qemu: zero ioport_opaque on isa_unassign_ioport (Marcelo Tosatti)
[qemu/mini2440/sniper_sniper_test.git] / hw / etraxfs_dma.c
blob47236378e073b718751a0dea4320a7f068647e24
1 /*
2 * QEMU ETRAX DMA Controller.
4 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <stdio.h>
25 #include <sys/time.h>
26 #include "hw.h"
27 #include "qemu-common.h"
28 #include "sysemu.h"
30 #include "etraxfs_dma.h"
32 #define D(x)
34 #define RW_DATA (0x0 / 4)
35 #define RW_SAVED_DATA (0x58 / 4)
36 #define RW_SAVED_DATA_BUF (0x5c / 4)
37 #define RW_GROUP (0x60 / 4)
38 #define RW_GROUP_DOWN (0x7c / 4)
39 #define RW_CMD (0x80 / 4)
40 #define RW_CFG (0x84 / 4)
41 #define RW_STAT (0x88 / 4)
42 #define RW_INTR_MASK (0x8c / 4)
43 #define RW_ACK_INTR (0x90 / 4)
44 #define R_INTR (0x94 / 4)
45 #define R_MASKED_INTR (0x98 / 4)
46 #define RW_STREAM_CMD (0x9c / 4)
48 #define DMA_REG_MAX (0x100 / 4)
50 /* descriptors */
52 // ------------------------------------------------------------ dma_descr_group
53 typedef struct dma_descr_group {
54 struct dma_descr_group *next;
55 unsigned eol : 1;
56 unsigned tol : 1;
57 unsigned bol : 1;
58 unsigned : 1;
59 unsigned intr : 1;
60 unsigned : 2;
61 unsigned en : 1;
62 unsigned : 7;
63 unsigned dis : 1;
64 unsigned md : 16;
65 struct dma_descr_group *up;
66 union {
67 struct dma_descr_context *context;
68 struct dma_descr_group *group;
69 } down;
70 } dma_descr_group;
72 // ---------------------------------------------------------- dma_descr_context
73 typedef struct dma_descr_context {
74 struct dma_descr_context *next;
75 unsigned eol : 1;
76 unsigned : 3;
77 unsigned intr : 1;
78 unsigned : 1;
79 unsigned store_mode : 1;
80 unsigned en : 1;
81 unsigned : 7;
82 unsigned dis : 1;
83 unsigned md0 : 16;
84 unsigned md1;
85 unsigned md2;
86 unsigned md3;
87 unsigned md4;
88 struct dma_descr_data *saved_data;
89 char *saved_data_buf;
90 } dma_descr_context;
92 // ------------------------------------------------------------- dma_descr_data
93 typedef struct dma_descr_data {
94 struct dma_descr_data *next;
95 char *buf;
96 unsigned eol : 1;
97 unsigned : 2;
98 unsigned out_eop : 1;
99 unsigned intr : 1;
100 unsigned wait : 1;
101 unsigned : 2;
102 unsigned : 3;
103 unsigned in_eop : 1;
104 unsigned : 4;
105 unsigned md : 16;
106 char *after;
107 } dma_descr_data;
109 /* Constants */
110 enum {
111 regk_dma_ack_pkt = 0x00000100,
112 regk_dma_anytime = 0x00000001,
113 regk_dma_array = 0x00000008,
114 regk_dma_burst = 0x00000020,
115 regk_dma_client = 0x00000002,
116 regk_dma_copy_next = 0x00000010,
117 regk_dma_copy_up = 0x00000020,
118 regk_dma_data_at_eol = 0x00000001,
119 regk_dma_dis_c = 0x00000010,
120 regk_dma_dis_g = 0x00000020,
121 regk_dma_idle = 0x00000001,
122 regk_dma_intern = 0x00000004,
123 regk_dma_load_c = 0x00000200,
124 regk_dma_load_c_n = 0x00000280,
125 regk_dma_load_c_next = 0x00000240,
126 regk_dma_load_d = 0x00000140,
127 regk_dma_load_g = 0x00000300,
128 regk_dma_load_g_down = 0x000003c0,
129 regk_dma_load_g_next = 0x00000340,
130 regk_dma_load_g_up = 0x00000380,
131 regk_dma_next_en = 0x00000010,
132 regk_dma_next_pkt = 0x00000010,
133 regk_dma_no = 0x00000000,
134 regk_dma_only_at_wait = 0x00000000,
135 regk_dma_restore = 0x00000020,
136 regk_dma_rst = 0x00000001,
137 regk_dma_running = 0x00000004,
138 regk_dma_rw_cfg_default = 0x00000000,
139 regk_dma_rw_cmd_default = 0x00000000,
140 regk_dma_rw_intr_mask_default = 0x00000000,
141 regk_dma_rw_stat_default = 0x00000101,
142 regk_dma_rw_stream_cmd_default = 0x00000000,
143 regk_dma_save_down = 0x00000020,
144 regk_dma_save_up = 0x00000020,
145 regk_dma_set_reg = 0x00000050,
146 regk_dma_set_w_size1 = 0x00000190,
147 regk_dma_set_w_size2 = 0x000001a0,
148 regk_dma_set_w_size4 = 0x000001c0,
149 regk_dma_stopped = 0x00000002,
150 regk_dma_store_c = 0x00000002,
151 regk_dma_store_descr = 0x00000000,
152 regk_dma_store_g = 0x00000004,
153 regk_dma_store_md = 0x00000001,
154 regk_dma_sw = 0x00000008,
155 regk_dma_update_down = 0x00000020,
156 regk_dma_yes = 0x00000001
159 enum dma_ch_state
161 RST = 1,
162 STOPPED = 2,
163 RUNNING = 4
166 struct fs_dma_channel
168 qemu_irq *irq;
169 struct etraxfs_dma_client *client;
171 /* Internal status. */
172 int stream_cmd_src;
173 enum dma_ch_state state;
175 unsigned int input : 1;
176 unsigned int eol : 1;
178 struct dma_descr_group current_g;
179 struct dma_descr_context current_c;
180 struct dma_descr_data current_d;
182 /* Controll registers. */
183 uint32_t regs[DMA_REG_MAX];
186 struct fs_dma_ctrl
188 int map;
189 CPUState *env;
191 int nr_channels;
192 struct fs_dma_channel *channels;
194 QEMUBH *bh;
197 static void DMA_run(void *opaque);
198 static int channel_out_run(struct fs_dma_ctrl *ctrl, int c);
200 static inline uint32_t channel_reg(struct fs_dma_ctrl *ctrl, int c, int reg)
202 return ctrl->channels[c].regs[reg];
205 static inline int channel_stopped(struct fs_dma_ctrl *ctrl, int c)
207 return channel_reg(ctrl, c, RW_CFG) & 2;
210 static inline int channel_en(struct fs_dma_ctrl *ctrl, int c)
212 return (channel_reg(ctrl, c, RW_CFG) & 1)
213 && ctrl->channels[c].client;
216 static inline int fs_channel(target_phys_addr_t addr)
218 /* Every channel has a 0x2000 ctrl register map. */
219 return addr >> 13;
222 #ifdef USE_THIS_DEAD_CODE
223 static void channel_load_g(struct fs_dma_ctrl *ctrl, int c)
225 target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP);
227 /* Load and decode. FIXME: handle endianness. */
228 cpu_physical_memory_read (addr,
229 (void *) &ctrl->channels[c].current_g,
230 sizeof ctrl->channels[c].current_g);
233 static void dump_c(int ch, struct dma_descr_context *c)
235 printf("%s ch=%d\n", __func__, ch);
236 printf("next=%p\n", c->next);
237 printf("saved_data=%p\n", c->saved_data);
238 printf("saved_data_buf=%p\n", c->saved_data_buf);
239 printf("eol=%x\n", (uint32_t) c->eol);
242 static void dump_d(int ch, struct dma_descr_data *d)
244 printf("%s ch=%d\n", __func__, ch);
245 printf("next=%p\n", d->next);
246 printf("buf=%p\n", d->buf);
247 printf("after=%p\n", d->after);
248 printf("intr=%x\n", (uint32_t) d->intr);
249 printf("out_eop=%x\n", (uint32_t) d->out_eop);
250 printf("in_eop=%x\n", (uint32_t) d->in_eop);
251 printf("eol=%x\n", (uint32_t) d->eol);
253 #endif
255 static void channel_load_c(struct fs_dma_ctrl *ctrl, int c)
257 target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
259 /* Load and decode. FIXME: handle endianness. */
260 cpu_physical_memory_read (addr,
261 (void *) &ctrl->channels[c].current_c,
262 sizeof ctrl->channels[c].current_c);
264 D(dump_c(c, &ctrl->channels[c].current_c));
265 /* I guess this should update the current pos. */
266 ctrl->channels[c].regs[RW_SAVED_DATA] =
267 (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data;
268 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
269 (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data_buf;
272 static void channel_load_d(struct fs_dma_ctrl *ctrl, int c)
274 target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
276 /* Load and decode. FIXME: handle endianness. */
277 D(printf("%s ch=%d addr=%x\n", __func__, c, addr));
278 cpu_physical_memory_read (addr,
279 (void *) &ctrl->channels[c].current_d,
280 sizeof ctrl->channels[c].current_d);
282 D(dump_d(c, &ctrl->channels[c].current_d));
283 ctrl->channels[c].regs[RW_DATA] = addr;
286 static void channel_store_c(struct fs_dma_ctrl *ctrl, int c)
288 target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
290 /* Encode and store. FIXME: handle endianness. */
291 D(printf("%s ch=%d addr=%x\n", __func__, c, addr));
292 D(dump_d(c, &ctrl->channels[c].current_d));
293 cpu_physical_memory_write (addr,
294 (void *) &ctrl->channels[c].current_c,
295 sizeof ctrl->channels[c].current_c);
298 static void channel_store_d(struct fs_dma_ctrl *ctrl, int c)
300 target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
302 /* Encode and store. FIXME: handle endianness. */
303 D(printf("%s ch=%d addr=%x\n", __func__, c, addr));
304 cpu_physical_memory_write (addr,
305 (void *) &ctrl->channels[c].current_d,
306 sizeof ctrl->channels[c].current_d);
309 static inline void channel_stop(struct fs_dma_ctrl *ctrl, int c)
311 /* FIXME: */
314 static inline void channel_start(struct fs_dma_ctrl *ctrl, int c)
316 if (ctrl->channels[c].client)
318 ctrl->channels[c].eol = 0;
319 ctrl->channels[c].state = RUNNING;
320 if (!ctrl->channels[c].input)
321 channel_out_run(ctrl, c);
322 } else
323 printf("WARNING: starting DMA ch %d with no client\n", c);
325 qemu_bh_schedule_idle(ctrl->bh);
328 static void channel_continue(struct fs_dma_ctrl *ctrl, int c)
330 if (!channel_en(ctrl, c)
331 || channel_stopped(ctrl, c)
332 || ctrl->channels[c].state != RUNNING
333 /* Only reload the current data descriptor if it has eol set. */
334 || !ctrl->channels[c].current_d.eol) {
335 D(printf("continue failed ch=%d state=%d stopped=%d en=%d eol=%d\n",
336 c, ctrl->channels[c].state,
337 channel_stopped(ctrl, c),
338 channel_en(ctrl,c),
339 ctrl->channels[c].eol));
340 D(dump_d(c, &ctrl->channels[c].current_d));
341 return;
344 /* Reload the current descriptor. */
345 channel_load_d(ctrl, c);
347 /* If the current descriptor cleared the eol flag and we had already
348 reached eol state, do the continue. */
349 if (!ctrl->channels[c].current_d.eol && ctrl->channels[c].eol) {
350 D(printf("continue %d ok %p\n", c,
351 ctrl->channels[c].current_d.next));
352 ctrl->channels[c].regs[RW_SAVED_DATA] =
353 (uint32_t)(unsigned long)ctrl->channels[c].current_d.next;
354 channel_load_d(ctrl, c);
355 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
356 (uint32_t)(unsigned long)ctrl->channels[c].current_d.buf;
358 channel_start(ctrl, c);
360 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
361 (uint32_t)(unsigned long)ctrl->channels[c].current_d.buf;
364 static void channel_stream_cmd(struct fs_dma_ctrl *ctrl, int c, uint32_t v)
366 unsigned int cmd = v & ((1 << 10) - 1);
368 D(printf("%s ch=%d cmd=%x\n",
369 __func__, c, cmd));
370 if (cmd & regk_dma_load_d) {
371 channel_load_d(ctrl, c);
372 if (cmd & regk_dma_burst)
373 channel_start(ctrl, c);
376 if (cmd & regk_dma_load_c) {
377 channel_load_c(ctrl, c);
381 static void channel_update_irq(struct fs_dma_ctrl *ctrl, int c)
383 D(printf("%s %d\n", __func__, c));
384 ctrl->channels[c].regs[R_INTR] &=
385 ~(ctrl->channels[c].regs[RW_ACK_INTR]);
387 ctrl->channels[c].regs[R_MASKED_INTR] =
388 ctrl->channels[c].regs[R_INTR]
389 & ctrl->channels[c].regs[RW_INTR_MASK];
391 D(printf("%s: chan=%d masked_intr=%x\n", __func__,
393 ctrl->channels[c].regs[R_MASKED_INTR]));
395 if (ctrl->channels[c].regs[R_MASKED_INTR])
396 qemu_irq_raise(ctrl->channels[c].irq[0]);
397 else
398 qemu_irq_lower(ctrl->channels[c].irq[0]);
401 static int channel_out_run(struct fs_dma_ctrl *ctrl, int c)
403 uint32_t len;
404 uint32_t saved_data_buf;
405 unsigned char buf[2 * 1024];
407 if (ctrl->channels[c].eol)
408 return 0;
410 do {
411 D(printf("ch=%d buf=%x after=%x saved_data_buf=%x\n",
413 (uint32_t)ctrl->channels[c].current_d.buf,
414 (uint32_t)ctrl->channels[c].current_d.after,
415 saved_data_buf));
417 channel_load_d(ctrl, c);
418 saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
419 len = (uint32_t)(unsigned long)
420 ctrl->channels[c].current_d.after;
421 len -= saved_data_buf;
423 if (len > sizeof buf)
424 len = sizeof buf;
425 cpu_physical_memory_read (saved_data_buf, buf, len);
427 D(printf("channel %d pushes %x %u bytes\n", c,
428 saved_data_buf, len));
430 if (ctrl->channels[c].client->client.push)
431 ctrl->channels[c].client->client.push(
432 ctrl->channels[c].client->client.opaque,
433 buf, len);
434 else
435 printf("WARNING: DMA ch%d dataloss,"
436 " no attached client.\n", c);
438 saved_data_buf += len;
440 if (saved_data_buf == (uint32_t)(unsigned long)
441 ctrl->channels[c].current_d.after) {
442 /* Done. Step to next. */
443 if (ctrl->channels[c].current_d.out_eop) {
444 /* TODO: signal eop to the client. */
445 D(printf("signal eop\n"));
447 if (ctrl->channels[c].current_d.intr) {
448 /* TODO: signal eop to the client. */
449 /* data intr. */
450 D(printf("signal intr %d eol=%d\n",
451 len, ctrl->channels[c].current_d.eol));
452 ctrl->channels[c].regs[R_INTR] |= (1 << 2);
453 channel_update_irq(ctrl, c);
455 channel_store_d(ctrl, c);
456 if (ctrl->channels[c].current_d.eol) {
457 D(printf("channel %d EOL\n", c));
458 ctrl->channels[c].eol = 1;
460 /* Mark the context as disabled. */
461 ctrl->channels[c].current_c.dis = 1;
462 channel_store_c(ctrl, c);
464 channel_stop(ctrl, c);
465 } else {
466 ctrl->channels[c].regs[RW_SAVED_DATA] =
467 (uint32_t)(unsigned long)ctrl->
468 channels[c].current_d.next;
469 /* Load new descriptor. */
470 channel_load_d(ctrl, c);
471 saved_data_buf = (uint32_t)(unsigned long)
472 ctrl->channels[c].current_d.buf;
475 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
476 saved_data_buf;
477 D(dump_d(c, &ctrl->channels[c].current_d));
479 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
480 } while (!ctrl->channels[c].eol);
481 return 1;
484 static int channel_in_process(struct fs_dma_ctrl *ctrl, int c,
485 unsigned char *buf, int buflen, int eop)
487 uint32_t len;
488 uint32_t saved_data_buf;
490 if (ctrl->channels[c].eol == 1)
491 return 0;
493 channel_load_d(ctrl, c);
494 saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
495 len = (uint32_t)(unsigned long)ctrl->channels[c].current_d.after;
496 len -= saved_data_buf;
498 if (len > buflen)
499 len = buflen;
501 cpu_physical_memory_write (saved_data_buf, buf, len);
502 saved_data_buf += len;
504 if (saved_data_buf ==
505 (uint32_t)(unsigned long)ctrl->channels[c].current_d.after
506 || eop) {
507 uint32_t r_intr = ctrl->channels[c].regs[R_INTR];
509 D(printf("in dscr end len=%d\n",
510 ctrl->channels[c].current_d.after
511 - ctrl->channels[c].current_d.buf));
512 ctrl->channels[c].current_d.after =
513 (void *)(unsigned long) saved_data_buf;
515 /* Done. Step to next. */
516 if (ctrl->channels[c].current_d.intr) {
517 /* TODO: signal eop to the client. */
518 /* data intr. */
519 ctrl->channels[c].regs[R_INTR] |= 3;
521 if (eop) {
522 ctrl->channels[c].current_d.in_eop = 1;
523 ctrl->channels[c].regs[R_INTR] |= 8;
525 if (r_intr != ctrl->channels[c].regs[R_INTR])
526 channel_update_irq(ctrl, c);
528 channel_store_d(ctrl, c);
529 D(dump_d(c, &ctrl->channels[c].current_d));
531 if (ctrl->channels[c].current_d.eol) {
532 D(printf("channel %d EOL\n", c));
533 ctrl->channels[c].eol = 1;
535 /* Mark the context as disabled. */
536 ctrl->channels[c].current_c.dis = 1;
537 channel_store_c(ctrl, c);
539 channel_stop(ctrl, c);
540 } else {
541 ctrl->channels[c].regs[RW_SAVED_DATA] =
542 (uint32_t)(unsigned long)ctrl->
543 channels[c].current_d.next;
544 /* Load new descriptor. */
545 channel_load_d(ctrl, c);
546 saved_data_buf = (uint32_t)(unsigned long)
547 ctrl->channels[c].current_d.buf;
551 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
552 return len;
555 static inline int channel_in_run(struct fs_dma_ctrl *ctrl, int c)
557 if (ctrl->channels[c].client->client.pull) {
558 ctrl->channels[c].client->client.pull(
559 ctrl->channels[c].client->client.opaque);
560 return 1;
561 } else
562 return 0;
565 static uint32_t dma_rinvalid (void *opaque, target_phys_addr_t addr)
567 struct fs_dma_ctrl *ctrl = opaque;
568 CPUState *env = ctrl->env;
569 cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n",
570 addr);
571 return 0;
574 static uint32_t
575 dma_readl (void *opaque, target_phys_addr_t addr)
577 struct fs_dma_ctrl *ctrl = opaque;
578 int c;
579 uint32_t r = 0;
581 /* Make addr relative to this channel and bounded to nr regs. */
582 c = fs_channel(addr);
583 addr &= 0xff;
584 addr >>= 2;
585 switch (addr)
587 case RW_STAT:
588 r = ctrl->channels[c].state & 7;
589 r |= ctrl->channels[c].eol << 5;
590 r |= ctrl->channels[c].stream_cmd_src << 8;
591 break;
593 default:
594 r = ctrl->channels[c].regs[addr];
595 D(printf ("%s c=%d addr=%x\n",
596 __func__, c, addr));
597 break;
599 return r;
602 static void
603 dma_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value)
605 struct fs_dma_ctrl *ctrl = opaque;
606 CPUState *env = ctrl->env;
607 cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n",
608 addr);
611 static void
612 dma_update_state(struct fs_dma_ctrl *ctrl, int c)
614 if ((ctrl->channels[c].regs[RW_CFG] & 1) != 3) {
615 if (ctrl->channels[c].regs[RW_CFG] & 2)
616 ctrl->channels[c].state = STOPPED;
617 if (!(ctrl->channels[c].regs[RW_CFG] & 1))
618 ctrl->channels[c].state = RST;
622 static void
623 dma_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
625 struct fs_dma_ctrl *ctrl = opaque;
626 int c;
628 /* Make addr relative to this channel and bounded to nr regs. */
629 c = fs_channel(addr);
630 addr &= 0xff;
631 addr >>= 2;
632 switch (addr)
634 case RW_DATA:
635 ctrl->channels[c].regs[addr] = value;
636 break;
638 case RW_CFG:
639 ctrl->channels[c].regs[addr] = value;
640 dma_update_state(ctrl, c);
641 break;
642 case RW_CMD:
643 /* continue. */
644 if (value & ~1)
645 printf("Invalid store to ch=%d RW_CMD %x\n",
646 c, value);
647 ctrl->channels[c].regs[addr] = value;
648 channel_continue(ctrl, c);
649 break;
651 case RW_SAVED_DATA:
652 case RW_SAVED_DATA_BUF:
653 case RW_GROUP:
654 case RW_GROUP_DOWN:
655 ctrl->channels[c].regs[addr] = value;
656 break;
658 case RW_ACK_INTR:
659 case RW_INTR_MASK:
660 ctrl->channels[c].regs[addr] = value;
661 channel_update_irq(ctrl, c);
662 if (addr == RW_ACK_INTR)
663 ctrl->channels[c].regs[RW_ACK_INTR] = 0;
664 break;
666 case RW_STREAM_CMD:
667 if (value & ~1023)
668 printf("Invalid store to ch=%d "
669 "RW_STREAMCMD %x\n",
670 c, value);
671 ctrl->channels[c].regs[addr] = value;
672 D(printf("stream_cmd ch=%d\n", c));
673 channel_stream_cmd(ctrl, c, value);
674 break;
676 default:
677 D(printf ("%s c=%d %x %x\n", __func__, c, addr));
678 break;
682 static CPUReadMemoryFunc *dma_read[] = {
683 &dma_rinvalid,
684 &dma_rinvalid,
685 &dma_readl,
688 static CPUWriteMemoryFunc *dma_write[] = {
689 &dma_winvalid,
690 &dma_winvalid,
691 &dma_writel,
694 static int etraxfs_dmac_run(void *opaque)
696 struct fs_dma_ctrl *ctrl = opaque;
697 int i;
698 int p = 0;
700 for (i = 0;
701 i < ctrl->nr_channels;
702 i++)
704 if (ctrl->channels[i].state == RUNNING)
706 if (ctrl->channels[i].input) {
707 p += channel_in_run(ctrl, i);
708 } else {
709 p += channel_out_run(ctrl, i);
713 return p;
716 int etraxfs_dmac_input(struct etraxfs_dma_client *client,
717 void *buf, int len, int eop)
719 return channel_in_process(client->ctrl, client->channel,
720 buf, len, eop);
723 /* Connect an IRQ line with a channel. */
724 void etraxfs_dmac_connect(void *opaque, int c, qemu_irq *line, int input)
726 struct fs_dma_ctrl *ctrl = opaque;
727 ctrl->channels[c].irq = line;
728 ctrl->channels[c].input = input;
731 void etraxfs_dmac_connect_client(void *opaque, int c,
732 struct etraxfs_dma_client *cl)
734 struct fs_dma_ctrl *ctrl = opaque;
735 cl->ctrl = ctrl;
736 cl->channel = c;
737 ctrl->channels[c].client = cl;
741 static void DMA_run(void *opaque)
743 struct fs_dma_ctrl *etraxfs_dmac = opaque;
744 int p = 1;
746 if (vm_running)
747 p = etraxfs_dmac_run(etraxfs_dmac);
749 if (p)
750 qemu_bh_schedule_idle(etraxfs_dmac->bh);
753 void *etraxfs_dmac_init(CPUState *env,
754 target_phys_addr_t base, int nr_channels)
756 struct fs_dma_ctrl *ctrl = NULL;
758 ctrl = qemu_mallocz(sizeof *ctrl);
760 ctrl->bh = qemu_bh_new(DMA_run, ctrl);
762 ctrl->env = env;
763 ctrl->nr_channels = nr_channels;
764 ctrl->channels = qemu_mallocz(sizeof ctrl->channels[0] * nr_channels);
766 ctrl->map = cpu_register_io_memory(0, dma_read, dma_write, ctrl);
767 cpu_register_physical_memory(base, nr_channels * 0x2000, ctrl->map);
768 return ctrl;