Use the host exit syscall for exiting (Lauro Ramos Venancio).
[qemu/mini2440/sniper_sniper_test.git] / exec.c
blobf1fcec833cfea35d81c0776bbffd7bf99dd1108d
1 /*
2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "config.h"
21 #ifdef _WIN32
22 #define WIN32_LEAN_AND_MEAN
23 #include <windows.h>
24 #else
25 #include <sys/types.h>
26 #include <sys/mman.h>
27 #endif
28 #include <stdlib.h>
29 #include <stdio.h>
30 #include <stdarg.h>
31 #include <string.h>
32 #include <errno.h>
33 #include <unistd.h>
34 #include <inttypes.h>
36 #include "cpu.h"
37 #include "exec-all.h"
38 #include "qemu-common.h"
39 #include "tcg.h"
40 #include "hw/hw.h"
41 #include "osdep.h"
42 #if defined(CONFIG_USER_ONLY)
43 #include <qemu.h>
44 #endif
46 //#define DEBUG_TB_INVALIDATE
47 //#define DEBUG_FLUSH
48 //#define DEBUG_TLB
49 //#define DEBUG_UNASSIGNED
51 /* make various TB consistency checks */
52 //#define DEBUG_TB_CHECK
53 //#define DEBUG_TLB_CHECK
55 //#define DEBUG_IOPORT
56 //#define DEBUG_SUBPAGE
58 #if !defined(CONFIG_USER_ONLY)
59 /* TB consistency checks only implemented for usermode emulation. */
60 #undef DEBUG_TB_CHECK
61 #endif
63 #define SMC_BITMAP_USE_THRESHOLD 10
65 #define MMAP_AREA_START 0x00000000
66 #define MMAP_AREA_END 0xa8000000
68 #if defined(TARGET_SPARC64)
69 #define TARGET_PHYS_ADDR_SPACE_BITS 41
70 #elif defined(TARGET_SPARC)
71 #define TARGET_PHYS_ADDR_SPACE_BITS 36
72 #elif defined(TARGET_ALPHA)
73 #define TARGET_PHYS_ADDR_SPACE_BITS 42
74 #define TARGET_VIRT_ADDR_SPACE_BITS 42
75 #elif defined(TARGET_PPC64)
76 #define TARGET_PHYS_ADDR_SPACE_BITS 42
77 #elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
78 #define TARGET_PHYS_ADDR_SPACE_BITS 42
79 #elif defined(TARGET_I386) && !defined(USE_KQEMU)
80 #define TARGET_PHYS_ADDR_SPACE_BITS 36
81 #else
82 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
83 #define TARGET_PHYS_ADDR_SPACE_BITS 32
84 #endif
86 static TranslationBlock *tbs;
87 int code_gen_max_blocks;
88 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
89 static int nb_tbs;
90 /* any access to the tbs or the page table must use this lock */
91 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
93 #if defined(__arm__) || defined(__sparc_v9__)
94 /* The prologue must be reachable with a direct jump. ARM and Sparc64
95 have limited branch ranges (possibly also PPC) so place it in a
96 section close to code segment. */
97 #define code_gen_section \
98 __attribute__((__section__(".gen_code"))) \
99 __attribute__((aligned (32)))
100 #else
101 #define code_gen_section \
102 __attribute__((aligned (32)))
103 #endif
105 uint8_t code_gen_prologue[1024] code_gen_section;
106 static uint8_t *code_gen_buffer;
107 static unsigned long code_gen_buffer_size;
108 /* threshold to flush the translated code buffer */
109 static unsigned long code_gen_buffer_max_size;
110 uint8_t *code_gen_ptr;
112 #if !defined(CONFIG_USER_ONLY)
113 ram_addr_t phys_ram_size;
114 int phys_ram_fd;
115 uint8_t *phys_ram_base;
116 uint8_t *phys_ram_dirty;
117 static int in_migration;
118 static ram_addr_t phys_ram_alloc_offset = 0;
119 #endif
121 CPUState *first_cpu;
122 /* current CPU in the current thread. It is only valid inside
123 cpu_exec() */
124 CPUState *cpu_single_env;
125 /* 0 = Do not count executed instructions.
126 1 = Precise instruction counting.
127 2 = Adaptive rate instruction counting. */
128 int use_icount = 0;
129 /* Current instruction counter. While executing translated code this may
130 include some instructions that have not yet been executed. */
131 int64_t qemu_icount;
133 typedef struct PageDesc {
134 /* list of TBs intersecting this ram page */
135 TranslationBlock *first_tb;
136 /* in order to optimize self modifying code, we count the number
137 of lookups we do to a given page to use a bitmap */
138 unsigned int code_write_count;
139 uint8_t *code_bitmap;
140 #if defined(CONFIG_USER_ONLY)
141 unsigned long flags;
142 #endif
143 } PageDesc;
145 typedef struct PhysPageDesc {
146 /* offset in host memory of the page + io_index in the low bits */
147 ram_addr_t phys_offset;
148 } PhysPageDesc;
150 #define L2_BITS 10
151 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
152 /* XXX: this is a temporary hack for alpha target.
153 * In the future, this is to be replaced by a multi-level table
154 * to actually be able to handle the complete 64 bits address space.
156 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
157 #else
158 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
159 #endif
161 #define L1_SIZE (1 << L1_BITS)
162 #define L2_SIZE (1 << L2_BITS)
164 unsigned long qemu_real_host_page_size;
165 unsigned long qemu_host_page_bits;
166 unsigned long qemu_host_page_size;
167 unsigned long qemu_host_page_mask;
169 /* XXX: for system emulation, it could just be an array */
170 static PageDesc *l1_map[L1_SIZE];
171 static PhysPageDesc **l1_phys_map;
173 #if !defined(CONFIG_USER_ONLY)
174 static void io_mem_init(void);
176 /* io memory support */
177 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
178 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
179 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
180 static int io_mem_nb;
181 static int io_mem_watch;
182 #endif
184 /* log support */
185 static const char *logfilename = "/tmp/qemu.log";
186 FILE *logfile;
187 int loglevel;
188 static int log_append = 0;
190 /* statistics */
191 static int tlb_flush_count;
192 static int tb_flush_count;
193 static int tb_phys_invalidate_count;
195 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
196 typedef struct subpage_t {
197 target_phys_addr_t base;
198 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
199 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
200 void *opaque[TARGET_PAGE_SIZE][2][4];
201 } subpage_t;
203 #ifdef _WIN32
204 static void map_exec(void *addr, long size)
206 DWORD old_protect;
207 VirtualProtect(addr, size,
208 PAGE_EXECUTE_READWRITE, &old_protect);
211 #else
212 static void map_exec(void *addr, long size)
214 unsigned long start, end, page_size;
216 page_size = getpagesize();
217 start = (unsigned long)addr;
218 start &= ~(page_size - 1);
220 end = (unsigned long)addr + size;
221 end += page_size - 1;
222 end &= ~(page_size - 1);
224 mprotect((void *)start, end - start,
225 PROT_READ | PROT_WRITE | PROT_EXEC);
227 #endif
229 static void page_init(void)
231 /* NOTE: we can always suppose that qemu_host_page_size >=
232 TARGET_PAGE_SIZE */
233 #ifdef _WIN32
235 SYSTEM_INFO system_info;
236 DWORD old_protect;
238 GetSystemInfo(&system_info);
239 qemu_real_host_page_size = system_info.dwPageSize;
241 #else
242 qemu_real_host_page_size = getpagesize();
243 #endif
244 if (qemu_host_page_size == 0)
245 qemu_host_page_size = qemu_real_host_page_size;
246 if (qemu_host_page_size < TARGET_PAGE_SIZE)
247 qemu_host_page_size = TARGET_PAGE_SIZE;
248 qemu_host_page_bits = 0;
249 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
250 qemu_host_page_bits++;
251 qemu_host_page_mask = ~(qemu_host_page_size - 1);
252 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
253 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
255 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
257 long long startaddr, endaddr;
258 FILE *f;
259 int n;
261 mmap_lock();
262 last_brk = (unsigned long)sbrk(0);
263 f = fopen("/proc/self/maps", "r");
264 if (f) {
265 do {
266 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
267 if (n == 2) {
268 startaddr = MIN(startaddr,
269 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
270 endaddr = MIN(endaddr,
271 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
272 page_set_flags(startaddr & TARGET_PAGE_MASK,
273 TARGET_PAGE_ALIGN(endaddr),
274 PAGE_RESERVED);
276 } while (!feof(f));
277 fclose(f);
279 mmap_unlock();
281 #endif
284 static inline PageDesc **page_l1_map(target_ulong index)
286 #if TARGET_LONG_BITS > 32
287 /* Host memory outside guest VM. For 32-bit targets we have already
288 excluded high addresses. */
289 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
290 return NULL;
291 #endif
292 return &l1_map[index >> L2_BITS];
295 static inline PageDesc *page_find_alloc(target_ulong index)
297 PageDesc **lp, *p;
298 lp = page_l1_map(index);
299 if (!lp)
300 return NULL;
302 p = *lp;
303 if (!p) {
304 /* allocate if not found */
305 #if defined(CONFIG_USER_ONLY)
306 unsigned long addr;
307 size_t len = sizeof(PageDesc) * L2_SIZE;
308 /* Don't use qemu_malloc because it may recurse. */
309 p = mmap(0, len, PROT_READ | PROT_WRITE,
310 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
311 *lp = p;
312 addr = h2g(p);
313 if (addr == (target_ulong)addr) {
314 page_set_flags(addr & TARGET_PAGE_MASK,
315 TARGET_PAGE_ALIGN(addr + len),
316 PAGE_RESERVED);
318 #else
319 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
320 *lp = p;
321 #endif
323 return p + (index & (L2_SIZE - 1));
326 static inline PageDesc *page_find(target_ulong index)
328 PageDesc **lp, *p;
329 lp = page_l1_map(index);
330 if (!lp)
331 return NULL;
333 p = *lp;
334 if (!p)
335 return 0;
336 return p + (index & (L2_SIZE - 1));
339 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
341 void **lp, **p;
342 PhysPageDesc *pd;
344 p = (void **)l1_phys_map;
345 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
347 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
348 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
349 #endif
350 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
351 p = *lp;
352 if (!p) {
353 /* allocate if not found */
354 if (!alloc)
355 return NULL;
356 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
357 memset(p, 0, sizeof(void *) * L1_SIZE);
358 *lp = p;
360 #endif
361 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
362 pd = *lp;
363 if (!pd) {
364 int i;
365 /* allocate if not found */
366 if (!alloc)
367 return NULL;
368 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
369 *lp = pd;
370 for (i = 0; i < L2_SIZE; i++)
371 pd[i].phys_offset = IO_MEM_UNASSIGNED;
373 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
376 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
378 return phys_page_find_alloc(index, 0);
381 #if !defined(CONFIG_USER_ONLY)
382 static void tlb_protect_code(ram_addr_t ram_addr);
383 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
384 target_ulong vaddr);
385 #define mmap_lock() do { } while(0)
386 #define mmap_unlock() do { } while(0)
387 #endif
389 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
391 #if defined(CONFIG_USER_ONLY)
392 /* Currently it is not recommanded to allocate big chunks of data in
393 user mode. It will change when a dedicated libc will be used */
394 #define USE_STATIC_CODE_GEN_BUFFER
395 #endif
397 #ifdef USE_STATIC_CODE_GEN_BUFFER
398 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
399 #endif
401 static void code_gen_alloc(unsigned long tb_size)
403 #ifdef USE_STATIC_CODE_GEN_BUFFER
404 code_gen_buffer = static_code_gen_buffer;
405 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
406 map_exec(code_gen_buffer, code_gen_buffer_size);
407 #else
408 code_gen_buffer_size = tb_size;
409 if (code_gen_buffer_size == 0) {
410 #if defined(CONFIG_USER_ONLY)
411 /* in user mode, phys_ram_size is not meaningful */
412 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
413 #else
414 /* XXX: needs ajustments */
415 code_gen_buffer_size = (unsigned long)(phys_ram_size / 4);
416 #endif
418 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
419 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
420 /* The code gen buffer location may have constraints depending on
421 the host cpu and OS */
422 #if defined(__linux__)
424 int flags;
425 void *start = NULL;
427 flags = MAP_PRIVATE | MAP_ANONYMOUS;
428 #if defined(__x86_64__)
429 flags |= MAP_32BIT;
430 /* Cannot map more than that */
431 if (code_gen_buffer_size > (800 * 1024 * 1024))
432 code_gen_buffer_size = (800 * 1024 * 1024);
433 #elif defined(__sparc_v9__)
434 // Map the buffer below 2G, so we can use direct calls and branches
435 flags |= MAP_FIXED;
436 start = (void *) 0x60000000UL;
437 if (code_gen_buffer_size > (512 * 1024 * 1024))
438 code_gen_buffer_size = (512 * 1024 * 1024);
439 #endif
440 code_gen_buffer = mmap(start, code_gen_buffer_size,
441 PROT_WRITE | PROT_READ | PROT_EXEC,
442 flags, -1, 0);
443 if (code_gen_buffer == MAP_FAILED) {
444 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
445 exit(1);
448 #elif defined(__FreeBSD__)
450 int flags;
451 void *addr = NULL;
452 flags = MAP_PRIVATE | MAP_ANONYMOUS;
453 #if defined(__x86_64__)
454 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
455 * 0x40000000 is free */
456 flags |= MAP_FIXED;
457 addr = (void *)0x40000000;
458 /* Cannot map more than that */
459 if (code_gen_buffer_size > (800 * 1024 * 1024))
460 code_gen_buffer_size = (800 * 1024 * 1024);
461 #endif
462 code_gen_buffer = mmap(addr, code_gen_buffer_size,
463 PROT_WRITE | PROT_READ | PROT_EXEC,
464 flags, -1, 0);
465 if (code_gen_buffer == MAP_FAILED) {
466 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
467 exit(1);
470 #else
471 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
472 if (!code_gen_buffer) {
473 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
474 exit(1);
476 map_exec(code_gen_buffer, code_gen_buffer_size);
477 #endif
478 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
479 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
480 code_gen_buffer_max_size = code_gen_buffer_size -
481 code_gen_max_block_size();
482 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
483 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
486 /* Must be called before using the QEMU cpus. 'tb_size' is the size
487 (in bytes) allocated to the translation buffer. Zero means default
488 size. */
489 void cpu_exec_init_all(unsigned long tb_size)
491 cpu_gen_init();
492 code_gen_alloc(tb_size);
493 code_gen_ptr = code_gen_buffer;
494 page_init();
495 #if !defined(CONFIG_USER_ONLY)
496 io_mem_init();
497 #endif
500 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
502 #define CPU_COMMON_SAVE_VERSION 1
504 static void cpu_common_save(QEMUFile *f, void *opaque)
506 CPUState *env = opaque;
508 qemu_put_be32s(f, &env->halted);
509 qemu_put_be32s(f, &env->interrupt_request);
512 static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
514 CPUState *env = opaque;
516 if (version_id != CPU_COMMON_SAVE_VERSION)
517 return -EINVAL;
519 qemu_get_be32s(f, &env->halted);
520 qemu_get_be32s(f, &env->interrupt_request);
521 tlb_flush(env, 1);
523 return 0;
525 #endif
527 void cpu_exec_init(CPUState *env)
529 CPUState **penv;
530 int cpu_index;
532 env->next_cpu = NULL;
533 penv = &first_cpu;
534 cpu_index = 0;
535 while (*penv != NULL) {
536 penv = (CPUState **)&(*penv)->next_cpu;
537 cpu_index++;
539 env->cpu_index = cpu_index;
540 env->nb_watchpoints = 0;
541 *penv = env;
542 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
543 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
544 cpu_common_save, cpu_common_load, env);
545 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
546 cpu_save, cpu_load, env);
547 #endif
550 static inline void invalidate_page_bitmap(PageDesc *p)
552 if (p->code_bitmap) {
553 qemu_free(p->code_bitmap);
554 p->code_bitmap = NULL;
556 p->code_write_count = 0;
559 /* set to NULL all the 'first_tb' fields in all PageDescs */
560 static void page_flush_tb(void)
562 int i, j;
563 PageDesc *p;
565 for(i = 0; i < L1_SIZE; i++) {
566 p = l1_map[i];
567 if (p) {
568 for(j = 0; j < L2_SIZE; j++) {
569 p->first_tb = NULL;
570 invalidate_page_bitmap(p);
571 p++;
577 /* flush all the translation blocks */
578 /* XXX: tb_flush is currently not thread safe */
579 void tb_flush(CPUState *env1)
581 CPUState *env;
582 #if defined(DEBUG_FLUSH)
583 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
584 (unsigned long)(code_gen_ptr - code_gen_buffer),
585 nb_tbs, nb_tbs > 0 ?
586 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
587 #endif
588 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
589 cpu_abort(env1, "Internal error: code buffer overflow\n");
591 nb_tbs = 0;
593 for(env = first_cpu; env != NULL; env = env->next_cpu) {
594 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
597 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
598 page_flush_tb();
600 code_gen_ptr = code_gen_buffer;
601 /* XXX: flush processor icache at this point if cache flush is
602 expensive */
603 tb_flush_count++;
606 #ifdef DEBUG_TB_CHECK
608 static void tb_invalidate_check(target_ulong address)
610 TranslationBlock *tb;
611 int i;
612 address &= TARGET_PAGE_MASK;
613 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
614 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
615 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
616 address >= tb->pc + tb->size)) {
617 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
618 address, (long)tb->pc, tb->size);
624 /* verify that all the pages have correct rights for code */
625 static void tb_page_check(void)
627 TranslationBlock *tb;
628 int i, flags1, flags2;
630 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
631 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
632 flags1 = page_get_flags(tb->pc);
633 flags2 = page_get_flags(tb->pc + tb->size - 1);
634 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
635 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
636 (long)tb->pc, tb->size, flags1, flags2);
642 static void tb_jmp_check(TranslationBlock *tb)
644 TranslationBlock *tb1;
645 unsigned int n1;
647 /* suppress any remaining jumps to this TB */
648 tb1 = tb->jmp_first;
649 for(;;) {
650 n1 = (long)tb1 & 3;
651 tb1 = (TranslationBlock *)((long)tb1 & ~3);
652 if (n1 == 2)
653 break;
654 tb1 = tb1->jmp_next[n1];
656 /* check end of list */
657 if (tb1 != tb) {
658 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
662 #endif
664 /* invalidate one TB */
665 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
666 int next_offset)
668 TranslationBlock *tb1;
669 for(;;) {
670 tb1 = *ptb;
671 if (tb1 == tb) {
672 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
673 break;
675 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
679 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
681 TranslationBlock *tb1;
682 unsigned int n1;
684 for(;;) {
685 tb1 = *ptb;
686 n1 = (long)tb1 & 3;
687 tb1 = (TranslationBlock *)((long)tb1 & ~3);
688 if (tb1 == tb) {
689 *ptb = tb1->page_next[n1];
690 break;
692 ptb = &tb1->page_next[n1];
696 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
698 TranslationBlock *tb1, **ptb;
699 unsigned int n1;
701 ptb = &tb->jmp_next[n];
702 tb1 = *ptb;
703 if (tb1) {
704 /* find tb(n) in circular list */
705 for(;;) {
706 tb1 = *ptb;
707 n1 = (long)tb1 & 3;
708 tb1 = (TranslationBlock *)((long)tb1 & ~3);
709 if (n1 == n && tb1 == tb)
710 break;
711 if (n1 == 2) {
712 ptb = &tb1->jmp_first;
713 } else {
714 ptb = &tb1->jmp_next[n1];
717 /* now we can suppress tb(n) from the list */
718 *ptb = tb->jmp_next[n];
720 tb->jmp_next[n] = NULL;
724 /* reset the jump entry 'n' of a TB so that it is not chained to
725 another TB */
726 static inline void tb_reset_jump(TranslationBlock *tb, int n)
728 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
731 void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
733 CPUState *env;
734 PageDesc *p;
735 unsigned int h, n1;
736 target_phys_addr_t phys_pc;
737 TranslationBlock *tb1, *tb2;
739 /* remove the TB from the hash list */
740 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
741 h = tb_phys_hash_func(phys_pc);
742 tb_remove(&tb_phys_hash[h], tb,
743 offsetof(TranslationBlock, phys_hash_next));
745 /* remove the TB from the page list */
746 if (tb->page_addr[0] != page_addr) {
747 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
748 tb_page_remove(&p->first_tb, tb);
749 invalidate_page_bitmap(p);
751 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
752 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
753 tb_page_remove(&p->first_tb, tb);
754 invalidate_page_bitmap(p);
757 tb_invalidated_flag = 1;
759 /* remove the TB from the hash list */
760 h = tb_jmp_cache_hash_func(tb->pc);
761 for(env = first_cpu; env != NULL; env = env->next_cpu) {
762 if (env->tb_jmp_cache[h] == tb)
763 env->tb_jmp_cache[h] = NULL;
766 /* suppress this TB from the two jump lists */
767 tb_jmp_remove(tb, 0);
768 tb_jmp_remove(tb, 1);
770 /* suppress any remaining jumps to this TB */
771 tb1 = tb->jmp_first;
772 for(;;) {
773 n1 = (long)tb1 & 3;
774 if (n1 == 2)
775 break;
776 tb1 = (TranslationBlock *)((long)tb1 & ~3);
777 tb2 = tb1->jmp_next[n1];
778 tb_reset_jump(tb1, n1);
779 tb1->jmp_next[n1] = NULL;
780 tb1 = tb2;
782 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
784 tb_phys_invalidate_count++;
787 static inline void set_bits(uint8_t *tab, int start, int len)
789 int end, mask, end1;
791 end = start + len;
792 tab += start >> 3;
793 mask = 0xff << (start & 7);
794 if ((start & ~7) == (end & ~7)) {
795 if (start < end) {
796 mask &= ~(0xff << (end & 7));
797 *tab |= mask;
799 } else {
800 *tab++ |= mask;
801 start = (start + 8) & ~7;
802 end1 = end & ~7;
803 while (start < end1) {
804 *tab++ = 0xff;
805 start += 8;
807 if (start < end) {
808 mask = ~(0xff << (end & 7));
809 *tab |= mask;
814 static void build_page_bitmap(PageDesc *p)
816 int n, tb_start, tb_end;
817 TranslationBlock *tb;
819 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
820 if (!p->code_bitmap)
821 return;
823 tb = p->first_tb;
824 while (tb != NULL) {
825 n = (long)tb & 3;
826 tb = (TranslationBlock *)((long)tb & ~3);
827 /* NOTE: this is subtle as a TB may span two physical pages */
828 if (n == 0) {
829 /* NOTE: tb_end may be after the end of the page, but
830 it is not a problem */
831 tb_start = tb->pc & ~TARGET_PAGE_MASK;
832 tb_end = tb_start + tb->size;
833 if (tb_end > TARGET_PAGE_SIZE)
834 tb_end = TARGET_PAGE_SIZE;
835 } else {
836 tb_start = 0;
837 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
839 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
840 tb = tb->page_next[n];
844 TranslationBlock *tb_gen_code(CPUState *env,
845 target_ulong pc, target_ulong cs_base,
846 int flags, int cflags)
848 TranslationBlock *tb;
849 uint8_t *tc_ptr;
850 target_ulong phys_pc, phys_page2, virt_page2;
851 int code_gen_size;
853 phys_pc = get_phys_addr_code(env, pc);
854 tb = tb_alloc(pc);
855 if (!tb) {
856 /* flush must be done */
857 tb_flush(env);
858 /* cannot fail at this point */
859 tb = tb_alloc(pc);
860 /* Don't forget to invalidate previous TB info. */
861 tb_invalidated_flag = 1;
863 tc_ptr = code_gen_ptr;
864 tb->tc_ptr = tc_ptr;
865 tb->cs_base = cs_base;
866 tb->flags = flags;
867 tb->cflags = cflags;
868 cpu_gen_code(env, tb, &code_gen_size);
869 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
871 /* check next page if needed */
872 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
873 phys_page2 = -1;
874 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
875 phys_page2 = get_phys_addr_code(env, virt_page2);
877 tb_link_phys(tb, phys_pc, phys_page2);
878 return tb;
881 /* invalidate all TBs which intersect with the target physical page
882 starting in range [start;end[. NOTE: start and end must refer to
883 the same physical page. 'is_cpu_write_access' should be true if called
884 from a real cpu write access: the virtual CPU will exit the current
885 TB if code is modified inside this TB. */
886 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
887 int is_cpu_write_access)
889 int n, current_tb_modified, current_tb_not_found, current_flags;
890 CPUState *env = cpu_single_env;
891 PageDesc *p;
892 TranslationBlock *tb, *tb_next, *current_tb, *saved_tb;
893 target_ulong tb_start, tb_end;
894 target_ulong current_pc, current_cs_base;
896 p = page_find(start >> TARGET_PAGE_BITS);
897 if (!p)
898 return;
899 if (!p->code_bitmap &&
900 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
901 is_cpu_write_access) {
902 /* build code bitmap */
903 build_page_bitmap(p);
906 /* we remove all the TBs in the range [start, end[ */
907 /* XXX: see if in some cases it could be faster to invalidate all the code */
908 current_tb_not_found = is_cpu_write_access;
909 current_tb_modified = 0;
910 current_tb = NULL; /* avoid warning */
911 current_pc = 0; /* avoid warning */
912 current_cs_base = 0; /* avoid warning */
913 current_flags = 0; /* avoid warning */
914 tb = p->first_tb;
915 while (tb != NULL) {
916 n = (long)tb & 3;
917 tb = (TranslationBlock *)((long)tb & ~3);
918 tb_next = tb->page_next[n];
919 /* NOTE: this is subtle as a TB may span two physical pages */
920 if (n == 0) {
921 /* NOTE: tb_end may be after the end of the page, but
922 it is not a problem */
923 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
924 tb_end = tb_start + tb->size;
925 } else {
926 tb_start = tb->page_addr[1];
927 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
929 if (!(tb_end <= start || tb_start >= end)) {
930 #ifdef TARGET_HAS_PRECISE_SMC
931 if (current_tb_not_found) {
932 current_tb_not_found = 0;
933 current_tb = NULL;
934 if (env->mem_io_pc) {
935 /* now we have a real cpu fault */
936 current_tb = tb_find_pc(env->mem_io_pc);
939 if (current_tb == tb &&
940 (current_tb->cflags & CF_COUNT_MASK) != 1) {
941 /* If we are modifying the current TB, we must stop
942 its execution. We could be more precise by checking
943 that the modification is after the current PC, but it
944 would require a specialized function to partially
945 restore the CPU state */
947 current_tb_modified = 1;
948 cpu_restore_state(current_tb, env,
949 env->mem_io_pc, NULL);
950 #if defined(TARGET_I386)
951 current_flags = env->hflags;
952 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
953 current_cs_base = (target_ulong)env->segs[R_CS].base;
954 current_pc = current_cs_base + env->eip;
955 #else
956 #error unsupported CPU
957 #endif
959 #endif /* TARGET_HAS_PRECISE_SMC */
960 /* we need to do that to handle the case where a signal
961 occurs while doing tb_phys_invalidate() */
962 saved_tb = NULL;
963 if (env) {
964 saved_tb = env->current_tb;
965 env->current_tb = NULL;
967 tb_phys_invalidate(tb, -1);
968 if (env) {
969 env->current_tb = saved_tb;
970 if (env->interrupt_request && env->current_tb)
971 cpu_interrupt(env, env->interrupt_request);
974 tb = tb_next;
976 #if !defined(CONFIG_USER_ONLY)
977 /* if no code remaining, no need to continue to use slow writes */
978 if (!p->first_tb) {
979 invalidate_page_bitmap(p);
980 if (is_cpu_write_access) {
981 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
984 #endif
985 #ifdef TARGET_HAS_PRECISE_SMC
986 if (current_tb_modified) {
987 /* we generate a block containing just the instruction
988 modifying the memory. It will ensure that it cannot modify
989 itself */
990 env->current_tb = NULL;
991 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
992 cpu_resume_from_signal(env, NULL);
994 #endif
997 /* len must be <= 8 and start must be a multiple of len */
998 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
1000 PageDesc *p;
1001 int offset, b;
1002 #if 0
1003 if (1) {
1004 if (loglevel) {
1005 fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1006 cpu_single_env->mem_io_vaddr, len,
1007 cpu_single_env->eip,
1008 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1011 #endif
1012 p = page_find(start >> TARGET_PAGE_BITS);
1013 if (!p)
1014 return;
1015 if (p->code_bitmap) {
1016 offset = start & ~TARGET_PAGE_MASK;
1017 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1018 if (b & ((1 << len) - 1))
1019 goto do_invalidate;
1020 } else {
1021 do_invalidate:
1022 tb_invalidate_phys_page_range(start, start + len, 1);
1026 #if !defined(CONFIG_SOFTMMU)
1027 static void tb_invalidate_phys_page(target_phys_addr_t addr,
1028 unsigned long pc, void *puc)
1030 int n, current_flags, current_tb_modified;
1031 target_ulong current_pc, current_cs_base;
1032 PageDesc *p;
1033 TranslationBlock *tb, *current_tb;
1034 #ifdef TARGET_HAS_PRECISE_SMC
1035 CPUState *env = cpu_single_env;
1036 #endif
1038 addr &= TARGET_PAGE_MASK;
1039 p = page_find(addr >> TARGET_PAGE_BITS);
1040 if (!p)
1041 return;
1042 tb = p->first_tb;
1043 current_tb_modified = 0;
1044 current_tb = NULL;
1045 current_pc = 0; /* avoid warning */
1046 current_cs_base = 0; /* avoid warning */
1047 current_flags = 0; /* avoid warning */
1048 #ifdef TARGET_HAS_PRECISE_SMC
1049 if (tb && pc != 0) {
1050 current_tb = tb_find_pc(pc);
1052 #endif
1053 while (tb != NULL) {
1054 n = (long)tb & 3;
1055 tb = (TranslationBlock *)((long)tb & ~3);
1056 #ifdef TARGET_HAS_PRECISE_SMC
1057 if (current_tb == tb &&
1058 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1059 /* If we are modifying the current TB, we must stop
1060 its execution. We could be more precise by checking
1061 that the modification is after the current PC, but it
1062 would require a specialized function to partially
1063 restore the CPU state */
1065 current_tb_modified = 1;
1066 cpu_restore_state(current_tb, env, pc, puc);
1067 #if defined(TARGET_I386)
1068 current_flags = env->hflags;
1069 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
1070 current_cs_base = (target_ulong)env->segs[R_CS].base;
1071 current_pc = current_cs_base + env->eip;
1072 #else
1073 #error unsupported CPU
1074 #endif
1076 #endif /* TARGET_HAS_PRECISE_SMC */
1077 tb_phys_invalidate(tb, addr);
1078 tb = tb->page_next[n];
1080 p->first_tb = NULL;
1081 #ifdef TARGET_HAS_PRECISE_SMC
1082 if (current_tb_modified) {
1083 /* we generate a block containing just the instruction
1084 modifying the memory. It will ensure that it cannot modify
1085 itself */
1086 env->current_tb = NULL;
1087 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1088 cpu_resume_from_signal(env, puc);
1090 #endif
1092 #endif
1094 /* add the tb in the target page and protect it if necessary */
1095 static inline void tb_alloc_page(TranslationBlock *tb,
1096 unsigned int n, target_ulong page_addr)
1098 PageDesc *p;
1099 TranslationBlock *last_first_tb;
1101 tb->page_addr[n] = page_addr;
1102 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
1103 tb->page_next[n] = p->first_tb;
1104 last_first_tb = p->first_tb;
1105 p->first_tb = (TranslationBlock *)((long)tb | n);
1106 invalidate_page_bitmap(p);
1108 #if defined(TARGET_HAS_SMC) || 1
1110 #if defined(CONFIG_USER_ONLY)
1111 if (p->flags & PAGE_WRITE) {
1112 target_ulong addr;
1113 PageDesc *p2;
1114 int prot;
1116 /* force the host page as non writable (writes will have a
1117 page fault + mprotect overhead) */
1118 page_addr &= qemu_host_page_mask;
1119 prot = 0;
1120 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1121 addr += TARGET_PAGE_SIZE) {
1123 p2 = page_find (addr >> TARGET_PAGE_BITS);
1124 if (!p2)
1125 continue;
1126 prot |= p2->flags;
1127 p2->flags &= ~PAGE_WRITE;
1128 page_get_flags(addr);
1130 mprotect(g2h(page_addr), qemu_host_page_size,
1131 (prot & PAGE_BITS) & ~PAGE_WRITE);
1132 #ifdef DEBUG_TB_INVALIDATE
1133 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1134 page_addr);
1135 #endif
1137 #else
1138 /* if some code is already present, then the pages are already
1139 protected. So we handle the case where only the first TB is
1140 allocated in a physical page */
1141 if (!last_first_tb) {
1142 tlb_protect_code(page_addr);
1144 #endif
1146 #endif /* TARGET_HAS_SMC */
1149 /* Allocate a new translation block. Flush the translation buffer if
1150 too many translation blocks or too much generated code. */
1151 TranslationBlock *tb_alloc(target_ulong pc)
1153 TranslationBlock *tb;
1155 if (nb_tbs >= code_gen_max_blocks ||
1156 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1157 return NULL;
1158 tb = &tbs[nb_tbs++];
1159 tb->pc = pc;
1160 tb->cflags = 0;
1161 return tb;
1164 void tb_free(TranslationBlock *tb)
1166 /* In practice this is mostly used for single use temporary TB
1167 Ignore the hard cases and just back up if this TB happens to
1168 be the last one generated. */
1169 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1170 code_gen_ptr = tb->tc_ptr;
1171 nb_tbs--;
1175 /* add a new TB and link it to the physical page tables. phys_page2 is
1176 (-1) to indicate that only one page contains the TB. */
1177 void tb_link_phys(TranslationBlock *tb,
1178 target_ulong phys_pc, target_ulong phys_page2)
1180 unsigned int h;
1181 TranslationBlock **ptb;
1183 /* Grab the mmap lock to stop another thread invalidating this TB
1184 before we are done. */
1185 mmap_lock();
1186 /* add in the physical hash table */
1187 h = tb_phys_hash_func(phys_pc);
1188 ptb = &tb_phys_hash[h];
1189 tb->phys_hash_next = *ptb;
1190 *ptb = tb;
1192 /* add in the page list */
1193 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1194 if (phys_page2 != -1)
1195 tb_alloc_page(tb, 1, phys_page2);
1196 else
1197 tb->page_addr[1] = -1;
1199 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1200 tb->jmp_next[0] = NULL;
1201 tb->jmp_next[1] = NULL;
1203 /* init original jump addresses */
1204 if (tb->tb_next_offset[0] != 0xffff)
1205 tb_reset_jump(tb, 0);
1206 if (tb->tb_next_offset[1] != 0xffff)
1207 tb_reset_jump(tb, 1);
1209 #ifdef DEBUG_TB_CHECK
1210 tb_page_check();
1211 #endif
1212 mmap_unlock();
1215 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1216 tb[1].tc_ptr. Return NULL if not found */
1217 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1219 int m_min, m_max, m;
1220 unsigned long v;
1221 TranslationBlock *tb;
1223 if (nb_tbs <= 0)
1224 return NULL;
1225 if (tc_ptr < (unsigned long)code_gen_buffer ||
1226 tc_ptr >= (unsigned long)code_gen_ptr)
1227 return NULL;
1228 /* binary search (cf Knuth) */
1229 m_min = 0;
1230 m_max = nb_tbs - 1;
1231 while (m_min <= m_max) {
1232 m = (m_min + m_max) >> 1;
1233 tb = &tbs[m];
1234 v = (unsigned long)tb->tc_ptr;
1235 if (v == tc_ptr)
1236 return tb;
1237 else if (tc_ptr < v) {
1238 m_max = m - 1;
1239 } else {
1240 m_min = m + 1;
1243 return &tbs[m_max];
1246 static void tb_reset_jump_recursive(TranslationBlock *tb);
1248 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1250 TranslationBlock *tb1, *tb_next, **ptb;
1251 unsigned int n1;
1253 tb1 = tb->jmp_next[n];
1254 if (tb1 != NULL) {
1255 /* find head of list */
1256 for(;;) {
1257 n1 = (long)tb1 & 3;
1258 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1259 if (n1 == 2)
1260 break;
1261 tb1 = tb1->jmp_next[n1];
1263 /* we are now sure now that tb jumps to tb1 */
1264 tb_next = tb1;
1266 /* remove tb from the jmp_first list */
1267 ptb = &tb_next->jmp_first;
1268 for(;;) {
1269 tb1 = *ptb;
1270 n1 = (long)tb1 & 3;
1271 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1272 if (n1 == n && tb1 == tb)
1273 break;
1274 ptb = &tb1->jmp_next[n1];
1276 *ptb = tb->jmp_next[n];
1277 tb->jmp_next[n] = NULL;
1279 /* suppress the jump to next tb in generated code */
1280 tb_reset_jump(tb, n);
1282 /* suppress jumps in the tb on which we could have jumped */
1283 tb_reset_jump_recursive(tb_next);
1287 static void tb_reset_jump_recursive(TranslationBlock *tb)
1289 tb_reset_jump_recursive2(tb, 0);
1290 tb_reset_jump_recursive2(tb, 1);
1293 #if defined(TARGET_HAS_ICE)
1294 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1296 target_phys_addr_t addr;
1297 target_ulong pd;
1298 ram_addr_t ram_addr;
1299 PhysPageDesc *p;
1301 addr = cpu_get_phys_page_debug(env, pc);
1302 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1303 if (!p) {
1304 pd = IO_MEM_UNASSIGNED;
1305 } else {
1306 pd = p->phys_offset;
1308 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1309 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1311 #endif
1313 /* Add a watchpoint. */
1314 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, int type)
1316 int i;
1318 for (i = 0; i < env->nb_watchpoints; i++) {
1319 if (addr == env->watchpoint[i].vaddr)
1320 return 0;
1322 if (env->nb_watchpoints >= MAX_WATCHPOINTS)
1323 return -1;
1325 i = env->nb_watchpoints++;
1326 env->watchpoint[i].vaddr = addr;
1327 env->watchpoint[i].type = type;
1328 tlb_flush_page(env, addr);
1329 /* FIXME: This flush is needed because of the hack to make memory ops
1330 terminate the TB. It can be removed once the proper IO trap and
1331 re-execute bits are in. */
1332 tb_flush(env);
1333 return i;
1336 /* Remove a watchpoint. */
1337 int cpu_watchpoint_remove(CPUState *env, target_ulong addr)
1339 int i;
1341 for (i = 0; i < env->nb_watchpoints; i++) {
1342 if (addr == env->watchpoint[i].vaddr) {
1343 env->nb_watchpoints--;
1344 env->watchpoint[i] = env->watchpoint[env->nb_watchpoints];
1345 tlb_flush_page(env, addr);
1346 return 0;
1349 return -1;
1352 /* Remove all watchpoints. */
1353 void cpu_watchpoint_remove_all(CPUState *env) {
1354 int i;
1356 for (i = 0; i < env->nb_watchpoints; i++) {
1357 tlb_flush_page(env, env->watchpoint[i].vaddr);
1359 env->nb_watchpoints = 0;
1362 /* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
1363 breakpoint is reached */
1364 int cpu_breakpoint_insert(CPUState *env, target_ulong pc)
1366 #if defined(TARGET_HAS_ICE)
1367 int i;
1369 for(i = 0; i < env->nb_breakpoints; i++) {
1370 if (env->breakpoints[i] == pc)
1371 return 0;
1374 if (env->nb_breakpoints >= MAX_BREAKPOINTS)
1375 return -1;
1376 env->breakpoints[env->nb_breakpoints++] = pc;
1378 breakpoint_invalidate(env, pc);
1379 return 0;
1380 #else
1381 return -1;
1382 #endif
1385 /* remove all breakpoints */
1386 void cpu_breakpoint_remove_all(CPUState *env) {
1387 #if defined(TARGET_HAS_ICE)
1388 int i;
1389 for(i = 0; i < env->nb_breakpoints; i++) {
1390 breakpoint_invalidate(env, env->breakpoints[i]);
1392 env->nb_breakpoints = 0;
1393 #endif
1396 /* remove a breakpoint */
1397 int cpu_breakpoint_remove(CPUState *env, target_ulong pc)
1399 #if defined(TARGET_HAS_ICE)
1400 int i;
1401 for(i = 0; i < env->nb_breakpoints; i++) {
1402 if (env->breakpoints[i] == pc)
1403 goto found;
1405 return -1;
1406 found:
1407 env->nb_breakpoints--;
1408 if (i < env->nb_breakpoints)
1409 env->breakpoints[i] = env->breakpoints[env->nb_breakpoints];
1411 breakpoint_invalidate(env, pc);
1412 return 0;
1413 #else
1414 return -1;
1415 #endif
1418 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1419 CPU loop after each instruction */
1420 void cpu_single_step(CPUState *env, int enabled)
1422 #if defined(TARGET_HAS_ICE)
1423 if (env->singlestep_enabled != enabled) {
1424 env->singlestep_enabled = enabled;
1425 /* must flush all the translated code to avoid inconsistancies */
1426 /* XXX: only flush what is necessary */
1427 tb_flush(env);
1429 #endif
1432 /* enable or disable low levels log */
1433 void cpu_set_log(int log_flags)
1435 loglevel = log_flags;
1436 if (loglevel && !logfile) {
1437 logfile = fopen(logfilename, log_append ? "a" : "w");
1438 if (!logfile) {
1439 perror(logfilename);
1440 _exit(1);
1442 #if !defined(CONFIG_SOFTMMU)
1443 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1445 static char logfile_buf[4096];
1446 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1448 #else
1449 setvbuf(logfile, NULL, _IOLBF, 0);
1450 #endif
1451 log_append = 1;
1453 if (!loglevel && logfile) {
1454 fclose(logfile);
1455 logfile = NULL;
1459 void cpu_set_log_filename(const char *filename)
1461 logfilename = strdup(filename);
1462 if (logfile) {
1463 fclose(logfile);
1464 logfile = NULL;
1466 cpu_set_log(loglevel);
1469 /* mask must never be zero, except for A20 change call */
1470 void cpu_interrupt(CPUState *env, int mask)
1472 #if !defined(USE_NPTL)
1473 TranslationBlock *tb;
1474 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1475 #endif
1476 int old_mask;
1478 old_mask = env->interrupt_request;
1479 /* FIXME: This is probably not threadsafe. A different thread could
1480 be in the middle of a read-modify-write operation. */
1481 env->interrupt_request |= mask;
1482 #if defined(USE_NPTL)
1483 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1484 problem and hope the cpu will stop of its own accord. For userspace
1485 emulation this often isn't actually as bad as it sounds. Often
1486 signals are used primarily to interrupt blocking syscalls. */
1487 #else
1488 if (use_icount) {
1489 env->icount_decr.u16.high = 0xffff;
1490 #ifndef CONFIG_USER_ONLY
1491 /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means
1492 an async event happened and we need to process it. */
1493 if (!can_do_io(env)
1494 && (mask & ~(old_mask | CPU_INTERRUPT_EXIT)) != 0) {
1495 cpu_abort(env, "Raised interrupt while not in I/O function");
1497 #endif
1498 } else {
1499 tb = env->current_tb;
1500 /* if the cpu is currently executing code, we must unlink it and
1501 all the potentially executing TB */
1502 if (tb && !testandset(&interrupt_lock)) {
1503 env->current_tb = NULL;
1504 tb_reset_jump_recursive(tb);
1505 resetlock(&interrupt_lock);
1508 #endif
1511 void cpu_reset_interrupt(CPUState *env, int mask)
1513 env->interrupt_request &= ~mask;
1516 const CPULogItem cpu_log_items[] = {
1517 { CPU_LOG_TB_OUT_ASM, "out_asm",
1518 "show generated host assembly code for each compiled TB" },
1519 { CPU_LOG_TB_IN_ASM, "in_asm",
1520 "show target assembly code for each compiled TB" },
1521 { CPU_LOG_TB_OP, "op",
1522 "show micro ops for each compiled TB" },
1523 { CPU_LOG_TB_OP_OPT, "op_opt",
1524 "show micro ops "
1525 #ifdef TARGET_I386
1526 "before eflags optimization and "
1527 #endif
1528 "after liveness analysis" },
1529 { CPU_LOG_INT, "int",
1530 "show interrupts/exceptions in short format" },
1531 { CPU_LOG_EXEC, "exec",
1532 "show trace before each executed TB (lots of logs)" },
1533 { CPU_LOG_TB_CPU, "cpu",
1534 "show CPU state before block translation" },
1535 #ifdef TARGET_I386
1536 { CPU_LOG_PCALL, "pcall",
1537 "show protected mode far calls/returns/exceptions" },
1538 #endif
1539 #ifdef DEBUG_IOPORT
1540 { CPU_LOG_IOPORT, "ioport",
1541 "show all i/o ports accesses" },
1542 #endif
1543 { 0, NULL, NULL },
1546 static int cmp1(const char *s1, int n, const char *s2)
1548 if (strlen(s2) != n)
1549 return 0;
1550 return memcmp(s1, s2, n) == 0;
1553 /* takes a comma separated list of log masks. Return 0 if error. */
1554 int cpu_str_to_log_mask(const char *str)
1556 const CPULogItem *item;
1557 int mask;
1558 const char *p, *p1;
1560 p = str;
1561 mask = 0;
1562 for(;;) {
1563 p1 = strchr(p, ',');
1564 if (!p1)
1565 p1 = p + strlen(p);
1566 if(cmp1(p,p1-p,"all")) {
1567 for(item = cpu_log_items; item->mask != 0; item++) {
1568 mask |= item->mask;
1570 } else {
1571 for(item = cpu_log_items; item->mask != 0; item++) {
1572 if (cmp1(p, p1 - p, item->name))
1573 goto found;
1575 return 0;
1577 found:
1578 mask |= item->mask;
1579 if (*p1 != ',')
1580 break;
1581 p = p1 + 1;
1583 return mask;
1586 void cpu_abort(CPUState *env, const char *fmt, ...)
1588 va_list ap;
1589 va_list ap2;
1591 va_start(ap, fmt);
1592 va_copy(ap2, ap);
1593 fprintf(stderr, "qemu: fatal: ");
1594 vfprintf(stderr, fmt, ap);
1595 fprintf(stderr, "\n");
1596 #ifdef TARGET_I386
1597 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1598 #else
1599 cpu_dump_state(env, stderr, fprintf, 0);
1600 #endif
1601 if (logfile) {
1602 fprintf(logfile, "qemu: fatal: ");
1603 vfprintf(logfile, fmt, ap2);
1604 fprintf(logfile, "\n");
1605 #ifdef TARGET_I386
1606 cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1607 #else
1608 cpu_dump_state(env, logfile, fprintf, 0);
1609 #endif
1610 fflush(logfile);
1611 fclose(logfile);
1613 va_end(ap2);
1614 va_end(ap);
1615 abort();
1618 CPUState *cpu_copy(CPUState *env)
1620 CPUState *new_env = cpu_init(env->cpu_model_str);
1621 /* preserve chaining and index */
1622 CPUState *next_cpu = new_env->next_cpu;
1623 int cpu_index = new_env->cpu_index;
1624 memcpy(new_env, env, sizeof(CPUState));
1625 new_env->next_cpu = next_cpu;
1626 new_env->cpu_index = cpu_index;
1627 return new_env;
1630 #if !defined(CONFIG_USER_ONLY)
1632 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1634 unsigned int i;
1636 /* Discard jump cache entries for any tb which might potentially
1637 overlap the flushed page. */
1638 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1639 memset (&env->tb_jmp_cache[i], 0,
1640 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1642 i = tb_jmp_cache_hash_page(addr);
1643 memset (&env->tb_jmp_cache[i], 0,
1644 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1647 /* NOTE: if flush_global is true, also flush global entries (not
1648 implemented yet) */
1649 void tlb_flush(CPUState *env, int flush_global)
1651 int i;
1653 #if defined(DEBUG_TLB)
1654 printf("tlb_flush:\n");
1655 #endif
1656 /* must reset current TB so that interrupts cannot modify the
1657 links while we are modifying them */
1658 env->current_tb = NULL;
1660 for(i = 0; i < CPU_TLB_SIZE; i++) {
1661 env->tlb_table[0][i].addr_read = -1;
1662 env->tlb_table[0][i].addr_write = -1;
1663 env->tlb_table[0][i].addr_code = -1;
1664 env->tlb_table[1][i].addr_read = -1;
1665 env->tlb_table[1][i].addr_write = -1;
1666 env->tlb_table[1][i].addr_code = -1;
1667 #if (NB_MMU_MODES >= 3)
1668 env->tlb_table[2][i].addr_read = -1;
1669 env->tlb_table[2][i].addr_write = -1;
1670 env->tlb_table[2][i].addr_code = -1;
1671 #if (NB_MMU_MODES == 4)
1672 env->tlb_table[3][i].addr_read = -1;
1673 env->tlb_table[3][i].addr_write = -1;
1674 env->tlb_table[3][i].addr_code = -1;
1675 #endif
1676 #endif
1679 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1681 #ifdef USE_KQEMU
1682 if (env->kqemu_enabled) {
1683 kqemu_flush(env, flush_global);
1685 #endif
1686 tlb_flush_count++;
1689 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1691 if (addr == (tlb_entry->addr_read &
1692 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1693 addr == (tlb_entry->addr_write &
1694 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1695 addr == (tlb_entry->addr_code &
1696 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1697 tlb_entry->addr_read = -1;
1698 tlb_entry->addr_write = -1;
1699 tlb_entry->addr_code = -1;
1703 void tlb_flush_page(CPUState *env, target_ulong addr)
1705 int i;
1707 #if defined(DEBUG_TLB)
1708 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1709 #endif
1710 /* must reset current TB so that interrupts cannot modify the
1711 links while we are modifying them */
1712 env->current_tb = NULL;
1714 addr &= TARGET_PAGE_MASK;
1715 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1716 tlb_flush_entry(&env->tlb_table[0][i], addr);
1717 tlb_flush_entry(&env->tlb_table[1][i], addr);
1718 #if (NB_MMU_MODES >= 3)
1719 tlb_flush_entry(&env->tlb_table[2][i], addr);
1720 #if (NB_MMU_MODES == 4)
1721 tlb_flush_entry(&env->tlb_table[3][i], addr);
1722 #endif
1723 #endif
1725 tlb_flush_jmp_cache(env, addr);
1727 #ifdef USE_KQEMU
1728 if (env->kqemu_enabled) {
1729 kqemu_flush_page(env, addr);
1731 #endif
1734 /* update the TLBs so that writes to code in the virtual page 'addr'
1735 can be detected */
1736 static void tlb_protect_code(ram_addr_t ram_addr)
1738 cpu_physical_memory_reset_dirty(ram_addr,
1739 ram_addr + TARGET_PAGE_SIZE,
1740 CODE_DIRTY_FLAG);
1743 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1744 tested for self modifying code */
1745 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1746 target_ulong vaddr)
1748 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1751 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1752 unsigned long start, unsigned long length)
1754 unsigned long addr;
1755 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1756 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1757 if ((addr - start) < length) {
1758 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1763 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1764 int dirty_flags)
1766 CPUState *env;
1767 unsigned long length, start1;
1768 int i, mask, len;
1769 uint8_t *p;
1771 start &= TARGET_PAGE_MASK;
1772 end = TARGET_PAGE_ALIGN(end);
1774 length = end - start;
1775 if (length == 0)
1776 return;
1777 len = length >> TARGET_PAGE_BITS;
1778 #ifdef USE_KQEMU
1779 /* XXX: should not depend on cpu context */
1780 env = first_cpu;
1781 if (env->kqemu_enabled) {
1782 ram_addr_t addr;
1783 addr = start;
1784 for(i = 0; i < len; i++) {
1785 kqemu_set_notdirty(env, addr);
1786 addr += TARGET_PAGE_SIZE;
1789 #endif
1790 mask = ~dirty_flags;
1791 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1792 for(i = 0; i < len; i++)
1793 p[i] &= mask;
1795 /* we modify the TLB cache so that the dirty bit will be set again
1796 when accessing the range */
1797 start1 = start + (unsigned long)phys_ram_base;
1798 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1799 for(i = 0; i < CPU_TLB_SIZE; i++)
1800 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
1801 for(i = 0; i < CPU_TLB_SIZE; i++)
1802 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
1803 #if (NB_MMU_MODES >= 3)
1804 for(i = 0; i < CPU_TLB_SIZE; i++)
1805 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1806 #if (NB_MMU_MODES == 4)
1807 for(i = 0; i < CPU_TLB_SIZE; i++)
1808 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1809 #endif
1810 #endif
1814 int cpu_physical_memory_set_dirty_tracking(int enable)
1816 in_migration = enable;
1817 return 0;
1820 int cpu_physical_memory_get_dirty_tracking(void)
1822 return in_migration;
1825 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1827 ram_addr_t ram_addr;
1829 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1830 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
1831 tlb_entry->addend - (unsigned long)phys_ram_base;
1832 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1833 tlb_entry->addr_write |= TLB_NOTDIRTY;
1838 /* update the TLB according to the current state of the dirty bits */
1839 void cpu_tlb_update_dirty(CPUState *env)
1841 int i;
1842 for(i = 0; i < CPU_TLB_SIZE; i++)
1843 tlb_update_dirty(&env->tlb_table[0][i]);
1844 for(i = 0; i < CPU_TLB_SIZE; i++)
1845 tlb_update_dirty(&env->tlb_table[1][i]);
1846 #if (NB_MMU_MODES >= 3)
1847 for(i = 0; i < CPU_TLB_SIZE; i++)
1848 tlb_update_dirty(&env->tlb_table[2][i]);
1849 #if (NB_MMU_MODES == 4)
1850 for(i = 0; i < CPU_TLB_SIZE; i++)
1851 tlb_update_dirty(&env->tlb_table[3][i]);
1852 #endif
1853 #endif
1856 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1858 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1859 tlb_entry->addr_write = vaddr;
1862 /* update the TLB corresponding to virtual page vaddr
1863 so that it is no longer dirty */
1864 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1866 int i;
1868 vaddr &= TARGET_PAGE_MASK;
1869 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1870 tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
1871 tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
1872 #if (NB_MMU_MODES >= 3)
1873 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
1874 #if (NB_MMU_MODES == 4)
1875 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
1876 #endif
1877 #endif
1880 /* add a new TLB entry. At most one entry for a given virtual address
1881 is permitted. Return 0 if OK or 2 if the page could not be mapped
1882 (can only happen in non SOFTMMU mode for I/O pages or pages
1883 conflicting with the host address space). */
1884 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1885 target_phys_addr_t paddr, int prot,
1886 int mmu_idx, int is_softmmu)
1888 PhysPageDesc *p;
1889 unsigned long pd;
1890 unsigned int index;
1891 target_ulong address;
1892 target_ulong code_address;
1893 target_phys_addr_t addend;
1894 int ret;
1895 CPUTLBEntry *te;
1896 int i;
1897 target_phys_addr_t iotlb;
1899 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
1900 if (!p) {
1901 pd = IO_MEM_UNASSIGNED;
1902 } else {
1903 pd = p->phys_offset;
1905 #if defined(DEBUG_TLB)
1906 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1907 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
1908 #endif
1910 ret = 0;
1911 address = vaddr;
1912 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1913 /* IO memory case (romd handled later) */
1914 address |= TLB_MMIO;
1916 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1917 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1918 /* Normal RAM. */
1919 iotlb = pd & TARGET_PAGE_MASK;
1920 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
1921 iotlb |= IO_MEM_NOTDIRTY;
1922 else
1923 iotlb |= IO_MEM_ROM;
1924 } else {
1925 /* IO handlers are currently passed a phsical address.
1926 It would be nice to pass an offset from the base address
1927 of that region. This would avoid having to special case RAM,
1928 and avoid full address decoding in every device.
1929 We can't use the high bits of pd for this because
1930 IO_MEM_ROMD uses these as a ram address. */
1931 iotlb = (pd & ~TARGET_PAGE_MASK) + paddr;
1934 code_address = address;
1935 /* Make accesses to pages with watchpoints go via the
1936 watchpoint trap routines. */
1937 for (i = 0; i < env->nb_watchpoints; i++) {
1938 if (vaddr == (env->watchpoint[i].vaddr & TARGET_PAGE_MASK)) {
1939 iotlb = io_mem_watch + paddr;
1940 /* TODO: The memory case can be optimized by not trapping
1941 reads of pages with a write breakpoint. */
1942 address |= TLB_MMIO;
1946 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1947 env->iotlb[mmu_idx][index] = iotlb - vaddr;
1948 te = &env->tlb_table[mmu_idx][index];
1949 te->addend = addend - vaddr;
1950 if (prot & PAGE_READ) {
1951 te->addr_read = address;
1952 } else {
1953 te->addr_read = -1;
1956 if (prot & PAGE_EXEC) {
1957 te->addr_code = code_address;
1958 } else {
1959 te->addr_code = -1;
1961 if (prot & PAGE_WRITE) {
1962 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
1963 (pd & IO_MEM_ROMD)) {
1964 /* Write access calls the I/O callback. */
1965 te->addr_write = address | TLB_MMIO;
1966 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
1967 !cpu_physical_memory_is_dirty(pd)) {
1968 te->addr_write = address | TLB_NOTDIRTY;
1969 } else {
1970 te->addr_write = address;
1972 } else {
1973 te->addr_write = -1;
1975 return ret;
1978 #else
1980 void tlb_flush(CPUState *env, int flush_global)
1984 void tlb_flush_page(CPUState *env, target_ulong addr)
1988 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1989 target_phys_addr_t paddr, int prot,
1990 int mmu_idx, int is_softmmu)
1992 return 0;
1995 /* dump memory mappings */
1996 void page_dump(FILE *f)
1998 unsigned long start, end;
1999 int i, j, prot, prot1;
2000 PageDesc *p;
2002 fprintf(f, "%-8s %-8s %-8s %s\n",
2003 "start", "end", "size", "prot");
2004 start = -1;
2005 end = -1;
2006 prot = 0;
2007 for(i = 0; i <= L1_SIZE; i++) {
2008 if (i < L1_SIZE)
2009 p = l1_map[i];
2010 else
2011 p = NULL;
2012 for(j = 0;j < L2_SIZE; j++) {
2013 if (!p)
2014 prot1 = 0;
2015 else
2016 prot1 = p[j].flags;
2017 if (prot1 != prot) {
2018 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2019 if (start != -1) {
2020 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2021 start, end, end - start,
2022 prot & PAGE_READ ? 'r' : '-',
2023 prot & PAGE_WRITE ? 'w' : '-',
2024 prot & PAGE_EXEC ? 'x' : '-');
2026 if (prot1 != 0)
2027 start = end;
2028 else
2029 start = -1;
2030 prot = prot1;
2032 if (!p)
2033 break;
2038 int page_get_flags(target_ulong address)
2040 PageDesc *p;
2042 p = page_find(address >> TARGET_PAGE_BITS);
2043 if (!p)
2044 return 0;
2045 return p->flags;
2048 /* modify the flags of a page and invalidate the code if
2049 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2050 depending on PAGE_WRITE */
2051 void page_set_flags(target_ulong start, target_ulong end, int flags)
2053 PageDesc *p;
2054 target_ulong addr;
2056 /* mmap_lock should already be held. */
2057 start = start & TARGET_PAGE_MASK;
2058 end = TARGET_PAGE_ALIGN(end);
2059 if (flags & PAGE_WRITE)
2060 flags |= PAGE_WRITE_ORG;
2061 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2062 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
2063 /* We may be called for host regions that are outside guest
2064 address space. */
2065 if (!p)
2066 return;
2067 /* if the write protection is set, then we invalidate the code
2068 inside */
2069 if (!(p->flags & PAGE_WRITE) &&
2070 (flags & PAGE_WRITE) &&
2071 p->first_tb) {
2072 tb_invalidate_phys_page(addr, 0, NULL);
2074 p->flags = flags;
2078 int page_check_range(target_ulong start, target_ulong len, int flags)
2080 PageDesc *p;
2081 target_ulong end;
2082 target_ulong addr;
2084 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2085 start = start & TARGET_PAGE_MASK;
2087 if( end < start )
2088 /* we've wrapped around */
2089 return -1;
2090 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2091 p = page_find(addr >> TARGET_PAGE_BITS);
2092 if( !p )
2093 return -1;
2094 if( !(p->flags & PAGE_VALID) )
2095 return -1;
2097 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2098 return -1;
2099 if (flags & PAGE_WRITE) {
2100 if (!(p->flags & PAGE_WRITE_ORG))
2101 return -1;
2102 /* unprotect the page if it was put read-only because it
2103 contains translated code */
2104 if (!(p->flags & PAGE_WRITE)) {
2105 if (!page_unprotect(addr, 0, NULL))
2106 return -1;
2108 return 0;
2111 return 0;
2114 /* called from signal handler: invalidate the code and unprotect the
2115 page. Return TRUE if the fault was succesfully handled. */
2116 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2118 unsigned int page_index, prot, pindex;
2119 PageDesc *p, *p1;
2120 target_ulong host_start, host_end, addr;
2122 /* Technically this isn't safe inside a signal handler. However we
2123 know this only ever happens in a synchronous SEGV handler, so in
2124 practice it seems to be ok. */
2125 mmap_lock();
2127 host_start = address & qemu_host_page_mask;
2128 page_index = host_start >> TARGET_PAGE_BITS;
2129 p1 = page_find(page_index);
2130 if (!p1) {
2131 mmap_unlock();
2132 return 0;
2134 host_end = host_start + qemu_host_page_size;
2135 p = p1;
2136 prot = 0;
2137 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2138 prot |= p->flags;
2139 p++;
2141 /* if the page was really writable, then we change its
2142 protection back to writable */
2143 if (prot & PAGE_WRITE_ORG) {
2144 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2145 if (!(p1[pindex].flags & PAGE_WRITE)) {
2146 mprotect((void *)g2h(host_start), qemu_host_page_size,
2147 (prot & PAGE_BITS) | PAGE_WRITE);
2148 p1[pindex].flags |= PAGE_WRITE;
2149 /* and since the content will be modified, we must invalidate
2150 the corresponding translated code. */
2151 tb_invalidate_phys_page(address, pc, puc);
2152 #ifdef DEBUG_TB_CHECK
2153 tb_invalidate_check(address);
2154 #endif
2155 mmap_unlock();
2156 return 1;
2159 mmap_unlock();
2160 return 0;
2163 static inline void tlb_set_dirty(CPUState *env,
2164 unsigned long addr, target_ulong vaddr)
2167 #endif /* defined(CONFIG_USER_ONLY) */
2169 #if !defined(CONFIG_USER_ONLY)
2170 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2171 ram_addr_t memory);
2172 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2173 ram_addr_t orig_memory);
2174 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2175 need_subpage) \
2176 do { \
2177 if (addr > start_addr) \
2178 start_addr2 = 0; \
2179 else { \
2180 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2181 if (start_addr2 > 0) \
2182 need_subpage = 1; \
2185 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2186 end_addr2 = TARGET_PAGE_SIZE - 1; \
2187 else { \
2188 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2189 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2190 need_subpage = 1; \
2192 } while (0)
2194 /* register physical memory. 'size' must be a multiple of the target
2195 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2196 io memory page */
2197 void cpu_register_physical_memory(target_phys_addr_t start_addr,
2198 ram_addr_t size,
2199 ram_addr_t phys_offset)
2201 target_phys_addr_t addr, end_addr;
2202 PhysPageDesc *p;
2203 CPUState *env;
2204 ram_addr_t orig_size = size;
2205 void *subpage;
2207 #ifdef USE_KQEMU
2208 /* XXX: should not depend on cpu context */
2209 env = first_cpu;
2210 if (env->kqemu_enabled) {
2211 kqemu_set_phys_mem(start_addr, size, phys_offset);
2213 #endif
2214 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2215 end_addr = start_addr + (target_phys_addr_t)size;
2216 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2217 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2218 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2219 ram_addr_t orig_memory = p->phys_offset;
2220 target_phys_addr_t start_addr2, end_addr2;
2221 int need_subpage = 0;
2223 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2224 need_subpage);
2225 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2226 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2227 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2228 &p->phys_offset, orig_memory);
2229 } else {
2230 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2231 >> IO_MEM_SHIFT];
2233 subpage_register(subpage, start_addr2, end_addr2, phys_offset);
2234 } else {
2235 p->phys_offset = phys_offset;
2236 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2237 (phys_offset & IO_MEM_ROMD))
2238 phys_offset += TARGET_PAGE_SIZE;
2240 } else {
2241 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2242 p->phys_offset = phys_offset;
2243 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2244 (phys_offset & IO_MEM_ROMD))
2245 phys_offset += TARGET_PAGE_SIZE;
2246 else {
2247 target_phys_addr_t start_addr2, end_addr2;
2248 int need_subpage = 0;
2250 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2251 end_addr2, need_subpage);
2253 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2254 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2255 &p->phys_offset, IO_MEM_UNASSIGNED);
2256 subpage_register(subpage, start_addr2, end_addr2,
2257 phys_offset);
2263 /* since each CPU stores ram addresses in its TLB cache, we must
2264 reset the modified entries */
2265 /* XXX: slow ! */
2266 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2267 tlb_flush(env, 1);
2271 /* XXX: temporary until new memory mapping API */
2272 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2274 PhysPageDesc *p;
2276 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2277 if (!p)
2278 return IO_MEM_UNASSIGNED;
2279 return p->phys_offset;
2282 /* XXX: better than nothing */
2283 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2285 ram_addr_t addr;
2286 if ((phys_ram_alloc_offset + size) > phys_ram_size) {
2287 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
2288 (uint64_t)size, (uint64_t)phys_ram_size);
2289 abort();
2291 addr = phys_ram_alloc_offset;
2292 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2293 return addr;
2296 void qemu_ram_free(ram_addr_t addr)
2300 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2302 #ifdef DEBUG_UNASSIGNED
2303 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2304 #endif
2305 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2306 do_unassigned_access(addr, 0, 0, 0, 1);
2307 #endif
2308 return 0;
2311 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2313 #ifdef DEBUG_UNASSIGNED
2314 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2315 #endif
2316 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2317 do_unassigned_access(addr, 0, 0, 0, 2);
2318 #endif
2319 return 0;
2322 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2324 #ifdef DEBUG_UNASSIGNED
2325 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2326 #endif
2327 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2328 do_unassigned_access(addr, 0, 0, 0, 4);
2329 #endif
2330 return 0;
2333 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2335 #ifdef DEBUG_UNASSIGNED
2336 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2337 #endif
2338 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2339 do_unassigned_access(addr, 1, 0, 0, 1);
2340 #endif
2343 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2345 #ifdef DEBUG_UNASSIGNED
2346 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2347 #endif
2348 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2349 do_unassigned_access(addr, 1, 0, 0, 2);
2350 #endif
2353 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2355 #ifdef DEBUG_UNASSIGNED
2356 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2357 #endif
2358 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2359 do_unassigned_access(addr, 1, 0, 0, 4);
2360 #endif
2363 static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2364 unassigned_mem_readb,
2365 unassigned_mem_readw,
2366 unassigned_mem_readl,
2369 static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2370 unassigned_mem_writeb,
2371 unassigned_mem_writew,
2372 unassigned_mem_writel,
2375 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2376 uint32_t val)
2378 int dirty_flags;
2379 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2380 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2381 #if !defined(CONFIG_USER_ONLY)
2382 tb_invalidate_phys_page_fast(ram_addr, 1);
2383 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2384 #endif
2386 stb_p(phys_ram_base + ram_addr, val);
2387 #ifdef USE_KQEMU
2388 if (cpu_single_env->kqemu_enabled &&
2389 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2390 kqemu_modify_page(cpu_single_env, ram_addr);
2391 #endif
2392 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2393 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2394 /* we remove the notdirty callback only if the code has been
2395 flushed */
2396 if (dirty_flags == 0xff)
2397 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2400 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2401 uint32_t val)
2403 int dirty_flags;
2404 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2405 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2406 #if !defined(CONFIG_USER_ONLY)
2407 tb_invalidate_phys_page_fast(ram_addr, 2);
2408 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2409 #endif
2411 stw_p(phys_ram_base + ram_addr, val);
2412 #ifdef USE_KQEMU
2413 if (cpu_single_env->kqemu_enabled &&
2414 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2415 kqemu_modify_page(cpu_single_env, ram_addr);
2416 #endif
2417 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2418 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2419 /* we remove the notdirty callback only if the code has been
2420 flushed */
2421 if (dirty_flags == 0xff)
2422 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2425 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2426 uint32_t val)
2428 int dirty_flags;
2429 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2430 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2431 #if !defined(CONFIG_USER_ONLY)
2432 tb_invalidate_phys_page_fast(ram_addr, 4);
2433 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2434 #endif
2436 stl_p(phys_ram_base + ram_addr, val);
2437 #ifdef USE_KQEMU
2438 if (cpu_single_env->kqemu_enabled &&
2439 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2440 kqemu_modify_page(cpu_single_env, ram_addr);
2441 #endif
2442 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2443 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2444 /* we remove the notdirty callback only if the code has been
2445 flushed */
2446 if (dirty_flags == 0xff)
2447 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2450 static CPUReadMemoryFunc *error_mem_read[3] = {
2451 NULL, /* never used */
2452 NULL, /* never used */
2453 NULL, /* never used */
2456 static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2457 notdirty_mem_writeb,
2458 notdirty_mem_writew,
2459 notdirty_mem_writel,
2462 /* Generate a debug exception if a watchpoint has been hit. */
2463 static void check_watchpoint(int offset, int flags)
2465 CPUState *env = cpu_single_env;
2466 target_ulong vaddr;
2467 int i;
2469 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2470 for (i = 0; i < env->nb_watchpoints; i++) {
2471 if (vaddr == env->watchpoint[i].vaddr
2472 && (env->watchpoint[i].type & flags)) {
2473 env->watchpoint_hit = i + 1;
2474 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2475 break;
2480 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2481 so these check for a hit then pass through to the normal out-of-line
2482 phys routines. */
2483 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2485 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ);
2486 return ldub_phys(addr);
2489 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2491 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ);
2492 return lduw_phys(addr);
2495 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2497 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ);
2498 return ldl_phys(addr);
2501 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2502 uint32_t val)
2504 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE);
2505 stb_phys(addr, val);
2508 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2509 uint32_t val)
2511 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE);
2512 stw_phys(addr, val);
2515 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2516 uint32_t val)
2518 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE);
2519 stl_phys(addr, val);
2522 static CPUReadMemoryFunc *watch_mem_read[3] = {
2523 watch_mem_readb,
2524 watch_mem_readw,
2525 watch_mem_readl,
2528 static CPUWriteMemoryFunc *watch_mem_write[3] = {
2529 watch_mem_writeb,
2530 watch_mem_writew,
2531 watch_mem_writel,
2534 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2535 unsigned int len)
2537 uint32_t ret;
2538 unsigned int idx;
2540 idx = SUBPAGE_IDX(addr - mmio->base);
2541 #if defined(DEBUG_SUBPAGE)
2542 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2543 mmio, len, addr, idx);
2544 #endif
2545 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], addr);
2547 return ret;
2550 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2551 uint32_t value, unsigned int len)
2553 unsigned int idx;
2555 idx = SUBPAGE_IDX(addr - mmio->base);
2556 #if defined(DEBUG_SUBPAGE)
2557 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2558 mmio, len, addr, idx, value);
2559 #endif
2560 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], addr, value);
2563 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2565 #if defined(DEBUG_SUBPAGE)
2566 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2567 #endif
2569 return subpage_readlen(opaque, addr, 0);
2572 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2573 uint32_t value)
2575 #if defined(DEBUG_SUBPAGE)
2576 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2577 #endif
2578 subpage_writelen(opaque, addr, value, 0);
2581 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2583 #if defined(DEBUG_SUBPAGE)
2584 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2585 #endif
2587 return subpage_readlen(opaque, addr, 1);
2590 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2591 uint32_t value)
2593 #if defined(DEBUG_SUBPAGE)
2594 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2595 #endif
2596 subpage_writelen(opaque, addr, value, 1);
2599 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2601 #if defined(DEBUG_SUBPAGE)
2602 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2603 #endif
2605 return subpage_readlen(opaque, addr, 2);
2608 static void subpage_writel (void *opaque,
2609 target_phys_addr_t addr, uint32_t value)
2611 #if defined(DEBUG_SUBPAGE)
2612 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2613 #endif
2614 subpage_writelen(opaque, addr, value, 2);
2617 static CPUReadMemoryFunc *subpage_read[] = {
2618 &subpage_readb,
2619 &subpage_readw,
2620 &subpage_readl,
2623 static CPUWriteMemoryFunc *subpage_write[] = {
2624 &subpage_writeb,
2625 &subpage_writew,
2626 &subpage_writel,
2629 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2630 ram_addr_t memory)
2632 int idx, eidx;
2633 unsigned int i;
2635 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2636 return -1;
2637 idx = SUBPAGE_IDX(start);
2638 eidx = SUBPAGE_IDX(end);
2639 #if defined(DEBUG_SUBPAGE)
2640 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2641 mmio, start, end, idx, eidx, memory);
2642 #endif
2643 memory >>= IO_MEM_SHIFT;
2644 for (; idx <= eidx; idx++) {
2645 for (i = 0; i < 4; i++) {
2646 if (io_mem_read[memory][i]) {
2647 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2648 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2650 if (io_mem_write[memory][i]) {
2651 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2652 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2657 return 0;
2660 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2661 ram_addr_t orig_memory)
2663 subpage_t *mmio;
2664 int subpage_memory;
2666 mmio = qemu_mallocz(sizeof(subpage_t));
2667 if (mmio != NULL) {
2668 mmio->base = base;
2669 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2670 #if defined(DEBUG_SUBPAGE)
2671 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2672 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2673 #endif
2674 *phys = subpage_memory | IO_MEM_SUBPAGE;
2675 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory);
2678 return mmio;
2681 static void io_mem_init(void)
2683 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
2684 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
2685 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
2686 io_mem_nb = 5;
2688 io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
2689 watch_mem_write, NULL);
2690 /* alloc dirty bits array */
2691 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
2692 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
2695 /* mem_read and mem_write are arrays of functions containing the
2696 function to access byte (index 0), word (index 1) and dword (index
2697 2). Functions can be omitted with a NULL function pointer. The
2698 registered functions may be modified dynamically later.
2699 If io_index is non zero, the corresponding io zone is
2700 modified. If it is zero, a new io zone is allocated. The return
2701 value can be used with cpu_register_physical_memory(). (-1) is
2702 returned if error. */
2703 int cpu_register_io_memory(int io_index,
2704 CPUReadMemoryFunc **mem_read,
2705 CPUWriteMemoryFunc **mem_write,
2706 void *opaque)
2708 int i, subwidth = 0;
2710 if (io_index <= 0) {
2711 if (io_mem_nb >= IO_MEM_NB_ENTRIES)
2712 return -1;
2713 io_index = io_mem_nb++;
2714 } else {
2715 if (io_index >= IO_MEM_NB_ENTRIES)
2716 return -1;
2719 for(i = 0;i < 3; i++) {
2720 if (!mem_read[i] || !mem_write[i])
2721 subwidth = IO_MEM_SUBWIDTH;
2722 io_mem_read[io_index][i] = mem_read[i];
2723 io_mem_write[io_index][i] = mem_write[i];
2725 io_mem_opaque[io_index] = opaque;
2726 return (io_index << IO_MEM_SHIFT) | subwidth;
2729 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2731 return io_mem_write[io_index >> IO_MEM_SHIFT];
2734 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2736 return io_mem_read[io_index >> IO_MEM_SHIFT];
2739 #endif /* !defined(CONFIG_USER_ONLY) */
2741 /* physical memory access (slow version, mainly for debug) */
2742 #if defined(CONFIG_USER_ONLY)
2743 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2744 int len, int is_write)
2746 int l, flags;
2747 target_ulong page;
2748 void * p;
2750 while (len > 0) {
2751 page = addr & TARGET_PAGE_MASK;
2752 l = (page + TARGET_PAGE_SIZE) - addr;
2753 if (l > len)
2754 l = len;
2755 flags = page_get_flags(page);
2756 if (!(flags & PAGE_VALID))
2757 return;
2758 if (is_write) {
2759 if (!(flags & PAGE_WRITE))
2760 return;
2761 /* XXX: this code should not depend on lock_user */
2762 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2763 /* FIXME - should this return an error rather than just fail? */
2764 return;
2765 memcpy(p, buf, l);
2766 unlock_user(p, addr, l);
2767 } else {
2768 if (!(flags & PAGE_READ))
2769 return;
2770 /* XXX: this code should not depend on lock_user */
2771 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2772 /* FIXME - should this return an error rather than just fail? */
2773 return;
2774 memcpy(buf, p, l);
2775 unlock_user(p, addr, 0);
2777 len -= l;
2778 buf += l;
2779 addr += l;
2783 #else
2784 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2785 int len, int is_write)
2787 int l, io_index;
2788 uint8_t *ptr;
2789 uint32_t val;
2790 target_phys_addr_t page;
2791 unsigned long pd;
2792 PhysPageDesc *p;
2794 while (len > 0) {
2795 page = addr & TARGET_PAGE_MASK;
2796 l = (page + TARGET_PAGE_SIZE) - addr;
2797 if (l > len)
2798 l = len;
2799 p = phys_page_find(page >> TARGET_PAGE_BITS);
2800 if (!p) {
2801 pd = IO_MEM_UNASSIGNED;
2802 } else {
2803 pd = p->phys_offset;
2806 if (is_write) {
2807 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2808 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2809 /* XXX: could force cpu_single_env to NULL to avoid
2810 potential bugs */
2811 if (l >= 4 && ((addr & 3) == 0)) {
2812 /* 32 bit write access */
2813 val = ldl_p(buf);
2814 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2815 l = 4;
2816 } else if (l >= 2 && ((addr & 1) == 0)) {
2817 /* 16 bit write access */
2818 val = lduw_p(buf);
2819 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
2820 l = 2;
2821 } else {
2822 /* 8 bit write access */
2823 val = ldub_p(buf);
2824 io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
2825 l = 1;
2827 } else {
2828 unsigned long addr1;
2829 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2830 /* RAM case */
2831 ptr = phys_ram_base + addr1;
2832 memcpy(ptr, buf, l);
2833 if (!cpu_physical_memory_is_dirty(addr1)) {
2834 /* invalidate code */
2835 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
2836 /* set dirty bit */
2837 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
2838 (0xff & ~CODE_DIRTY_FLAG);
2841 } else {
2842 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2843 !(pd & IO_MEM_ROMD)) {
2844 /* I/O case */
2845 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2846 if (l >= 4 && ((addr & 3) == 0)) {
2847 /* 32 bit read access */
2848 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2849 stl_p(buf, val);
2850 l = 4;
2851 } else if (l >= 2 && ((addr & 1) == 0)) {
2852 /* 16 bit read access */
2853 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
2854 stw_p(buf, val);
2855 l = 2;
2856 } else {
2857 /* 8 bit read access */
2858 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
2859 stb_p(buf, val);
2860 l = 1;
2862 } else {
2863 /* RAM case */
2864 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2865 (addr & ~TARGET_PAGE_MASK);
2866 memcpy(buf, ptr, l);
2869 len -= l;
2870 buf += l;
2871 addr += l;
2875 /* used for ROM loading : can write in RAM and ROM */
2876 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
2877 const uint8_t *buf, int len)
2879 int l;
2880 uint8_t *ptr;
2881 target_phys_addr_t page;
2882 unsigned long pd;
2883 PhysPageDesc *p;
2885 while (len > 0) {
2886 page = addr & TARGET_PAGE_MASK;
2887 l = (page + TARGET_PAGE_SIZE) - addr;
2888 if (l > len)
2889 l = len;
2890 p = phys_page_find(page >> TARGET_PAGE_BITS);
2891 if (!p) {
2892 pd = IO_MEM_UNASSIGNED;
2893 } else {
2894 pd = p->phys_offset;
2897 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2898 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
2899 !(pd & IO_MEM_ROMD)) {
2900 /* do nothing */
2901 } else {
2902 unsigned long addr1;
2903 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2904 /* ROM/RAM case */
2905 ptr = phys_ram_base + addr1;
2906 memcpy(ptr, buf, l);
2908 len -= l;
2909 buf += l;
2910 addr += l;
2915 /* warning: addr must be aligned */
2916 uint32_t ldl_phys(target_phys_addr_t addr)
2918 int io_index;
2919 uint8_t *ptr;
2920 uint32_t val;
2921 unsigned long pd;
2922 PhysPageDesc *p;
2924 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2925 if (!p) {
2926 pd = IO_MEM_UNASSIGNED;
2927 } else {
2928 pd = p->phys_offset;
2931 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2932 !(pd & IO_MEM_ROMD)) {
2933 /* I/O case */
2934 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2935 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2936 } else {
2937 /* RAM case */
2938 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2939 (addr & ~TARGET_PAGE_MASK);
2940 val = ldl_p(ptr);
2942 return val;
2945 /* warning: addr must be aligned */
2946 uint64_t ldq_phys(target_phys_addr_t addr)
2948 int io_index;
2949 uint8_t *ptr;
2950 uint64_t val;
2951 unsigned long pd;
2952 PhysPageDesc *p;
2954 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2955 if (!p) {
2956 pd = IO_MEM_UNASSIGNED;
2957 } else {
2958 pd = p->phys_offset;
2961 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2962 !(pd & IO_MEM_ROMD)) {
2963 /* I/O case */
2964 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2965 #ifdef TARGET_WORDS_BIGENDIAN
2966 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
2967 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
2968 #else
2969 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2970 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
2971 #endif
2972 } else {
2973 /* RAM case */
2974 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2975 (addr & ~TARGET_PAGE_MASK);
2976 val = ldq_p(ptr);
2978 return val;
2981 /* XXX: optimize */
2982 uint32_t ldub_phys(target_phys_addr_t addr)
2984 uint8_t val;
2985 cpu_physical_memory_read(addr, &val, 1);
2986 return val;
2989 /* XXX: optimize */
2990 uint32_t lduw_phys(target_phys_addr_t addr)
2992 uint16_t val;
2993 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
2994 return tswap16(val);
2997 /* warning: addr must be aligned. The ram page is not masked as dirty
2998 and the code inside is not invalidated. It is useful if the dirty
2999 bits are used to track modified PTEs */
3000 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3002 int io_index;
3003 uint8_t *ptr;
3004 unsigned long pd;
3005 PhysPageDesc *p;
3007 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3008 if (!p) {
3009 pd = IO_MEM_UNASSIGNED;
3010 } else {
3011 pd = p->phys_offset;
3014 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3015 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3016 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3017 } else {
3018 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3019 ptr = phys_ram_base + addr1;
3020 stl_p(ptr, val);
3022 if (unlikely(in_migration)) {
3023 if (!cpu_physical_memory_is_dirty(addr1)) {
3024 /* invalidate code */
3025 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3026 /* set dirty bit */
3027 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3028 (0xff & ~CODE_DIRTY_FLAG);
3034 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3036 int io_index;
3037 uint8_t *ptr;
3038 unsigned long pd;
3039 PhysPageDesc *p;
3041 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3042 if (!p) {
3043 pd = IO_MEM_UNASSIGNED;
3044 } else {
3045 pd = p->phys_offset;
3048 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3049 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3050 #ifdef TARGET_WORDS_BIGENDIAN
3051 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3052 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3053 #else
3054 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3055 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3056 #endif
3057 } else {
3058 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3059 (addr & ~TARGET_PAGE_MASK);
3060 stq_p(ptr, val);
3064 /* warning: addr must be aligned */
3065 void stl_phys(target_phys_addr_t addr, uint32_t val)
3067 int io_index;
3068 uint8_t *ptr;
3069 unsigned long pd;
3070 PhysPageDesc *p;
3072 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3073 if (!p) {
3074 pd = IO_MEM_UNASSIGNED;
3075 } else {
3076 pd = p->phys_offset;
3079 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3080 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3081 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3082 } else {
3083 unsigned long addr1;
3084 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3085 /* RAM case */
3086 ptr = phys_ram_base + addr1;
3087 stl_p(ptr, val);
3088 if (!cpu_physical_memory_is_dirty(addr1)) {
3089 /* invalidate code */
3090 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3091 /* set dirty bit */
3092 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3093 (0xff & ~CODE_DIRTY_FLAG);
3098 /* XXX: optimize */
3099 void stb_phys(target_phys_addr_t addr, uint32_t val)
3101 uint8_t v = val;
3102 cpu_physical_memory_write(addr, &v, 1);
3105 /* XXX: optimize */
3106 void stw_phys(target_phys_addr_t addr, uint32_t val)
3108 uint16_t v = tswap16(val);
3109 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3112 /* XXX: optimize */
3113 void stq_phys(target_phys_addr_t addr, uint64_t val)
3115 val = tswap64(val);
3116 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3119 #endif
3121 /* virtual memory access for debug */
3122 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3123 uint8_t *buf, int len, int is_write)
3125 int l;
3126 target_phys_addr_t phys_addr;
3127 target_ulong page;
3129 while (len > 0) {
3130 page = addr & TARGET_PAGE_MASK;
3131 phys_addr = cpu_get_phys_page_debug(env, page);
3132 /* if no physical page mapped, return an error */
3133 if (phys_addr == -1)
3134 return -1;
3135 l = (page + TARGET_PAGE_SIZE) - addr;
3136 if (l > len)
3137 l = len;
3138 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
3139 buf, l, is_write);
3140 len -= l;
3141 buf += l;
3142 addr += l;
3144 return 0;
3147 /* in deterministic execution mode, instructions doing device I/Os
3148 must be at the end of the TB */
3149 void cpu_io_recompile(CPUState *env, void *retaddr)
3151 TranslationBlock *tb;
3152 uint32_t n, cflags;
3153 target_ulong pc, cs_base;
3154 uint64_t flags;
3156 tb = tb_find_pc((unsigned long)retaddr);
3157 if (!tb) {
3158 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3159 retaddr);
3161 n = env->icount_decr.u16.low + tb->icount;
3162 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3163 /* Calculate how many instructions had been executed before the fault
3164 occurred. */
3165 n = n - env->icount_decr.u16.low;
3166 /* Generate a new TB ending on the I/O insn. */
3167 n++;
3168 /* On MIPS and SH, delay slot instructions can only be restarted if
3169 they were already the first instruction in the TB. If this is not
3170 the first instruction in a TB then re-execute the preceding
3171 branch. */
3172 #if defined(TARGET_MIPS)
3173 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3174 env->active_tc.PC -= 4;
3175 env->icount_decr.u16.low++;
3176 env->hflags &= ~MIPS_HFLAG_BMASK;
3178 #elif defined(TARGET_SH4)
3179 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3180 && n > 1) {
3181 env->pc -= 2;
3182 env->icount_decr.u16.low++;
3183 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3185 #endif
3186 /* This should never happen. */
3187 if (n > CF_COUNT_MASK)
3188 cpu_abort(env, "TB too big during recompile");
3190 cflags = n | CF_LAST_IO;
3191 pc = tb->pc;
3192 cs_base = tb->cs_base;
3193 flags = tb->flags;
3194 tb_phys_invalidate(tb, -1);
3195 /* FIXME: In theory this could raise an exception. In practice
3196 we have already translated the block once so it's probably ok. */
3197 tb_gen_code(env, pc, cs_base, flags, cflags);
3198 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3199 the first in the TB) then we end up generating a whole new TB and
3200 repeating the fault, which is horribly inefficient.
3201 Better would be to execute just this insn uncached, or generate a
3202 second new TB. */
3203 cpu_resume_from_signal(env, NULL);
3206 void dump_exec_info(FILE *f,
3207 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3209 int i, target_code_size, max_target_code_size;
3210 int direct_jmp_count, direct_jmp2_count, cross_page;
3211 TranslationBlock *tb;
3213 target_code_size = 0;
3214 max_target_code_size = 0;
3215 cross_page = 0;
3216 direct_jmp_count = 0;
3217 direct_jmp2_count = 0;
3218 for(i = 0; i < nb_tbs; i++) {
3219 tb = &tbs[i];
3220 target_code_size += tb->size;
3221 if (tb->size > max_target_code_size)
3222 max_target_code_size = tb->size;
3223 if (tb->page_addr[1] != -1)
3224 cross_page++;
3225 if (tb->tb_next_offset[0] != 0xffff) {
3226 direct_jmp_count++;
3227 if (tb->tb_next_offset[1] != 0xffff) {
3228 direct_jmp2_count++;
3232 /* XXX: avoid using doubles ? */
3233 cpu_fprintf(f, "Translation buffer state:\n");
3234 cpu_fprintf(f, "gen code size %ld/%ld\n",
3235 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3236 cpu_fprintf(f, "TB count %d/%d\n",
3237 nb_tbs, code_gen_max_blocks);
3238 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3239 nb_tbs ? target_code_size / nb_tbs : 0,
3240 max_target_code_size);
3241 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3242 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3243 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3244 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3245 cross_page,
3246 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3247 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3248 direct_jmp_count,
3249 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3250 direct_jmp2_count,
3251 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3252 cpu_fprintf(f, "\nStatistics:\n");
3253 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3254 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3255 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3256 tcg_dump_info(f, cpu_fprintf);
3259 #if !defined(CONFIG_USER_ONLY)
3261 #define MMUSUFFIX _cmmu
3262 #define GETPC() NULL
3263 #define env cpu_single_env
3264 #define SOFTMMU_CODE_ACCESS
3266 #define SHIFT 0
3267 #include "softmmu_template.h"
3269 #define SHIFT 1
3270 #include "softmmu_template.h"
3272 #define SHIFT 2
3273 #include "softmmu_template.h"
3275 #define SHIFT 3
3276 #include "softmmu_template.h"
3278 #undef env
3280 #endif