2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #define WIN32_LEAN_AND_MEAN
25 #include <sys/types.h>
38 #include "qemu-common.h"
43 #if defined(CONFIG_USER_ONLY)
47 //#define DEBUG_TB_INVALIDATE
50 //#define DEBUG_UNASSIGNED
52 /* make various TB consistency checks */
53 //#define DEBUG_TB_CHECK
54 //#define DEBUG_TLB_CHECK
56 //#define DEBUG_IOPORT
57 //#define DEBUG_SUBPAGE
59 #if !defined(CONFIG_USER_ONLY)
60 /* TB consistency checks only implemented for usermode emulation. */
64 #define SMC_BITMAP_USE_THRESHOLD 10
66 #define MMAP_AREA_START 0x00000000
67 #define MMAP_AREA_END 0xa8000000
69 #if defined(TARGET_SPARC64)
70 #define TARGET_PHYS_ADDR_SPACE_BITS 41
71 #elif defined(TARGET_SPARC)
72 #define TARGET_PHYS_ADDR_SPACE_BITS 36
73 #elif defined(TARGET_ALPHA)
74 #define TARGET_PHYS_ADDR_SPACE_BITS 42
75 #define TARGET_VIRT_ADDR_SPACE_BITS 42
76 #elif defined(TARGET_PPC64)
77 #define TARGET_PHYS_ADDR_SPACE_BITS 42
78 #elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
79 #define TARGET_PHYS_ADDR_SPACE_BITS 42
80 #elif defined(TARGET_I386) && !defined(USE_KQEMU)
81 #define TARGET_PHYS_ADDR_SPACE_BITS 36
83 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
84 #define TARGET_PHYS_ADDR_SPACE_BITS 32
87 static TranslationBlock
*tbs
;
88 int code_gen_max_blocks
;
89 TranslationBlock
*tb_phys_hash
[CODE_GEN_PHYS_HASH_SIZE
];
91 /* any access to the tbs or the page table must use this lock */
92 spinlock_t tb_lock
= SPIN_LOCK_UNLOCKED
;
94 #if defined(__arm__) || defined(__sparc_v9__)
95 /* The prologue must be reachable with a direct jump. ARM and Sparc64
96 have limited branch ranges (possibly also PPC) so place it in a
97 section close to code segment. */
98 #define code_gen_section \
99 __attribute__((__section__(".gen_code"))) \
100 __attribute__((aligned (32)))
102 #define code_gen_section \
103 __attribute__((aligned (32)))
106 uint8_t code_gen_prologue
[1024] code_gen_section
;
107 static uint8_t *code_gen_buffer
;
108 static unsigned long code_gen_buffer_size
;
109 /* threshold to flush the translated code buffer */
110 static unsigned long code_gen_buffer_max_size
;
111 uint8_t *code_gen_ptr
;
113 #if !defined(CONFIG_USER_ONLY)
114 ram_addr_t phys_ram_size
;
116 uint8_t *phys_ram_base
;
117 uint8_t *phys_ram_dirty
;
118 static int in_migration
;
119 static ram_addr_t phys_ram_alloc_offset
= 0;
123 /* current CPU in the current thread. It is only valid inside
125 CPUState
*cpu_single_env
;
126 /* 0 = Do not count executed instructions.
127 1 = Precise instruction counting.
128 2 = Adaptive rate instruction counting. */
130 /* Current instruction counter. While executing translated code this may
131 include some instructions that have not yet been executed. */
134 typedef struct PageDesc
{
135 /* list of TBs intersecting this ram page */
136 TranslationBlock
*first_tb
;
137 /* in order to optimize self modifying code, we count the number
138 of lookups we do to a given page to use a bitmap */
139 unsigned int code_write_count
;
140 uint8_t *code_bitmap
;
141 #if defined(CONFIG_USER_ONLY)
146 typedef struct PhysPageDesc
{
147 /* offset in host memory of the page + io_index in the low bits */
148 ram_addr_t phys_offset
;
152 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
153 /* XXX: this is a temporary hack for alpha target.
154 * In the future, this is to be replaced by a multi-level table
155 * to actually be able to handle the complete 64 bits address space.
157 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
159 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
162 #define L1_SIZE (1 << L1_BITS)
163 #define L2_SIZE (1 << L2_BITS)
165 unsigned long qemu_real_host_page_size
;
166 unsigned long qemu_host_page_bits
;
167 unsigned long qemu_host_page_size
;
168 unsigned long qemu_host_page_mask
;
170 /* XXX: for system emulation, it could just be an array */
171 static PageDesc
*l1_map
[L1_SIZE
];
172 static PhysPageDesc
**l1_phys_map
;
174 #if !defined(CONFIG_USER_ONLY)
175 static void io_mem_init(void);
177 /* io memory support */
178 CPUWriteMemoryFunc
*io_mem_write
[IO_MEM_NB_ENTRIES
][4];
179 CPUReadMemoryFunc
*io_mem_read
[IO_MEM_NB_ENTRIES
][4];
180 void *io_mem_opaque
[IO_MEM_NB_ENTRIES
];
181 static int io_mem_nb
;
182 static int io_mem_watch
;
186 static const char *logfilename
= "/tmp/qemu.log";
189 static int log_append
= 0;
192 static int tlb_flush_count
;
193 static int tb_flush_count
;
194 static int tb_phys_invalidate_count
;
196 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
197 typedef struct subpage_t
{
198 target_phys_addr_t base
;
199 CPUReadMemoryFunc
**mem_read
[TARGET_PAGE_SIZE
][4];
200 CPUWriteMemoryFunc
**mem_write
[TARGET_PAGE_SIZE
][4];
201 void *opaque
[TARGET_PAGE_SIZE
][2][4];
205 static void map_exec(void *addr
, long size
)
208 VirtualProtect(addr
, size
,
209 PAGE_EXECUTE_READWRITE
, &old_protect
);
213 static void map_exec(void *addr
, long size
)
215 unsigned long start
, end
, page_size
;
217 page_size
= getpagesize();
218 start
= (unsigned long)addr
;
219 start
&= ~(page_size
- 1);
221 end
= (unsigned long)addr
+ size
;
222 end
+= page_size
- 1;
223 end
&= ~(page_size
- 1);
225 mprotect((void *)start
, end
- start
,
226 PROT_READ
| PROT_WRITE
| PROT_EXEC
);
230 static void page_init(void)
232 /* NOTE: we can always suppose that qemu_host_page_size >=
236 SYSTEM_INFO system_info
;
238 GetSystemInfo(&system_info
);
239 qemu_real_host_page_size
= system_info
.dwPageSize
;
242 qemu_real_host_page_size
= getpagesize();
244 if (qemu_host_page_size
== 0)
245 qemu_host_page_size
= qemu_real_host_page_size
;
246 if (qemu_host_page_size
< TARGET_PAGE_SIZE
)
247 qemu_host_page_size
= TARGET_PAGE_SIZE
;
248 qemu_host_page_bits
= 0;
249 while ((1 << qemu_host_page_bits
) < qemu_host_page_size
)
250 qemu_host_page_bits
++;
251 qemu_host_page_mask
= ~(qemu_host_page_size
- 1);
252 l1_phys_map
= qemu_vmalloc(L1_SIZE
* sizeof(void *));
253 memset(l1_phys_map
, 0, L1_SIZE
* sizeof(void *));
255 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
257 long long startaddr
, endaddr
;
262 last_brk
= (unsigned long)sbrk(0);
263 f
= fopen("/proc/self/maps", "r");
266 n
= fscanf (f
, "%llx-%llx %*[^\n]\n", &startaddr
, &endaddr
);
268 startaddr
= MIN(startaddr
,
269 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS
) - 1);
270 endaddr
= MIN(endaddr
,
271 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS
) - 1);
272 page_set_flags(startaddr
& TARGET_PAGE_MASK
,
273 TARGET_PAGE_ALIGN(endaddr
),
284 static inline PageDesc
**page_l1_map(target_ulong index
)
286 #if TARGET_LONG_BITS > 32
287 /* Host memory outside guest VM. For 32-bit targets we have already
288 excluded high addresses. */
289 if (index
> ((target_ulong
)L2_SIZE
* L1_SIZE
))
292 return &l1_map
[index
>> L2_BITS
];
295 static inline PageDesc
*page_find_alloc(target_ulong index
)
298 lp
= page_l1_map(index
);
304 /* allocate if not found */
305 #if defined(CONFIG_USER_ONLY)
307 size_t len
= sizeof(PageDesc
) * L2_SIZE
;
308 /* Don't use qemu_malloc because it may recurse. */
309 p
= mmap(0, len
, PROT_READ
| PROT_WRITE
,
310 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
313 if (addr
== (target_ulong
)addr
) {
314 page_set_flags(addr
& TARGET_PAGE_MASK
,
315 TARGET_PAGE_ALIGN(addr
+ len
),
319 p
= qemu_mallocz(sizeof(PageDesc
) * L2_SIZE
);
323 return p
+ (index
& (L2_SIZE
- 1));
326 static inline PageDesc
*page_find(target_ulong index
)
329 lp
= page_l1_map(index
);
336 return p
+ (index
& (L2_SIZE
- 1));
339 static PhysPageDesc
*phys_page_find_alloc(target_phys_addr_t index
, int alloc
)
344 p
= (void **)l1_phys_map
;
345 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
347 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
348 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
350 lp
= p
+ ((index
>> (L1_BITS
+ L2_BITS
)) & (L1_SIZE
- 1));
353 /* allocate if not found */
356 p
= qemu_vmalloc(sizeof(void *) * L1_SIZE
);
357 memset(p
, 0, sizeof(void *) * L1_SIZE
);
361 lp
= p
+ ((index
>> L2_BITS
) & (L1_SIZE
- 1));
365 /* allocate if not found */
368 pd
= qemu_vmalloc(sizeof(PhysPageDesc
) * L2_SIZE
);
370 for (i
= 0; i
< L2_SIZE
; i
++)
371 pd
[i
].phys_offset
= IO_MEM_UNASSIGNED
;
373 return ((PhysPageDesc
*)pd
) + (index
& (L2_SIZE
- 1));
376 static inline PhysPageDesc
*phys_page_find(target_phys_addr_t index
)
378 return phys_page_find_alloc(index
, 0);
381 #if !defined(CONFIG_USER_ONLY)
382 static void tlb_protect_code(ram_addr_t ram_addr
);
383 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
385 #define mmap_lock() do { } while(0)
386 #define mmap_unlock() do { } while(0)
389 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
391 #if defined(CONFIG_USER_ONLY)
392 /* Currently it is not recommanded to allocate big chunks of data in
393 user mode. It will change when a dedicated libc will be used */
394 #define USE_STATIC_CODE_GEN_BUFFER
397 #ifdef USE_STATIC_CODE_GEN_BUFFER
398 static uint8_t static_code_gen_buffer
[DEFAULT_CODE_GEN_BUFFER_SIZE
];
401 static void code_gen_alloc(unsigned long tb_size
)
403 #ifdef USE_STATIC_CODE_GEN_BUFFER
404 code_gen_buffer
= static_code_gen_buffer
;
405 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
406 map_exec(code_gen_buffer
, code_gen_buffer_size
);
408 code_gen_buffer_size
= tb_size
;
409 if (code_gen_buffer_size
== 0) {
410 #if defined(CONFIG_USER_ONLY)
411 /* in user mode, phys_ram_size is not meaningful */
412 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
414 /* XXX: needs ajustments */
415 code_gen_buffer_size
= (unsigned long)(phys_ram_size
/ 4);
418 if (code_gen_buffer_size
< MIN_CODE_GEN_BUFFER_SIZE
)
419 code_gen_buffer_size
= MIN_CODE_GEN_BUFFER_SIZE
;
420 /* The code gen buffer location may have constraints depending on
421 the host cpu and OS */
422 #if defined(__linux__)
427 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
428 #if defined(__x86_64__)
430 /* Cannot map more than that */
431 if (code_gen_buffer_size
> (800 * 1024 * 1024))
432 code_gen_buffer_size
= (800 * 1024 * 1024);
433 #elif defined(__sparc_v9__)
434 // Map the buffer below 2G, so we can use direct calls and branches
436 start
= (void *) 0x60000000UL
;
437 if (code_gen_buffer_size
> (512 * 1024 * 1024))
438 code_gen_buffer_size
= (512 * 1024 * 1024);
440 code_gen_buffer
= mmap(start
, code_gen_buffer_size
,
441 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
443 if (code_gen_buffer
== MAP_FAILED
) {
444 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
448 #elif defined(__FreeBSD__)
452 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
453 #if defined(__x86_64__)
454 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
455 * 0x40000000 is free */
457 addr
= (void *)0x40000000;
458 /* Cannot map more than that */
459 if (code_gen_buffer_size
> (800 * 1024 * 1024))
460 code_gen_buffer_size
= (800 * 1024 * 1024);
462 code_gen_buffer
= mmap(addr
, code_gen_buffer_size
,
463 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
465 if (code_gen_buffer
== MAP_FAILED
) {
466 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
471 code_gen_buffer
= qemu_malloc(code_gen_buffer_size
);
472 if (!code_gen_buffer
) {
473 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
476 map_exec(code_gen_buffer
, code_gen_buffer_size
);
478 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
479 map_exec(code_gen_prologue
, sizeof(code_gen_prologue
));
480 code_gen_buffer_max_size
= code_gen_buffer_size
-
481 code_gen_max_block_size();
482 code_gen_max_blocks
= code_gen_buffer_size
/ CODE_GEN_AVG_BLOCK_SIZE
;
483 tbs
= qemu_malloc(code_gen_max_blocks
* sizeof(TranslationBlock
));
486 /* Must be called before using the QEMU cpus. 'tb_size' is the size
487 (in bytes) allocated to the translation buffer. Zero means default
489 void cpu_exec_init_all(unsigned long tb_size
)
492 code_gen_alloc(tb_size
);
493 code_gen_ptr
= code_gen_buffer
;
495 #if !defined(CONFIG_USER_ONLY)
500 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
502 #define CPU_COMMON_SAVE_VERSION 1
504 static void cpu_common_save(QEMUFile
*f
, void *opaque
)
506 CPUState
*env
= opaque
;
508 qemu_put_be32s(f
, &env
->halted
);
509 qemu_put_be32s(f
, &env
->interrupt_request
);
512 static int cpu_common_load(QEMUFile
*f
, void *opaque
, int version_id
)
514 CPUState
*env
= opaque
;
516 if (version_id
!= CPU_COMMON_SAVE_VERSION
)
519 qemu_get_be32s(f
, &env
->halted
);
520 qemu_get_be32s(f
, &env
->interrupt_request
);
527 void cpu_exec_init(CPUState
*env
)
532 env
->next_cpu
= NULL
;
535 while (*penv
!= NULL
) {
536 penv
= (CPUState
**)&(*penv
)->next_cpu
;
539 env
->cpu_index
= cpu_index
;
540 env
->nb_watchpoints
= 0;
542 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
543 register_savevm("cpu_common", cpu_index
, CPU_COMMON_SAVE_VERSION
,
544 cpu_common_save
, cpu_common_load
, env
);
545 register_savevm("cpu", cpu_index
, CPU_SAVE_VERSION
,
546 cpu_save
, cpu_load
, env
);
550 static inline void invalidate_page_bitmap(PageDesc
*p
)
552 if (p
->code_bitmap
) {
553 qemu_free(p
->code_bitmap
);
554 p
->code_bitmap
= NULL
;
556 p
->code_write_count
= 0;
559 /* set to NULL all the 'first_tb' fields in all PageDescs */
560 static void page_flush_tb(void)
565 for(i
= 0; i
< L1_SIZE
; i
++) {
568 for(j
= 0; j
< L2_SIZE
; j
++) {
570 invalidate_page_bitmap(p
);
577 /* flush all the translation blocks */
578 /* XXX: tb_flush is currently not thread safe */
579 void tb_flush(CPUState
*env1
)
582 #if defined(DEBUG_FLUSH)
583 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
584 (unsigned long)(code_gen_ptr
- code_gen_buffer
),
586 ((unsigned long)(code_gen_ptr
- code_gen_buffer
)) / nb_tbs
: 0);
588 if ((unsigned long)(code_gen_ptr
- code_gen_buffer
) > code_gen_buffer_size
)
589 cpu_abort(env1
, "Internal error: code buffer overflow\n");
593 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
594 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
597 memset (tb_phys_hash
, 0, CODE_GEN_PHYS_HASH_SIZE
* sizeof (void *));
600 code_gen_ptr
= code_gen_buffer
;
601 /* XXX: flush processor icache at this point if cache flush is
606 #ifdef DEBUG_TB_CHECK
608 static void tb_invalidate_check(target_ulong address
)
610 TranslationBlock
*tb
;
612 address
&= TARGET_PAGE_MASK
;
613 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
614 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
615 if (!(address
+ TARGET_PAGE_SIZE
<= tb
->pc
||
616 address
>= tb
->pc
+ tb
->size
)) {
617 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
618 address
, (long)tb
->pc
, tb
->size
);
624 /* verify that all the pages have correct rights for code */
625 static void tb_page_check(void)
627 TranslationBlock
*tb
;
628 int i
, flags1
, flags2
;
630 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
631 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
632 flags1
= page_get_flags(tb
->pc
);
633 flags2
= page_get_flags(tb
->pc
+ tb
->size
- 1);
634 if ((flags1
& PAGE_WRITE
) || (flags2
& PAGE_WRITE
)) {
635 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
636 (long)tb
->pc
, tb
->size
, flags1
, flags2
);
642 static void tb_jmp_check(TranslationBlock
*tb
)
644 TranslationBlock
*tb1
;
647 /* suppress any remaining jumps to this TB */
651 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
654 tb1
= tb1
->jmp_next
[n1
];
656 /* check end of list */
658 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb
);
664 /* invalidate one TB */
665 static inline void tb_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
,
668 TranslationBlock
*tb1
;
672 *ptb
= *(TranslationBlock
**)((char *)tb1
+ next_offset
);
675 ptb
= (TranslationBlock
**)((char *)tb1
+ next_offset
);
679 static inline void tb_page_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
)
681 TranslationBlock
*tb1
;
687 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
689 *ptb
= tb1
->page_next
[n1
];
692 ptb
= &tb1
->page_next
[n1
];
696 static inline void tb_jmp_remove(TranslationBlock
*tb
, int n
)
698 TranslationBlock
*tb1
, **ptb
;
701 ptb
= &tb
->jmp_next
[n
];
704 /* find tb(n) in circular list */
708 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
709 if (n1
== n
&& tb1
== tb
)
712 ptb
= &tb1
->jmp_first
;
714 ptb
= &tb1
->jmp_next
[n1
];
717 /* now we can suppress tb(n) from the list */
718 *ptb
= tb
->jmp_next
[n
];
720 tb
->jmp_next
[n
] = NULL
;
724 /* reset the jump entry 'n' of a TB so that it is not chained to
726 static inline void tb_reset_jump(TranslationBlock
*tb
, int n
)
728 tb_set_jmp_target(tb
, n
, (unsigned long)(tb
->tc_ptr
+ tb
->tb_next_offset
[n
]));
731 void tb_phys_invalidate(TranslationBlock
*tb
, target_ulong page_addr
)
736 target_phys_addr_t phys_pc
;
737 TranslationBlock
*tb1
, *tb2
;
739 /* remove the TB from the hash list */
740 phys_pc
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
741 h
= tb_phys_hash_func(phys_pc
);
742 tb_remove(&tb_phys_hash
[h
], tb
,
743 offsetof(TranslationBlock
, phys_hash_next
));
745 /* remove the TB from the page list */
746 if (tb
->page_addr
[0] != page_addr
) {
747 p
= page_find(tb
->page_addr
[0] >> TARGET_PAGE_BITS
);
748 tb_page_remove(&p
->first_tb
, tb
);
749 invalidate_page_bitmap(p
);
751 if (tb
->page_addr
[1] != -1 && tb
->page_addr
[1] != page_addr
) {
752 p
= page_find(tb
->page_addr
[1] >> TARGET_PAGE_BITS
);
753 tb_page_remove(&p
->first_tb
, tb
);
754 invalidate_page_bitmap(p
);
757 tb_invalidated_flag
= 1;
759 /* remove the TB from the hash list */
760 h
= tb_jmp_cache_hash_func(tb
->pc
);
761 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
762 if (env
->tb_jmp_cache
[h
] == tb
)
763 env
->tb_jmp_cache
[h
] = NULL
;
766 /* suppress this TB from the two jump lists */
767 tb_jmp_remove(tb
, 0);
768 tb_jmp_remove(tb
, 1);
770 /* suppress any remaining jumps to this TB */
776 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
777 tb2
= tb1
->jmp_next
[n1
];
778 tb_reset_jump(tb1
, n1
);
779 tb1
->jmp_next
[n1
] = NULL
;
782 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2); /* fail safe */
784 tb_phys_invalidate_count
++;
787 static inline void set_bits(uint8_t *tab
, int start
, int len
)
793 mask
= 0xff << (start
& 7);
794 if ((start
& ~7) == (end
& ~7)) {
796 mask
&= ~(0xff << (end
& 7));
801 start
= (start
+ 8) & ~7;
803 while (start
< end1
) {
808 mask
= ~(0xff << (end
& 7));
814 static void build_page_bitmap(PageDesc
*p
)
816 int n
, tb_start
, tb_end
;
817 TranslationBlock
*tb
;
819 p
->code_bitmap
= qemu_mallocz(TARGET_PAGE_SIZE
/ 8);
826 tb
= (TranslationBlock
*)((long)tb
& ~3);
827 /* NOTE: this is subtle as a TB may span two physical pages */
829 /* NOTE: tb_end may be after the end of the page, but
830 it is not a problem */
831 tb_start
= tb
->pc
& ~TARGET_PAGE_MASK
;
832 tb_end
= tb_start
+ tb
->size
;
833 if (tb_end
> TARGET_PAGE_SIZE
)
834 tb_end
= TARGET_PAGE_SIZE
;
837 tb_end
= ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
839 set_bits(p
->code_bitmap
, tb_start
, tb_end
- tb_start
);
840 tb
= tb
->page_next
[n
];
844 TranslationBlock
*tb_gen_code(CPUState
*env
,
845 target_ulong pc
, target_ulong cs_base
,
846 int flags
, int cflags
)
848 TranslationBlock
*tb
;
850 target_ulong phys_pc
, phys_page2
, virt_page2
;
853 phys_pc
= get_phys_addr_code(env
, pc
);
856 /* flush must be done */
858 /* cannot fail at this point */
860 /* Don't forget to invalidate previous TB info. */
861 tb_invalidated_flag
= 1;
863 tc_ptr
= code_gen_ptr
;
865 tb
->cs_base
= cs_base
;
868 cpu_gen_code(env
, tb
, &code_gen_size
);
869 code_gen_ptr
= (void *)(((unsigned long)code_gen_ptr
+ code_gen_size
+ CODE_GEN_ALIGN
- 1) & ~(CODE_GEN_ALIGN
- 1));
871 /* check next page if needed */
872 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
874 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
875 phys_page2
= get_phys_addr_code(env
, virt_page2
);
877 tb_link_phys(tb
, phys_pc
, phys_page2
);
881 /* invalidate all TBs which intersect with the target physical page
882 starting in range [start;end[. NOTE: start and end must refer to
883 the same physical page. 'is_cpu_write_access' should be true if called
884 from a real cpu write access: the virtual CPU will exit the current
885 TB if code is modified inside this TB. */
886 void tb_invalidate_phys_page_range(target_phys_addr_t start
, target_phys_addr_t end
,
887 int is_cpu_write_access
)
889 int n
, current_tb_modified
, current_tb_not_found
, current_flags
;
890 CPUState
*env
= cpu_single_env
;
892 TranslationBlock
*tb
, *tb_next
, *current_tb
, *saved_tb
;
893 target_ulong tb_start
, tb_end
;
894 target_ulong current_pc
, current_cs_base
;
896 p
= page_find(start
>> TARGET_PAGE_BITS
);
899 if (!p
->code_bitmap
&&
900 ++p
->code_write_count
>= SMC_BITMAP_USE_THRESHOLD
&&
901 is_cpu_write_access
) {
902 /* build code bitmap */
903 build_page_bitmap(p
);
906 /* we remove all the TBs in the range [start, end[ */
907 /* XXX: see if in some cases it could be faster to invalidate all the code */
908 current_tb_not_found
= is_cpu_write_access
;
909 current_tb_modified
= 0;
910 current_tb
= NULL
; /* avoid warning */
911 current_pc
= 0; /* avoid warning */
912 current_cs_base
= 0; /* avoid warning */
913 current_flags
= 0; /* avoid warning */
917 tb
= (TranslationBlock
*)((long)tb
& ~3);
918 tb_next
= tb
->page_next
[n
];
919 /* NOTE: this is subtle as a TB may span two physical pages */
921 /* NOTE: tb_end may be after the end of the page, but
922 it is not a problem */
923 tb_start
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
924 tb_end
= tb_start
+ tb
->size
;
926 tb_start
= tb
->page_addr
[1];
927 tb_end
= tb_start
+ ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
929 if (!(tb_end
<= start
|| tb_start
>= end
)) {
930 #ifdef TARGET_HAS_PRECISE_SMC
931 if (current_tb_not_found
) {
932 current_tb_not_found
= 0;
934 if (env
->mem_io_pc
) {
935 /* now we have a real cpu fault */
936 current_tb
= tb_find_pc(env
->mem_io_pc
);
939 if (current_tb
== tb
&&
940 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
941 /* If we are modifying the current TB, we must stop
942 its execution. We could be more precise by checking
943 that the modification is after the current PC, but it
944 would require a specialized function to partially
945 restore the CPU state */
947 current_tb_modified
= 1;
948 cpu_restore_state(current_tb
, env
,
949 env
->mem_io_pc
, NULL
);
950 #if defined(TARGET_I386)
951 current_flags
= env
->hflags
;
952 current_flags
|= (env
->eflags
& (IOPL_MASK
| TF_MASK
| VM_MASK
));
953 current_cs_base
= (target_ulong
)env
->segs
[R_CS
].base
;
954 current_pc
= current_cs_base
+ env
->eip
;
956 #error unsupported CPU
959 #endif /* TARGET_HAS_PRECISE_SMC */
960 /* we need to do that to handle the case where a signal
961 occurs while doing tb_phys_invalidate() */
964 saved_tb
= env
->current_tb
;
965 env
->current_tb
= NULL
;
967 tb_phys_invalidate(tb
, -1);
969 env
->current_tb
= saved_tb
;
970 if (env
->interrupt_request
&& env
->current_tb
)
971 cpu_interrupt(env
, env
->interrupt_request
);
976 #if !defined(CONFIG_USER_ONLY)
977 /* if no code remaining, no need to continue to use slow writes */
979 invalidate_page_bitmap(p
);
980 if (is_cpu_write_access
) {
981 tlb_unprotect_code_phys(env
, start
, env
->mem_io_vaddr
);
985 #ifdef TARGET_HAS_PRECISE_SMC
986 if (current_tb_modified
) {
987 /* we generate a block containing just the instruction
988 modifying the memory. It will ensure that it cannot modify
990 env
->current_tb
= NULL
;
991 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
992 cpu_resume_from_signal(env
, NULL
);
997 /* len must be <= 8 and start must be a multiple of len */
998 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start
, int len
)
1005 fprintf(logfile
, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1006 cpu_single_env
->mem_io_vaddr
, len
,
1007 cpu_single_env
->eip
,
1008 cpu_single_env
->eip
+ (long)cpu_single_env
->segs
[R_CS
].base
);
1012 p
= page_find(start
>> TARGET_PAGE_BITS
);
1015 if (p
->code_bitmap
) {
1016 offset
= start
& ~TARGET_PAGE_MASK
;
1017 b
= p
->code_bitmap
[offset
>> 3] >> (offset
& 7);
1018 if (b
& ((1 << len
) - 1))
1022 tb_invalidate_phys_page_range(start
, start
+ len
, 1);
1026 #if !defined(CONFIG_SOFTMMU)
1027 static void tb_invalidate_phys_page(target_phys_addr_t addr
,
1028 unsigned long pc
, void *puc
)
1030 int n
, current_flags
, current_tb_modified
;
1031 target_ulong current_pc
, current_cs_base
;
1033 TranslationBlock
*tb
, *current_tb
;
1034 #ifdef TARGET_HAS_PRECISE_SMC
1035 CPUState
*env
= cpu_single_env
;
1038 addr
&= TARGET_PAGE_MASK
;
1039 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1043 current_tb_modified
= 0;
1045 current_pc
= 0; /* avoid warning */
1046 current_cs_base
= 0; /* avoid warning */
1047 current_flags
= 0; /* avoid warning */
1048 #ifdef TARGET_HAS_PRECISE_SMC
1049 if (tb
&& pc
!= 0) {
1050 current_tb
= tb_find_pc(pc
);
1053 while (tb
!= NULL
) {
1055 tb
= (TranslationBlock
*)((long)tb
& ~3);
1056 #ifdef TARGET_HAS_PRECISE_SMC
1057 if (current_tb
== tb
&&
1058 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1059 /* If we are modifying the current TB, we must stop
1060 its execution. We could be more precise by checking
1061 that the modification is after the current PC, but it
1062 would require a specialized function to partially
1063 restore the CPU state */
1065 current_tb_modified
= 1;
1066 cpu_restore_state(current_tb
, env
, pc
, puc
);
1067 #if defined(TARGET_I386)
1068 current_flags
= env
->hflags
;
1069 current_flags
|= (env
->eflags
& (IOPL_MASK
| TF_MASK
| VM_MASK
));
1070 current_cs_base
= (target_ulong
)env
->segs
[R_CS
].base
;
1071 current_pc
= current_cs_base
+ env
->eip
;
1073 #error unsupported CPU
1076 #endif /* TARGET_HAS_PRECISE_SMC */
1077 tb_phys_invalidate(tb
, addr
);
1078 tb
= tb
->page_next
[n
];
1081 #ifdef TARGET_HAS_PRECISE_SMC
1082 if (current_tb_modified
) {
1083 /* we generate a block containing just the instruction
1084 modifying the memory. It will ensure that it cannot modify
1086 env
->current_tb
= NULL
;
1087 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1088 cpu_resume_from_signal(env
, puc
);
1094 /* add the tb in the target page and protect it if necessary */
1095 static inline void tb_alloc_page(TranslationBlock
*tb
,
1096 unsigned int n
, target_ulong page_addr
)
1099 TranslationBlock
*last_first_tb
;
1101 tb
->page_addr
[n
] = page_addr
;
1102 p
= page_find_alloc(page_addr
>> TARGET_PAGE_BITS
);
1103 tb
->page_next
[n
] = p
->first_tb
;
1104 last_first_tb
= p
->first_tb
;
1105 p
->first_tb
= (TranslationBlock
*)((long)tb
| n
);
1106 invalidate_page_bitmap(p
);
1108 #if defined(TARGET_HAS_SMC) || 1
1110 #if defined(CONFIG_USER_ONLY)
1111 if (p
->flags
& PAGE_WRITE
) {
1116 /* force the host page as non writable (writes will have a
1117 page fault + mprotect overhead) */
1118 page_addr
&= qemu_host_page_mask
;
1120 for(addr
= page_addr
; addr
< page_addr
+ qemu_host_page_size
;
1121 addr
+= TARGET_PAGE_SIZE
) {
1123 p2
= page_find (addr
>> TARGET_PAGE_BITS
);
1127 p2
->flags
&= ~PAGE_WRITE
;
1128 page_get_flags(addr
);
1130 mprotect(g2h(page_addr
), qemu_host_page_size
,
1131 (prot
& PAGE_BITS
) & ~PAGE_WRITE
);
1132 #ifdef DEBUG_TB_INVALIDATE
1133 printf("protecting code page: 0x" TARGET_FMT_lx
"\n",
1138 /* if some code is already present, then the pages are already
1139 protected. So we handle the case where only the first TB is
1140 allocated in a physical page */
1141 if (!last_first_tb
) {
1142 tlb_protect_code(page_addr
);
1146 #endif /* TARGET_HAS_SMC */
1149 /* Allocate a new translation block. Flush the translation buffer if
1150 too many translation blocks or too much generated code. */
1151 TranslationBlock
*tb_alloc(target_ulong pc
)
1153 TranslationBlock
*tb
;
1155 if (nb_tbs
>= code_gen_max_blocks
||
1156 (code_gen_ptr
- code_gen_buffer
) >= code_gen_buffer_max_size
)
1158 tb
= &tbs
[nb_tbs
++];
1164 void tb_free(TranslationBlock
*tb
)
1166 /* In practice this is mostly used for single use temporary TB
1167 Ignore the hard cases and just back up if this TB happens to
1168 be the last one generated. */
1169 if (nb_tbs
> 0 && tb
== &tbs
[nb_tbs
- 1]) {
1170 code_gen_ptr
= tb
->tc_ptr
;
1175 /* add a new TB and link it to the physical page tables. phys_page2 is
1176 (-1) to indicate that only one page contains the TB. */
1177 void tb_link_phys(TranslationBlock
*tb
,
1178 target_ulong phys_pc
, target_ulong phys_page2
)
1181 TranslationBlock
**ptb
;
1183 /* Grab the mmap lock to stop another thread invalidating this TB
1184 before we are done. */
1186 /* add in the physical hash table */
1187 h
= tb_phys_hash_func(phys_pc
);
1188 ptb
= &tb_phys_hash
[h
];
1189 tb
->phys_hash_next
= *ptb
;
1192 /* add in the page list */
1193 tb_alloc_page(tb
, 0, phys_pc
& TARGET_PAGE_MASK
);
1194 if (phys_page2
!= -1)
1195 tb_alloc_page(tb
, 1, phys_page2
);
1197 tb
->page_addr
[1] = -1;
1199 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2);
1200 tb
->jmp_next
[0] = NULL
;
1201 tb
->jmp_next
[1] = NULL
;
1203 /* init original jump addresses */
1204 if (tb
->tb_next_offset
[0] != 0xffff)
1205 tb_reset_jump(tb
, 0);
1206 if (tb
->tb_next_offset
[1] != 0xffff)
1207 tb_reset_jump(tb
, 1);
1209 #ifdef DEBUG_TB_CHECK
1215 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1216 tb[1].tc_ptr. Return NULL if not found */
1217 TranslationBlock
*tb_find_pc(unsigned long tc_ptr
)
1219 int m_min
, m_max
, m
;
1221 TranslationBlock
*tb
;
1225 if (tc_ptr
< (unsigned long)code_gen_buffer
||
1226 tc_ptr
>= (unsigned long)code_gen_ptr
)
1228 /* binary search (cf Knuth) */
1231 while (m_min
<= m_max
) {
1232 m
= (m_min
+ m_max
) >> 1;
1234 v
= (unsigned long)tb
->tc_ptr
;
1237 else if (tc_ptr
< v
) {
1246 static void tb_reset_jump_recursive(TranslationBlock
*tb
);
1248 static inline void tb_reset_jump_recursive2(TranslationBlock
*tb
, int n
)
1250 TranslationBlock
*tb1
, *tb_next
, **ptb
;
1253 tb1
= tb
->jmp_next
[n
];
1255 /* find head of list */
1258 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1261 tb1
= tb1
->jmp_next
[n1
];
1263 /* we are now sure now that tb jumps to tb1 */
1266 /* remove tb from the jmp_first list */
1267 ptb
= &tb_next
->jmp_first
;
1271 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1272 if (n1
== n
&& tb1
== tb
)
1274 ptb
= &tb1
->jmp_next
[n1
];
1276 *ptb
= tb
->jmp_next
[n
];
1277 tb
->jmp_next
[n
] = NULL
;
1279 /* suppress the jump to next tb in generated code */
1280 tb_reset_jump(tb
, n
);
1282 /* suppress jumps in the tb on which we could have jumped */
1283 tb_reset_jump_recursive(tb_next
);
1287 static void tb_reset_jump_recursive(TranslationBlock
*tb
)
1289 tb_reset_jump_recursive2(tb
, 0);
1290 tb_reset_jump_recursive2(tb
, 1);
1293 #if defined(TARGET_HAS_ICE)
1294 static void breakpoint_invalidate(CPUState
*env
, target_ulong pc
)
1296 target_phys_addr_t addr
;
1298 ram_addr_t ram_addr
;
1301 addr
= cpu_get_phys_page_debug(env
, pc
);
1302 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
1304 pd
= IO_MEM_UNASSIGNED
;
1306 pd
= p
->phys_offset
;
1308 ram_addr
= (pd
& TARGET_PAGE_MASK
) | (pc
& ~TARGET_PAGE_MASK
);
1309 tb_invalidate_phys_page_range(ram_addr
, ram_addr
+ 1, 0);
1313 /* Add a watchpoint. */
1314 int cpu_watchpoint_insert(CPUState
*env
, target_ulong addr
, int type
)
1318 for (i
= 0; i
< env
->nb_watchpoints
; i
++) {
1319 if (addr
== env
->watchpoint
[i
].vaddr
)
1322 if (env
->nb_watchpoints
>= MAX_WATCHPOINTS
)
1325 i
= env
->nb_watchpoints
++;
1326 env
->watchpoint
[i
].vaddr
= addr
;
1327 env
->watchpoint
[i
].type
= type
;
1328 tlb_flush_page(env
, addr
);
1329 /* FIXME: This flush is needed because of the hack to make memory ops
1330 terminate the TB. It can be removed once the proper IO trap and
1331 re-execute bits are in. */
1336 /* Remove a watchpoint. */
1337 int cpu_watchpoint_remove(CPUState
*env
, target_ulong addr
)
1341 for (i
= 0; i
< env
->nb_watchpoints
; i
++) {
1342 if (addr
== env
->watchpoint
[i
].vaddr
) {
1343 env
->nb_watchpoints
--;
1344 env
->watchpoint
[i
] = env
->watchpoint
[env
->nb_watchpoints
];
1345 tlb_flush_page(env
, addr
);
1352 /* Remove all watchpoints. */
1353 void cpu_watchpoint_remove_all(CPUState
*env
) {
1356 for (i
= 0; i
< env
->nb_watchpoints
; i
++) {
1357 tlb_flush_page(env
, env
->watchpoint
[i
].vaddr
);
1359 env
->nb_watchpoints
= 0;
1362 /* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
1363 breakpoint is reached */
1364 int cpu_breakpoint_insert(CPUState
*env
, target_ulong pc
)
1366 #if defined(TARGET_HAS_ICE)
1369 for(i
= 0; i
< env
->nb_breakpoints
; i
++) {
1370 if (env
->breakpoints
[i
] == pc
)
1374 if (env
->nb_breakpoints
>= MAX_BREAKPOINTS
)
1376 env
->breakpoints
[env
->nb_breakpoints
++] = pc
;
1378 breakpoint_invalidate(env
, pc
);
1385 /* remove all breakpoints */
1386 void cpu_breakpoint_remove_all(CPUState
*env
) {
1387 #if defined(TARGET_HAS_ICE)
1389 for(i
= 0; i
< env
->nb_breakpoints
; i
++) {
1390 breakpoint_invalidate(env
, env
->breakpoints
[i
]);
1392 env
->nb_breakpoints
= 0;
1396 /* remove a breakpoint */
1397 int cpu_breakpoint_remove(CPUState
*env
, target_ulong pc
)
1399 #if defined(TARGET_HAS_ICE)
1401 for(i
= 0; i
< env
->nb_breakpoints
; i
++) {
1402 if (env
->breakpoints
[i
] == pc
)
1407 env
->nb_breakpoints
--;
1408 if (i
< env
->nb_breakpoints
)
1409 env
->breakpoints
[i
] = env
->breakpoints
[env
->nb_breakpoints
];
1411 breakpoint_invalidate(env
, pc
);
1418 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1419 CPU loop after each instruction */
1420 void cpu_single_step(CPUState
*env
, int enabled
)
1422 #if defined(TARGET_HAS_ICE)
1423 if (env
->singlestep_enabled
!= enabled
) {
1424 env
->singlestep_enabled
= enabled
;
1425 /* must flush all the translated code to avoid inconsistancies */
1426 /* XXX: only flush what is necessary */
1432 /* enable or disable low levels log */
1433 void cpu_set_log(int log_flags
)
1435 loglevel
= log_flags
;
1436 if (loglevel
&& !logfile
) {
1437 logfile
= fopen(logfilename
, log_append
? "a" : "w");
1439 perror(logfilename
);
1442 #if !defined(CONFIG_SOFTMMU)
1443 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1445 static char logfile_buf
[4096];
1446 setvbuf(logfile
, logfile_buf
, _IOLBF
, sizeof(logfile_buf
));
1449 setvbuf(logfile
, NULL
, _IOLBF
, 0);
1453 if (!loglevel
&& logfile
) {
1459 void cpu_set_log_filename(const char *filename
)
1461 logfilename
= strdup(filename
);
1466 cpu_set_log(loglevel
);
1469 /* mask must never be zero, except for A20 change call */
1470 void cpu_interrupt(CPUState
*env
, int mask
)
1472 #if !defined(USE_NPTL)
1473 TranslationBlock
*tb
;
1474 static spinlock_t interrupt_lock
= SPIN_LOCK_UNLOCKED
;
1478 old_mask
= env
->interrupt_request
;
1479 /* FIXME: This is probably not threadsafe. A different thread could
1480 be in the middle of a read-modify-write operation. */
1481 env
->interrupt_request
|= mask
;
1482 #if defined(USE_NPTL)
1483 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1484 problem and hope the cpu will stop of its own accord. For userspace
1485 emulation this often isn't actually as bad as it sounds. Often
1486 signals are used primarily to interrupt blocking syscalls. */
1489 env
->icount_decr
.u16
.high
= 0xffff;
1490 #ifndef CONFIG_USER_ONLY
1491 /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means
1492 an async event happened and we need to process it. */
1494 && (mask
& ~(old_mask
| CPU_INTERRUPT_EXIT
)) != 0) {
1495 cpu_abort(env
, "Raised interrupt while not in I/O function");
1499 tb
= env
->current_tb
;
1500 /* if the cpu is currently executing code, we must unlink it and
1501 all the potentially executing TB */
1502 if (tb
&& !testandset(&interrupt_lock
)) {
1503 env
->current_tb
= NULL
;
1504 tb_reset_jump_recursive(tb
);
1505 resetlock(&interrupt_lock
);
1511 void cpu_reset_interrupt(CPUState
*env
, int mask
)
1513 env
->interrupt_request
&= ~mask
;
1516 const CPULogItem cpu_log_items
[] = {
1517 { CPU_LOG_TB_OUT_ASM
, "out_asm",
1518 "show generated host assembly code for each compiled TB" },
1519 { CPU_LOG_TB_IN_ASM
, "in_asm",
1520 "show target assembly code for each compiled TB" },
1521 { CPU_LOG_TB_OP
, "op",
1522 "show micro ops for each compiled TB" },
1523 { CPU_LOG_TB_OP_OPT
, "op_opt",
1526 "before eflags optimization and "
1528 "after liveness analysis" },
1529 { CPU_LOG_INT
, "int",
1530 "show interrupts/exceptions in short format" },
1531 { CPU_LOG_EXEC
, "exec",
1532 "show trace before each executed TB (lots of logs)" },
1533 { CPU_LOG_TB_CPU
, "cpu",
1534 "show CPU state before block translation" },
1536 { CPU_LOG_PCALL
, "pcall",
1537 "show protected mode far calls/returns/exceptions" },
1540 { CPU_LOG_IOPORT
, "ioport",
1541 "show all i/o ports accesses" },
1546 static int cmp1(const char *s1
, int n
, const char *s2
)
1548 if (strlen(s2
) != n
)
1550 return memcmp(s1
, s2
, n
) == 0;
1553 /* takes a comma separated list of log masks. Return 0 if error. */
1554 int cpu_str_to_log_mask(const char *str
)
1556 const CPULogItem
*item
;
1563 p1
= strchr(p
, ',');
1566 if(cmp1(p
,p1
-p
,"all")) {
1567 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1571 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1572 if (cmp1(p
, p1
- p
, item
->name
))
1586 void cpu_abort(CPUState
*env
, const char *fmt
, ...)
1593 fprintf(stderr
, "qemu: fatal: ");
1594 vfprintf(stderr
, fmt
, ap
);
1595 fprintf(stderr
, "\n");
1597 cpu_dump_state(env
, stderr
, fprintf
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1599 cpu_dump_state(env
, stderr
, fprintf
, 0);
1602 fprintf(logfile
, "qemu: fatal: ");
1603 vfprintf(logfile
, fmt
, ap2
);
1604 fprintf(logfile
, "\n");
1606 cpu_dump_state(env
, logfile
, fprintf
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1608 cpu_dump_state(env
, logfile
, fprintf
, 0);
1618 CPUState
*cpu_copy(CPUState
*env
)
1620 CPUState
*new_env
= cpu_init(env
->cpu_model_str
);
1621 /* preserve chaining and index */
1622 CPUState
*next_cpu
= new_env
->next_cpu
;
1623 int cpu_index
= new_env
->cpu_index
;
1624 memcpy(new_env
, env
, sizeof(CPUState
));
1625 new_env
->next_cpu
= next_cpu
;
1626 new_env
->cpu_index
= cpu_index
;
1630 #if !defined(CONFIG_USER_ONLY)
1632 static inline void tlb_flush_jmp_cache(CPUState
*env
, target_ulong addr
)
1636 /* Discard jump cache entries for any tb which might potentially
1637 overlap the flushed page. */
1638 i
= tb_jmp_cache_hash_page(addr
- TARGET_PAGE_SIZE
);
1639 memset (&env
->tb_jmp_cache
[i
], 0,
1640 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1642 i
= tb_jmp_cache_hash_page(addr
);
1643 memset (&env
->tb_jmp_cache
[i
], 0,
1644 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1647 /* NOTE: if flush_global is true, also flush global entries (not
1649 void tlb_flush(CPUState
*env
, int flush_global
)
1653 #if defined(DEBUG_TLB)
1654 printf("tlb_flush:\n");
1656 /* must reset current TB so that interrupts cannot modify the
1657 links while we are modifying them */
1658 env
->current_tb
= NULL
;
1660 for(i
= 0; i
< CPU_TLB_SIZE
; i
++) {
1661 env
->tlb_table
[0][i
].addr_read
= -1;
1662 env
->tlb_table
[0][i
].addr_write
= -1;
1663 env
->tlb_table
[0][i
].addr_code
= -1;
1664 env
->tlb_table
[1][i
].addr_read
= -1;
1665 env
->tlb_table
[1][i
].addr_write
= -1;
1666 env
->tlb_table
[1][i
].addr_code
= -1;
1667 #if (NB_MMU_MODES >= 3)
1668 env
->tlb_table
[2][i
].addr_read
= -1;
1669 env
->tlb_table
[2][i
].addr_write
= -1;
1670 env
->tlb_table
[2][i
].addr_code
= -1;
1671 #if (NB_MMU_MODES == 4)
1672 env
->tlb_table
[3][i
].addr_read
= -1;
1673 env
->tlb_table
[3][i
].addr_write
= -1;
1674 env
->tlb_table
[3][i
].addr_code
= -1;
1679 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
1682 if (env
->kqemu_enabled
) {
1683 kqemu_flush(env
, flush_global
);
1689 static inline void tlb_flush_entry(CPUTLBEntry
*tlb_entry
, target_ulong addr
)
1691 if (addr
== (tlb_entry
->addr_read
&
1692 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1693 addr
== (tlb_entry
->addr_write
&
1694 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1695 addr
== (tlb_entry
->addr_code
&
1696 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
))) {
1697 tlb_entry
->addr_read
= -1;
1698 tlb_entry
->addr_write
= -1;
1699 tlb_entry
->addr_code
= -1;
1703 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
1707 #if defined(DEBUG_TLB)
1708 printf("tlb_flush_page: " TARGET_FMT_lx
"\n", addr
);
1710 /* must reset current TB so that interrupts cannot modify the
1711 links while we are modifying them */
1712 env
->current_tb
= NULL
;
1714 addr
&= TARGET_PAGE_MASK
;
1715 i
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
1716 tlb_flush_entry(&env
->tlb_table
[0][i
], addr
);
1717 tlb_flush_entry(&env
->tlb_table
[1][i
], addr
);
1718 #if (NB_MMU_MODES >= 3)
1719 tlb_flush_entry(&env
->tlb_table
[2][i
], addr
);
1720 #if (NB_MMU_MODES == 4)
1721 tlb_flush_entry(&env
->tlb_table
[3][i
], addr
);
1725 tlb_flush_jmp_cache(env
, addr
);
1728 if (env
->kqemu_enabled
) {
1729 kqemu_flush_page(env
, addr
);
1734 /* update the TLBs so that writes to code in the virtual page 'addr'
1736 static void tlb_protect_code(ram_addr_t ram_addr
)
1738 cpu_physical_memory_reset_dirty(ram_addr
,
1739 ram_addr
+ TARGET_PAGE_SIZE
,
1743 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1744 tested for self modifying code */
1745 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
1748 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] |= CODE_DIRTY_FLAG
;
1751 static inline void tlb_reset_dirty_range(CPUTLBEntry
*tlb_entry
,
1752 unsigned long start
, unsigned long length
)
1755 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
1756 addr
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) + tlb_entry
->addend
;
1757 if ((addr
- start
) < length
) {
1758 tlb_entry
->addr_write
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) | TLB_NOTDIRTY
;
1763 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
1767 unsigned long length
, start1
;
1771 start
&= TARGET_PAGE_MASK
;
1772 end
= TARGET_PAGE_ALIGN(end
);
1774 length
= end
- start
;
1777 len
= length
>> TARGET_PAGE_BITS
;
1779 /* XXX: should not depend on cpu context */
1781 if (env
->kqemu_enabled
) {
1784 for(i
= 0; i
< len
; i
++) {
1785 kqemu_set_notdirty(env
, addr
);
1786 addr
+= TARGET_PAGE_SIZE
;
1790 mask
= ~dirty_flags
;
1791 p
= phys_ram_dirty
+ (start
>> TARGET_PAGE_BITS
);
1792 for(i
= 0; i
< len
; i
++)
1795 /* we modify the TLB cache so that the dirty bit will be set again
1796 when accessing the range */
1797 start1
= start
+ (unsigned long)phys_ram_base
;
1798 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1799 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1800 tlb_reset_dirty_range(&env
->tlb_table
[0][i
], start1
, length
);
1801 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1802 tlb_reset_dirty_range(&env
->tlb_table
[1][i
], start1
, length
);
1803 #if (NB_MMU_MODES >= 3)
1804 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1805 tlb_reset_dirty_range(&env
->tlb_table
[2][i
], start1
, length
);
1806 #if (NB_MMU_MODES == 4)
1807 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1808 tlb_reset_dirty_range(&env
->tlb_table
[3][i
], start1
, length
);
1814 int cpu_physical_memory_set_dirty_tracking(int enable
)
1816 in_migration
= enable
;
1820 int cpu_physical_memory_get_dirty_tracking(void)
1822 return in_migration
;
1825 static inline void tlb_update_dirty(CPUTLBEntry
*tlb_entry
)
1827 ram_addr_t ram_addr
;
1829 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
1830 ram_addr
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) +
1831 tlb_entry
->addend
- (unsigned long)phys_ram_base
;
1832 if (!cpu_physical_memory_is_dirty(ram_addr
)) {
1833 tlb_entry
->addr_write
|= TLB_NOTDIRTY
;
1838 /* update the TLB according to the current state of the dirty bits */
1839 void cpu_tlb_update_dirty(CPUState
*env
)
1842 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1843 tlb_update_dirty(&env
->tlb_table
[0][i
]);
1844 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1845 tlb_update_dirty(&env
->tlb_table
[1][i
]);
1846 #if (NB_MMU_MODES >= 3)
1847 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1848 tlb_update_dirty(&env
->tlb_table
[2][i
]);
1849 #if (NB_MMU_MODES == 4)
1850 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1851 tlb_update_dirty(&env
->tlb_table
[3][i
]);
1856 static inline void tlb_set_dirty1(CPUTLBEntry
*tlb_entry
, target_ulong vaddr
)
1858 if (tlb_entry
->addr_write
== (vaddr
| TLB_NOTDIRTY
))
1859 tlb_entry
->addr_write
= vaddr
;
1862 /* update the TLB corresponding to virtual page vaddr
1863 so that it is no longer dirty */
1864 static inline void tlb_set_dirty(CPUState
*env
, target_ulong vaddr
)
1868 vaddr
&= TARGET_PAGE_MASK
;
1869 i
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
1870 tlb_set_dirty1(&env
->tlb_table
[0][i
], vaddr
);
1871 tlb_set_dirty1(&env
->tlb_table
[1][i
], vaddr
);
1872 #if (NB_MMU_MODES >= 3)
1873 tlb_set_dirty1(&env
->tlb_table
[2][i
], vaddr
);
1874 #if (NB_MMU_MODES == 4)
1875 tlb_set_dirty1(&env
->tlb_table
[3][i
], vaddr
);
1880 /* add a new TLB entry. At most one entry for a given virtual address
1881 is permitted. Return 0 if OK or 2 if the page could not be mapped
1882 (can only happen in non SOFTMMU mode for I/O pages or pages
1883 conflicting with the host address space). */
1884 int tlb_set_page_exec(CPUState
*env
, target_ulong vaddr
,
1885 target_phys_addr_t paddr
, int prot
,
1886 int mmu_idx
, int is_softmmu
)
1891 target_ulong address
;
1892 target_ulong code_address
;
1893 target_phys_addr_t addend
;
1897 target_phys_addr_t iotlb
;
1899 p
= phys_page_find(paddr
>> TARGET_PAGE_BITS
);
1901 pd
= IO_MEM_UNASSIGNED
;
1903 pd
= p
->phys_offset
;
1905 #if defined(DEBUG_TLB)
1906 printf("tlb_set_page: vaddr=" TARGET_FMT_lx
" paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1907 vaddr
, (int)paddr
, prot
, mmu_idx
, is_softmmu
, pd
);
1912 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&& !(pd
& IO_MEM_ROMD
)) {
1913 /* IO memory case (romd handled later) */
1914 address
|= TLB_MMIO
;
1916 addend
= (unsigned long)phys_ram_base
+ (pd
& TARGET_PAGE_MASK
);
1917 if ((pd
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
) {
1919 iotlb
= pd
& TARGET_PAGE_MASK
;
1920 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
)
1921 iotlb
|= IO_MEM_NOTDIRTY
;
1923 iotlb
|= IO_MEM_ROM
;
1925 /* IO handlers are currently passed a phsical address.
1926 It would be nice to pass an offset from the base address
1927 of that region. This would avoid having to special case RAM,
1928 and avoid full address decoding in every device.
1929 We can't use the high bits of pd for this because
1930 IO_MEM_ROMD uses these as a ram address. */
1931 iotlb
= (pd
& ~TARGET_PAGE_MASK
) + paddr
;
1934 code_address
= address
;
1935 /* Make accesses to pages with watchpoints go via the
1936 watchpoint trap routines. */
1937 for (i
= 0; i
< env
->nb_watchpoints
; i
++) {
1938 if (vaddr
== (env
->watchpoint
[i
].vaddr
& TARGET_PAGE_MASK
)) {
1939 iotlb
= io_mem_watch
+ paddr
;
1940 /* TODO: The memory case can be optimized by not trapping
1941 reads of pages with a write breakpoint. */
1942 address
|= TLB_MMIO
;
1946 index
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
1947 env
->iotlb
[mmu_idx
][index
] = iotlb
- vaddr
;
1948 te
= &env
->tlb_table
[mmu_idx
][index
];
1949 te
->addend
= addend
- vaddr
;
1950 if (prot
& PAGE_READ
) {
1951 te
->addr_read
= address
;
1956 if (prot
& PAGE_EXEC
) {
1957 te
->addr_code
= code_address
;
1961 if (prot
& PAGE_WRITE
) {
1962 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_ROM
||
1963 (pd
& IO_MEM_ROMD
)) {
1964 /* Write access calls the I/O callback. */
1965 te
->addr_write
= address
| TLB_MMIO
;
1966 } else if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
&&
1967 !cpu_physical_memory_is_dirty(pd
)) {
1968 te
->addr_write
= address
| TLB_NOTDIRTY
;
1970 te
->addr_write
= address
;
1973 te
->addr_write
= -1;
1980 void tlb_flush(CPUState
*env
, int flush_global
)
1984 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
1988 int tlb_set_page_exec(CPUState
*env
, target_ulong vaddr
,
1989 target_phys_addr_t paddr
, int prot
,
1990 int mmu_idx
, int is_softmmu
)
1995 /* dump memory mappings */
1996 void page_dump(FILE *f
)
1998 unsigned long start
, end
;
1999 int i
, j
, prot
, prot1
;
2002 fprintf(f
, "%-8s %-8s %-8s %s\n",
2003 "start", "end", "size", "prot");
2007 for(i
= 0; i
<= L1_SIZE
; i
++) {
2012 for(j
= 0;j
< L2_SIZE
; j
++) {
2017 if (prot1
!= prot
) {
2018 end
= (i
<< (32 - L1_BITS
)) | (j
<< TARGET_PAGE_BITS
);
2020 fprintf(f
, "%08lx-%08lx %08lx %c%c%c\n",
2021 start
, end
, end
- start
,
2022 prot
& PAGE_READ
? 'r' : '-',
2023 prot
& PAGE_WRITE
? 'w' : '-',
2024 prot
& PAGE_EXEC
? 'x' : '-');
2038 int page_get_flags(target_ulong address
)
2042 p
= page_find(address
>> TARGET_PAGE_BITS
);
2048 /* modify the flags of a page and invalidate the code if
2049 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2050 depending on PAGE_WRITE */
2051 void page_set_flags(target_ulong start
, target_ulong end
, int flags
)
2056 /* mmap_lock should already be held. */
2057 start
= start
& TARGET_PAGE_MASK
;
2058 end
= TARGET_PAGE_ALIGN(end
);
2059 if (flags
& PAGE_WRITE
)
2060 flags
|= PAGE_WRITE_ORG
;
2061 for(addr
= start
; addr
< end
; addr
+= TARGET_PAGE_SIZE
) {
2062 p
= page_find_alloc(addr
>> TARGET_PAGE_BITS
);
2063 /* We may be called for host regions that are outside guest
2067 /* if the write protection is set, then we invalidate the code
2069 if (!(p
->flags
& PAGE_WRITE
) &&
2070 (flags
& PAGE_WRITE
) &&
2072 tb_invalidate_phys_page(addr
, 0, NULL
);
2078 int page_check_range(target_ulong start
, target_ulong len
, int flags
)
2084 if (start
+ len
< start
)
2085 /* we've wrapped around */
2088 end
= TARGET_PAGE_ALIGN(start
+len
); /* must do before we loose bits in the next step */
2089 start
= start
& TARGET_PAGE_MASK
;
2091 for(addr
= start
; addr
< end
; addr
+= TARGET_PAGE_SIZE
) {
2092 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2095 if( !(p
->flags
& PAGE_VALID
) )
2098 if ((flags
& PAGE_READ
) && !(p
->flags
& PAGE_READ
))
2100 if (flags
& PAGE_WRITE
) {
2101 if (!(p
->flags
& PAGE_WRITE_ORG
))
2103 /* unprotect the page if it was put read-only because it
2104 contains translated code */
2105 if (!(p
->flags
& PAGE_WRITE
)) {
2106 if (!page_unprotect(addr
, 0, NULL
))
2115 /* called from signal handler: invalidate the code and unprotect the
2116 page. Return TRUE if the fault was succesfully handled. */
2117 int page_unprotect(target_ulong address
, unsigned long pc
, void *puc
)
2119 unsigned int page_index
, prot
, pindex
;
2121 target_ulong host_start
, host_end
, addr
;
2123 /* Technically this isn't safe inside a signal handler. However we
2124 know this only ever happens in a synchronous SEGV handler, so in
2125 practice it seems to be ok. */
2128 host_start
= address
& qemu_host_page_mask
;
2129 page_index
= host_start
>> TARGET_PAGE_BITS
;
2130 p1
= page_find(page_index
);
2135 host_end
= host_start
+ qemu_host_page_size
;
2138 for(addr
= host_start
;addr
< host_end
; addr
+= TARGET_PAGE_SIZE
) {
2142 /* if the page was really writable, then we change its
2143 protection back to writable */
2144 if (prot
& PAGE_WRITE_ORG
) {
2145 pindex
= (address
- host_start
) >> TARGET_PAGE_BITS
;
2146 if (!(p1
[pindex
].flags
& PAGE_WRITE
)) {
2147 mprotect((void *)g2h(host_start
), qemu_host_page_size
,
2148 (prot
& PAGE_BITS
) | PAGE_WRITE
);
2149 p1
[pindex
].flags
|= PAGE_WRITE
;
2150 /* and since the content will be modified, we must invalidate
2151 the corresponding translated code. */
2152 tb_invalidate_phys_page(address
, pc
, puc
);
2153 #ifdef DEBUG_TB_CHECK
2154 tb_invalidate_check(address
);
2164 static inline void tlb_set_dirty(CPUState
*env
,
2165 unsigned long addr
, target_ulong vaddr
)
2168 #endif /* defined(CONFIG_USER_ONLY) */
2170 #if !defined(CONFIG_USER_ONLY)
2171 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2173 static void *subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
2174 ram_addr_t orig_memory
);
2175 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2178 if (addr > start_addr) \
2181 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2182 if (start_addr2 > 0) \
2186 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2187 end_addr2 = TARGET_PAGE_SIZE - 1; \
2189 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2190 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2195 /* register physical memory. 'size' must be a multiple of the target
2196 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2198 void cpu_register_physical_memory(target_phys_addr_t start_addr
,
2200 ram_addr_t phys_offset
)
2202 target_phys_addr_t addr
, end_addr
;
2205 ram_addr_t orig_size
= size
;
2209 /* XXX: should not depend on cpu context */
2211 if (env
->kqemu_enabled
) {
2212 kqemu_set_phys_mem(start_addr
, size
, phys_offset
);
2216 kvm_set_phys_mem(start_addr
, size
, phys_offset
);
2218 size
= (size
+ TARGET_PAGE_SIZE
- 1) & TARGET_PAGE_MASK
;
2219 end_addr
= start_addr
+ (target_phys_addr_t
)size
;
2220 for(addr
= start_addr
; addr
!= end_addr
; addr
+= TARGET_PAGE_SIZE
) {
2221 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2222 if (p
&& p
->phys_offset
!= IO_MEM_UNASSIGNED
) {
2223 ram_addr_t orig_memory
= p
->phys_offset
;
2224 target_phys_addr_t start_addr2
, end_addr2
;
2225 int need_subpage
= 0;
2227 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
, end_addr2
,
2229 if (need_subpage
|| phys_offset
& IO_MEM_SUBWIDTH
) {
2230 if (!(orig_memory
& IO_MEM_SUBPAGE
)) {
2231 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2232 &p
->phys_offset
, orig_memory
);
2234 subpage
= io_mem_opaque
[(orig_memory
& ~TARGET_PAGE_MASK
)
2237 subpage_register(subpage
, start_addr2
, end_addr2
, phys_offset
);
2239 p
->phys_offset
= phys_offset
;
2240 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2241 (phys_offset
& IO_MEM_ROMD
))
2242 phys_offset
+= TARGET_PAGE_SIZE
;
2245 p
= phys_page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
2246 p
->phys_offset
= phys_offset
;
2247 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2248 (phys_offset
& IO_MEM_ROMD
))
2249 phys_offset
+= TARGET_PAGE_SIZE
;
2251 target_phys_addr_t start_addr2
, end_addr2
;
2252 int need_subpage
= 0;
2254 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
,
2255 end_addr2
, need_subpage
);
2257 if (need_subpage
|| phys_offset
& IO_MEM_SUBWIDTH
) {
2258 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2259 &p
->phys_offset
, IO_MEM_UNASSIGNED
);
2260 subpage_register(subpage
, start_addr2
, end_addr2
,
2267 /* since each CPU stores ram addresses in its TLB cache, we must
2268 reset the modified entries */
2270 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2275 /* XXX: temporary until new memory mapping API */
2276 ram_addr_t
cpu_get_physical_page_desc(target_phys_addr_t addr
)
2280 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2282 return IO_MEM_UNASSIGNED
;
2283 return p
->phys_offset
;
2286 /* XXX: better than nothing */
2287 ram_addr_t
qemu_ram_alloc(ram_addr_t size
)
2290 if ((phys_ram_alloc_offset
+ size
) > phys_ram_size
) {
2291 fprintf(stderr
, "Not enough memory (requested_size = %" PRIu64
", max memory = %" PRIu64
")\n",
2292 (uint64_t)size
, (uint64_t)phys_ram_size
);
2295 addr
= phys_ram_alloc_offset
;
2296 phys_ram_alloc_offset
= TARGET_PAGE_ALIGN(phys_ram_alloc_offset
+ size
);
2300 void qemu_ram_free(ram_addr_t addr
)
2304 static uint32_t unassigned_mem_readb(void *opaque
, target_phys_addr_t addr
)
2306 #ifdef DEBUG_UNASSIGNED
2307 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2309 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2310 do_unassigned_access(addr
, 0, 0, 0, 1);
2315 static uint32_t unassigned_mem_readw(void *opaque
, target_phys_addr_t addr
)
2317 #ifdef DEBUG_UNASSIGNED
2318 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2320 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2321 do_unassigned_access(addr
, 0, 0, 0, 2);
2326 static uint32_t unassigned_mem_readl(void *opaque
, target_phys_addr_t addr
)
2328 #ifdef DEBUG_UNASSIGNED
2329 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2331 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2332 do_unassigned_access(addr
, 0, 0, 0, 4);
2337 static void unassigned_mem_writeb(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2339 #ifdef DEBUG_UNASSIGNED
2340 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2342 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2343 do_unassigned_access(addr
, 1, 0, 0, 1);
2347 static void unassigned_mem_writew(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2349 #ifdef DEBUG_UNASSIGNED
2350 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2352 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2353 do_unassigned_access(addr
, 1, 0, 0, 2);
2357 static void unassigned_mem_writel(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2359 #ifdef DEBUG_UNASSIGNED
2360 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2362 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2363 do_unassigned_access(addr
, 1, 0, 0, 4);
2367 static CPUReadMemoryFunc
*unassigned_mem_read
[3] = {
2368 unassigned_mem_readb
,
2369 unassigned_mem_readw
,
2370 unassigned_mem_readl
,
2373 static CPUWriteMemoryFunc
*unassigned_mem_write
[3] = {
2374 unassigned_mem_writeb
,
2375 unassigned_mem_writew
,
2376 unassigned_mem_writel
,
2379 static void notdirty_mem_writeb(void *opaque
, target_phys_addr_t ram_addr
,
2383 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2384 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2385 #if !defined(CONFIG_USER_ONLY)
2386 tb_invalidate_phys_page_fast(ram_addr
, 1);
2387 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2390 stb_p(phys_ram_base
+ ram_addr
, val
);
2392 if (cpu_single_env
->kqemu_enabled
&&
2393 (dirty_flags
& KQEMU_MODIFY_PAGE_MASK
) != KQEMU_MODIFY_PAGE_MASK
)
2394 kqemu_modify_page(cpu_single_env
, ram_addr
);
2396 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2397 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2398 /* we remove the notdirty callback only if the code has been
2400 if (dirty_flags
== 0xff)
2401 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2404 static void notdirty_mem_writew(void *opaque
, target_phys_addr_t ram_addr
,
2408 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2409 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2410 #if !defined(CONFIG_USER_ONLY)
2411 tb_invalidate_phys_page_fast(ram_addr
, 2);
2412 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2415 stw_p(phys_ram_base
+ ram_addr
, val
);
2417 if (cpu_single_env
->kqemu_enabled
&&
2418 (dirty_flags
& KQEMU_MODIFY_PAGE_MASK
) != KQEMU_MODIFY_PAGE_MASK
)
2419 kqemu_modify_page(cpu_single_env
, ram_addr
);
2421 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2422 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2423 /* we remove the notdirty callback only if the code has been
2425 if (dirty_flags
== 0xff)
2426 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2429 static void notdirty_mem_writel(void *opaque
, target_phys_addr_t ram_addr
,
2433 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2434 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2435 #if !defined(CONFIG_USER_ONLY)
2436 tb_invalidate_phys_page_fast(ram_addr
, 4);
2437 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2440 stl_p(phys_ram_base
+ ram_addr
, val
);
2442 if (cpu_single_env
->kqemu_enabled
&&
2443 (dirty_flags
& KQEMU_MODIFY_PAGE_MASK
) != KQEMU_MODIFY_PAGE_MASK
)
2444 kqemu_modify_page(cpu_single_env
, ram_addr
);
2446 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2447 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2448 /* we remove the notdirty callback only if the code has been
2450 if (dirty_flags
== 0xff)
2451 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2454 static CPUReadMemoryFunc
*error_mem_read
[3] = {
2455 NULL
, /* never used */
2456 NULL
, /* never used */
2457 NULL
, /* never used */
2460 static CPUWriteMemoryFunc
*notdirty_mem_write
[3] = {
2461 notdirty_mem_writeb
,
2462 notdirty_mem_writew
,
2463 notdirty_mem_writel
,
2466 /* Generate a debug exception if a watchpoint has been hit. */
2467 static void check_watchpoint(int offset
, int flags
)
2469 CPUState
*env
= cpu_single_env
;
2473 vaddr
= (env
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2474 for (i
= 0; i
< env
->nb_watchpoints
; i
++) {
2475 if (vaddr
== env
->watchpoint
[i
].vaddr
2476 && (env
->watchpoint
[i
].type
& flags
)) {
2477 env
->watchpoint_hit
= i
+ 1;
2478 cpu_interrupt(env
, CPU_INTERRUPT_DEBUG
);
2484 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2485 so these check for a hit then pass through to the normal out-of-line
2487 static uint32_t watch_mem_readb(void *opaque
, target_phys_addr_t addr
)
2489 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, PAGE_READ
);
2490 return ldub_phys(addr
);
2493 static uint32_t watch_mem_readw(void *opaque
, target_phys_addr_t addr
)
2495 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, PAGE_READ
);
2496 return lduw_phys(addr
);
2499 static uint32_t watch_mem_readl(void *opaque
, target_phys_addr_t addr
)
2501 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, PAGE_READ
);
2502 return ldl_phys(addr
);
2505 static void watch_mem_writeb(void *opaque
, target_phys_addr_t addr
,
2508 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, PAGE_WRITE
);
2509 stb_phys(addr
, val
);
2512 static void watch_mem_writew(void *opaque
, target_phys_addr_t addr
,
2515 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, PAGE_WRITE
);
2516 stw_phys(addr
, val
);
2519 static void watch_mem_writel(void *opaque
, target_phys_addr_t addr
,
2522 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, PAGE_WRITE
);
2523 stl_phys(addr
, val
);
2526 static CPUReadMemoryFunc
*watch_mem_read
[3] = {
2532 static CPUWriteMemoryFunc
*watch_mem_write
[3] = {
2538 static inline uint32_t subpage_readlen (subpage_t
*mmio
, target_phys_addr_t addr
,
2544 idx
= SUBPAGE_IDX(addr
- mmio
->base
);
2545 #if defined(DEBUG_SUBPAGE)
2546 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d\n", __func__
,
2547 mmio
, len
, addr
, idx
);
2549 ret
= (**mmio
->mem_read
[idx
][len
])(mmio
->opaque
[idx
][0][len
], addr
);
2554 static inline void subpage_writelen (subpage_t
*mmio
, target_phys_addr_t addr
,
2555 uint32_t value
, unsigned int len
)
2559 idx
= SUBPAGE_IDX(addr
- mmio
->base
);
2560 #if defined(DEBUG_SUBPAGE)
2561 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d value %08x\n", __func__
,
2562 mmio
, len
, addr
, idx
, value
);
2564 (**mmio
->mem_write
[idx
][len
])(mmio
->opaque
[idx
][1][len
], addr
, value
);
2567 static uint32_t subpage_readb (void *opaque
, target_phys_addr_t addr
)
2569 #if defined(DEBUG_SUBPAGE)
2570 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2573 return subpage_readlen(opaque
, addr
, 0);
2576 static void subpage_writeb (void *opaque
, target_phys_addr_t addr
,
2579 #if defined(DEBUG_SUBPAGE)
2580 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2582 subpage_writelen(opaque
, addr
, value
, 0);
2585 static uint32_t subpage_readw (void *opaque
, target_phys_addr_t addr
)
2587 #if defined(DEBUG_SUBPAGE)
2588 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2591 return subpage_readlen(opaque
, addr
, 1);
2594 static void subpage_writew (void *opaque
, target_phys_addr_t addr
,
2597 #if defined(DEBUG_SUBPAGE)
2598 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2600 subpage_writelen(opaque
, addr
, value
, 1);
2603 static uint32_t subpage_readl (void *opaque
, target_phys_addr_t addr
)
2605 #if defined(DEBUG_SUBPAGE)
2606 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2609 return subpage_readlen(opaque
, addr
, 2);
2612 static void subpage_writel (void *opaque
,
2613 target_phys_addr_t addr
, uint32_t value
)
2615 #if defined(DEBUG_SUBPAGE)
2616 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2618 subpage_writelen(opaque
, addr
, value
, 2);
2621 static CPUReadMemoryFunc
*subpage_read
[] = {
2627 static CPUWriteMemoryFunc
*subpage_write
[] = {
2633 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2639 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2641 idx
= SUBPAGE_IDX(start
);
2642 eidx
= SUBPAGE_IDX(end
);
2643 #if defined(DEBUG_SUBPAGE)
2644 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__
,
2645 mmio
, start
, end
, idx
, eidx
, memory
);
2647 memory
>>= IO_MEM_SHIFT
;
2648 for (; idx
<= eidx
; idx
++) {
2649 for (i
= 0; i
< 4; i
++) {
2650 if (io_mem_read
[memory
][i
]) {
2651 mmio
->mem_read
[idx
][i
] = &io_mem_read
[memory
][i
];
2652 mmio
->opaque
[idx
][0][i
] = io_mem_opaque
[memory
];
2654 if (io_mem_write
[memory
][i
]) {
2655 mmio
->mem_write
[idx
][i
] = &io_mem_write
[memory
][i
];
2656 mmio
->opaque
[idx
][1][i
] = io_mem_opaque
[memory
];
2664 static void *subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
2665 ram_addr_t orig_memory
)
2670 mmio
= qemu_mallocz(sizeof(subpage_t
));
2673 subpage_memory
= cpu_register_io_memory(0, subpage_read
, subpage_write
, mmio
);
2674 #if defined(DEBUG_SUBPAGE)
2675 printf("%s: %p base " TARGET_FMT_plx
" len %08x %d\n", __func__
,
2676 mmio
, base
, TARGET_PAGE_SIZE
, subpage_memory
);
2678 *phys
= subpage_memory
| IO_MEM_SUBPAGE
;
2679 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
- 1, orig_memory
);
2685 static void io_mem_init(void)
2687 cpu_register_io_memory(IO_MEM_ROM
>> IO_MEM_SHIFT
, error_mem_read
, unassigned_mem_write
, NULL
);
2688 cpu_register_io_memory(IO_MEM_UNASSIGNED
>> IO_MEM_SHIFT
, unassigned_mem_read
, unassigned_mem_write
, NULL
);
2689 cpu_register_io_memory(IO_MEM_NOTDIRTY
>> IO_MEM_SHIFT
, error_mem_read
, notdirty_mem_write
, NULL
);
2692 io_mem_watch
= cpu_register_io_memory(0, watch_mem_read
,
2693 watch_mem_write
, NULL
);
2694 /* alloc dirty bits array */
2695 phys_ram_dirty
= qemu_vmalloc(phys_ram_size
>> TARGET_PAGE_BITS
);
2696 memset(phys_ram_dirty
, 0xff, phys_ram_size
>> TARGET_PAGE_BITS
);
2699 /* mem_read and mem_write are arrays of functions containing the
2700 function to access byte (index 0), word (index 1) and dword (index
2701 2). Functions can be omitted with a NULL function pointer. The
2702 registered functions may be modified dynamically later.
2703 If io_index is non zero, the corresponding io zone is
2704 modified. If it is zero, a new io zone is allocated. The return
2705 value can be used with cpu_register_physical_memory(). (-1) is
2706 returned if error. */
2707 int cpu_register_io_memory(int io_index
,
2708 CPUReadMemoryFunc
**mem_read
,
2709 CPUWriteMemoryFunc
**mem_write
,
2712 int i
, subwidth
= 0;
2714 if (io_index
<= 0) {
2715 if (io_mem_nb
>= IO_MEM_NB_ENTRIES
)
2717 io_index
= io_mem_nb
++;
2719 if (io_index
>= IO_MEM_NB_ENTRIES
)
2723 for(i
= 0;i
< 3; i
++) {
2724 if (!mem_read
[i
] || !mem_write
[i
])
2725 subwidth
= IO_MEM_SUBWIDTH
;
2726 io_mem_read
[io_index
][i
] = mem_read
[i
];
2727 io_mem_write
[io_index
][i
] = mem_write
[i
];
2729 io_mem_opaque
[io_index
] = opaque
;
2730 return (io_index
<< IO_MEM_SHIFT
) | subwidth
;
2733 CPUWriteMemoryFunc
**cpu_get_io_memory_write(int io_index
)
2735 return io_mem_write
[io_index
>> IO_MEM_SHIFT
];
2738 CPUReadMemoryFunc
**cpu_get_io_memory_read(int io_index
)
2740 return io_mem_read
[io_index
>> IO_MEM_SHIFT
];
2743 #endif /* !defined(CONFIG_USER_ONLY) */
2745 /* physical memory access (slow version, mainly for debug) */
2746 #if defined(CONFIG_USER_ONLY)
2747 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
2748 int len
, int is_write
)
2755 page
= addr
& TARGET_PAGE_MASK
;
2756 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2759 flags
= page_get_flags(page
);
2760 if (!(flags
& PAGE_VALID
))
2763 if (!(flags
& PAGE_WRITE
))
2765 /* XXX: this code should not depend on lock_user */
2766 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
2767 /* FIXME - should this return an error rather than just fail? */
2770 unlock_user(p
, addr
, l
);
2772 if (!(flags
& PAGE_READ
))
2774 /* XXX: this code should not depend on lock_user */
2775 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
2776 /* FIXME - should this return an error rather than just fail? */
2779 unlock_user(p
, addr
, 0);
2788 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
2789 int len
, int is_write
)
2794 target_phys_addr_t page
;
2799 page
= addr
& TARGET_PAGE_MASK
;
2800 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2803 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
2805 pd
= IO_MEM_UNASSIGNED
;
2807 pd
= p
->phys_offset
;
2811 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
2812 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
2813 /* XXX: could force cpu_single_env to NULL to avoid
2815 if (l
>= 4 && ((addr
& 3) == 0)) {
2816 /* 32 bit write access */
2818 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
2820 } else if (l
>= 2 && ((addr
& 1) == 0)) {
2821 /* 16 bit write access */
2823 io_mem_write
[io_index
][1](io_mem_opaque
[io_index
], addr
, val
);
2826 /* 8 bit write access */
2828 io_mem_write
[io_index
][0](io_mem_opaque
[io_index
], addr
, val
);
2832 unsigned long addr1
;
2833 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
2835 ptr
= phys_ram_base
+ addr1
;
2836 memcpy(ptr
, buf
, l
);
2837 if (!cpu_physical_memory_is_dirty(addr1
)) {
2838 /* invalidate code */
2839 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
2841 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
2842 (0xff & ~CODE_DIRTY_FLAG
);
2846 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
2847 !(pd
& IO_MEM_ROMD
)) {
2849 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
2850 if (l
>= 4 && ((addr
& 3) == 0)) {
2851 /* 32 bit read access */
2852 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
2855 } else if (l
>= 2 && ((addr
& 1) == 0)) {
2856 /* 16 bit read access */
2857 val
= io_mem_read
[io_index
][1](io_mem_opaque
[io_index
], addr
);
2861 /* 8 bit read access */
2862 val
= io_mem_read
[io_index
][0](io_mem_opaque
[io_index
], addr
);
2868 ptr
= phys_ram_base
+ (pd
& TARGET_PAGE_MASK
) +
2869 (addr
& ~TARGET_PAGE_MASK
);
2870 memcpy(buf
, ptr
, l
);
2879 /* used for ROM loading : can write in RAM and ROM */
2880 void cpu_physical_memory_write_rom(target_phys_addr_t addr
,
2881 const uint8_t *buf
, int len
)
2885 target_phys_addr_t page
;
2890 page
= addr
& TARGET_PAGE_MASK
;
2891 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2894 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
2896 pd
= IO_MEM_UNASSIGNED
;
2898 pd
= p
->phys_offset
;
2901 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
&&
2902 (pd
& ~TARGET_PAGE_MASK
) != IO_MEM_ROM
&&
2903 !(pd
& IO_MEM_ROMD
)) {
2906 unsigned long addr1
;
2907 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
2909 ptr
= phys_ram_base
+ addr1
;
2910 memcpy(ptr
, buf
, l
);
2919 /* warning: addr must be aligned */
2920 uint32_t ldl_phys(target_phys_addr_t addr
)
2928 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2930 pd
= IO_MEM_UNASSIGNED
;
2932 pd
= p
->phys_offset
;
2935 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
2936 !(pd
& IO_MEM_ROMD
)) {
2938 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
2939 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
2942 ptr
= phys_ram_base
+ (pd
& TARGET_PAGE_MASK
) +
2943 (addr
& ~TARGET_PAGE_MASK
);
2949 /* warning: addr must be aligned */
2950 uint64_t ldq_phys(target_phys_addr_t addr
)
2958 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2960 pd
= IO_MEM_UNASSIGNED
;
2962 pd
= p
->phys_offset
;
2965 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
2966 !(pd
& IO_MEM_ROMD
)) {
2968 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
2969 #ifdef TARGET_WORDS_BIGENDIAN
2970 val
= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
) << 32;
2971 val
|= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4);
2973 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
2974 val
|= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4) << 32;
2978 ptr
= phys_ram_base
+ (pd
& TARGET_PAGE_MASK
) +
2979 (addr
& ~TARGET_PAGE_MASK
);
2986 uint32_t ldub_phys(target_phys_addr_t addr
)
2989 cpu_physical_memory_read(addr
, &val
, 1);
2994 uint32_t lduw_phys(target_phys_addr_t addr
)
2997 cpu_physical_memory_read(addr
, (uint8_t *)&val
, 2);
2998 return tswap16(val
);
3001 /* warning: addr must be aligned. The ram page is not masked as dirty
3002 and the code inside is not invalidated. It is useful if the dirty
3003 bits are used to track modified PTEs */
3004 void stl_phys_notdirty(target_phys_addr_t addr
, uint32_t val
)
3011 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3013 pd
= IO_MEM_UNASSIGNED
;
3015 pd
= p
->phys_offset
;
3018 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3019 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3020 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3022 unsigned long addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3023 ptr
= phys_ram_base
+ addr1
;
3026 if (unlikely(in_migration
)) {
3027 if (!cpu_physical_memory_is_dirty(addr1
)) {
3028 /* invalidate code */
3029 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
3031 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3032 (0xff & ~CODE_DIRTY_FLAG
);
3038 void stq_phys_notdirty(target_phys_addr_t addr
, uint64_t val
)
3045 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3047 pd
= IO_MEM_UNASSIGNED
;
3049 pd
= p
->phys_offset
;
3052 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3053 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3054 #ifdef TARGET_WORDS_BIGENDIAN
3055 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
>> 32);
3056 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
);
3058 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3059 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
>> 32);
3062 ptr
= phys_ram_base
+ (pd
& TARGET_PAGE_MASK
) +
3063 (addr
& ~TARGET_PAGE_MASK
);
3068 /* warning: addr must be aligned */
3069 void stl_phys(target_phys_addr_t addr
, uint32_t val
)
3076 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3078 pd
= IO_MEM_UNASSIGNED
;
3080 pd
= p
->phys_offset
;
3083 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3084 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3085 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3087 unsigned long addr1
;
3088 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3090 ptr
= phys_ram_base
+ addr1
;
3092 if (!cpu_physical_memory_is_dirty(addr1
)) {
3093 /* invalidate code */
3094 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
3096 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3097 (0xff & ~CODE_DIRTY_FLAG
);
3103 void stb_phys(target_phys_addr_t addr
, uint32_t val
)
3106 cpu_physical_memory_write(addr
, &v
, 1);
3110 void stw_phys(target_phys_addr_t addr
, uint32_t val
)
3112 uint16_t v
= tswap16(val
);
3113 cpu_physical_memory_write(addr
, (const uint8_t *)&v
, 2);
3117 void stq_phys(target_phys_addr_t addr
, uint64_t val
)
3120 cpu_physical_memory_write(addr
, (const uint8_t *)&val
, 8);
3125 /* virtual memory access for debug */
3126 int cpu_memory_rw_debug(CPUState
*env
, target_ulong addr
,
3127 uint8_t *buf
, int len
, int is_write
)
3130 target_phys_addr_t phys_addr
;
3134 page
= addr
& TARGET_PAGE_MASK
;
3135 phys_addr
= cpu_get_phys_page_debug(env
, page
);
3136 /* if no physical page mapped, return an error */
3137 if (phys_addr
== -1)
3139 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3142 cpu_physical_memory_rw(phys_addr
+ (addr
& ~TARGET_PAGE_MASK
),
3151 /* in deterministic execution mode, instructions doing device I/Os
3152 must be at the end of the TB */
3153 void cpu_io_recompile(CPUState
*env
, void *retaddr
)
3155 TranslationBlock
*tb
;
3157 target_ulong pc
, cs_base
;
3160 tb
= tb_find_pc((unsigned long)retaddr
);
3162 cpu_abort(env
, "cpu_io_recompile: could not find TB for pc=%p",
3165 n
= env
->icount_decr
.u16
.low
+ tb
->icount
;
3166 cpu_restore_state(tb
, env
, (unsigned long)retaddr
, NULL
);
3167 /* Calculate how many instructions had been executed before the fault
3169 n
= n
- env
->icount_decr
.u16
.low
;
3170 /* Generate a new TB ending on the I/O insn. */
3172 /* On MIPS and SH, delay slot instructions can only be restarted if
3173 they were already the first instruction in the TB. If this is not
3174 the first instruction in a TB then re-execute the preceding
3176 #if defined(TARGET_MIPS)
3177 if ((env
->hflags
& MIPS_HFLAG_BMASK
) != 0 && n
> 1) {
3178 env
->active_tc
.PC
-= 4;
3179 env
->icount_decr
.u16
.low
++;
3180 env
->hflags
&= ~MIPS_HFLAG_BMASK
;
3182 #elif defined(TARGET_SH4)
3183 if ((env
->flags
& ((DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
))) != 0
3186 env
->icount_decr
.u16
.low
++;
3187 env
->flags
&= ~(DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
);
3190 /* This should never happen. */
3191 if (n
> CF_COUNT_MASK
)
3192 cpu_abort(env
, "TB too big during recompile");
3194 cflags
= n
| CF_LAST_IO
;
3196 cs_base
= tb
->cs_base
;
3198 tb_phys_invalidate(tb
, -1);
3199 /* FIXME: In theory this could raise an exception. In practice
3200 we have already translated the block once so it's probably ok. */
3201 tb_gen_code(env
, pc
, cs_base
, flags
, cflags
);
3202 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3203 the first in the TB) then we end up generating a whole new TB and
3204 repeating the fault, which is horribly inefficient.
3205 Better would be to execute just this insn uncached, or generate a
3207 cpu_resume_from_signal(env
, NULL
);
3210 void dump_exec_info(FILE *f
,
3211 int (*cpu_fprintf
)(FILE *f
, const char *fmt
, ...))
3213 int i
, target_code_size
, max_target_code_size
;
3214 int direct_jmp_count
, direct_jmp2_count
, cross_page
;
3215 TranslationBlock
*tb
;
3217 target_code_size
= 0;
3218 max_target_code_size
= 0;
3220 direct_jmp_count
= 0;
3221 direct_jmp2_count
= 0;
3222 for(i
= 0; i
< nb_tbs
; i
++) {
3224 target_code_size
+= tb
->size
;
3225 if (tb
->size
> max_target_code_size
)
3226 max_target_code_size
= tb
->size
;
3227 if (tb
->page_addr
[1] != -1)
3229 if (tb
->tb_next_offset
[0] != 0xffff) {
3231 if (tb
->tb_next_offset
[1] != 0xffff) {
3232 direct_jmp2_count
++;
3236 /* XXX: avoid using doubles ? */
3237 cpu_fprintf(f
, "Translation buffer state:\n");
3238 cpu_fprintf(f
, "gen code size %ld/%ld\n",
3239 code_gen_ptr
- code_gen_buffer
, code_gen_buffer_max_size
);
3240 cpu_fprintf(f
, "TB count %d/%d\n",
3241 nb_tbs
, code_gen_max_blocks
);
3242 cpu_fprintf(f
, "TB avg target size %d max=%d bytes\n",
3243 nb_tbs
? target_code_size
/ nb_tbs
: 0,
3244 max_target_code_size
);
3245 cpu_fprintf(f
, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3246 nb_tbs
? (code_gen_ptr
- code_gen_buffer
) / nb_tbs
: 0,
3247 target_code_size
? (double) (code_gen_ptr
- code_gen_buffer
) / target_code_size
: 0);
3248 cpu_fprintf(f
, "cross page TB count %d (%d%%)\n",
3250 nb_tbs
? (cross_page
* 100) / nb_tbs
: 0);
3251 cpu_fprintf(f
, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3253 nb_tbs
? (direct_jmp_count
* 100) / nb_tbs
: 0,
3255 nb_tbs
? (direct_jmp2_count
* 100) / nb_tbs
: 0);
3256 cpu_fprintf(f
, "\nStatistics:\n");
3257 cpu_fprintf(f
, "TB flush count %d\n", tb_flush_count
);
3258 cpu_fprintf(f
, "TB invalidate count %d\n", tb_phys_invalidate_count
);
3259 cpu_fprintf(f
, "TLB flush count %d\n", tlb_flush_count
);
3260 tcg_dump_info(f
, cpu_fprintf
);
3263 #if !defined(CONFIG_USER_ONLY)
3265 #define MMUSUFFIX _cmmu
3266 #define GETPC() NULL
3267 #define env cpu_single_env
3268 #define SOFTMMU_CODE_ACCESS
3271 #include "softmmu_template.h"
3274 #include "softmmu_template.h"
3277 #include "softmmu_template.h"
3280 #include "softmmu_template.h"