* Power Manager GPIO Sleep-State register 3 */
80 #define RCSR 0x30 /* Reset Controller Status register */
81 #define PSLR 0x34 /* Power Manager Sleep Configuration register */
82 #define PTSR 0x38 /* Power Manager Standby Configuration register */
83 #define PVCR 0x40 /* Power Manager Voltage Change Control register */
84 #define PUCR 0x4c /* Power Manager USIM Card Control/Status register */
85 #define PKWR 0x50 /* Power Manager Keyboard Wake-Up Enable register */
86 #define PKSR 0x54 /* Power Manager Keyboard Level-Detect Status */
87 #define PCMD0 0x80 /* Power Manager I2C Command register File 0 */
88 #define PCMD31 0xfc /* Power Manager I2C Command register File 31 */
90 static uint32_t pxa2xx_pm_read(void *opaque, target_phys_addr_t addr)
92 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
94 switch (addr) {
95 case PMCR ... PCMD31:
96 if (addr & 3)
97 goto fail;
99 return s->pm_regs[addr >> 2];
100 default:
101 fail:
102 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
103 break;
105 return 0;
108 static void pxa2xx_pm_write(void *opaque, target_phys_addr_t addr,
109 uint32_t value)
111 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
113 switch (addr) {
114 case PMCR:
115 s->pm_regs[addr >> 2] &= 0x15 & ~(value & 0x2a);
116 s->pm_regs[addr >> 2] |= value & 0x15;
117 break;
119 case PSSR: /* Read-clean registers */
120 case RCSR:
121 case PKSR:
122 s->pm_regs[addr >> 2] &= ~value;
123 break;
125 default: /* Read-write registers */
126 if (addr >= PMCR && addr <= PCMD31 && !(addr & 3)) {
127 s->pm_regs[addr >> 2] = value;
128 break;
131 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
132 break;
136 static CPUReadMemoryFunc *pxa2xx_pm_readfn[] = {
137 pxa2xx_pm_read,
138 pxa2xx_pm_read,
139 pxa2xx_pm_read,
142 static CPUWriteMemoryFunc *pxa2xx_pm_writefn[] = {
143 pxa2xx_pm_write,
144 pxa2xx_pm_write,
145 pxa2xx_pm_write,
148 static void pxa2xx_pm_save(QEMUFile *f, void *opaque)
150 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
151 int i;
153 for (i = 0; i < 0x40; i ++)
154 qemu_put_be32s(f, &s->pm_regs[i]);
157 static int pxa2xx_pm_load(QEMUFile *f, void *opaque, int version_id)
159 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
160 int i;
162 for (i = 0; i < 0x40; i ++)
163 qemu_get_be32s(f, &s->pm_regs[i]);
165 return 0;
168 #define CCCR 0x00 /* Core Clock Configuration register */
169 #define CKEN 0x04 /* Clock Enable register */
170 #define OSCC 0x08 /* Oscillator Configuration register */
171 #define CCSR 0x0c /* Core Clock Status register */
173 static uint32_t pxa2xx_cm_read(void *opaque, target_phys_addr_t addr)
175 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
177 switch (addr) {
178 case CCCR:
179 case CKEN:
180 case OSCC:
181 return s->cm_regs[addr >> 2];
183 case CCSR:
184 return s->cm_regs[CCCR >> 2] | (3 << 28);
186 default:
187 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
188 break;
190 return 0;
193 static void pxa2xx_cm_write(void *opaque, target_phys_addr_t addr,
194 uint32_t value)
196 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
198 switch (addr) {
199 case CCCR:
200 case CKEN:
201 s->cm_regs[addr >> 2] = value;
202 break;
204 case OSCC:
205 s->cm_regs[addr >> 2] &= ~0x6c;
206 s->cm_regs[addr >> 2] |= value & 0x6e;
207 if ((value >> 1) & 1) /* OON */
208 s->cm_regs[addr >> 2] |= 1 << 0; /* Oscillator is now stable */
209 break;
211 default:
212 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
213 break;
217 static CPUReadMemoryFunc *pxa2xx_cm_readfn[] = {
218 pxa2xx_cm_read,
219 pxa2xx_cm_read,
220 pxa2xx_cm_read,
223 static CPUWriteMemoryFunc *pxa2xx_cm_writefn[] = {
224 pxa2xx_cm_write,
225 pxa2xx_cm_write,
226 pxa2xx_cm_write,
229 static void pxa2xx_cm_save(QEMUFile *f, void *opaque)
231 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
232 int i;
234 for (i = 0; i < 4; i ++)
235 qemu_put_be32s(f, &s->cm_regs[i]);
236 qemu_put_be32s(f, &s->clkcfg);
237 qemu_put_be32s(f, &s->pmnc);
240 static int pxa2xx_cm_load(QEMUFile *f, void *opaque, int version_id)
242 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
243 int i;
245 for (i = 0; i < 4; i ++)
246 qemu_get_be32s(f, &s->cm_regs[i]);
247 qemu_get_be32s(f, &s->clkcfg);
248 qemu_get_be32s(f, &s->pmnc);
250 return 0;
253 static uint32_t pxa2xx_clkpwr_read(void *opaque, int op2, int reg, int crm)
255 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
257 switch (reg) {
258 case 6: /* Clock Configuration register */
259 return s->clkcfg;
261 case 7: /* Power Mode register */
262 return 0;
264 default:
265 printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
266 break;
268 return 0;
271 static void pxa2xx_clkpwr_write(void *opaque, int op2, int reg, int crm,
272 uint32_t value)
274 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
275 static const char *pwrmode[8] = {
276 "Normal", "Idle", "Deep-idle", "Standby",
277 "Sleep", "reserved (!)", "reserved (!)", "Deep-sleep",
280 switch (reg) {
281 case 6: /* Clock Configuration register */
282 s->clkcfg = value & 0xf;
283 if (value & 2)
284 printf("%s: CPU frequency change attempt\n", __FUNCTION__);
285 break;
287 case 7: /* Power Mode register */
288 if (value & 8)
289 printf("%s: CPU voltage change attempt\n", __FUNCTION__);
290 switch (value & 7) {
291 case 0:
292 /* Do nothing */
293 break;
295 case 1:
296 /* Idle */
297 if (!(s->cm_regs[CCCR >> 2] & (1 << 31))) { /* CPDIS */
298 cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
299 break;
301 /* Fall through. */
303 case 2:
304 /* Deep-Idle */
305 cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
306 s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
307 goto message;
309 case 3:
310 s->env->uncached_cpsr =
311 ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
312 s->env->cp15.c1_sys = 0;
313 s->env->cp15.c1_coproc = 0;
314 s->env->cp15.c2_base0 = 0;
315 s->env->cp15.c3 = 0;
316 s->pm_regs[PSSR >> 2] |= 0x8; /* Set STS */
317 s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
320 * The scratch-pad register is almost universally used
321 * for storing the return address on suspend. For the
322 * lack of a resuming bootloader, perform a jump
323 * directly to that address.
325 memset(s->env->regs, 0, 4 * 15);
326 s->env->regs[15] = s->pm_regs[PSPR >> 2];
328 #if 0
329 buffer = 0xe59ff000; /* ldr pc, [pc, #0] */
330 cpu_physical_memory_write(0, &buffer, 4);
331 buffer = s->pm_regs[PSPR >> 2];
332 cpu_physical_memory_write(8, &buffer, 4);
333 #endif
335 /* Suspend */
336 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HALT);
338 goto message;
340 default:
341 message:
342 printf("%s: machine entered %s mode\n", __FUNCTION__,
343 pwrmode[value & 7]);
345 break;
347 default:
348 printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
349 break;
353 /* Performace Monitoring Registers */
354 #define CPPMNC 0 /* Performance Monitor Control register */
355 #define CPCCNT 1 /* Clock Counter register */
356 #define CPINTEN 4 /* Interrupt Enable register */
357 #define CPFLAG 5 /* Overflow Flag register */
358 #define CPEVTSEL 8 /* Event Selection register */
360 #define CPPMN0 0 /* Performance Count register 0 */
361 #define CPPMN1 1 /* Performance Count register 1 */
362 #define CPPMN2 2 /* Performance Count register 2 */
363 #define CPPMN3 3 /* Performance Count register 3 */
365 static uint32_t pxa2xx_perf_read(void *opaque, int op2, int reg, int crm)
367 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
369 switch (reg) {
370 case CPPMNC:
371 return s->pmnc;
372 case CPCCNT:
373 if (s->pmnc & 1)
374 return qemu_get_clock(vm_clock);
375 else
376 return 0;
377 case CPINTEN:
378 case CPFLAG:
379 case CPEVTSEL:
380 return 0;
382 default:
383 printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
384 break;
386 return 0;
389 static void pxa2xx_perf_write(void *opaque, int op2, int reg, int crm,
390 uint32_t value)
392 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
394 switch (reg) {
395 case CPPMNC:
396 s->pmnc = value;
397 break;
399 case CPCCNT:
400 case CPINTEN:
401 case CPFLAG:
402 case CPEVTSEL:
403 break;
405 default:
406 printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
407 break;
411 static uint32_t pxa2xx_cp14_read(void *opaque, int op2, int reg, int crm)
413 switch (crm) {
414 case 0:
415 return pxa2xx_clkpwr_read(opaque, op2, reg, crm);
416 case 1:
417 return pxa2xx_perf_read(opaque, op2, reg, crm);
418 case 2:
419 switch (reg) {
420 case CPPMN0:
421 case CPPMN1:
422 case CPPMN2:
423 case CPPMN3:
424 return 0;
426 /* Fall through */
427 default:
428 printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
429 break;
431 return 0;
434 static void pxa2xx_cp14_write(void *opaque, int op2, int reg, int crm,
435 uint32_t value)
437 switch (crm) {
438 case 0:
439 pxa2xx_clkpwr_write(opaque, op2, reg, crm, value);
440 break;
441 case 1:
442 pxa2xx_perf_write(opaque, op2, reg, crm, value);
443 break;
444 case 2:
445 switch (reg) {
446 case CPPMN0:
447 case CPPMN1:
448 case CPPMN2:
449 case CPPMN3:
450 return;
452 /* Fall through */
453 default:
454 printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
455 break;
459 #define MDCNFG 0x00 /* SDRAM Configuration register */
460 #define MDREFR 0x04 /* SDRAM Refresh Control register */
461 #define MSC0 0x08 /* Static Memory Control register 0 */
462 #define MSC1 0x0c /* Static Memory Control register 1 */
463 #define MSC2 0x10 /* Static Memory Control register 2 */
464 #define MECR 0x14 /* Expansion Memory Bus Config register */
465 #define SXCNFG 0x1c /* Synchronous Static Memory Config register */
466 #define MCMEM0 0x28 /* PC Card Memory Socket 0 Timing register */
467 #define MCMEM1 0x2c /* PC Card Memory Socket 1 Timing register */
468 #define MCATT0 0x30 /* PC Card Attribute Socket 0 register */
469 #define MCATT1 0x34 /* PC Card Attribute Socket 1 register */
470 #define MCIO0 0x38 /* PC Card I/O Socket 0 Timing register */
471 #define MCIO1 0x3c /* PC Card I/O Socket 1 Timing register */
472 #define MDMRS 0x40 /* SDRAM Mode Register Set Config register */
473 #define BOOT_DEF 0x44 /* Boot-time Default Configuration register */
474 #define ARB_CNTL 0x48 /* Arbiter Control register */
475 #define BSCNTR0 0x4c /* Memory Buffer Strength Control register 0 */
476 #define BSCNTR1 0x50 /* Memory Buffer Strength Control register 1 */
477 #define LCDBSCNTR 0x54 /* LCD Buffer Strength Control register */
478 #define MDMRSLP 0x58 /* Low Power SDRAM Mode Set Config register */
479 #define BSCNTR2 0x5c /* Memory Buffer Strength Control register 2 */
480 #define BSCNTR3 0x60 /* Memory Buffer Strength Control register 3 */
481 #define SA1110 0x64 /* SA-1110 Memory Compatibility register */
483 static uint32_t pxa2xx_mm_read(void *opaque, target_phys_addr_t addr)
485 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
487 switch (addr) {
488 case MDCNFG ... SA1110:
489 if ((addr & 3) == 0)
490 return s->mm_regs[addr >> 2];
492 default:
493 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
494 break;
496 return 0;
499 static void pxa2xx_mm_write(void *opaque, target_phys_addr_t addr,
500 uint32_t value)
502 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
504 switch (addr) {
505 case MDCNFG ... SA1110:
506 if ((addr & 3) == 0) {
507 s->mm_regs[addr >> 2] = value;
508 break;
511 default:
512 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
513 break;
517 static CPUReadMemoryFunc *pxa2xx_mm_readfn[] = {
518 pxa2xx_mm_read,
519 pxa2xx_mm_read,
520 pxa2xx_mm_read,
523 static CPUWriteMemoryFunc *pxa2xx_mm_writefn[] = {
524 pxa2xx_mm_write,
525 pxa2xx_mm_write,
526 pxa2xx_mm_write,
529 static void pxa2xx_mm_save(QEMUFile *f, void *opaque)
531 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
532 int i;
534 for (i = 0; i < 0x1a; i ++)
535 qemu_put_be32s(f, &s->mm_regs[i]);
538 static int pxa2xx_mm_load(QEMUFile *f, void *opaque, int version_id)
540 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
541 int i;
543 for (i = 0; i < 0x1a; i ++)
544 qemu_get_be32s(f, &s->mm_regs[i]);
546 return 0;
549 /* Synchronous Serial Ports */
550 struct pxa2xx_ssp_s {
551 qemu_irq irq;
552 int enable;
554 uint32_t sscr[2];
555 uint32_t sspsp;
556 uint32_t ssto;
557 uint32_t ssitr;
558 uint32_t sssr;
559 uint8_t sstsa;
560 uint8_t ssrsa;
561 uint8_t ssacd;
563 uint32_t rx_fifo[16];
564 int rx_level;
565 int rx_start;
567 uint32_t (*readfn)(void *opaque);
568 void (*writefn)(void *opaque, uint32_t value);
569 void *opaque;
572 #define SSCR0 0x00 /* SSP Control register 0 */
573 #define SSCR1 0x04 /* SSP Control register 1 */
574 #define SSSR 0x08 /* SSP Status register */
575 #define SSITR 0x0c /* SSP Interrupt Test register */
576 #define SSDR 0x10 /* SSP Data register */
577 #define SSTO 0x28 /* SSP Time-Out register */
578 #define SSPSP 0x2c /* SSP Programmable Serial Protocol register */
579 #define SSTSA 0x30 /* SSP TX Time Slot Active register */
580 #define SSRSA 0x34 /* SSP RX Time Slot Active register */
581 #define SSTSS 0x38 /* SSP Time Slot Status register */
582 #define SSACD 0x3c /* SSP Audio Clock Divider register */
584 /* Bitfields for above registers */
585 #define SSCR0_SPI(x) (((x) & 0x30) == 0x00)
586 #define SSCR0_SSP(x) (((x) & 0x30) == 0x10)
587 #define SSCR0_UWIRE(x) (((x) & 0x30) == 0x20)
588 #define SSCR0_PSP(x) (((x) & 0x30) == 0x30)
589 #define SSCR0_SSE (1 << 7)
590 #define SSCR0_RIM (1 << 22)
591 #define SSCR0_TIM (1 << 23)
592 #define SSCR0_MOD (1 << 31)
593 #define SSCR0_DSS(x) (((((x) >> 16) & 0x10) | ((x) & 0xf)) + 1)
594 #define SSCR1_RIE (1 << 0)
595 #define SSCR1_TIE (1 << 1)
596 #define SSCR1_LBM (1 << 2)
597 #define SSCR1_MWDS (1 << 5)
598 #define SSCR1_TFT(x) ((((x) >> 6) & 0xf) + 1)
599 #define SSCR1_RFT(x) ((((x) >> 10) & 0xf) + 1)
600 #define SSCR1_EFWR (1 << 14)
601 #define SSCR1_PINTE (1 << 18)
602 #define SSCR1_TINTE (1 << 19)
603 #define SSCR1_RSRE (1 << 20)
604 #define SSCR1_TSRE (1 << 21)
605 #define SSCR1_EBCEI (1 << 29)
606 #define SSITR_INT (7 << 5)
607 #define SSSR_TNF (1 << 2)
608 #define SSSR_RNE (1 << 3)
609 #define SSSR_TFS (1 << 5)
610 #define SSSR_RFS (1 << 6)
611 #define SSSR_ROR (1 << 7)
612 #define SSSR_PINT (1 << 18)
613 #define SSSR_TINT (1 << 19)
614 #define SSSR_EOC (1 << 20)
615 #define SSSR_TUR (1 << 21)
616 #define SSSR_BCE (1 << 23)
617 #define SSSR_RW 0x00bc0080
619 static void pxa2xx_ssp_int_update(struct pxa2xx_ssp_s *s)
621 int level = 0;
623 level |= s->ssitr & SSITR_INT;
624 level |= (s->sssr & SSSR_BCE) && (s->sscr[1] & SSCR1_EBCEI);
625 level |= (s->sssr & SSSR_TUR) && !(s->sscr[0] & SSCR0_TIM);
626 level |= (s->sssr & SSSR_EOC) && (s->sssr & (SSSR_TINT | SSSR_PINT));
627 level |= (s->sssr & SSSR_TINT) && (s->sscr[1] & SSCR1_TINTE);
628 level |= (s->sssr & SSSR_PINT) && (s->sscr[1] & SSCR1_PINTE);
629 level |= (s->sssr & SSSR_ROR) && !(s->sscr[0] & SSCR0_RIM);
630 level |= (s->sssr & SSSR_RFS) && (s->sscr[1] & SSCR1_RIE);
631 level |= (s->sssr & SSSR_TFS) && (s->sscr[1] & SSCR1_TIE);
632 qemu_set_irq(s->irq, !!level);
635 static void pxa2xx_ssp_fifo_update(struct pxa2xx_ssp_s *s)
637 s->sssr &= ~(0xf << 12); /* Clear RFL */
638 s->sssr &= ~(0xf << 8); /* Clear TFL */
639 s->sssr &= ~SSSR_TNF;
640 if (s->enable) {
641 s->sssr |= ((s->rx_level - 1) & 0xf) << 12;
642 if (s->rx_level >= SSCR1_RFT(s->sscr[1]))
643 s->sssr |= SSSR_RFS;
644 else
645 s->sssr &= ~SSSR_RFS;
646 if (0 <= SSCR1_TFT(s->sscr[1]))
647 s->sssr |= SSSR_TFS;
648 else
649 s->sssr &= ~SSSR_TFS;
650 if (s->rx_level)
651 s->sssr |= SSSR_RNE;
652 else
653 s->sssr &= ~SSSR_RNE;
654 s->sssr |= SSSR_TNF;
657 pxa2xx_ssp_int_update(s);
660 static uint32_t pxa2xx_ssp_read(void *opaque, target_phys_addr_t addr)
662 struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
663 uint32_t retval;
665 switch (addr) {
666 case SSCR0:
667 return s->sscr[0];
668 case SSCR1:
669 return s->sscr[1];
670 case SSPSP:
671 return s->sspsp;
672 case SSTO:
673 return s->ssto;
674 case SSITR:
675 return s->ssitr;
676 case SSSR:
677 return s->sssr | s->ssitr;
678 case SSDR:
679 if (!s->enable)
680 return 0xffffffff;
681 if (s->rx_level < 1) {
682 printf("%s: SSP Rx Underrun\n", __FUNCTION__);
683 return 0xffffffff;
685 s->rx_level --;
686 retval = s->rx_fifo[s->rx_start ++];
687 s->rx_start &= 0xf;
688 pxa2xx_ssp_fifo_update(s);
689 return retval;
690 case SSTSA:
691 return s->sstsa;
692 case SSRSA:
693 return s->ssrsa;
694 case SSTSS:
695 return 0;
696 case SSACD:
697 return s->ssacd;
698 default:
699 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
700 break;
702 return 0;
705 static void pxa2xx_ssp_write(void *opaque, target_phys_addr_t addr,
706 uint32_t value)
708 struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
710 switch (addr) {
711 case SSCR0:
712 s->sscr[0] = value & 0xc7ffffff;
713 s->enable = value & SSCR0_SSE;
714 if (value & SSCR0_MOD)
715 printf("%s: Attempt to use network mode\n", __FUNCTION__);
716 if (s->enable && SSCR0_DSS(value) < 4)
717 printf("%s: Wrong data size: %i bits\n", __FUNCTION__,
718 SSCR0_DSS(value));
719 if (!(value & SSCR0_SSE)) {
720 s->sssr = 0;
721 s->ssitr = 0;
722 s->rx_level = 0;
724 pxa2xx_ssp_fifo_update(s);
725 break;
727 case SSCR1:
728 s->sscr[1] = value;
729 if (value & (SSCR1_LBM | SSCR1_EFWR))
730 printf("%s: Attempt to use SSP test mode\n", __FUNCTION__);
731 pxa2xx_ssp_fifo_update(s);
732 break;
734 case SSPSP:
735 s->sspsp = value;
736 break;
738 case SSTO:
739 s->ssto = value;
740 break;
742 case SSITR:
743 s->ssitr = value & SSITR_INT;
744 pxa2xx_ssp_int_update(s);
745 break;
747 case SSSR:
748 s->sssr &= ~(value & SSSR_RW);
749 pxa2xx_ssp_int_update(s);
750 break;
752 case SSDR:
753 if (SSCR0_UWIRE(s->sscr[0])) {
754 if (s->sscr[1] & SSCR1_MWDS)
755 value &= 0xffff;
756 else
757 value &= 0xff;
758 } else
759 /* Note how 32bits overflow does no harm here */
760 value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
762 /* Data goes from here to the Tx FIFO and is shifted out from
763 * there directly to the slave, no need to buffer it.
765 if (s->enable) {
766 if (s->writefn)
767 s->writefn(s->opaque, value);
769 if (s->rx_level < 0x10) {
770 if (s->readfn)
771 s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] =
772 s->readfn(s->opaque);
773 else
774 s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] = 0x0;
775 } else
776 s->sssr |= SSSR_ROR;
778 pxa2xx_ssp_fifo_update(s);
779 break;
781 case SSTSA:
782 s->sstsa = value;
783 break;
785 case SSRSA:
786 s->ssrsa = value;
787 break;
789 case SSACD:
790 s->ssacd = value;
791 break;
793 default:
794 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
795 break;
799 void pxa2xx_ssp_attach(struct pxa2xx_ssp_s *port,
800 uint32_t (*readfn)(void *opaque),
801 void (*writefn)(void *opaque, uint32_t value), void *opaque)
803 if (!port) {
804 printf("%s: no such SSP\n", __FUNCTION__);
805 exit(-1);
808 port->opaque = opaque;
809 port->readfn = readfn;
810 port->writefn = writefn;
813 static CPUReadMemoryFunc *pxa2xx_ssp_readfn[] = {
814 pxa2xx_ssp_read,
815 pxa2xx_ssp_read,
816 pxa2xx_ssp_read,
819 static CPUWriteMemoryFunc *pxa2xx_ssp_writefn[] = {
820 pxa2xx_ssp_write,
821 pxa2xx_ssp_write,
822 pxa2xx_ssp_write,
825 static void pxa2xx_ssp_save(QEMUFile *f, void *opaque)
827 struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
828 int i;
830 qemu_put_be32(f, s->enable);
832 qemu_put_be32s(f, &s->sscr[0]);
833 qemu_put_be32s(f, &s->sscr[1]);
834 qemu_put_be32s(f, &s->sspsp);
835 qemu_put_be32s(f, &s->ssto);
836 qemu_put_be32s(f, &s->ssitr);
837 qemu_put_be32s(f, &s->sssr);
838 qemu_put_8s(f, &s->sstsa);
839 qemu_put_8s(f, &s->ssrsa);
840 qemu_put_8s(f, &s->ssacd);
842 qemu_put_byte(f, s->rx_level);
843 for (i = 0; i < s->rx_level; i ++)
844 qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 0xf]);
847 static int pxa2xx_ssp_load(QEMUFile *f, void *opaque, int version_id)
849 struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
850 int i;
852 s->enable = qemu_get_be32(f);
854 qemu_get_be32s(f, &s->sscr[0]);
855 qemu_get_be32s(f, &s->sscr[1]);
856 qemu_get_be32s(f, &s->sspsp);
857 qemu_get_be32s(f, &s->ssto);
858 qemu_get_be32s(f, &s->ssitr);
859 qemu_get_be32s(f, &s->sssr);
860 qemu_get_8s(f, &s->sstsa);
861 qemu_get_8s(f, &s->ssrsa);
862 qemu_get_8s(f, &s->ssacd);
864 s->rx_level = qemu_get_byte(f);
865 s->rx_start = 0;
866 for (i = 0; i < s->rx_level; i ++)
867 s->rx_fifo[i] = qemu_get_byte(f);
869 return 0;
872 /* Real-Time Clock */
873 #define RCNR 0x00 /* RTC Counter register */
874 #define RTAR 0x04 /* RTC Alarm register */
875 #define RTSR 0x08 /* RTC Status register */
876 #define RTTR 0x0c /* RTC Timer Trim register */
877 #define RDCR 0x10 /* RTC Day Counter register */
878 #define RYCR 0x14 /* RTC Year Counter register */
879 #define RDAR1 0x18 /* RTC Wristwatch Day Alarm register 1 */
880 #define RYAR1 0x1c /* RTC Wristwatch Year Alarm register 1 */
881 #define RDAR2 0x20 /* RTC Wristwatch Day Alarm register 2 */
882 #define RYAR2 0x24 /* RTC Wristwatch Year Alarm register 2 */
883 #define SWCR 0x28 /* RTC Stopwatch Counter register */
884 #define SWAR1 0x2c /* RTC Stopwatch Alarm register 1 */
885 #define SWAR2 0x30 /* RTC Stopwatch Alarm register 2 */
886 #define RTCPICR 0x34 /* RTC Periodic Interrupt Counter register */
887 #define PIAR 0x38 /* RTC Periodic Interrupt Alarm register */
889 static inline void pxa2xx_rtc_int_update(struct pxa2xx_state_s *s)
891 qemu_set_irq(s->pic[PXA2XX_PIC_RTCALARM], !!(s->rtsr & 0x2553));
894 static void pxa2xx_rtc_hzupdate(struct pxa2xx_state_s *s)
896 int64_t rt = qemu_get_clock(rt_clock);
897 s->last_rcnr += ((rt - s->last_hz) << 15) /
898 (1000 * ((s->rttr & 0xffff) + 1));
899 s->last_rdcr += ((rt - s->last_hz) << 15) /
900 (1000 * ((s->rttr & 0xffff) + 1));
901 s->last_hz = rt;
904 static void pxa2xx_rtc_swupdate(struct pxa2xx_state_s *s)
906 int64_t rt = qemu_get_clock(rt_clock);
907 if (s->rtsr & (1 << 12))
908 s->last_swcr += (rt - s->last_sw) / 10;
909 s->last_sw = rt;
912 static void pxa2xx_rtc_piupdate(struct pxa2xx_state_s *s)
914 int64_t rt = qemu_get_clock(rt_clock);
915 if (s->rtsr & (1 << 15))
916 s->last_swcr += rt - s->last_pi;
917 s->last_pi = rt;
920 static inline void pxa2xx_rtc_alarm_update(struct pxa2xx_state_s *s,
921 uint32_t rtsr)
923 if ((rtsr & (1 << 2)) && !(rtsr & (1 << 0)))
924 qemu_mod_timer(s->rtc_hz, s->last_hz +
925 (((s->rtar - s->last_rcnr) * 1000 *
926 ((s->rttr & 0xffff) + 1)) >> 15));
927 else
928 qemu_del_timer(s->rtc_hz);
930 if ((rtsr & (1 << 5)) && !(rtsr & (1 << 4)))
931 qemu_mod_timer(s->rtc_rdal1, s->last_hz +
932 (((s->rdar1 - s->last_rdcr) * 1000 *
933 ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
934 else
935 qemu_del_timer(s->rtc_rdal1);
937 if ((rtsr & (1 << 7)) && !(rtsr & (1 << 6)))
938 qemu_mod_timer(s->rtc_rdal2, s->last_hz +
939 (((s->rdar2 - s->last_rdcr) * 1000 *
940 ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
941 else
942 qemu_del_timer(s->rtc_rdal2);
944 if ((rtsr & 0x1200) == 0x1200 && !(rtsr & (1 << 8)))
945 qemu_mod_timer(s->rtc_swal1, s->last_sw +
946 (s->swar1 - s->last_swcr) * 10); /* TODO: fixup */
947 else
948 qemu_del_timer(s->rtc_swal1);
950 if ((rtsr & 0x1800) == 0x1800 && !(rtsr & (1 << 10)))
951 qemu_mod_timer(s->rtc_swal2, s->last_sw +
952 (s->swar2 - s->last_swcr) * 10); /* TODO: fixup */
953 else
954 qemu_del_timer(s->rtc_swal2);
956 if ((rtsr & 0xc000) == 0xc000 && !(rtsr & (1 << 13)))
957 qemu_mod_timer(s->rtc_pi, s->last_pi +
958 (s->piar & 0xffff) - s->last_rtcpicr);
959 else
960 qemu_del_timer(s->rtc_pi);
963 static inline void pxa2xx_rtc_hz_tick(void *opaque)
965 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
966 s->rtsr |= (1 << 0);
967 pxa2xx_rtc_alarm_update(s, s->rtsr);
968 pxa2xx_rtc_int_update(s);
971 static inline void pxa2xx_rtc_rdal1_tick(void *opaque)
973 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
974 s->rtsr |= (1 << 4);
975 pxa2xx_rtc_alarm_update(s, s->rtsr);
976 pxa2xx_rtc_int_update(s);
979 static inline void pxa2xx_rtc_rdal2_tick(void *opaque)
981 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
982 s->rtsr |= (1 << 6);
983 pxa2xx_rtc_alarm_update(s, s->rtsr);
984 pxa2xx_rtc_int_update(s);
987 static inline void pxa2xx_rtc_swal1_tick(void *opaque)
989 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
990 s->rtsr |= (1 << 8);
991 pxa2xx_rtc_alarm_update(s, s->rtsr);
992 pxa2xx_rtc_int_update(s);
995 static inline void pxa2xx_rtc_swal2_tick(void *opaque)
997 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
998 s->rtsr |= (1 << 10);
999 pxa2xx_rtc_alarm_update(s, s->rtsr);
1000 pxa2xx_rtc_int_update(s);
1003 static inline void pxa2xx_rtc_pi_tick(void *opaque)
1005 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
1006 s->rtsr |= (1 << 13);
1007 pxa2xx_rtc_piupdate(s);
1008 s->last_rtcpicr = 0;
1009 pxa2xx_rtc_alarm_update(s, s->rtsr);
1010 pxa2xx_rtc_int_update(s);
1013 static uint32_t pxa2xx_rtc_read(void *opaque, target_phys_addr_t addr)
1015 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
1017 switch (addr) {
1018 case RTTR:
1019 return s->rttr;
1020 case RTSR:
1021 return s->rtsr;
1022 case RTAR:
1023 return s->rtar;
1024 case RDAR1:
1025 return s->rdar1;
1026 case RDAR2:
1027 return s->rdar2;
1028 case RYAR1:
1029 return s->ryar1;
1030 case RYAR2:
1031 return s->ryar2;
1032 case SWAR1:
1033 return s->swar1;
1034 case SWAR2:
1035 return s->swar2;
1036 case PIAR:
1037 return s->piar;
1038 case RCNR:
1039 return s->last_rcnr + ((qemu_get_clock(rt_clock) - s->last_hz) << 15) /
1040 (1000 * ((s->rttr & 0xffff) + 1));
1041 case RDCR:
1042 return s->last_rdcr + ((qemu_get_clock(rt_clock) - s->last_hz) << 15) /
1043 (1000 * ((s->rttr & 0xffff) + 1));
1044 case RYCR:
1045 return s->last_rycr;
1046 case SWCR:
1047 if (s->rtsr & (1 << 12))
1048 return s->last_swcr + (qemu_get_clock(rt_clock) - s->last_sw) / 10;
1049 else
1050 return s->last_swcr;
1051 default:
1052 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1053 break;
1055 return 0;
1058 static void pxa2xx_rtc_write(void *opaque, target_phys_addr_t addr,
1059 uint32_t value)
1061 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
1063 switch (addr) {
1064 case RTTR:
1065 if (!(s->rttr & (1 << 31))) {
1066 pxa2xx_rtc_hzupdate(s);
1067 s->rttr = value;
1068 pxa2xx_rtc_alarm_update(s, s->rtsr);
1070 break;
1072 case RTSR:
1073 if ((s->rtsr ^ value) & (1 << 15))
1074 pxa2xx_rtc_piupdate(s);
1076 if ((s->rtsr ^ value) & (1 << 12))
1077 pxa2xx_rtc_swupdate(s);
1079 if (((s->rtsr ^ value) & 0x4aac) | (value & ~0xdaac))
1080 pxa2xx_rtc_alarm_update(s, value);
1082 s->rtsr = (value & 0xdaac) | (s->rtsr & ~(value & ~0xdaac));
1083 pxa2xx_rtc_int_update(s);
1084 break;
1086 case RTAR:
1087 s->rtar = value;
1088 pxa2xx_rtc_alarm_update(s, s->rtsr);
1089 break;
1091 case RDAR1:
1092 s->rdar1 = value;
1093 pxa2xx_rtc_alarm_update(s, s->rtsr);
1094 break;
1096 case RDAR2:
1097 s->rdar2 = value;
1098 pxa2xx_rtc_alarm_update(s, s->rtsr);
1099 break;
1101 case RYAR1:
1102 s->ryar1 = value;
1103 pxa2xx_rtc_alarm_update(s, s->rtsr);
1104 break;
1106 case RYAR2:
1107 s->ryar2 = value;
1108 pxa2xx_rtc_alarm_update(s, s->rtsr);
1109 break;
1111 case SWAR1:
1112 pxa2xx_rtc_swupdate(s);
1113 s->swar1 = value;
1114 s->last_swcr = 0;
1115 pxa2xx_rtc_alarm_update(s, s->rtsr);
1116 break;
1118 case SWAR2:
1119 s->swar2 = value;
1120 pxa2xx_rtc_alarm_update(s, s->rtsr);
1121 break;
1123 case PIAR:
1124 s->piar = value;
1125 pxa2xx_rtc_alarm_update(s, s->rtsr);
1126 break;
1128 case RCNR:
1129 pxa2xx_rtc_hzupdate(s);
1130 s->last_rcnr = value;
1131 pxa2xx_rtc_alarm_update(s, s->rtsr);
1132 break;
1134 case RDCR:
1135 pxa2xx_rtc_hzupdate(s);
1136 s->last_rdcr = value;
1137 pxa2xx_rtc_alarm_update(s, s->rtsr);
1138 break;
1140 case RYCR:
1141 s->last_rycr = value;
1142 break;
1144 case SWCR:
1145 pxa2xx_rtc_swupdate(s);
1146 s->last_swcr = value;
1147 pxa2xx_rtc_alarm_update(s, s->rtsr);
1148 break;
1150 case RTCPICR:
1151 pxa2xx_rtc_piupdate(s);
1152 s->last_rtcpicr = value & 0xffff;
1153 pxa2xx_rtc_alarm_update(s, s->rtsr);
1154 break;
1156 default:
1157 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1161 static CPUReadMemoryFunc *pxa2xx_rtc_readfn[] = {
1162 pxa2xx_rtc_read,
1163 pxa2xx_rtc_read,
1164 pxa2xx_rtc_read,
1167 static CPUWriteMemoryFunc *pxa2xx_rtc_writefn[] = {
1168 pxa2xx_rtc_write,
1169 pxa2xx_rtc_write,
1170 pxa2xx_rtc_write,
1173 static void pxa2xx_rtc_init(struct pxa2xx_state_s *s)
1175 struct tm tm;
1176 int wom;
1178 s->rttr = 0x7fff;
1179 s->rtsr = 0;
1181 qemu_get_timedate(&tm, 0);
1182 wom = ((tm.tm_mday - 1) / 7) + 1;
1184 s->last_rcnr = (uint32_t) mktimegm(&tm);
1185 s->last_rdcr = (wom << 20) | ((tm.tm_wday + 1) << 17) |
1186 (tm.tm_hour << 12) | (tm.tm_min << 6) | tm.tm_sec;
1187 s->last_rycr = ((tm.tm_year + 1900) << 9) |
1188 ((tm.tm_mon + 1) << 5) | tm.tm_mday;
1189 s->last_swcr = (tm.tm_hour << 19) |
1190 (tm.tm_min << 13) | (tm.tm_sec << 7);
1191 s->last_rtcpicr = 0;
1192 s->last_hz = s->last_sw = s->last_pi = qemu_get_clock(rt_clock);
1194 s->rtc_hz = qemu_new_timer(rt_clock, pxa2xx_rtc_hz_tick, s);
1195 s->rtc_rdal1 = qemu_new_timer(rt_clock, pxa2xx_rtc_rdal1_tick, s);
1196 s->rtc_rdal2 = qemu_new_timer(rt_clock, pxa2xx_rtc_rdal2_tick, s);
1197 s->rtc_swal1 = qemu_new_timer(rt_clock, pxa2xx_rtc_swal1_tick, s);
1198 s->rtc_swal2 = qemu_new_timer(rt_clock, pxa2xx_rtc_swal2_tick, s);
1199 s->rtc_pi = qemu_new_timer(rt_clock, pxa2xx_rtc_pi_tick, s);
1202 static void pxa2xx_rtc_save(QEMUFile *f, void *opaque)
1204 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
1206 pxa2xx_rtc_hzupdate(s);
1207 pxa2xx_rtc_piupdate(s);
1208 pxa2xx_rtc_swupdate(s);
1210 qemu_put_be32s(f, &s->rttr);
1211 qemu_put_be32s(f, &s->rtsr);
1212 qemu_put_be32s(f, &s->rtar);
1213 qemu_put_be32s(f, &s->rdar1);
1214 qemu_put_be32s(f, &s->rdar2);
1215 qemu_put_be32s(f, &s->ryar1);
1216 qemu_put_be32s(f, &s->ryar2);
1217 qemu_put_be32s(f, &s->swar1);
1218 qemu_put_be32s(f, &s->swar2);
1219 qemu_put_be32s(f, &s->piar);
1220 qemu_put_be32s(f, &s->last_rcnr);
1221 qemu_put_be32s(f, &s->last_rdcr);
1222 qemu_put_be32s(f, &s->last_rycr);
1223 qemu_put_be32s(f, &s->last_swcr);
1224 qemu_put_be32s(f, &s->last_rtcpicr);
1225 qemu_put_sbe64s(f, &s->last_hz);
1226 qemu_put_sbe64s(f, &s->last_sw);
1227 qemu_put_sbe64s(f, &s->last_pi);
1230 static int pxa2xx_rtc_load(QEMUFile *f, void *opaque, int version_id)
1232 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
1234 qemu_get_be32s(f, &s->rttr);
1235 qemu_get_be32s(f, &s->rtsr);
1236 qemu_get_be32s(f, &s->rtar);
1237 qemu_get_be32s(f, &s->rdar1);
1238 qemu_get_be32s(f, &s->rdar2);
1239 qemu_get_be32s(f, &s->ryar1);
1240 qemu_get_be32s(f, &s->ryar2);
1241 qemu_get_be32s(f, &s->swar1);
1242 qemu_get_be32s(f, &s->swar2);
1243 qemu_get_be32s(f, &s->piar);
1244 qemu_get_be32s(f, &s->last_rcnr);
1245 qemu_get_be32s(f, &s->last_rdcr);
1246 qemu_get_be32s(f, &s->last_rycr);
1247 qemu_get_be32s(f, &s->last_swcr);
1248 qemu_get_be32s(f, &s->last_rtcpicr);
1249 qemu_get_sbe64s(f, &s->last_hz);
1250 qemu_get_sbe64s(f, &s->last_sw);
1251 qemu_get_sbe64s(f, &s->last_pi);
1253 pxa2xx_rtc_alarm_update(s, s->rtsr);
1255 return 0;
1258 /* I2C Interface */
1259 struct pxa2xx_i2c_s {
1260 i2c_slave slave;
1261 i2c_bus *bus;
1262 qemu_irq irq;
1263 target_phys_addr_t offset;
1265 uint16_t control;
1266 uint16_t status;
1267 uint8_t ibmr;
1268 uint8_t data;
1271 #define IBMR 0x80 /* I2C Bus Monitor register */
1272 #define IDBR 0x88 /* I2C Data Buffer register */
1273 #define ICR 0x90 /* I2C Control register */
1274 #define ISR 0x98 /* I2C Status register */
1275 #define ISAR 0xa0 /* I2C Slave Address register */
1277 static void pxa2xx_i2c_update(struct pxa2xx_i2c_s *s)
1279 uint16_t level = 0;
1280 level |= s->status & s->control & (1 << 10); /* BED */
1281 level |= (s->status & (1 << 7)) && (s->control & (1 << 9)); /* IRF */
1282 level |= (s->status & (1 << 6)) && (s->control & (1 << 8)); /* ITE */
1283 level |= s->status & (1 << 9); /* SAD */
1284 qemu_set_irq(s->irq, !!level);
1287 /* These are only stubs now. */
1288 static void pxa2xx_i2c_event(i2c_slave *i2c, enum i2c_event event)
1290 struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) i2c;
1292 switch (event) {
1293 case I2C_START_SEND:
1294 s->status |= (1 << 9); /* set SAD */
1295 s->status &= ~(1 << 0); /* clear RWM */
1296 break;
1297 case I2C_START_RECV:
1298 s->status |= (1 << 9); /* set SAD */
1299 s->status |= 1 << 0; /* set RWM */
1300 break;
1301 case I2C_FINISH:
1302 s->status |= (1 << 4); /* set SSD */
1303 break;
1304 case I2C_NACK:
1305 s->status |= 1 << 1; /* set ACKNAK */
1306 break;
1308 pxa2xx_i2c_update(s);
1311 static int pxa2xx_i2c_rx(i2c_slave *i2c)
1313 struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) i2c;
1314 if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
1315 return 0;
1317 if (s->status & (1 << 0)) { /* RWM */
1318 s->status |= 1 << 6; /* set ITE */
1320 pxa2xx_i2c_update(s);
1322 return s->data;
1325 static int pxa2xx_i2c_tx(i2c_slave *i2c, uint8_t data)
1327 struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) i2c;
1328 if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
1329 return 1;
1331 if (!(s->status & (1 << 0))) { /* RWM */
1332 s->status |= 1 << 7; /* set IRF */
1333 s->data = data;
1335 pxa2xx_i2c_update(s);
1337 return 1;
1340 static uint32_t pxa2xx_i2c_read(void *opaque, target_phys_addr_t addr)
1342 struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) opaque;
1344 addr -= s->offset;
1345 switch (addr) {
1346 case ICR:
1347 return s->control;
1348 case ISR:
1349 return s->status | (i2c_bus_busy(s->bus) << 2);
1350 case ISAR:
1351 return s->slave.address;
1352 case IDBR:
1353 return s->data;
1354 case IBMR:
1355 if (s->status & (1 << 2))
1356 s->ibmr ^= 3; /* Fake SCL and SDA pin changes */
1357 else
1358 s->ibmr = 0;
1359 return s->ibmr;
1360 default:
1361 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1362 break;
1364 return 0;
1367 static void pxa2xx_i2c_write(void *opaque, target_phys_addr_t addr,
1368 uint32_t value)
1370 struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) opaque;
1371 int ack;
1373 addr -= s->offset;
1374 switch (addr) {
1375 case ICR:
1376 s->control = value & 0xfff7;
1377 if ((value & (1 << 3)) && (value & (1 << 6))) { /* TB and IUE */
1378 /* TODO: slave mode */
1379 if (value & (1 << 0)) { /* START condition */
1380 if (s->data & 1)
1381 s->status |= 1 << 0; /* set RWM */
1382 else
1383 s->status &= ~(1 << 0); /* clear RWM */
1384 ack = !i2c_start_transfer(s->bus, s->data >> 1, s->data & 1);
1385 } else {
1386 if (s->status & (1 << 0)) { /* RWM */
1387 s->data = i2c_recv(s->bus);
1388 if (value & (1 << 2)) /* ACKNAK */
1389 i2c_nack(s->bus);
1390 ack = 1;
1391 } else
1392 ack = !i2c_send(s->bus, s->data);
1395 if (value & (1 << 1)) /* STOP condition */
1396 i2c_end_transfer(s->bus);
1398 if (ack) {
1399 if (value & (1 << 0)) /* START condition */
1400 s->status |= 1 << 6; /* set ITE */
1401 else
1402 if (s->status & (1 << 0)) /* RWM */
1403 s->status |= 1 << 7; /* set IRF */
1404 else
1405 s->status |= 1 << 6; /* set ITE */
1406 s->status &= ~(1 << 1); /* clear ACKNAK */
1407 } else {
1408 s->status |= 1 << 6; /* set ITE */
1409 s->status |= 1 << 10; /* set BED */
1410 s->status |= 1 << 1; /* set ACKNAK */
1413 if (!(value & (1 << 3)) && (value & (1 << 6))) /* !TB and IUE */
1414 if (value & (1 << 4)) /* MA */
1415 i2c_end_transfer(s->bus);
1416 pxa2xx_i2c_update(s);
1417 break;
1419 case ISR:
1420 s->status &= ~(value & 0x07f0);
1421 pxa2xx_i2c_update(s);
1422 break;
1424 case ISAR:
1425 i2c_set_slave_address(&s->slave, value & 0x7f);
1426 break;
1428 case IDBR:
1429 s->data = value & 0xff;
1430 break;
1432 default:
1433 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1437 static CPUReadMemoryFunc *pxa2xx_i2c_readfn[] = {
1438 pxa2xx_i2c_read,
1439 pxa2xx_i2c_read,
1440 pxa2xx_i2c_read,
1443 static CPUWriteMemoryFunc *pxa2xx_i2c_writefn[] = {
1444 pxa2xx_i2c_write,
1445 pxa2xx_i2c_write,
1446 pxa2xx_i2c_write,
1449 static void pxa2xx_i2c_save(QEMUFile *f, void *opaque)
1451 struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) opaque;
1453 qemu_put_be16s(f, &s->control);
1454 qemu_put_be16s(f, &s->status);
1455 qemu_put_8s(f, &s->ibmr);
1456 qemu_put_8s(f, &s->data);
1458 i2c_slave_save(f, &s->slave);
1461 static int pxa2xx_i2c_load(QEMUFile *f, void *opaque, int version_id)
1463 struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) opaque;
1465 if (version_id != 1)
1466 return -EINVAL;
1468 qemu_get_be16s(f, &s->control);
1469 qemu_get_be16s(f, &s->status);
1470 qemu_get_8s(f, &s->ibmr);
1471 qemu_get_8s(f, &s->data);
1473 i2c_slave_load(f, &s->slave);
1474 return 0;
1477 struct pxa2xx_i2c_s *pxa2xx_i2c_init(target_phys_addr_t base,
1478 qemu_irq irq, uint32_t region_size)
1480 int iomemtype;
1481 /* FIXME: Should the slave device really be on a separate bus? */
1482 struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *)
1483 i2c_slave_init(i2c_init_bus(), 0, sizeof(struct pxa2xx_i2c_s));
1485 s->irq = irq;
1486 s->slave.event = pxa2xx_i2c_event;
1487 s->slave.recv = pxa2xx_i2c_rx;
1488 s->slave.send = pxa2xx_i2c_tx;
1489 s->bus = i2c_init_bus();
1490 s->offset = base - (base & (~region_size) & TARGET_PAGE_MASK);
1492 iomemtype = cpu_register_io_memory(0, pxa2xx_i2c_readfn,
1493 pxa2xx_i2c_writefn, s);
1494 cpu_register_physical_memory(base & ~region_size,
1495 region_size + 1, iomemtype);
1497 register_savevm("pxa2xx_i2c", base, 1,
1498 pxa2xx_i2c_save, pxa2xx_i2c_load, s);
1500 return s;
1503 i2c_bus *pxa2xx_i2c_bus(struct pxa2xx_i2c_s *s)
1505 return s->bus;
1508 /* PXA Inter-IC Sound Controller */
1509 static void pxa2xx_i2s_reset(struct pxa2xx_i2s_s *i2s)
1511 i2s->rx_len = 0;
1512 i2s->tx_len = 0;
1513 i2s->fifo_len = 0;
1514 i2s->clk = 0x1a;
1515 i2s->control[0] = 0x00;
1516 i2s->control[1] = 0x00;
1517 i2s->status = 0x00;
1518 i2s->mask = 0x00;
1521 #define SACR_TFTH(val) ((val >> 8) & 0xf)
1522 #define SACR_RFTH(val) ((val >> 12) & 0xf)
1523 #define SACR_DREC(val) (val & (1 << 3))
1524 #define SACR_DPRL(val) (val & (1 << 4))
1526 static inline void pxa2xx_i2s_update(struct pxa2xx_i2s_s *i2s)
1528 int rfs, tfs;
1529 rfs = SACR_RFTH(i2s->control[0]) < i2s->rx_len &&
1530 !SACR_DREC(i2s->control[1]);
1531 tfs = (i2s->tx_len || i2s->fifo_len < SACR_TFTH(i2s->control[0])) &&
1532 i2s->enable && !SACR_DPRL(i2s->control[1]);
1534 pxa2xx_dma_request(i2s->dma, PXA2XX_RX_RQ_I2S, rfs);
1535 pxa2xx_dma_request(i2s->dma, PXA2XX_TX_RQ_I2S, tfs);
1537 i2s->status &= 0xe0;
1538 if (i2s->fifo_len < 16 || !i2s->enable)
1539 i2s->status |= 1 << 0; /* TNF */
1540 if (i2s->rx_len)
1541 i2s->status |= 1 << 1; /* RNE */
1542 if (i2s->enable)
1543 i2s->status |= 1 << 2; /* BSY */
1544 if (tfs)
1545 i2s->status |= 1 << 3; /* TFS */
1546 if (rfs)
1547 i2s->status |= 1 << 4; /* RFS */
1548 if (!(i2s->tx_len && i2s->enable))
1549 i2s->status |= i2s->fifo_len << 8; /* TFL */
1550 i2s->status |= MAX(i2s->rx_len, 0xf) << 12; /* RFL */
1552 qemu_set_irq(i2s->irq, i2s->status & i2s->mask);
1555 #define SACR0 0x00 /* Serial Audio Global Control register */
1556 #define SACR1 0x04 /* Serial Audio I2S/MSB-Justified Control register */
1557 #define SASR0 0x0c /* Serial Audio Interface and FIFO Status register */
1558 #define SAIMR 0x14 /* Serial Audio Interrupt Mask register */
1559 #define SAICR 0x18 /* Serial Audio Interrupt Clear register */
1560 #define SADIV 0x60 /* Serial Audio Clock Divider register */
1561 #define SADR 0x80 /* Serial Audio Data register */
1563 static uint32_t pxa2xx_i2s_read(void *opaque, target_phys_addr_t addr)
1565 struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
1567 switch (addr) {
1568 case SACR0:
1569 return s->control[0];
1570 case SACR1:
1571 return s->control[1];
1572 case SASR0:
1573 return s->status;
1574 case SAIMR:
1575 return s->mask;
1576 case SAICR:
1577 return 0;
1578 case SADIV:
1579 return s->clk;
1580 case SADR:
1581 if (s->rx_len > 0) {
1582 s->rx_len --;
1583 pxa2xx_i2s_update(s);
1584 return s->codec_in(s->opaque);
1586 return 0;
1587 default:
1588 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1589 break;
1591 return 0;
1594 static void pxa2xx_i2s_write(void *opaque, target_phys_addr_t addr,
1595 uint32_t value)
1597 struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
1598 uint32_t *sample;
1600 switch (addr) {
1601 case SACR0:
1602 if (value & (1 << 3)) /* RST */
1603 pxa2xx_i2s_reset(s);
1604 s->control[0] = value & 0xff3d;
1605 if (!s->enable && (value & 1) && s->tx_len) { /* ENB */
1606 for (sample = s->fifo; s->fifo_len > 0; s->fifo_len --, sample ++)
1607 s->codec_out(s->opaque, *sample);
1608 s->status &= ~(1 << 7); /* I2SOFF */
1610 if (value & (1 << 4)) /* EFWR */
1611 printf("%s: Attempt to use special function\n", __FUNCTION__);
1612 s->enable = ((value ^ 4) & 5) == 5; /* ENB && !RST*/
1613 pxa2xx_i2s_update(s);
1614 break;
1615 case SACR1:
1616 s->control[1] = value & 0x0039;
1617 if (value & (1 << 5)) /* ENLBF */
1618 printf("%s: Attempt to use loopback function\n", __FUNCTION__);
1619 if (value & (1 << 4)) /* DPRL */
1620 s->fifo_len = 0;
1621 pxa2xx_i2s_update(s);
1622 break;
1623 case SAIMR:
1624 s->mask = value & 0x0078;
1625 pxa2xx_i2s_update(s);
1626 break;
1627 case SAICR:
1628 s->status &= ~(value & (3 << 5));
1629 pxa2xx_i2s_update(s);
1630 break;
1631 case SADIV:
1632 s->clk = value & 0x007f;
1633 break;
1634 case SADR:
1635 if (s->tx_len && s->enable) {
1636 s->tx_len --;
1637 pxa2xx_i2s_update(s);
1638 s->codec_out(s->opaque, value);
1639 } else if (s->fifo_len < 16) {
1640 s->fifo[s->fifo_len ++] = value;
1641 pxa2xx_i2s_update(s);
1643 break;
1644 default:
1645 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1649 static CPUReadMemoryFunc *pxa2xx_i2s_readfn[] = {
1650 pxa2xx_i2s_read,
1651 pxa2xx_i2s_read,
1652 pxa2xx_i2s_read,
1655 static CPUWriteMemoryFunc *pxa2xx_i2s_writefn[] = {
1656 pxa2xx_i2s_write,
1657 pxa2xx_i2s_write,
1658 pxa2xx_i2s_write,
1661 static void pxa2xx_i2s_save(QEMUFile *f, void *opaque)
1663 struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
1665 qemu_put_be32s(f, &s->control[0]);
1666 qemu_put_be32s(f, &s->control[1]);
1667 qemu_put_be32s(f, &s->status);
1668 qemu_put_be32s(f, &s->mask);
1669 qemu_put_be32s(f, &s->clk);
1671 qemu_put_be32(f, s->enable);
1672 qemu_put_be32(f, s->rx_len);
1673 qemu_put_be32(f, s->tx_len);
1674 qemu_put_be32(f, s->fifo_len);
1677 static int pxa2xx_i2s_load(QEMUFile *f, void *opaque, int version_id)
1679 struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
1681 qemu_get_be32s(f, &s->control[0]);
1682 qemu_get_be32s(f, &s->control[1]);
1683 qemu_get_be32s(f, &s->status);
1684 qemu_get_be32s(f, &s->mask);
1685 qemu_get_be32s(f, &s->clk);
1687 s->enable = qemu_get_be32(f);
1688 s->rx_len = qemu_get_be32(f);
1689 s->tx_len = qemu_get_be32(f);
1690 s->fifo_len = qemu_get_be32(f);
1692 return 0;
1695 static void pxa2xx_i2s_data_req(void *opaque, int tx, int rx)
1697 struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
1698 uint32_t *sample;
1700 /* Signal FIFO errors */
1701 if (s->enable && s->tx_len)
1702 s->status |= 1 << 5; /* TUR */
1703 if (s->enable && s->rx_len)
1704 s->status |= 1 << 6; /* ROR */
1706 /* Should be tx - MIN(tx, s->fifo_len) but we don't really need to
1707 * handle the cases where it makes a difference. */
1708 s->tx_len = tx - s->fifo_len;
1709 s->rx_len = rx;
1710 /* Note that is s->codec_out wasn't set, we wouldn't get called. */
1711 if (s->enable)
1712 for (sample = s->fifo; s->fifo_len; s->fifo_len --, sample ++)
1713 s->codec_out(s->opaque, *sample);
1714 pxa2xx_i2s_update(s);
1717 static struct pxa2xx_i2s_s *pxa2xx_i2s_init(target_phys_addr_t base,
1718 qemu_irq irq, struct pxa2xx_dma_state_s *dma)
1720 int iomemtype;
1721 struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *)
1722 qemu_mallocz(sizeof(struct pxa2xx_i2s_s));
1724 s->irq = irq;
1725 s->dma = dma;
1726 s->data_req = pxa2xx_i2s_data_req;
1728 pxa2xx_i2s_reset(s);
1730 iomemtype = cpu_register_io_memory(0, pxa2xx_i2s_readfn,
1731 pxa2xx_i2s_writefn, s);
1732 cpu_register_physical_memory(base, 0x100000, iomemtype);
1734 register_savevm("pxa2xx_i2s", base, 0,
1735 pxa2xx_i2s_save, pxa2xx_i2s_load, s);
1737 return s;
1740 /* PXA Fast Infra-red Communications Port */
1741 struct pxa2xx_fir_s {
1742 qemu_irq irq;
1743 struct pxa2xx_dma_state_s *dma;
1744 int enable;
1745 CharDriverState *chr;
1747 uint8_t control[3];
1748 uint8_t status[2];
1750 int rx_len;
1751 int rx_start;
1752 uint8_t rx_fifo[64];
1755 static void pxa2xx_fir_reset(struct pxa2xx_fir_s *s)
1757 s->control[0] = 0x00;
1758 s->control[1] = 0x00;
1759 s->control[2] = 0x00;
1760 s->status[0] = 0x00;
1761 s->status[1] = 0x00;
1762 s->enable = 0;
1765 static inline void pxa2xx_fir_update(struct pxa2xx_fir_s *s)
1767 static const int tresh[4] = { 8, 16, 32, 0 };
1768 int intr = 0;
1769 if ((s->control[0] & (1 << 4)) && /* RXE */
1770 s->rx_len >= tresh[s->control[2] & 3]) /* TRIG */
1771 s->status[0] |= 1 << 4; /* RFS */
1772 else
1773 s->status[0] &= ~(1 << 4); /* RFS */
1774 if (s->control[0] & (1 << 3)) /* TXE */
1775 s->status[0] |= 1 << 3; /* TFS */
1776 else
1777 s->status[0] &= ~(1 << 3); /* TFS */
1778 if (s->rx_len)
1779 s->status[1] |= 1 << 2; /* RNE */
1780 else
1781 s->status[1] &= ~(1 << 2); /* RNE */
1782 if (s->control[0] & (1 << 4)) /* RXE */
1783 s->status[1] |= 1 << 0; /* RSY */
1784 else
1785 s->status[1] &= ~(1 << 0); /* RSY */
1787 intr |= (s->control[0] & (1 << 5)) && /* RIE */
1788 (s->status[0] & (1 << 4)); /* RFS */
1789 intr |= (s->control[0] & (1 << 6)) && /* TIE */
1790 (s->status[0] & (1 << 3)); /* TFS */
1791 intr |= (s->control[2] & (1 << 4)) && /* TRAIL */
1792 (s->status[0] & (1 << 6)); /* EOC */
1793 intr |= (s->control[0] & (1 << 2)) && /* TUS */
1794 (s->status[0] & (1 << 1)); /* TUR */
1795 intr |= s->status[0] & 0x25; /* FRE, RAB, EIF */
1797 pxa2xx_dma_request(s->dma, PXA2XX_RX_RQ_ICP, (s->status[0] >> 4) & 1);
1798 pxa2xx_dma_request(s->dma, PXA2XX_TX_RQ_ICP, (s->status[0] >> 3) & 1);
1800 qemu_set_irq(s->irq, intr && s->enable);
1803 #define ICCR0 0x00 /* FICP Control register 0 */
1804 #define ICCR1 0x04 /* FICP Control register 1 */
1805 #define ICCR2 0x08 /* FICP Control register 2 */
1806 #define ICDR 0x0c /* FICP Data register */
1807 #define ICSR0 0x14 /* FICP Status register 0 */
1808 #define ICSR1 0x18 /* FICP Status register 1 */
1809 #define ICFOR 0x1c /* FICP FIFO Occupancy Status register */
1811 static uint32_t pxa2xx_fir_read(void *opaque, target_phys_addr_t addr)
1813 struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
1814 uint8_t ret;
1816 switch (addr) {
1817 case ICCR0:
1818 return s->control[0];
1819 case ICCR1:
1820 return s->control[1];
1821 case ICCR2:
1822 return s->control[2];
1823 case ICDR:
1824 s->status[0] &= ~0x01;
1825 s->status[1] &= ~0x72;
1826 if (s->rx_len) {
1827 s->rx_len --;
1828 ret = s->rx_fifo[s->rx_start ++];
1829 s->rx_start &= 63;
1830 pxa2xx_fir_update(s);
1831 return ret;
1833 printf("%s: Rx FIFO underrun.\n", __FUNCTION__);
1834 break;
1835 case ICSR0:
1836 return s->status[0];
1837 case ICSR1:
1838 return s->status[1] | (1 << 3); /* TNF */
1839 case ICFOR:
1840 return s->rx_len;
1841 default:
1842 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1843 break;
1845 return 0;
1848 static void pxa2xx_fir_write(void *opaque, target_phys_addr_t addr,
1849 uint32_t value)
1851 struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
1852 uint8_t ch;
1854 switch (addr) {
1855 case ICCR0:
1856 s->control[0] = value;
1857 if (!(value & (1 << 4))) /* RXE */
1858 s->rx_len = s->rx_start = 0;
1859 if (!(value & (1 << 3))) /* TXE */
1860 /* Nop */;
1861 s->enable = value & 1; /* ITR */
1862 if (!s->enable)
1863 s->status[0] = 0;
1864 pxa2xx_fir_update(s);
1865 break;
1866 case ICCR1:
1867 s->control[1] = value;
1868 break;
1869 case ICCR2:
1870 s->control[2] = value & 0x3f;
1871 pxa2xx_fir_update(s);
1872 break;
1873 case ICDR:
1874 if (s->control[2] & (1 << 2)) /* TXP */
1875 ch = value;
1876 else
1877 ch = ~value;
1878 if (s->chr && s->enable && (s->control[0] & (1 << 3))) /* TXE */
1879 qemu_chr_write(s->chr, &ch, 1);
1880 break;
1881 case ICSR0:
1882 s->status[0] &= ~(value & 0x66);
1883 pxa2xx_fir_update(s);
1884 break;
1885 case ICFOR:
1886 break;
1887 default:
1888 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1892 static CPUReadMemoryFunc *pxa2xx_fir_readfn[] = {
1893 pxa2xx_fir_read,
1894 pxa2xx_fir_read,
1895 pxa2xx_fir_read,
1898 static CPUWriteMemoryFunc *pxa2xx_fir_writefn[] = {
1899 pxa2xx_fir_write,
1900 pxa2xx_fir_write,
1901 pxa2xx_fir_write,
1904 static int pxa2xx_fir_is_empty(void *opaque)
1906 struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
1907 return (s->rx_len < 64);
1910 static void pxa2xx_fir_rx(void *opaque, const uint8_t *buf, int size)
1912 struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
1913 if (!(s->control[0] & (1 << 4))) /* RXE */
1914 return;
1916 while (size --) {
1917 s->status[1] |= 1 << 4; /* EOF */
1918 if (s->rx_len >= 64) {
1919 s->status[1] |= 1 << 6; /* ROR */
1920 break;
1923 if (s->control[2] & (1 << 3)) /* RXP */
1924 s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = *(buf ++);
1925 else
1926 s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = ~*(buf ++);
1929 pxa2xx_fir_update(s);
1932 static void pxa2xx_fir_event(void *opaque, int event)
1936 static void pxa2xx_fir_save(QEMUFile *f, void *opaque)
1938 struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
1939 int i;
1941 qemu_put_be32(f, s->enable);
1943 qemu_put_8s(f, &s->control[0]);
1944 qemu_put_8s(f, &s->control[1]);
1945 qemu_put_8s(f, &s->control[2]);
1946 qemu_put_8s(f, &s->status[0]);
1947 qemu_put_8s(f, &s->status[1]);
1949 qemu_put_byte(f, s->rx_len);
1950 for (i = 0; i < s->rx_len; i ++)
1951 qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 63]);
1954 static int pxa2xx_fir_load(QEMUFile *f, void *opaque, int version_id)
1956 struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
1957 int i;
1959 s->enable = qemu_get_be32(f);
1961 qemu_get_8s(f, &s->control[0]);
1962 qemu_get_8s(f, &s->control[1]);
1963 qemu_get_8s(f, &s->control[2]);
1964 qemu_get_8s(f, &s->status[0]);
1965 qemu_get_8s(f, &s->status[1]);
1967 s->rx_len = qemu_get_byte(f);
1968 s->rx_start = 0;
1969 for (i = 0; i < s->rx_len; i ++)
1970 s->rx_fifo[i] = qemu_get_byte(f);
1972 return 0;
1975 static struct pxa2xx_fir_s *pxa2xx_fir_init(target_phys_addr_t base,
1976 qemu_irq irq, struct pxa2xx_dma_state_s *dma,
1977 CharDriverState *chr)
1979 int iomemtype;
1980 struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *)
1981 qemu_mallocz(sizeof(struct pxa2xx_fir_s));
1983 s->irq = irq;
1984 s->dma = dma;
1985 s->chr = chr;
1987 pxa2xx_fir_reset(s);
1989 iomemtype = cpu_register_io_memory(0, pxa2xx_fir_readfn,
1990 pxa2xx_fir_writefn, s);
1991 cpu_register_physical_memory(base, 0x1000, iomemtype);
1993 if (chr)
1994 qemu_chr_add_handlers(chr, pxa2xx_fir_is_empty,
1995 pxa2xx_fir_rx, pxa2xx_fir_event, s);
1997 register_savevm("pxa2xx_fir", 0, 0, pxa2xx_fir_save, pxa2xx_fir_load, s);
1999 return s;
2002 static void pxa2xx_reset(void *opaque, int line, int level)
2004 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
2006 if (level && (s->pm_regs[PCFR >> 2] & 0x10)) { /* GPR_EN */
2007 cpu_reset(s->env);
2008 /* TODO: reset peripherals */
2012 /* Initialise a PXA270 integrated chip (ARM based core). */
2013 struct pxa2xx_state_s *pxa270_init(unsigned int sdram_size, const char *revision)
2015 struct pxa2xx_state_s *s;
2016 struct pxa2xx_ssp_s *ssp;
2017 int iomemtype, i;
2018 int index;
2019 s = (struct pxa2xx_state_s *) qemu_mallocz(sizeof(struct pxa2xx_state_s));
2021 if (revision && strncmp(revision, "pxa27", 5)) {
2022 fprintf(stderr, "Machine requires a PXA27x processor.\n");
2023 exit(1);
2025 if (!revision)
2026 revision = "pxa270";
2028 s->env = cpu_init(revision);
2029 if (!s->env) {
2030 fprintf(stderr, "Unable to find CPU definition\n");
2031 exit(1);
2033 s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
2035 /* SDRAM & Internal Memory Storage */
2036 cpu_register_physical_memory(PXA2XX_SDRAM_BASE,
2037 sdram_size, qemu_ram_alloc(sdram_size) | IO_MEM_RAM);
2038 cpu_register_physical_memory(PXA2XX_INTERNAL_BASE,
2039 0x40000, qemu_ram_alloc(0x40000) | IO_MEM_RAM);
2041 s->pic = pxa2xx_pic_init(0x40d00000, s->env);
2043 s->dma = pxa27x_dma_init(0x40000000, s->pic[PXA2XX_PIC_DMA]);
2045 pxa27x_timer_init(0x40a00000, &s->pic[PXA2XX_PIC_OST_0],
2046 s->pic[PXA27X_PIC_OST_4_11]);
2048 s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 121);
2050 index = drive_get_index(IF_SD, 0, 0);
2051 if (index == -1) {
2052 fprintf(stderr, "qemu: missing SecureDigital device\n");
2053 exit(1);
2055 s->mmc = pxa2xx_mmci_init(0x41100000, drives_table[index].bdrv,
2056 s->pic[PXA2XX_PIC_MMC], s->dma);
2058 for (i = 0; pxa270_serial[i].io_base; i ++)
2059 if (serial_hds[i])
2060 serial_mm_init(pxa270_serial[i].io_base, 2,
2061 s->pic[pxa270_serial[i].irqn], 14857000/16,
2062 serial_hds[i], 1);
2063 else
2064 break;
2065 if (serial_hds[i])
2066 s->fir = pxa2xx_fir_init(0x40800000, s->pic[PXA2XX_PIC_ICP],
2067 s->dma, serial_hds[i]);
2069 s->lcd = pxa2xx_lcdc_init(0x44000000, s->pic[PXA2XX_PIC_LCD]);
2071 s->cm_base = 0x41300000;
2072 s->cm_regs[CCCR >> 2] = 0x02000210; /* 416.0 MHz */
2073 s->clkcfg = 0x00000009; /* Turbo mode active */
2074 iomemtype = cpu_register_io_memory(0, pxa2xx_cm_readfn,
2075 pxa2xx_cm_writefn, s);
2076 cpu_register_physical_memory(s->cm_base, 0x1000, iomemtype);
2077 register_savevm("pxa2xx_cm", 0, 0, pxa2xx_cm_save, pxa2xx_cm_load, s);
2079 cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s);
2081 s->mm_base = 0x48000000;
2082 s->mm_regs[MDMRS >> 2] = 0x00020002;
2083 s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2084 s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */
2085 iomemtype = cpu_register_io_memory(0, pxa2xx_mm_readfn,
2086 pxa2xx_mm_writefn, s);
2087 cpu_register_physical_memory(s->mm_base, 0x1000, iomemtype);
2088 register_savevm("pxa2xx_mm", 0, 0, pxa2xx_mm_save, pxa2xx_mm_load, s);
2090 s->pm_base = 0x40f00000;
2091 iomemtype = cpu_register_io_memory(0, pxa2xx_pm_readfn,
2092 pxa2xx_pm_writefn, s);
2093 cpu_register_physical_memory(s->pm_base, 0x100, iomemtype);
2094 register_savevm("pxa2xx_pm", 0, 0, pxa2xx_pm_save, pxa2xx_pm_load, s);
2096 for (i = 0; pxa27x_ssp[i].io_base; i ++);
2097 s->ssp = (struct pxa2xx_ssp_s **)
2098 qemu_mallocz(sizeof(struct pxa2xx_ssp_s *) * i);
2099 ssp = (struct pxa2xx_ssp_s *)
2100 qemu_mallocz(sizeof(struct pxa2xx_ssp_s) * i);
2101 for (i = 0; pxa27x_ssp[i].io_base; i ++) {
2102 target_phys_addr_t ssp_base;
2103 s->ssp[i] = &ssp[i];
2104 ssp_base = pxa27x_ssp[i].io_base;
2105 ssp[i].irq = s->pic[pxa27x_ssp[i].irqn];
2107 iomemtype = cpu_register_io_memory(0, pxa2xx_ssp_readfn,
2108 pxa2xx_ssp_writefn, &ssp[i]);
2109 cpu_register_physical_memory(ssp_base, 0x1000, iomemtype);
2110 register_savevm("pxa2xx_ssp", i, 0,
2111 pxa2xx_ssp_save, pxa2xx_ssp_load, s);
2114 if (usb_enabled) {
2115 usb_ohci_init_pxa(0x4c000000, 3, -1, s->pic[PXA2XX_PIC_USBH1]);
2118 s->pcmcia[0] = pxa2xx_pcmcia_init(0x20000000);
2119 s->pcmcia[1] = pxa2xx_pcmcia_init(0x30000000);
2121 s->rtc_base = 0x40900000;
2122 iomemtype = cpu_register_io_memory(0, pxa2xx_rtc_readfn,
2123 pxa2xx_rtc_writefn, s);
2124 cpu_register_physical_memory(s->rtc_base, 0x1000, iomemtype);
2125 pxa2xx_rtc_init(s);
2126 register_savevm("pxa2xx_rtc", 0, 0, pxa2xx_rtc_save, pxa2xx_rtc_load, s);
2128 s->i2c[0] = pxa2xx_i2c_init(0x40301600, s->pic[PXA2XX_PIC_I2C], 0xffff);
2129 s->i2c[1] = pxa2xx_i2c_init(0x40f00100, s->pic[PXA2XX_PIC_PWRI2C], 0xff);
2131 s->i2s = pxa2xx_i2s_init(0x40400000, s->pic[PXA2XX_PIC_I2S], s->dma);
2133 s->kp = pxa27x_keypad_init(0x41500000, s->pic[PXA2XX_PIC_KEYPAD]);
2135 /* GPIO1 resets the processor */
2136 /* The handler can be overridden by board-specific code */
2137 pxa2xx_gpio_out_set(s->gpio, 1, s->reset);
2138 return s;
2141 /* Initialise a PXA255 integrated chip (ARM based core). */
2142 struct pxa2xx_state_s *pxa255_init(unsigned int sdram_size)
2144 struct pxa2xx_state_s *s;
2145 struct pxa2xx_ssp_s *ssp;
2146 int iomemtype, i;
2147 int index;
2149 s = (struct pxa2xx_state_s *) qemu_mallocz(sizeof(struct pxa2xx_state_s));
2151 s->env = cpu_init("pxa255");
2152 if (!s->env) {
2153 fprintf(stderr, "Unable to find CPU definition\n");
2154 exit(1);
2156 s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
2158 /* SDRAM & Internal Memory Storage */
2159 cpu_register_physical_memory(PXA2XX_SDRAM_BASE, sdram_size,
2160 qemu_ram_alloc(sdram_size) | IO_MEM_RAM);
2161 cpu_register_physical_memory(PXA2XX_INTERNAL_BASE, PXA2XX_INTERNAL_SIZE,
2162 qemu_ram_alloc(PXA2XX_INTERNAL_SIZE) | IO_MEM_RAM);
2164 s->pic = pxa2xx_pic_init(0x40d00000, s->env);
2166 s->dma = pxa255_dma_init(0x40000000, s->pic[PXA2XX_PIC_DMA]);
2168 pxa25x_timer_init(0x40a00000, &s->pic[PXA2XX_PIC_OST_0]);
2170 s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 85);
2172 index = drive_get_index(IF_SD, 0, 0);
2173 if (index == -1) {
2174 fprintf(stderr, "qemu: missing SecureDigital device\n");
2175 exit(1);
2177 s->mmc = pxa2xx_mmci_init(0x41100000, drives_table[index].bdrv,
2178 s->pic[PXA2XX_PIC_MMC], s->dma);
2180 for (i = 0; pxa255_serial[i].io_base; i ++)
2181 if (serial_hds[i])
2182 serial_mm_init(pxa255_serial[i].io_base, 2,
2183 s->pic[pxa255_serial[i].irqn], 14745600/16,
2184 serial_hds[i], 1);
2185 else
2186 break;
2187 if (serial_hds[i])
2188 s->fir = pxa2xx_fir_init(0x40800000, s->pic[PXA2XX_PIC_ICP],
2189 s->dma, serial_hds[i]);
2191 s->lcd = pxa2xx_lcdc_init(0x44000000, s->pic[PXA2XX_PIC_LCD]);
2193 s->cm_base = 0x41300000;
2194 s->cm_regs[CCCR >> 2] = 0x02000210; /* 416.0 MHz */
2195 s->clkcfg = 0x00000009; /* Turbo mode active */
2196 iomemtype = cpu_register_io_memory(0, pxa2xx_cm_readfn,
2197 pxa2xx_cm_writefn, s);
2198 cpu_register_physical_memory(s->cm_base, 0x1000, iomemtype);
2199 register_savevm("pxa2xx_cm", 0, 0, pxa2xx_cm_save, pxa2xx_cm_load, s);
2201 cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s);
2203 s->mm_base = 0x48000000;
2204 s->mm_regs[MDMRS >> 2] = 0x00020002;
2205 s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2206 s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */
2207 iomemtype = cpu_register_io_memory(0, pxa2xx_mm_readfn,
2208 pxa2xx_mm_writefn, s);
2209 cpu_register_physical_memory(s->mm_base, 0x1000, iomemtype);
2210 register_savevm("pxa2xx_mm", 0, 0, pxa2xx_mm_save, pxa2xx_mm_load, s);
2212 s->pm_base = 0x40f00000;
2213 iomemtype = cpu_register_io_memory(0, pxa2xx_pm_readfn,
2214 pxa2xx_pm_writefn, s);
2215 cpu_register_physical_memory(s->pm_base, 0x100, iomemtype);
2216 register_savevm("pxa2xx_pm", 0, 0, pxa2xx_pm_save, pxa2xx_pm_load, s);
2218 for (i = 0; pxa255_ssp[i].io_base; i ++);
2219 s->ssp = (struct pxa2xx_ssp_s **)
2220 qemu_mallocz(sizeof(struct pxa2xx_ssp_s *) * i);
2221 ssp = (struct pxa2xx_ssp_s *)
2222 qemu_mallocz(sizeof(struct pxa2xx_ssp_s) * i);
2223 for (i = 0; pxa255_ssp[i].io_base; i ++) {
2224 target_phys_addr_t ssp_base;
2225 s->ssp[i] = &ssp[i];
2226 ssp_base = pxa255_ssp[i].io_base;
2227 ssp[i].irq = s->pic[pxa255_ssp[i].irqn];
2229 iomemtype = cpu_register_io_memory(0, pxa2xx_ssp_readfn,
2230 pxa2xx_ssp_writefn, &ssp[i]);
2231 cpu_register_physical_memory(ssp_base, 0x1000, iomemtype);
2232 register_savevm("pxa2xx_ssp", i, 0,
2233 pxa2xx_ssp_save, pxa2xx_ssp_load, s);
2236 if (usb_enabled) {
2237 usb_ohci_init_pxa(0x4c000000, 3, -1, s->pic[PXA2XX_PIC_USBH1]);
2240 s->pcmcia[0] = pxa2xx_pcmcia_init(0x20000000);
2241 s->pcmcia[1] = pxa2xx_pcmcia_init(0x30000000);
2243 s->rtc_base = 0x40900000;
2244 iomemtype = cpu_register_io_memory(0, pxa2xx_rtc_readfn,
2245 pxa2xx_rtc_writefn, s);
2246 cpu_register_physical_memory(s->rtc_base, 0x1000, iomemtype);
2247 pxa2xx_rtc_init(s);
2248 register_savevm("pxa2xx_rtc", 0, 0, pxa2xx_rtc_save, pxa2xx_rtc_load, s);
2250 s->i2c[0] = pxa2xx_i2c_init(0x40301600, s->pic[PXA2XX_PIC_I2C], 0xffff);
2251 s->i2c[1] = pxa2xx_i2c_init(0x40f00100, s->pic[PXA2XX_PIC_PWRI2C], 0xff);
2253 s->i2s = pxa2xx_i2s_init(0x40400000, s->pic[PXA2XX_PIC_I2S], s->dma);
2255 /* GPIO1 resets the processor */
2256 /* The handler can be overridden by board-specific code */
2257 pxa2xx_gpio_out_set(s->gpio, 1, s->reset);
2258 return s;