target-ppc: Add vct{u,s}xs instructions
[qemu/mini2440/sniper_sniper_test.git] / target-ppc / op_helper.c
blobe4c446d34c317eed3f618beaaf95487fff34db54
1 /*
2 * PowerPC emulation helpers for qemu.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
20 #include <string.h>
21 #include "exec.h"
22 #include "host-utils.h"
23 #include "helper.h"
25 #include "helper_regs.h"
27 //#define DEBUG_OP
28 //#define DEBUG_EXCEPTIONS
29 //#define DEBUG_SOFTWARE_TLB
31 #ifdef DEBUG_SOFTWARE_TLB
32 # define LOG_SWTLB(...) qemu_log(__VA_ARGS__)
33 #else
34 # define LOG_SWTLB(...) do { } while (0)
35 #endif
38 /*****************************************************************************/
39 /* Exceptions processing helpers */
41 void helper_raise_exception_err (uint32_t exception, uint32_t error_code)
43 #if 0
44 printf("Raise exception %3x code : %d\n", exception, error_code);
45 #endif
46 env->exception_index = exception;
47 env->error_code = error_code;
48 cpu_loop_exit();
51 void helper_raise_exception (uint32_t exception)
53 helper_raise_exception_err(exception, 0);
56 /*****************************************************************************/
57 /* Registers load and stores */
58 target_ulong helper_load_cr (void)
60 return (env->crf[0] << 28) |
61 (env->crf[1] << 24) |
62 (env->crf[2] << 20) |
63 (env->crf[3] << 16) |
64 (env->crf[4] << 12) |
65 (env->crf[5] << 8) |
66 (env->crf[6] << 4) |
67 (env->crf[7] << 0);
70 void helper_store_cr (target_ulong val, uint32_t mask)
72 int i, sh;
74 for (i = 0, sh = 7; i < 8; i++, sh--) {
75 if (mask & (1 << sh))
76 env->crf[i] = (val >> (sh * 4)) & 0xFUL;
80 /*****************************************************************************/
81 /* SPR accesses */
82 void helper_load_dump_spr (uint32_t sprn)
84 qemu_log("Read SPR %d %03x => " ADDRX "\n",
85 sprn, sprn, env->spr[sprn]);
88 void helper_store_dump_spr (uint32_t sprn)
90 qemu_log("Write SPR %d %03x <= " ADDRX "\n",
91 sprn, sprn, env->spr[sprn]);
94 target_ulong helper_load_tbl (void)
96 return cpu_ppc_load_tbl(env);
99 target_ulong helper_load_tbu (void)
101 return cpu_ppc_load_tbu(env);
104 target_ulong helper_load_atbl (void)
106 return cpu_ppc_load_atbl(env);
109 target_ulong helper_load_atbu (void)
111 return cpu_ppc_load_atbu(env);
114 target_ulong helper_load_601_rtcl (void)
116 return cpu_ppc601_load_rtcl(env);
119 target_ulong helper_load_601_rtcu (void)
121 return cpu_ppc601_load_rtcu(env);
124 #if !defined(CONFIG_USER_ONLY)
125 #if defined (TARGET_PPC64)
126 void helper_store_asr (target_ulong val)
128 ppc_store_asr(env, val);
130 #endif
132 void helper_store_sdr1 (target_ulong val)
134 ppc_store_sdr1(env, val);
137 void helper_store_tbl (target_ulong val)
139 cpu_ppc_store_tbl(env, val);
142 void helper_store_tbu (target_ulong val)
144 cpu_ppc_store_tbu(env, val);
147 void helper_store_atbl (target_ulong val)
149 cpu_ppc_store_atbl(env, val);
152 void helper_store_atbu (target_ulong val)
154 cpu_ppc_store_atbu(env, val);
157 void helper_store_601_rtcl (target_ulong val)
159 cpu_ppc601_store_rtcl(env, val);
162 void helper_store_601_rtcu (target_ulong val)
164 cpu_ppc601_store_rtcu(env, val);
167 target_ulong helper_load_decr (void)
169 return cpu_ppc_load_decr(env);
172 void helper_store_decr (target_ulong val)
174 cpu_ppc_store_decr(env, val);
177 void helper_store_hid0_601 (target_ulong val)
179 target_ulong hid0;
181 hid0 = env->spr[SPR_HID0];
182 if ((val ^ hid0) & 0x00000008) {
183 /* Change current endianness */
184 env->hflags &= ~(1 << MSR_LE);
185 env->hflags_nmsr &= ~(1 << MSR_LE);
186 env->hflags_nmsr |= (1 << MSR_LE) & (((val >> 3) & 1) << MSR_LE);
187 env->hflags |= env->hflags_nmsr;
188 qemu_log("%s: set endianness to %c => " ADDRX "\n",
189 __func__, val & 0x8 ? 'l' : 'b', env->hflags);
191 env->spr[SPR_HID0] = (uint32_t)val;
194 void helper_store_403_pbr (uint32_t num, target_ulong value)
196 if (likely(env->pb[num] != value)) {
197 env->pb[num] = value;
198 /* Should be optimized */
199 tlb_flush(env, 1);
203 target_ulong helper_load_40x_pit (void)
205 return load_40x_pit(env);
208 void helper_store_40x_pit (target_ulong val)
210 store_40x_pit(env, val);
213 void helper_store_40x_dbcr0 (target_ulong val)
215 store_40x_dbcr0(env, val);
218 void helper_store_40x_sler (target_ulong val)
220 store_40x_sler(env, val);
223 void helper_store_booke_tcr (target_ulong val)
225 store_booke_tcr(env, val);
228 void helper_store_booke_tsr (target_ulong val)
230 store_booke_tsr(env, val);
233 void helper_store_ibatu (uint32_t nr, target_ulong val)
235 ppc_store_ibatu(env, nr, val);
238 void helper_store_ibatl (uint32_t nr, target_ulong val)
240 ppc_store_ibatl(env, nr, val);
243 void helper_store_dbatu (uint32_t nr, target_ulong val)
245 ppc_store_dbatu(env, nr, val);
248 void helper_store_dbatl (uint32_t nr, target_ulong val)
250 ppc_store_dbatl(env, nr, val);
253 void helper_store_601_batl (uint32_t nr, target_ulong val)
255 ppc_store_ibatl_601(env, nr, val);
258 void helper_store_601_batu (uint32_t nr, target_ulong val)
260 ppc_store_ibatu_601(env, nr, val);
262 #endif
264 /*****************************************************************************/
265 /* Memory load and stores */
267 static always_inline target_ulong addr_add(target_ulong addr, target_long arg)
269 #if defined(TARGET_PPC64)
270 if (!msr_sf)
271 return (uint32_t)(addr + arg);
272 else
273 #endif
274 return addr + arg;
277 void helper_lmw (target_ulong addr, uint32_t reg)
279 for (; reg < 32; reg++) {
280 if (msr_le)
281 env->gpr[reg] = bswap32(ldl(addr));
282 else
283 env->gpr[reg] = ldl(addr);
284 addr = addr_add(addr, 4);
288 void helper_stmw (target_ulong addr, uint32_t reg)
290 for (; reg < 32; reg++) {
291 if (msr_le)
292 stl(addr, bswap32((uint32_t)env->gpr[reg]));
293 else
294 stl(addr, (uint32_t)env->gpr[reg]);
295 addr = addr_add(addr, 4);
299 void helper_lsw(target_ulong addr, uint32_t nb, uint32_t reg)
301 int sh;
302 for (; nb > 3; nb -= 4) {
303 env->gpr[reg] = ldl(addr);
304 reg = (reg + 1) % 32;
305 addr = addr_add(addr, 4);
307 if (unlikely(nb > 0)) {
308 env->gpr[reg] = 0;
309 for (sh = 24; nb > 0; nb--, sh -= 8) {
310 env->gpr[reg] |= ldub(addr) << sh;
311 addr = addr_add(addr, 1);
315 /* PPC32 specification says we must generate an exception if
316 * rA is in the range of registers to be loaded.
317 * In an other hand, IBM says this is valid, but rA won't be loaded.
318 * For now, I'll follow the spec...
320 void helper_lswx(target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb)
322 if (likely(xer_bc != 0)) {
323 if (unlikely((ra != 0 && reg < ra && (reg + xer_bc) > ra) ||
324 (reg < rb && (reg + xer_bc) > rb))) {
325 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
326 POWERPC_EXCP_INVAL |
327 POWERPC_EXCP_INVAL_LSWX);
328 } else {
329 helper_lsw(addr, xer_bc, reg);
334 void helper_stsw(target_ulong addr, uint32_t nb, uint32_t reg)
336 int sh;
337 for (; nb > 3; nb -= 4) {
338 stl(addr, env->gpr[reg]);
339 reg = (reg + 1) % 32;
340 addr = addr_add(addr, 4);
342 if (unlikely(nb > 0)) {
343 for (sh = 24; nb > 0; nb--, sh -= 8) {
344 stb(addr, (env->gpr[reg] >> sh) & 0xFF);
345 addr = addr_add(addr, 1);
350 static void do_dcbz(target_ulong addr, int dcache_line_size)
352 addr &= ~(dcache_line_size - 1);
353 int i;
354 for (i = 0 ; i < dcache_line_size ; i += 4) {
355 stl(addr + i , 0);
357 if (env->reserve == addr)
358 env->reserve = (target_ulong)-1ULL;
361 void helper_dcbz(target_ulong addr)
363 do_dcbz(addr, env->dcache_line_size);
366 void helper_dcbz_970(target_ulong addr)
368 if (((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1)
369 do_dcbz(addr, 32);
370 else
371 do_dcbz(addr, env->dcache_line_size);
374 void helper_icbi(target_ulong addr)
376 uint32_t tmp;
378 addr &= ~(env->dcache_line_size - 1);
379 /* Invalidate one cache line :
380 * PowerPC specification says this is to be treated like a load
381 * (not a fetch) by the MMU. To be sure it will be so,
382 * do the load "by hand".
384 tmp = ldl(addr);
385 tb_invalidate_page_range(addr, addr + env->icache_line_size);
388 // XXX: to be tested
389 target_ulong helper_lscbx (target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb)
391 int i, c, d;
392 d = 24;
393 for (i = 0; i < xer_bc; i++) {
394 c = ldub(addr);
395 addr = addr_add(addr, 1);
396 /* ra (if not 0) and rb are never modified */
397 if (likely(reg != rb && (ra == 0 || reg != ra))) {
398 env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
400 if (unlikely(c == xer_cmp))
401 break;
402 if (likely(d != 0)) {
403 d -= 8;
404 } else {
405 d = 24;
406 reg++;
407 reg = reg & 0x1F;
410 return i;
413 /*****************************************************************************/
414 /* Fixed point operations helpers */
415 #if defined(TARGET_PPC64)
417 /* multiply high word */
418 uint64_t helper_mulhd (uint64_t arg1, uint64_t arg2)
420 uint64_t tl, th;
422 muls64(&tl, &th, arg1, arg2);
423 return th;
426 /* multiply high word unsigned */
427 uint64_t helper_mulhdu (uint64_t arg1, uint64_t arg2)
429 uint64_t tl, th;
431 mulu64(&tl, &th, arg1, arg2);
432 return th;
435 uint64_t helper_mulldo (uint64_t arg1, uint64_t arg2)
437 int64_t th;
438 uint64_t tl;
440 muls64(&tl, (uint64_t *)&th, arg1, arg2);
441 /* If th != 0 && th != -1, then we had an overflow */
442 if (likely((uint64_t)(th + 1) <= 1)) {
443 env->xer &= ~(1 << XER_OV);
444 } else {
445 env->xer |= (1 << XER_OV) | (1 << XER_SO);
447 return (int64_t)tl;
449 #endif
451 target_ulong helper_cntlzw (target_ulong t)
453 return clz32(t);
456 #if defined(TARGET_PPC64)
457 target_ulong helper_cntlzd (target_ulong t)
459 return clz64(t);
461 #endif
463 /* shift right arithmetic helper */
464 target_ulong helper_sraw (target_ulong value, target_ulong shift)
466 int32_t ret;
468 if (likely(!(shift & 0x20))) {
469 if (likely((uint32_t)shift != 0)) {
470 shift &= 0x1f;
471 ret = (int32_t)value >> shift;
472 if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
473 env->xer &= ~(1 << XER_CA);
474 } else {
475 env->xer |= (1 << XER_CA);
477 } else {
478 ret = (int32_t)value;
479 env->xer &= ~(1 << XER_CA);
481 } else {
482 ret = (int32_t)value >> 31;
483 if (ret) {
484 env->xer |= (1 << XER_CA);
485 } else {
486 env->xer &= ~(1 << XER_CA);
489 return (target_long)ret;
492 #if defined(TARGET_PPC64)
493 target_ulong helper_srad (target_ulong value, target_ulong shift)
495 int64_t ret;
497 if (likely(!(shift & 0x40))) {
498 if (likely((uint64_t)shift != 0)) {
499 shift &= 0x3f;
500 ret = (int64_t)value >> shift;
501 if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
502 env->xer &= ~(1 << XER_CA);
503 } else {
504 env->xer |= (1 << XER_CA);
506 } else {
507 ret = (int64_t)value;
508 env->xer &= ~(1 << XER_CA);
510 } else {
511 ret = (int64_t)value >> 63;
512 if (ret) {
513 env->xer |= (1 << XER_CA);
514 } else {
515 env->xer &= ~(1 << XER_CA);
518 return ret;
520 #endif
522 target_ulong helper_popcntb (target_ulong val)
524 val = (val & 0x55555555) + ((val >> 1) & 0x55555555);
525 val = (val & 0x33333333) + ((val >> 2) & 0x33333333);
526 val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f);
527 return val;
530 #if defined(TARGET_PPC64)
531 target_ulong helper_popcntb_64 (target_ulong val)
533 val = (val & 0x5555555555555555ULL) + ((val >> 1) & 0x5555555555555555ULL);
534 val = (val & 0x3333333333333333ULL) + ((val >> 2) & 0x3333333333333333ULL);
535 val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) & 0x0f0f0f0f0f0f0f0fULL);
536 return val;
538 #endif
540 /*****************************************************************************/
541 /* Floating point operations helpers */
542 uint64_t helper_float32_to_float64(uint32_t arg)
544 CPU_FloatU f;
545 CPU_DoubleU d;
546 f.l = arg;
547 d.d = float32_to_float64(f.f, &env->fp_status);
548 return d.ll;
551 uint32_t helper_float64_to_float32(uint64_t arg)
553 CPU_FloatU f;
554 CPU_DoubleU d;
555 d.ll = arg;
556 f.f = float64_to_float32(d.d, &env->fp_status);
557 return f.l;
560 static always_inline int isden (float64 d)
562 CPU_DoubleU u;
564 u.d = d;
566 return ((u.ll >> 52) & 0x7FF) == 0;
569 uint32_t helper_compute_fprf (uint64_t arg, uint32_t set_fprf)
571 CPU_DoubleU farg;
572 int isneg;
573 int ret;
574 farg.ll = arg;
575 isneg = float64_is_neg(farg.d);
576 if (unlikely(float64_is_nan(farg.d))) {
577 if (float64_is_signaling_nan(farg.d)) {
578 /* Signaling NaN: flags are undefined */
579 ret = 0x00;
580 } else {
581 /* Quiet NaN */
582 ret = 0x11;
584 } else if (unlikely(float64_is_infinity(farg.d))) {
585 /* +/- infinity */
586 if (isneg)
587 ret = 0x09;
588 else
589 ret = 0x05;
590 } else {
591 if (float64_is_zero(farg.d)) {
592 /* +/- zero */
593 if (isneg)
594 ret = 0x12;
595 else
596 ret = 0x02;
597 } else {
598 if (isden(farg.d)) {
599 /* Denormalized numbers */
600 ret = 0x10;
601 } else {
602 /* Normalized numbers */
603 ret = 0x00;
605 if (isneg) {
606 ret |= 0x08;
607 } else {
608 ret |= 0x04;
612 if (set_fprf) {
613 /* We update FPSCR_FPRF */
614 env->fpscr &= ~(0x1F << FPSCR_FPRF);
615 env->fpscr |= ret << FPSCR_FPRF;
617 /* We just need fpcc to update Rc1 */
618 return ret & 0xF;
621 /* Floating-point invalid operations exception */
622 static always_inline uint64_t fload_invalid_op_excp (int op)
624 uint64_t ret = 0;
625 int ve;
627 ve = fpscr_ve;
628 switch (op) {
629 case POWERPC_EXCP_FP_VXSNAN:
630 env->fpscr |= 1 << FPSCR_VXSNAN;
631 break;
632 case POWERPC_EXCP_FP_VXSOFT:
633 env->fpscr |= 1 << FPSCR_VXSOFT;
634 break;
635 case POWERPC_EXCP_FP_VXISI:
636 /* Magnitude subtraction of infinities */
637 env->fpscr |= 1 << FPSCR_VXISI;
638 goto update_arith;
639 case POWERPC_EXCP_FP_VXIDI:
640 /* Division of infinity by infinity */
641 env->fpscr |= 1 << FPSCR_VXIDI;
642 goto update_arith;
643 case POWERPC_EXCP_FP_VXZDZ:
644 /* Division of zero by zero */
645 env->fpscr |= 1 << FPSCR_VXZDZ;
646 goto update_arith;
647 case POWERPC_EXCP_FP_VXIMZ:
648 /* Multiplication of zero by infinity */
649 env->fpscr |= 1 << FPSCR_VXIMZ;
650 goto update_arith;
651 case POWERPC_EXCP_FP_VXVC:
652 /* Ordered comparison of NaN */
653 env->fpscr |= 1 << FPSCR_VXVC;
654 env->fpscr &= ~(0xF << FPSCR_FPCC);
655 env->fpscr |= 0x11 << FPSCR_FPCC;
656 /* We must update the target FPR before raising the exception */
657 if (ve != 0) {
658 env->exception_index = POWERPC_EXCP_PROGRAM;
659 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
660 /* Update the floating-point enabled exception summary */
661 env->fpscr |= 1 << FPSCR_FEX;
662 /* Exception is differed */
663 ve = 0;
665 break;
666 case POWERPC_EXCP_FP_VXSQRT:
667 /* Square root of a negative number */
668 env->fpscr |= 1 << FPSCR_VXSQRT;
669 update_arith:
670 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
671 if (ve == 0) {
672 /* Set the result to quiet NaN */
673 ret = 0xFFF8000000000000ULL;
674 env->fpscr &= ~(0xF << FPSCR_FPCC);
675 env->fpscr |= 0x11 << FPSCR_FPCC;
677 break;
678 case POWERPC_EXCP_FP_VXCVI:
679 /* Invalid conversion */
680 env->fpscr |= 1 << FPSCR_VXCVI;
681 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
682 if (ve == 0) {
683 /* Set the result to quiet NaN */
684 ret = 0xFFF8000000000000ULL;
685 env->fpscr &= ~(0xF << FPSCR_FPCC);
686 env->fpscr |= 0x11 << FPSCR_FPCC;
688 break;
690 /* Update the floating-point invalid operation summary */
691 env->fpscr |= 1 << FPSCR_VX;
692 /* Update the floating-point exception summary */
693 env->fpscr |= 1 << FPSCR_FX;
694 if (ve != 0) {
695 /* Update the floating-point enabled exception summary */
696 env->fpscr |= 1 << FPSCR_FEX;
697 if (msr_fe0 != 0 || msr_fe1 != 0)
698 helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op);
700 return ret;
703 static always_inline void float_zero_divide_excp (void)
705 env->fpscr |= 1 << FPSCR_ZX;
706 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
707 /* Update the floating-point exception summary */
708 env->fpscr |= 1 << FPSCR_FX;
709 if (fpscr_ze != 0) {
710 /* Update the floating-point enabled exception summary */
711 env->fpscr |= 1 << FPSCR_FEX;
712 if (msr_fe0 != 0 || msr_fe1 != 0) {
713 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
714 POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
719 static always_inline void float_overflow_excp (void)
721 env->fpscr |= 1 << FPSCR_OX;
722 /* Update the floating-point exception summary */
723 env->fpscr |= 1 << FPSCR_FX;
724 if (fpscr_oe != 0) {
725 /* XXX: should adjust the result */
726 /* Update the floating-point enabled exception summary */
727 env->fpscr |= 1 << FPSCR_FEX;
728 /* We must update the target FPR before raising the exception */
729 env->exception_index = POWERPC_EXCP_PROGRAM;
730 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
731 } else {
732 env->fpscr |= 1 << FPSCR_XX;
733 env->fpscr |= 1 << FPSCR_FI;
737 static always_inline void float_underflow_excp (void)
739 env->fpscr |= 1 << FPSCR_UX;
740 /* Update the floating-point exception summary */
741 env->fpscr |= 1 << FPSCR_FX;
742 if (fpscr_ue != 0) {
743 /* XXX: should adjust the result */
744 /* Update the floating-point enabled exception summary */
745 env->fpscr |= 1 << FPSCR_FEX;
746 /* We must update the target FPR before raising the exception */
747 env->exception_index = POWERPC_EXCP_PROGRAM;
748 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
752 static always_inline void float_inexact_excp (void)
754 env->fpscr |= 1 << FPSCR_XX;
755 /* Update the floating-point exception summary */
756 env->fpscr |= 1 << FPSCR_FX;
757 if (fpscr_xe != 0) {
758 /* Update the floating-point enabled exception summary */
759 env->fpscr |= 1 << FPSCR_FEX;
760 /* We must update the target FPR before raising the exception */
761 env->exception_index = POWERPC_EXCP_PROGRAM;
762 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
766 static always_inline void fpscr_set_rounding_mode (void)
768 int rnd_type;
770 /* Set rounding mode */
771 switch (fpscr_rn) {
772 case 0:
773 /* Best approximation (round to nearest) */
774 rnd_type = float_round_nearest_even;
775 break;
776 case 1:
777 /* Smaller magnitude (round toward zero) */
778 rnd_type = float_round_to_zero;
779 break;
780 case 2:
781 /* Round toward +infinite */
782 rnd_type = float_round_up;
783 break;
784 default:
785 case 3:
786 /* Round toward -infinite */
787 rnd_type = float_round_down;
788 break;
790 set_float_rounding_mode(rnd_type, &env->fp_status);
793 void helper_fpscr_clrbit (uint32_t bit)
795 int prev;
797 prev = (env->fpscr >> bit) & 1;
798 env->fpscr &= ~(1 << bit);
799 if (prev == 1) {
800 switch (bit) {
801 case FPSCR_RN1:
802 case FPSCR_RN:
803 fpscr_set_rounding_mode();
804 break;
805 default:
806 break;
811 void helper_fpscr_setbit (uint32_t bit)
813 int prev;
815 prev = (env->fpscr >> bit) & 1;
816 env->fpscr |= 1 << bit;
817 if (prev == 0) {
818 switch (bit) {
819 case FPSCR_VX:
820 env->fpscr |= 1 << FPSCR_FX;
821 if (fpscr_ve)
822 goto raise_ve;
823 case FPSCR_OX:
824 env->fpscr |= 1 << FPSCR_FX;
825 if (fpscr_oe)
826 goto raise_oe;
827 break;
828 case FPSCR_UX:
829 env->fpscr |= 1 << FPSCR_FX;
830 if (fpscr_ue)
831 goto raise_ue;
832 break;
833 case FPSCR_ZX:
834 env->fpscr |= 1 << FPSCR_FX;
835 if (fpscr_ze)
836 goto raise_ze;
837 break;
838 case FPSCR_XX:
839 env->fpscr |= 1 << FPSCR_FX;
840 if (fpscr_xe)
841 goto raise_xe;
842 break;
843 case FPSCR_VXSNAN:
844 case FPSCR_VXISI:
845 case FPSCR_VXIDI:
846 case FPSCR_VXZDZ:
847 case FPSCR_VXIMZ:
848 case FPSCR_VXVC:
849 case FPSCR_VXSOFT:
850 case FPSCR_VXSQRT:
851 case FPSCR_VXCVI:
852 env->fpscr |= 1 << FPSCR_VX;
853 env->fpscr |= 1 << FPSCR_FX;
854 if (fpscr_ve != 0)
855 goto raise_ve;
856 break;
857 case FPSCR_VE:
858 if (fpscr_vx != 0) {
859 raise_ve:
860 env->error_code = POWERPC_EXCP_FP;
861 if (fpscr_vxsnan)
862 env->error_code |= POWERPC_EXCP_FP_VXSNAN;
863 if (fpscr_vxisi)
864 env->error_code |= POWERPC_EXCP_FP_VXISI;
865 if (fpscr_vxidi)
866 env->error_code |= POWERPC_EXCP_FP_VXIDI;
867 if (fpscr_vxzdz)
868 env->error_code |= POWERPC_EXCP_FP_VXZDZ;
869 if (fpscr_vximz)
870 env->error_code |= POWERPC_EXCP_FP_VXIMZ;
871 if (fpscr_vxvc)
872 env->error_code |= POWERPC_EXCP_FP_VXVC;
873 if (fpscr_vxsoft)
874 env->error_code |= POWERPC_EXCP_FP_VXSOFT;
875 if (fpscr_vxsqrt)
876 env->error_code |= POWERPC_EXCP_FP_VXSQRT;
877 if (fpscr_vxcvi)
878 env->error_code |= POWERPC_EXCP_FP_VXCVI;
879 goto raise_excp;
881 break;
882 case FPSCR_OE:
883 if (fpscr_ox != 0) {
884 raise_oe:
885 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
886 goto raise_excp;
888 break;
889 case FPSCR_UE:
890 if (fpscr_ux != 0) {
891 raise_ue:
892 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
893 goto raise_excp;
895 break;
896 case FPSCR_ZE:
897 if (fpscr_zx != 0) {
898 raise_ze:
899 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
900 goto raise_excp;
902 break;
903 case FPSCR_XE:
904 if (fpscr_xx != 0) {
905 raise_xe:
906 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
907 goto raise_excp;
909 break;
910 case FPSCR_RN1:
911 case FPSCR_RN:
912 fpscr_set_rounding_mode();
913 break;
914 default:
915 break;
916 raise_excp:
917 /* Update the floating-point enabled exception summary */
918 env->fpscr |= 1 << FPSCR_FEX;
919 /* We have to update Rc1 before raising the exception */
920 env->exception_index = POWERPC_EXCP_PROGRAM;
921 break;
926 void helper_store_fpscr (uint64_t arg, uint32_t mask)
929 * We use only the 32 LSB of the incoming fpr
931 uint32_t prev, new;
932 int i;
934 prev = env->fpscr;
935 new = (uint32_t)arg;
936 new &= ~0x60000000;
937 new |= prev & 0x60000000;
938 for (i = 0; i < 8; i++) {
939 if (mask & (1 << i)) {
940 env->fpscr &= ~(0xF << (4 * i));
941 env->fpscr |= new & (0xF << (4 * i));
944 /* Update VX and FEX */
945 if (fpscr_ix != 0)
946 env->fpscr |= 1 << FPSCR_VX;
947 else
948 env->fpscr &= ~(1 << FPSCR_VX);
949 if ((fpscr_ex & fpscr_eex) != 0) {
950 env->fpscr |= 1 << FPSCR_FEX;
951 env->exception_index = POWERPC_EXCP_PROGRAM;
952 /* XXX: we should compute it properly */
953 env->error_code = POWERPC_EXCP_FP;
955 else
956 env->fpscr &= ~(1 << FPSCR_FEX);
957 fpscr_set_rounding_mode();
960 void helper_float_check_status (void)
962 #ifdef CONFIG_SOFTFLOAT
963 if (env->exception_index == POWERPC_EXCP_PROGRAM &&
964 (env->error_code & POWERPC_EXCP_FP)) {
965 /* Differred floating-point exception after target FPR update */
966 if (msr_fe0 != 0 || msr_fe1 != 0)
967 helper_raise_exception_err(env->exception_index, env->error_code);
968 } else {
969 int status = get_float_exception_flags(&env->fp_status);
970 if (status & float_flag_divbyzero) {
971 float_zero_divide_excp();
972 } else if (status & float_flag_overflow) {
973 float_overflow_excp();
974 } else if (status & float_flag_underflow) {
975 float_underflow_excp();
976 } else if (status & float_flag_inexact) {
977 float_inexact_excp();
980 #else
981 if (env->exception_index == POWERPC_EXCP_PROGRAM &&
982 (env->error_code & POWERPC_EXCP_FP)) {
983 /* Differred floating-point exception after target FPR update */
984 if (msr_fe0 != 0 || msr_fe1 != 0)
985 helper_raise_exception_err(env->exception_index, env->error_code);
987 #endif
990 #ifdef CONFIG_SOFTFLOAT
991 void helper_reset_fpstatus (void)
993 set_float_exception_flags(0, &env->fp_status);
995 #endif
997 /* fadd - fadd. */
998 uint64_t helper_fadd (uint64_t arg1, uint64_t arg2)
1000 CPU_DoubleU farg1, farg2;
1002 farg1.ll = arg1;
1003 farg2.ll = arg2;
1004 #if USE_PRECISE_EMULATION
1005 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1006 float64_is_signaling_nan(farg2.d))) {
1007 /* sNaN addition */
1008 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1009 } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
1010 float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) {
1011 /* Magnitude subtraction of infinities */
1012 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1013 } else {
1014 farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
1016 #else
1017 farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
1018 #endif
1019 return farg1.ll;
1022 /* fsub - fsub. */
1023 uint64_t helper_fsub (uint64_t arg1, uint64_t arg2)
1025 CPU_DoubleU farg1, farg2;
1027 farg1.ll = arg1;
1028 farg2.ll = arg2;
1029 #if USE_PRECISE_EMULATION
1031 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1032 float64_is_signaling_nan(farg2.d))) {
1033 /* sNaN subtraction */
1034 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1035 } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
1036 float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) {
1037 /* Magnitude subtraction of infinities */
1038 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1039 } else {
1040 farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
1043 #else
1044 farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
1045 #endif
1046 return farg1.ll;
1049 /* fmul - fmul. */
1050 uint64_t helper_fmul (uint64_t arg1, uint64_t arg2)
1052 CPU_DoubleU farg1, farg2;
1054 farg1.ll = arg1;
1055 farg2.ll = arg2;
1056 #if USE_PRECISE_EMULATION
1057 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1058 float64_is_signaling_nan(farg2.d))) {
1059 /* sNaN multiplication */
1060 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1061 } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1062 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1063 /* Multiplication of zero by infinity */
1064 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1065 } else {
1066 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1068 #else
1069 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1070 #endif
1071 return farg1.ll;
1074 /* fdiv - fdiv. */
1075 uint64_t helper_fdiv (uint64_t arg1, uint64_t arg2)
1077 CPU_DoubleU farg1, farg2;
1079 farg1.ll = arg1;
1080 farg2.ll = arg2;
1081 #if USE_PRECISE_EMULATION
1082 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1083 float64_is_signaling_nan(farg2.d))) {
1084 /* sNaN division */
1085 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1086 } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d))) {
1087 /* Division of infinity by infinity */
1088 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI);
1089 } else if (unlikely(float64_is_zero(farg1.d) && float64_is_zero(farg2.d))) {
1090 /* Division of zero by zero */
1091 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ);
1092 } else {
1093 farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
1095 #else
1096 farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
1097 #endif
1098 return farg1.ll;
1101 /* fabs */
1102 uint64_t helper_fabs (uint64_t arg)
1104 CPU_DoubleU farg;
1106 farg.ll = arg;
1107 farg.d = float64_abs(farg.d);
1108 return farg.ll;
1111 /* fnabs */
1112 uint64_t helper_fnabs (uint64_t arg)
1114 CPU_DoubleU farg;
1116 farg.ll = arg;
1117 farg.d = float64_abs(farg.d);
1118 farg.d = float64_chs(farg.d);
1119 return farg.ll;
1122 /* fneg */
1123 uint64_t helper_fneg (uint64_t arg)
1125 CPU_DoubleU farg;
1127 farg.ll = arg;
1128 farg.d = float64_chs(farg.d);
1129 return farg.ll;
1132 /* fctiw - fctiw. */
1133 uint64_t helper_fctiw (uint64_t arg)
1135 CPU_DoubleU farg;
1136 farg.ll = arg;
1138 if (unlikely(float64_is_signaling_nan(farg.d))) {
1139 /* sNaN conversion */
1140 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1141 } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1142 /* qNan / infinity conversion */
1143 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1144 } else {
1145 farg.ll = float64_to_int32(farg.d, &env->fp_status);
1146 #if USE_PRECISE_EMULATION
1147 /* XXX: higher bits are not supposed to be significant.
1148 * to make tests easier, return the same as a real PowerPC 750
1150 farg.ll |= 0xFFF80000ULL << 32;
1151 #endif
1153 return farg.ll;
1156 /* fctiwz - fctiwz. */
1157 uint64_t helper_fctiwz (uint64_t arg)
1159 CPU_DoubleU farg;
1160 farg.ll = arg;
1162 if (unlikely(float64_is_signaling_nan(farg.d))) {
1163 /* sNaN conversion */
1164 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1165 } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1166 /* qNan / infinity conversion */
1167 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1168 } else {
1169 farg.ll = float64_to_int32_round_to_zero(farg.d, &env->fp_status);
1170 #if USE_PRECISE_EMULATION
1171 /* XXX: higher bits are not supposed to be significant.
1172 * to make tests easier, return the same as a real PowerPC 750
1174 farg.ll |= 0xFFF80000ULL << 32;
1175 #endif
1177 return farg.ll;
1180 #if defined(TARGET_PPC64)
1181 /* fcfid - fcfid. */
1182 uint64_t helper_fcfid (uint64_t arg)
1184 CPU_DoubleU farg;
1185 farg.d = int64_to_float64(arg, &env->fp_status);
1186 return farg.ll;
1189 /* fctid - fctid. */
1190 uint64_t helper_fctid (uint64_t arg)
1192 CPU_DoubleU farg;
1193 farg.ll = arg;
1195 if (unlikely(float64_is_signaling_nan(farg.d))) {
1196 /* sNaN conversion */
1197 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1198 } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1199 /* qNan / infinity conversion */
1200 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1201 } else {
1202 farg.ll = float64_to_int64(farg.d, &env->fp_status);
1204 return farg.ll;
1207 /* fctidz - fctidz. */
1208 uint64_t helper_fctidz (uint64_t arg)
1210 CPU_DoubleU farg;
1211 farg.ll = arg;
1213 if (unlikely(float64_is_signaling_nan(farg.d))) {
1214 /* sNaN conversion */
1215 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1216 } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1217 /* qNan / infinity conversion */
1218 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1219 } else {
1220 farg.ll = float64_to_int64_round_to_zero(farg.d, &env->fp_status);
1222 return farg.ll;
1225 #endif
1227 static always_inline uint64_t do_fri (uint64_t arg, int rounding_mode)
1229 CPU_DoubleU farg;
1230 farg.ll = arg;
1232 if (unlikely(float64_is_signaling_nan(farg.d))) {
1233 /* sNaN round */
1234 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1235 } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1236 /* qNan / infinity round */
1237 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1238 } else {
1239 set_float_rounding_mode(rounding_mode, &env->fp_status);
1240 farg.ll = float64_round_to_int(farg.d, &env->fp_status);
1241 /* Restore rounding mode from FPSCR */
1242 fpscr_set_rounding_mode();
1244 return farg.ll;
1247 uint64_t helper_frin (uint64_t arg)
1249 return do_fri(arg, float_round_nearest_even);
1252 uint64_t helper_friz (uint64_t arg)
1254 return do_fri(arg, float_round_to_zero);
1257 uint64_t helper_frip (uint64_t arg)
1259 return do_fri(arg, float_round_up);
1262 uint64_t helper_frim (uint64_t arg)
1264 return do_fri(arg, float_round_down);
1267 /* fmadd - fmadd. */
1268 uint64_t helper_fmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1270 CPU_DoubleU farg1, farg2, farg3;
1272 farg1.ll = arg1;
1273 farg2.ll = arg2;
1274 farg3.ll = arg3;
1275 #if USE_PRECISE_EMULATION
1276 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1277 float64_is_signaling_nan(farg2.d) ||
1278 float64_is_signaling_nan(farg3.d))) {
1279 /* sNaN operation */
1280 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1281 } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1282 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1283 /* Multiplication of zero by infinity */
1284 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1285 } else {
1286 #ifdef FLOAT128
1287 /* This is the way the PowerPC specification defines it */
1288 float128 ft0_128, ft1_128;
1290 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1291 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1292 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1293 if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
1294 float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
1295 /* Magnitude subtraction of infinities */
1296 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1297 } else {
1298 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1299 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1300 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1302 #else
1303 /* This is OK on x86 hosts */
1304 farg1.d = (farg1.d * farg2.d) + farg3.d;
1305 #endif
1307 #else
1308 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1309 farg1.d = float64_add(farg1.d, farg3.d, &env->fp_status);
1310 #endif
1311 return farg1.ll;
1314 /* fmsub - fmsub. */
1315 uint64_t helper_fmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1317 CPU_DoubleU farg1, farg2, farg3;
1319 farg1.ll = arg1;
1320 farg2.ll = arg2;
1321 farg3.ll = arg3;
1322 #if USE_PRECISE_EMULATION
1323 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1324 float64_is_signaling_nan(farg2.d) ||
1325 float64_is_signaling_nan(farg3.d))) {
1326 /* sNaN operation */
1327 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1328 } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1329 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1330 /* Multiplication of zero by infinity */
1331 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1332 } else {
1333 #ifdef FLOAT128
1334 /* This is the way the PowerPC specification defines it */
1335 float128 ft0_128, ft1_128;
1337 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1338 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1339 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1340 if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
1341 float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
1342 /* Magnitude subtraction of infinities */
1343 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1344 } else {
1345 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1346 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1347 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1349 #else
1350 /* This is OK on x86 hosts */
1351 farg1.d = (farg1.d * farg2.d) - farg3.d;
1352 #endif
1354 #else
1355 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1356 farg1.d = float64_sub(farg1.d, farg3.d, &env->fp_status);
1357 #endif
1358 return farg1.ll;
1361 /* fnmadd - fnmadd. */
1362 uint64_t helper_fnmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1364 CPU_DoubleU farg1, farg2, farg3;
1366 farg1.ll = arg1;
1367 farg2.ll = arg2;
1368 farg3.ll = arg3;
1370 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1371 float64_is_signaling_nan(farg2.d) ||
1372 float64_is_signaling_nan(farg3.d))) {
1373 /* sNaN operation */
1374 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1375 } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1376 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1377 /* Multiplication of zero by infinity */
1378 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1379 } else {
1380 #if USE_PRECISE_EMULATION
1381 #ifdef FLOAT128
1382 /* This is the way the PowerPC specification defines it */
1383 float128 ft0_128, ft1_128;
1385 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1386 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1387 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1388 if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
1389 float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
1390 /* Magnitude subtraction of infinities */
1391 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1392 } else {
1393 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1394 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1395 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1397 #else
1398 /* This is OK on x86 hosts */
1399 farg1.d = (farg1.d * farg2.d) + farg3.d;
1400 #endif
1401 #else
1402 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1403 farg1.d = float64_add(farg1.d, farg3.d, &env->fp_status);
1404 #endif
1405 if (likely(!float64_is_nan(farg1.d)))
1406 farg1.d = float64_chs(farg1.d);
1408 return farg1.ll;
1411 /* fnmsub - fnmsub. */
1412 uint64_t helper_fnmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1414 CPU_DoubleU farg1, farg2, farg3;
1416 farg1.ll = arg1;
1417 farg2.ll = arg2;
1418 farg3.ll = arg3;
1420 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1421 float64_is_signaling_nan(farg2.d) ||
1422 float64_is_signaling_nan(farg3.d))) {
1423 /* sNaN operation */
1424 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1425 } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1426 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1427 /* Multiplication of zero by infinity */
1428 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1429 } else {
1430 #if USE_PRECISE_EMULATION
1431 #ifdef FLOAT128
1432 /* This is the way the PowerPC specification defines it */
1433 float128 ft0_128, ft1_128;
1435 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1436 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1437 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1438 if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
1439 float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
1440 /* Magnitude subtraction of infinities */
1441 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1442 } else {
1443 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1444 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1445 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1447 #else
1448 /* This is OK on x86 hosts */
1449 farg1.d = (farg1.d * farg2.d) - farg3.d;
1450 #endif
1451 #else
1452 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1453 farg1.d = float64_sub(farg1.d, farg3.d, &env->fp_status);
1454 #endif
1455 if (likely(!float64_is_nan(farg1.d)))
1456 farg1.d = float64_chs(farg1.d);
1458 return farg1.ll;
1461 /* frsp - frsp. */
1462 uint64_t helper_frsp (uint64_t arg)
1464 CPU_DoubleU farg;
1465 float32 f32;
1466 farg.ll = arg;
1468 #if USE_PRECISE_EMULATION
1469 if (unlikely(float64_is_signaling_nan(farg.d))) {
1470 /* sNaN square root */
1471 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1472 } else {
1473 f32 = float64_to_float32(farg.d, &env->fp_status);
1474 farg.d = float32_to_float64(f32, &env->fp_status);
1476 #else
1477 f32 = float64_to_float32(farg.d, &env->fp_status);
1478 farg.d = float32_to_float64(f32, &env->fp_status);
1479 #endif
1480 return farg.ll;
1483 /* fsqrt - fsqrt. */
1484 uint64_t helper_fsqrt (uint64_t arg)
1486 CPU_DoubleU farg;
1487 farg.ll = arg;
1489 if (unlikely(float64_is_signaling_nan(farg.d))) {
1490 /* sNaN square root */
1491 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1492 } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
1493 /* Square root of a negative nonzero number */
1494 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1495 } else {
1496 farg.d = float64_sqrt(farg.d, &env->fp_status);
1498 return farg.ll;
1501 /* fre - fre. */
1502 uint64_t helper_fre (uint64_t arg)
1504 CPU_DoubleU farg;
1505 farg.ll = arg;
1507 if (unlikely(float64_is_signaling_nan(farg.d))) {
1508 /* sNaN reciprocal */
1509 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1510 } else {
1511 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
1513 return farg.d;
1516 /* fres - fres. */
1517 uint64_t helper_fres (uint64_t arg)
1519 CPU_DoubleU farg;
1520 float32 f32;
1521 farg.ll = arg;
1523 if (unlikely(float64_is_signaling_nan(farg.d))) {
1524 /* sNaN reciprocal */
1525 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1526 } else {
1527 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
1528 f32 = float64_to_float32(farg.d, &env->fp_status);
1529 farg.d = float32_to_float64(f32, &env->fp_status);
1531 return farg.ll;
1534 /* frsqrte - frsqrte. */
1535 uint64_t helper_frsqrte (uint64_t arg)
1537 CPU_DoubleU farg;
1538 float32 f32;
1539 farg.ll = arg;
1541 if (unlikely(float64_is_signaling_nan(farg.d))) {
1542 /* sNaN reciprocal square root */
1543 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1544 } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
1545 /* Reciprocal square root of a negative nonzero number */
1546 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1547 } else {
1548 farg.d = float64_sqrt(farg.d, &env->fp_status);
1549 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
1550 f32 = float64_to_float32(farg.d, &env->fp_status);
1551 farg.d = float32_to_float64(f32, &env->fp_status);
1553 return farg.ll;
1556 /* fsel - fsel. */
1557 uint64_t helper_fsel (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1559 CPU_DoubleU farg1;
1561 farg1.ll = arg1;
1563 if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) && !float64_is_nan(farg1.d))
1564 return arg2;
1565 else
1566 return arg3;
1569 void helper_fcmpu (uint64_t arg1, uint64_t arg2, uint32_t crfD)
1571 CPU_DoubleU farg1, farg2;
1572 uint32_t ret = 0;
1573 farg1.ll = arg1;
1574 farg2.ll = arg2;
1576 if (unlikely(float64_is_nan(farg1.d) ||
1577 float64_is_nan(farg2.d))) {
1578 ret = 0x01UL;
1579 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1580 ret = 0x08UL;
1581 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1582 ret = 0x04UL;
1583 } else {
1584 ret = 0x02UL;
1587 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1588 env->fpscr |= ret << FPSCR_FPRF;
1589 env->crf[crfD] = ret;
1590 if (unlikely(ret == 0x01UL
1591 && (float64_is_signaling_nan(farg1.d) ||
1592 float64_is_signaling_nan(farg2.d)))) {
1593 /* sNaN comparison */
1594 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1598 void helper_fcmpo (uint64_t arg1, uint64_t arg2, uint32_t crfD)
1600 CPU_DoubleU farg1, farg2;
1601 uint32_t ret = 0;
1602 farg1.ll = arg1;
1603 farg2.ll = arg2;
1605 if (unlikely(float64_is_nan(farg1.d) ||
1606 float64_is_nan(farg2.d))) {
1607 ret = 0x01UL;
1608 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1609 ret = 0x08UL;
1610 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1611 ret = 0x04UL;
1612 } else {
1613 ret = 0x02UL;
1616 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1617 env->fpscr |= ret << FPSCR_FPRF;
1618 env->crf[crfD] = ret;
1619 if (unlikely (ret == 0x01UL)) {
1620 if (float64_is_signaling_nan(farg1.d) ||
1621 float64_is_signaling_nan(farg2.d)) {
1622 /* sNaN comparison */
1623 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN |
1624 POWERPC_EXCP_FP_VXVC);
1625 } else {
1626 /* qNaN comparison */
1627 fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC);
1632 #if !defined (CONFIG_USER_ONLY)
1633 void helper_store_msr (target_ulong val)
1635 val = hreg_store_msr(env, val, 0);
1636 if (val != 0) {
1637 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1638 helper_raise_exception(val);
1642 static always_inline void do_rfi (target_ulong nip, target_ulong msr,
1643 target_ulong msrm, int keep_msrh)
1645 #if defined(TARGET_PPC64)
1646 if (msr & (1ULL << MSR_SF)) {
1647 nip = (uint64_t)nip;
1648 msr &= (uint64_t)msrm;
1649 } else {
1650 nip = (uint32_t)nip;
1651 msr = (uint32_t)(msr & msrm);
1652 if (keep_msrh)
1653 msr |= env->msr & ~((uint64_t)0xFFFFFFFF);
1655 #else
1656 nip = (uint32_t)nip;
1657 msr &= (uint32_t)msrm;
1658 #endif
1659 /* XXX: beware: this is false if VLE is supported */
1660 env->nip = nip & ~((target_ulong)0x00000003);
1661 hreg_store_msr(env, msr, 1);
1662 #if defined (DEBUG_OP)
1663 cpu_dump_rfi(env->nip, env->msr);
1664 #endif
1665 /* No need to raise an exception here,
1666 * as rfi is always the last insn of a TB
1668 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1671 void helper_rfi (void)
1673 do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1674 ~((target_ulong)0xFFFF0000), 1);
1677 #if defined(TARGET_PPC64)
1678 void helper_rfid (void)
1680 do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1681 ~((target_ulong)0xFFFF0000), 0);
1684 void helper_hrfid (void)
1686 do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1],
1687 ~((target_ulong)0xFFFF0000), 0);
1689 #endif
1690 #endif
1692 void helper_tw (target_ulong arg1, target_ulong arg2, uint32_t flags)
1694 if (!likely(!(((int32_t)arg1 < (int32_t)arg2 && (flags & 0x10)) ||
1695 ((int32_t)arg1 > (int32_t)arg2 && (flags & 0x08)) ||
1696 ((int32_t)arg1 == (int32_t)arg2 && (flags & 0x04)) ||
1697 ((uint32_t)arg1 < (uint32_t)arg2 && (flags & 0x02)) ||
1698 ((uint32_t)arg1 > (uint32_t)arg2 && (flags & 0x01))))) {
1699 helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
1703 #if defined(TARGET_PPC64)
1704 void helper_td (target_ulong arg1, target_ulong arg2, uint32_t flags)
1706 if (!likely(!(((int64_t)arg1 < (int64_t)arg2 && (flags & 0x10)) ||
1707 ((int64_t)arg1 > (int64_t)arg2 && (flags & 0x08)) ||
1708 ((int64_t)arg1 == (int64_t)arg2 && (flags & 0x04)) ||
1709 ((uint64_t)arg1 < (uint64_t)arg2 && (flags & 0x02)) ||
1710 ((uint64_t)arg1 > (uint64_t)arg2 && (flags & 0x01)))))
1711 helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
1713 #endif
1715 /*****************************************************************************/
1716 /* PowerPC 601 specific instructions (POWER bridge) */
1718 target_ulong helper_clcs (uint32_t arg)
1720 switch (arg) {
1721 case 0x0CUL:
1722 /* Instruction cache line size */
1723 return env->icache_line_size;
1724 break;
1725 case 0x0DUL:
1726 /* Data cache line size */
1727 return env->dcache_line_size;
1728 break;
1729 case 0x0EUL:
1730 /* Minimum cache line size */
1731 return (env->icache_line_size < env->dcache_line_size) ?
1732 env->icache_line_size : env->dcache_line_size;
1733 break;
1734 case 0x0FUL:
1735 /* Maximum cache line size */
1736 return (env->icache_line_size > env->dcache_line_size) ?
1737 env->icache_line_size : env->dcache_line_size;
1738 break;
1739 default:
1740 /* Undefined */
1741 return 0;
1742 break;
1746 target_ulong helper_div (target_ulong arg1, target_ulong arg2)
1748 uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
1750 if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1751 (int32_t)arg2 == 0) {
1752 env->spr[SPR_MQ] = 0;
1753 return INT32_MIN;
1754 } else {
1755 env->spr[SPR_MQ] = tmp % arg2;
1756 return tmp / (int32_t)arg2;
1760 target_ulong helper_divo (target_ulong arg1, target_ulong arg2)
1762 uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
1764 if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1765 (int32_t)arg2 == 0) {
1766 env->xer |= (1 << XER_OV) | (1 << XER_SO);
1767 env->spr[SPR_MQ] = 0;
1768 return INT32_MIN;
1769 } else {
1770 env->spr[SPR_MQ] = tmp % arg2;
1771 tmp /= (int32_t)arg2;
1772 if ((int32_t)tmp != tmp) {
1773 env->xer |= (1 << XER_OV) | (1 << XER_SO);
1774 } else {
1775 env->xer &= ~(1 << XER_OV);
1777 return tmp;
1781 target_ulong helper_divs (target_ulong arg1, target_ulong arg2)
1783 if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1784 (int32_t)arg2 == 0) {
1785 env->spr[SPR_MQ] = 0;
1786 return INT32_MIN;
1787 } else {
1788 env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
1789 return (int32_t)arg1 / (int32_t)arg2;
1793 target_ulong helper_divso (target_ulong arg1, target_ulong arg2)
1795 if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1796 (int32_t)arg2 == 0) {
1797 env->xer |= (1 << XER_OV) | (1 << XER_SO);
1798 env->spr[SPR_MQ] = 0;
1799 return INT32_MIN;
1800 } else {
1801 env->xer &= ~(1 << XER_OV);
1802 env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
1803 return (int32_t)arg1 / (int32_t)arg2;
1807 #if !defined (CONFIG_USER_ONLY)
1808 target_ulong helper_rac (target_ulong addr)
1810 mmu_ctx_t ctx;
1811 int nb_BATs;
1812 target_ulong ret = 0;
1814 /* We don't have to generate many instances of this instruction,
1815 * as rac is supervisor only.
1817 /* XXX: FIX THIS: Pretend we have no BAT */
1818 nb_BATs = env->nb_BATs;
1819 env->nb_BATs = 0;
1820 if (get_physical_address(env, &ctx, addr, 0, ACCESS_INT) == 0)
1821 ret = ctx.raddr;
1822 env->nb_BATs = nb_BATs;
1823 return ret;
1826 void helper_rfsvc (void)
1828 do_rfi(env->lr, env->ctr, 0x0000FFFF, 0);
1830 #endif
1832 /*****************************************************************************/
1833 /* 602 specific instructions */
1834 /* mfrom is the most crazy instruction ever seen, imho ! */
1835 /* Real implementation uses a ROM table. Do the same */
1836 /* Extremly decomposed:
1837 * -arg / 256
1838 * return 256 * log10(10 + 1.0) + 0.5
1840 #if !defined (CONFIG_USER_ONLY)
1841 target_ulong helper_602_mfrom (target_ulong arg)
1843 if (likely(arg < 602)) {
1844 #include "mfrom_table.c"
1845 return mfrom_ROM_table[arg];
1846 } else {
1847 return 0;
1850 #endif
1852 /*****************************************************************************/
1853 /* Embedded PowerPC specific helpers */
1855 /* XXX: to be improved to check access rights when in user-mode */
1856 target_ulong helper_load_dcr (target_ulong dcrn)
1858 target_ulong val = 0;
1860 if (unlikely(env->dcr_env == NULL)) {
1861 qemu_log("No DCR environment\n");
1862 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1863 POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
1864 } else if (unlikely(ppc_dcr_read(env->dcr_env, dcrn, &val) != 0)) {
1865 qemu_log("DCR read error %d %03x\n", (int)dcrn, (int)dcrn);
1866 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1867 POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
1869 return val;
1872 void helper_store_dcr (target_ulong dcrn, target_ulong val)
1874 if (unlikely(env->dcr_env == NULL)) {
1875 qemu_log("No DCR environment\n");
1876 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1877 POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
1878 } else if (unlikely(ppc_dcr_write(env->dcr_env, dcrn, val) != 0)) {
1879 qemu_log("DCR write error %d %03x\n", (int)dcrn, (int)dcrn);
1880 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1881 POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
1885 #if !defined(CONFIG_USER_ONLY)
1886 void helper_40x_rfci (void)
1888 do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3],
1889 ~((target_ulong)0xFFFF0000), 0);
1892 void helper_rfci (void)
1894 do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1,
1895 ~((target_ulong)0x3FFF0000), 0);
1898 void helper_rfdi (void)
1900 do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1,
1901 ~((target_ulong)0x3FFF0000), 0);
1904 void helper_rfmci (void)
1906 do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1,
1907 ~((target_ulong)0x3FFF0000), 0);
1909 #endif
1911 /* 440 specific */
1912 target_ulong helper_dlmzb (target_ulong high, target_ulong low, uint32_t update_Rc)
1914 target_ulong mask;
1915 int i;
1917 i = 1;
1918 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1919 if ((high & mask) == 0) {
1920 if (update_Rc) {
1921 env->crf[0] = 0x4;
1923 goto done;
1925 i++;
1927 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1928 if ((low & mask) == 0) {
1929 if (update_Rc) {
1930 env->crf[0] = 0x8;
1932 goto done;
1934 i++;
1936 if (update_Rc) {
1937 env->crf[0] = 0x2;
1939 done:
1940 env->xer = (env->xer & ~0x7F) | i;
1941 if (update_Rc) {
1942 env->crf[0] |= xer_so;
1944 return i;
1947 /*****************************************************************************/
1948 /* Altivec extension helpers */
1949 #if defined(WORDS_BIGENDIAN)
1950 #define HI_IDX 0
1951 #define LO_IDX 1
1952 #else
1953 #define HI_IDX 1
1954 #define LO_IDX 0
1955 #endif
1957 #if defined(WORDS_BIGENDIAN)
1958 #define VECTOR_FOR_INORDER_I(index, element) \
1959 for (index = 0; index < ARRAY_SIZE(r->element); index++)
1960 #else
1961 #define VECTOR_FOR_INORDER_I(index, element) \
1962 for (index = ARRAY_SIZE(r->element)-1; index >= 0; index--)
1963 #endif
1965 /* If X is a NaN, store the corresponding QNaN into RESULT. Otherwise,
1966 * execute the following block. */
1967 #define DO_HANDLE_NAN(result, x) \
1968 if (float32_is_nan(x) || float32_is_signaling_nan(x)) { \
1969 CPU_FloatU __f; \
1970 __f.f = x; \
1971 __f.l = __f.l | (1 << 22); /* Set QNaN bit. */ \
1972 result = __f.f; \
1973 } else
1975 #define HANDLE_NAN1(result, x) \
1976 DO_HANDLE_NAN(result, x)
1977 #define HANDLE_NAN2(result, x, y) \
1978 DO_HANDLE_NAN(result, x) DO_HANDLE_NAN(result, y)
1979 #define HANDLE_NAN3(result, x, y, z) \
1980 DO_HANDLE_NAN(result, x) DO_HANDLE_NAN(result, y) DO_HANDLE_NAN(result, z)
1982 /* Saturating arithmetic helpers. */
1983 #define SATCVT(from, to, from_type, to_type, min, max, use_min, use_max) \
1984 static always_inline to_type cvt##from##to (from_type x, int *sat) \
1986 to_type r; \
1987 if (use_min && x < min) { \
1988 r = min; \
1989 *sat = 1; \
1990 } else if (use_max && x > max) { \
1991 r = max; \
1992 *sat = 1; \
1993 } else { \
1994 r = x; \
1996 return r; \
1998 SATCVT(sh, sb, int16_t, int8_t, INT8_MIN, INT8_MAX, 1, 1)
1999 SATCVT(sw, sh, int32_t, int16_t, INT16_MIN, INT16_MAX, 1, 1)
2000 SATCVT(sd, sw, int64_t, int32_t, INT32_MIN, INT32_MAX, 1, 1)
2001 SATCVT(uh, ub, uint16_t, uint8_t, 0, UINT8_MAX, 0, 1)
2002 SATCVT(uw, uh, uint32_t, uint16_t, 0, UINT16_MAX, 0, 1)
2003 SATCVT(ud, uw, uint64_t, uint32_t, 0, UINT32_MAX, 0, 1)
2004 SATCVT(sh, ub, int16_t, uint8_t, 0, UINT8_MAX, 1, 1)
2005 SATCVT(sw, uh, int32_t, uint16_t, 0, UINT16_MAX, 1, 1)
2006 SATCVT(sd, uw, int64_t, uint32_t, 0, UINT32_MAX, 1, 1)
2007 #undef SATCVT
2009 #define LVE(name, access, swap, element) \
2010 void helper_##name (ppc_avr_t *r, target_ulong addr) \
2012 size_t n_elems = ARRAY_SIZE(r->element); \
2013 int adjust = HI_IDX*(n_elems-1); \
2014 int sh = sizeof(r->element[0]) >> 1; \
2015 int index = (addr & 0xf) >> sh; \
2016 if(msr_le) { \
2017 r->element[LO_IDX ? index : (adjust - index)] = swap(access(addr)); \
2018 } else { \
2019 r->element[LO_IDX ? index : (adjust - index)] = access(addr); \
2022 #define I(x) (x)
2023 LVE(lvebx, ldub, I, u8)
2024 LVE(lvehx, lduw, bswap16, u16)
2025 LVE(lvewx, ldl, bswap32, u32)
2026 #undef I
2027 #undef LVE
2029 void helper_lvsl (ppc_avr_t *r, target_ulong sh)
2031 int i, j = (sh & 0xf);
2033 VECTOR_FOR_INORDER_I (i, u8) {
2034 r->u8[i] = j++;
2038 void helper_lvsr (ppc_avr_t *r, target_ulong sh)
2040 int i, j = 0x10 - (sh & 0xf);
2042 VECTOR_FOR_INORDER_I (i, u8) {
2043 r->u8[i] = j++;
2047 #define STVE(name, access, swap, element) \
2048 void helper_##name (ppc_avr_t *r, target_ulong addr) \
2050 size_t n_elems = ARRAY_SIZE(r->element); \
2051 int adjust = HI_IDX*(n_elems-1); \
2052 int sh = sizeof(r->element[0]) >> 1; \
2053 int index = (addr & 0xf) >> sh; \
2054 if(msr_le) { \
2055 access(addr, swap(r->element[LO_IDX ? index : (adjust - index)])); \
2056 } else { \
2057 access(addr, r->element[LO_IDX ? index : (adjust - index)]); \
2060 #define I(x) (x)
2061 STVE(stvebx, stb, I, u8)
2062 STVE(stvehx, stw, bswap16, u16)
2063 STVE(stvewx, stl, bswap32, u32)
2064 #undef I
2065 #undef LVE
2067 void helper_mtvscr (ppc_avr_t *r)
2069 #if defined(WORDS_BIGENDIAN)
2070 env->vscr = r->u32[3];
2071 #else
2072 env->vscr = r->u32[0];
2073 #endif
2074 set_flush_to_zero(vscr_nj, &env->vec_status);
2077 void helper_vaddcuw (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2079 int i;
2080 for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
2081 r->u32[i] = ~a->u32[i] < b->u32[i];
2085 #define VARITH_DO(name, op, element) \
2086 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2088 int i; \
2089 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2090 r->element[i] = a->element[i] op b->element[i]; \
2093 #define VARITH(suffix, element) \
2094 VARITH_DO(add##suffix, +, element) \
2095 VARITH_DO(sub##suffix, -, element)
2096 VARITH(ubm, u8)
2097 VARITH(uhm, u16)
2098 VARITH(uwm, u32)
2099 #undef VARITH_DO
2100 #undef VARITH
2102 #define VARITHFP(suffix, func) \
2103 void helper_v##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2105 int i; \
2106 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
2107 HANDLE_NAN2(r->f[i], a->f[i], b->f[i]) { \
2108 r->f[i] = func(a->f[i], b->f[i], &env->vec_status); \
2112 VARITHFP(addfp, float32_add)
2113 VARITHFP(subfp, float32_sub)
2114 #undef VARITHFP
2116 #define VARITHSAT_CASE(type, op, cvt, element) \
2118 type result = (type)a->element[i] op (type)b->element[i]; \
2119 r->element[i] = cvt(result, &sat); \
2122 #define VARITHSAT_DO(name, op, optype, cvt, element) \
2123 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2125 int sat = 0; \
2126 int i; \
2127 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2128 switch (sizeof(r->element[0])) { \
2129 case 1: VARITHSAT_CASE(optype, op, cvt, element); break; \
2130 case 2: VARITHSAT_CASE(optype, op, cvt, element); break; \
2131 case 4: VARITHSAT_CASE(optype, op, cvt, element); break; \
2134 if (sat) { \
2135 env->vscr |= (1 << VSCR_SAT); \
2138 #define VARITHSAT_SIGNED(suffix, element, optype, cvt) \
2139 VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element) \
2140 VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element)
2141 #define VARITHSAT_UNSIGNED(suffix, element, optype, cvt) \
2142 VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element) \
2143 VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element)
2144 VARITHSAT_SIGNED(b, s8, int16_t, cvtshsb)
2145 VARITHSAT_SIGNED(h, s16, int32_t, cvtswsh)
2146 VARITHSAT_SIGNED(w, s32, int64_t, cvtsdsw)
2147 VARITHSAT_UNSIGNED(b, u8, uint16_t, cvtshub)
2148 VARITHSAT_UNSIGNED(h, u16, uint32_t, cvtswuh)
2149 VARITHSAT_UNSIGNED(w, u32, uint64_t, cvtsduw)
2150 #undef VARITHSAT_CASE
2151 #undef VARITHSAT_DO
2152 #undef VARITHSAT_SIGNED
2153 #undef VARITHSAT_UNSIGNED
2155 #define VAVG_DO(name, element, etype) \
2156 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2158 int i; \
2159 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2160 etype x = (etype)a->element[i] + (etype)b->element[i] + 1; \
2161 r->element[i] = x >> 1; \
2165 #define VAVG(type, signed_element, signed_type, unsigned_element, unsigned_type) \
2166 VAVG_DO(avgs##type, signed_element, signed_type) \
2167 VAVG_DO(avgu##type, unsigned_element, unsigned_type)
2168 VAVG(b, s8, int16_t, u8, uint16_t)
2169 VAVG(h, s16, int32_t, u16, uint32_t)
2170 VAVG(w, s32, int64_t, u32, uint64_t)
2171 #undef VAVG_DO
2172 #undef VAVG
2174 #define VCF(suffix, cvt, element) \
2175 void helper_vcf##suffix (ppc_avr_t *r, ppc_avr_t *b, uint32_t uim) \
2177 int i; \
2178 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
2179 float32 t = cvt(b->element[i], &env->vec_status); \
2180 r->f[i] = float32_scalbn (t, -uim, &env->vec_status); \
2183 VCF(ux, uint32_to_float32, u32)
2184 VCF(sx, int32_to_float32, s32)
2185 #undef VCF
2187 #define VCMP_DO(suffix, compare, element, record) \
2188 void helper_vcmp##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2190 uint32_t ones = (uint32_t)-1; \
2191 uint32_t all = ones; \
2192 uint32_t none = 0; \
2193 int i; \
2194 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2195 uint32_t result = (a->element[i] compare b->element[i] ? ones : 0x0); \
2196 switch (sizeof (a->element[0])) { \
2197 case 4: r->u32[i] = result; break; \
2198 case 2: r->u16[i] = result; break; \
2199 case 1: r->u8[i] = result; break; \
2201 all &= result; \
2202 none |= result; \
2204 if (record) { \
2205 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
2208 #define VCMP(suffix, compare, element) \
2209 VCMP_DO(suffix, compare, element, 0) \
2210 VCMP_DO(suffix##_dot, compare, element, 1)
2211 VCMP(equb, ==, u8)
2212 VCMP(equh, ==, u16)
2213 VCMP(equw, ==, u32)
2214 VCMP(gtub, >, u8)
2215 VCMP(gtuh, >, u16)
2216 VCMP(gtuw, >, u32)
2217 VCMP(gtsb, >, s8)
2218 VCMP(gtsh, >, s16)
2219 VCMP(gtsw, >, s32)
2220 #undef VCMP_DO
2221 #undef VCMP
2223 #define VCMPFP_DO(suffix, compare, order, record) \
2224 void helper_vcmp##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2226 uint32_t ones = (uint32_t)-1; \
2227 uint32_t all = ones; \
2228 uint32_t none = 0; \
2229 int i; \
2230 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
2231 uint32_t result; \
2232 int rel = float32_compare_quiet(a->f[i], b->f[i], &env->vec_status); \
2233 if (rel == float_relation_unordered) { \
2234 result = 0; \
2235 } else if (rel compare order) { \
2236 result = ones; \
2237 } else { \
2238 result = 0; \
2240 r->u32[i] = result; \
2241 all &= result; \
2242 none |= result; \
2244 if (record) { \
2245 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
2248 #define VCMPFP(suffix, compare, order) \
2249 VCMPFP_DO(suffix, compare, order, 0) \
2250 VCMPFP_DO(suffix##_dot, compare, order, 1)
2251 VCMPFP(eqfp, ==, float_relation_equal)
2252 VCMPFP(gefp, !=, float_relation_less)
2253 VCMPFP(gtfp, ==, float_relation_greater)
2254 #undef VCMPFP_DO
2255 #undef VCMPFP
2257 static always_inline void vcmpbfp_internal (ppc_avr_t *r, ppc_avr_t *a,
2258 ppc_avr_t *b, int record)
2260 int i;
2261 int all_in = 0;
2262 for (i = 0; i < ARRAY_SIZE(r->f); i++) {
2263 int le_rel = float32_compare_quiet(a->f[i], b->f[i], &env->vec_status);
2264 if (le_rel == float_relation_unordered) {
2265 r->u32[i] = 0xc0000000;
2266 /* ALL_IN does not need to be updated here. */
2267 } else {
2268 float32 bneg = float32_chs(b->f[i]);
2269 int ge_rel = float32_compare_quiet(a->f[i], bneg, &env->vec_status);
2270 int le = le_rel != float_relation_greater;
2271 int ge = ge_rel != float_relation_less;
2272 r->u32[i] = ((!le) << 31) | ((!ge) << 30);
2273 all_in |= (!le | !ge);
2276 if (record) {
2277 env->crf[6] = (all_in == 0) << 1;
2281 void helper_vcmpbfp (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2283 vcmpbfp_internal(r, a, b, 0);
2286 void helper_vcmpbfp_dot (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2288 vcmpbfp_internal(r, a, b, 1);
2291 #define VCT(suffix, satcvt, element) \
2292 void helper_vct##suffix (ppc_avr_t *r, ppc_avr_t *b, uint32_t uim) \
2294 int i; \
2295 int sat = 0; \
2296 float_status s = env->vec_status; \
2297 set_float_rounding_mode(float_round_to_zero, &s); \
2298 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
2299 if (float32_is_nan(b->f[i]) || \
2300 float32_is_signaling_nan(b->f[i])) { \
2301 r->element[i] = 0; \
2302 } else { \
2303 float64 t = float32_to_float64(b->f[i], &s); \
2304 int64_t j; \
2305 t = float64_scalbn(t, uim, &s); \
2306 j = float64_to_int64(t, &s); \
2307 r->element[i] = satcvt(j, &sat); \
2310 if (sat) { \
2311 env->vscr |= (1 << VSCR_SAT); \
2314 VCT(uxs, cvtsduw, u32)
2315 VCT(sxs, cvtsdsw, s32)
2316 #undef VCT
2318 void helper_vmaddfp (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2320 int i;
2321 for (i = 0; i < ARRAY_SIZE(r->f); i++) {
2322 HANDLE_NAN3(r->f[i], a->f[i], b->f[i], c->f[i]) {
2323 /* Need to do the computation in higher precision and round
2324 * once at the end. */
2325 float64 af, bf, cf, t;
2326 af = float32_to_float64(a->f[i], &env->vec_status);
2327 bf = float32_to_float64(b->f[i], &env->vec_status);
2328 cf = float32_to_float64(c->f[i], &env->vec_status);
2329 t = float64_mul(af, cf, &env->vec_status);
2330 t = float64_add(t, bf, &env->vec_status);
2331 r->f[i] = float64_to_float32(t, &env->vec_status);
2336 void helper_vmhaddshs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2338 int sat = 0;
2339 int i;
2341 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
2342 int32_t prod = a->s16[i] * b->s16[i];
2343 int32_t t = (int32_t)c->s16[i] + (prod >> 15);
2344 r->s16[i] = cvtswsh (t, &sat);
2347 if (sat) {
2348 env->vscr |= (1 << VSCR_SAT);
2352 void helper_vmhraddshs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2354 int sat = 0;
2355 int i;
2357 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
2358 int32_t prod = a->s16[i] * b->s16[i] + 0x00004000;
2359 int32_t t = (int32_t)c->s16[i] + (prod >> 15);
2360 r->s16[i] = cvtswsh (t, &sat);
2363 if (sat) {
2364 env->vscr |= (1 << VSCR_SAT);
2368 #define VMINMAX_DO(name, compare, element) \
2369 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2371 int i; \
2372 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2373 if (a->element[i] compare b->element[i]) { \
2374 r->element[i] = b->element[i]; \
2375 } else { \
2376 r->element[i] = a->element[i]; \
2380 #define VMINMAX(suffix, element) \
2381 VMINMAX_DO(min##suffix, >, element) \
2382 VMINMAX_DO(max##suffix, <, element)
2383 VMINMAX(sb, s8)
2384 VMINMAX(sh, s16)
2385 VMINMAX(sw, s32)
2386 VMINMAX(ub, u8)
2387 VMINMAX(uh, u16)
2388 VMINMAX(uw, u32)
2389 #undef VMINMAX_DO
2390 #undef VMINMAX
2392 #define VMINMAXFP(suffix, rT, rF) \
2393 void helper_v##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2395 int i; \
2396 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
2397 HANDLE_NAN2(r->f[i], a->f[i], b->f[i]) { \
2398 if (float32_lt_quiet(a->f[i], b->f[i], &env->vec_status)) { \
2399 r->f[i] = rT->f[i]; \
2400 } else { \
2401 r->f[i] = rF->f[i]; \
2406 VMINMAXFP(minfp, a, b)
2407 VMINMAXFP(maxfp, b, a)
2408 #undef VMINMAXFP
2410 void helper_vmladduhm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2412 int i;
2413 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
2414 int32_t prod = a->s16[i] * b->s16[i];
2415 r->s16[i] = (int16_t) (prod + c->s16[i]);
2419 #define VMRG_DO(name, element, highp) \
2420 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2422 ppc_avr_t result; \
2423 int i; \
2424 size_t n_elems = ARRAY_SIZE(r->element); \
2425 for (i = 0; i < n_elems/2; i++) { \
2426 if (highp) { \
2427 result.element[i*2+HI_IDX] = a->element[i]; \
2428 result.element[i*2+LO_IDX] = b->element[i]; \
2429 } else { \
2430 result.element[n_elems - i*2 - (1+HI_IDX)] = b->element[n_elems - i - 1]; \
2431 result.element[n_elems - i*2 - (1+LO_IDX)] = a->element[n_elems - i - 1]; \
2434 *r = result; \
2436 #if defined(WORDS_BIGENDIAN)
2437 #define MRGHI 0
2438 #define MRGLO 1
2439 #else
2440 #define MRGHI 1
2441 #define MRGLO 0
2442 #endif
2443 #define VMRG(suffix, element) \
2444 VMRG_DO(mrgl##suffix, element, MRGHI) \
2445 VMRG_DO(mrgh##suffix, element, MRGLO)
2446 VMRG(b, u8)
2447 VMRG(h, u16)
2448 VMRG(w, u32)
2449 #undef VMRG_DO
2450 #undef VMRG
2451 #undef MRGHI
2452 #undef MRGLO
2454 void helper_vmsummbm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2456 int32_t prod[16];
2457 int i;
2459 for (i = 0; i < ARRAY_SIZE(r->s8); i++) {
2460 prod[i] = (int32_t)a->s8[i] * b->u8[i];
2463 VECTOR_FOR_INORDER_I(i, s32) {
2464 r->s32[i] = c->s32[i] + prod[4*i] + prod[4*i+1] + prod[4*i+2] + prod[4*i+3];
2468 void helper_vmsumshm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2470 int32_t prod[8];
2471 int i;
2473 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
2474 prod[i] = a->s16[i] * b->s16[i];
2477 VECTOR_FOR_INORDER_I(i, s32) {
2478 r->s32[i] = c->s32[i] + prod[2*i] + prod[2*i+1];
2482 void helper_vmsumshs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2484 int32_t prod[8];
2485 int i;
2486 int sat = 0;
2488 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
2489 prod[i] = (int32_t)a->s16[i] * b->s16[i];
2492 VECTOR_FOR_INORDER_I (i, s32) {
2493 int64_t t = (int64_t)c->s32[i] + prod[2*i] + prod[2*i+1];
2494 r->u32[i] = cvtsdsw(t, &sat);
2497 if (sat) {
2498 env->vscr |= (1 << VSCR_SAT);
2502 void helper_vmsumubm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2504 uint16_t prod[16];
2505 int i;
2507 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
2508 prod[i] = a->u8[i] * b->u8[i];
2511 VECTOR_FOR_INORDER_I(i, u32) {
2512 r->u32[i] = c->u32[i] + prod[4*i] + prod[4*i+1] + prod[4*i+2] + prod[4*i+3];
2516 void helper_vmsumuhm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2518 uint32_t prod[8];
2519 int i;
2521 for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
2522 prod[i] = a->u16[i] * b->u16[i];
2525 VECTOR_FOR_INORDER_I(i, u32) {
2526 r->u32[i] = c->u32[i] + prod[2*i] + prod[2*i+1];
2530 void helper_vmsumuhs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2532 uint32_t prod[8];
2533 int i;
2534 int sat = 0;
2536 for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
2537 prod[i] = a->u16[i] * b->u16[i];
2540 VECTOR_FOR_INORDER_I (i, s32) {
2541 uint64_t t = (uint64_t)c->u32[i] + prod[2*i] + prod[2*i+1];
2542 r->u32[i] = cvtuduw(t, &sat);
2545 if (sat) {
2546 env->vscr |= (1 << VSCR_SAT);
2550 #define VMUL_DO(name, mul_element, prod_element, evenp) \
2551 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2553 int i; \
2554 VECTOR_FOR_INORDER_I(i, prod_element) { \
2555 if (evenp) { \
2556 r->prod_element[i] = a->mul_element[i*2+HI_IDX] * b->mul_element[i*2+HI_IDX]; \
2557 } else { \
2558 r->prod_element[i] = a->mul_element[i*2+LO_IDX] * b->mul_element[i*2+LO_IDX]; \
2562 #define VMUL(suffix, mul_element, prod_element) \
2563 VMUL_DO(mule##suffix, mul_element, prod_element, 1) \
2564 VMUL_DO(mulo##suffix, mul_element, prod_element, 0)
2565 VMUL(sb, s8, s16)
2566 VMUL(sh, s16, s32)
2567 VMUL(ub, u8, u16)
2568 VMUL(uh, u16, u32)
2569 #undef VMUL_DO
2570 #undef VMUL
2572 void helper_vnmsubfp (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2574 int i;
2575 for (i = 0; i < ARRAY_SIZE(r->f); i++) {
2576 HANDLE_NAN3(r->f[i], a->f[i], b->f[i], c->f[i]) {
2577 /* Need to do the computation is higher precision and round
2578 * once at the end. */
2579 float64 af, bf, cf, t;
2580 af = float32_to_float64(a->f[i], &env->vec_status);
2581 bf = float32_to_float64(b->f[i], &env->vec_status);
2582 cf = float32_to_float64(c->f[i], &env->vec_status);
2583 t = float64_mul(af, cf, &env->vec_status);
2584 t = float64_sub(t, bf, &env->vec_status);
2585 t = float64_chs(t);
2586 r->f[i] = float64_to_float32(t, &env->vec_status);
2591 void helper_vperm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2593 ppc_avr_t result;
2594 int i;
2595 VECTOR_FOR_INORDER_I (i, u8) {
2596 int s = c->u8[i] & 0x1f;
2597 #if defined(WORDS_BIGENDIAN)
2598 int index = s & 0xf;
2599 #else
2600 int index = 15 - (s & 0xf);
2601 #endif
2602 if (s & 0x10) {
2603 result.u8[i] = b->u8[index];
2604 } else {
2605 result.u8[i] = a->u8[index];
2608 *r = result;
2611 #if defined(WORDS_BIGENDIAN)
2612 #define PKBIG 1
2613 #else
2614 #define PKBIG 0
2615 #endif
2616 void helper_vpkpx (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2618 int i, j;
2619 ppc_avr_t result;
2620 #if defined(WORDS_BIGENDIAN)
2621 const ppc_avr_t *x[2] = { a, b };
2622 #else
2623 const ppc_avr_t *x[2] = { b, a };
2624 #endif
2626 VECTOR_FOR_INORDER_I (i, u64) {
2627 VECTOR_FOR_INORDER_I (j, u32){
2628 uint32_t e = x[i]->u32[j];
2629 result.u16[4*i+j] = (((e >> 9) & 0xfc00) |
2630 ((e >> 6) & 0x3e0) |
2631 ((e >> 3) & 0x1f));
2634 *r = result;
2637 #define VPK(suffix, from, to, cvt, dosat) \
2638 void helper_vpk##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2640 int i; \
2641 int sat = 0; \
2642 ppc_avr_t result; \
2643 ppc_avr_t *a0 = PKBIG ? a : b; \
2644 ppc_avr_t *a1 = PKBIG ? b : a; \
2645 VECTOR_FOR_INORDER_I (i, from) { \
2646 result.to[i] = cvt(a0->from[i], &sat); \
2647 result.to[i+ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat); \
2649 *r = result; \
2650 if (dosat && sat) { \
2651 env->vscr |= (1 << VSCR_SAT); \
2654 #define I(x, y) (x)
2655 VPK(shss, s16, s8, cvtshsb, 1)
2656 VPK(shus, s16, u8, cvtshub, 1)
2657 VPK(swss, s32, s16, cvtswsh, 1)
2658 VPK(swus, s32, u16, cvtswuh, 1)
2659 VPK(uhus, u16, u8, cvtuhub, 1)
2660 VPK(uwus, u32, u16, cvtuwuh, 1)
2661 VPK(uhum, u16, u8, I, 0)
2662 VPK(uwum, u32, u16, I, 0)
2663 #undef I
2664 #undef VPK
2665 #undef PKBIG
2667 #define VRFI(suffix, rounding) \
2668 void helper_vrfi##suffix (ppc_avr_t *r, ppc_avr_t *b) \
2670 int i; \
2671 float_status s = env->vec_status; \
2672 set_float_rounding_mode(rounding, &s); \
2673 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
2674 HANDLE_NAN1(r->f[i], b->f[i]) { \
2675 r->f[i] = float32_round_to_int (b->f[i], &s); \
2679 VRFI(n, float_round_nearest_even)
2680 VRFI(m, float_round_down)
2681 VRFI(p, float_round_up)
2682 VRFI(z, float_round_to_zero)
2683 #undef VRFI
2685 #define VROTATE(suffix, element) \
2686 void helper_vrl##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2688 int i; \
2689 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2690 unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \
2691 unsigned int shift = b->element[i] & mask; \
2692 r->element[i] = (a->element[i] << shift) | (a->element[i] >> (sizeof(a->element[0]) * 8 - shift)); \
2695 VROTATE(b, u8)
2696 VROTATE(h, u16)
2697 VROTATE(w, u32)
2698 #undef VROTATE
2700 void helper_vsel (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2702 r->u64[0] = (a->u64[0] & ~c->u64[0]) | (b->u64[0] & c->u64[0]);
2703 r->u64[1] = (a->u64[1] & ~c->u64[1]) | (b->u64[1] & c->u64[1]);
2706 void helper_vlogefp (ppc_avr_t *r, ppc_avr_t *b)
2708 int i;
2709 for (i = 0; i < ARRAY_SIZE(r->f); i++) {
2710 HANDLE_NAN1(r->f[i], b->f[i]) {
2711 r->f[i] = float32_log2(b->f[i], &env->vec_status);
2716 #if defined(WORDS_BIGENDIAN)
2717 #define LEFT 0
2718 #define RIGHT 1
2719 #else
2720 #define LEFT 1
2721 #define RIGHT 0
2722 #endif
2723 /* The specification says that the results are undefined if all of the
2724 * shift counts are not identical. We check to make sure that they are
2725 * to conform to what real hardware appears to do. */
2726 #define VSHIFT(suffix, leftp) \
2727 void helper_vs##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2729 int shift = b->u8[LO_IDX*0x15] & 0x7; \
2730 int doit = 1; \
2731 int i; \
2732 for (i = 0; i < ARRAY_SIZE(r->u8); i++) { \
2733 doit = doit && ((b->u8[i] & 0x7) == shift); \
2735 if (doit) { \
2736 if (shift == 0) { \
2737 *r = *a; \
2738 } else if (leftp) { \
2739 uint64_t carry = a->u64[LO_IDX] >> (64 - shift); \
2740 r->u64[HI_IDX] = (a->u64[HI_IDX] << shift) | carry; \
2741 r->u64[LO_IDX] = a->u64[LO_IDX] << shift; \
2742 } else { \
2743 uint64_t carry = a->u64[HI_IDX] << (64 - shift); \
2744 r->u64[LO_IDX] = (a->u64[LO_IDX] >> shift) | carry; \
2745 r->u64[HI_IDX] = a->u64[HI_IDX] >> shift; \
2749 VSHIFT(l, LEFT)
2750 VSHIFT(r, RIGHT)
2751 #undef VSHIFT
2752 #undef LEFT
2753 #undef RIGHT
2755 #define VSL(suffix, element) \
2756 void helper_vsl##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2758 int i; \
2759 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2760 unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \
2761 unsigned int shift = b->element[i] & mask; \
2762 r->element[i] = a->element[i] << shift; \
2765 VSL(b, u8)
2766 VSL(h, u16)
2767 VSL(w, u32)
2768 #undef VSL
2770 void helper_vsldoi (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t shift)
2772 int sh = shift & 0xf;
2773 int i;
2774 ppc_avr_t result;
2776 #if defined(WORDS_BIGENDIAN)
2777 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
2778 int index = sh + i;
2779 if (index > 0xf) {
2780 result.u8[i] = b->u8[index-0x10];
2781 } else {
2782 result.u8[i] = a->u8[index];
2785 #else
2786 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
2787 int index = (16 - sh) + i;
2788 if (index > 0xf) {
2789 result.u8[i] = a->u8[index-0x10];
2790 } else {
2791 result.u8[i] = b->u8[index];
2794 #endif
2795 *r = result;
2798 void helper_vslo (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2800 int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf;
2802 #if defined (WORDS_BIGENDIAN)
2803 memmove (&r->u8[0], &a->u8[sh], 16-sh);
2804 memset (&r->u8[16-sh], 0, sh);
2805 #else
2806 memmove (&r->u8[sh], &a->u8[0], 16-sh);
2807 memset (&r->u8[0], 0, sh);
2808 #endif
2811 /* Experimental testing shows that hardware masks the immediate. */
2812 #define _SPLAT_MASKED(element) (splat & (ARRAY_SIZE(r->element) - 1))
2813 #if defined(WORDS_BIGENDIAN)
2814 #define SPLAT_ELEMENT(element) _SPLAT_MASKED(element)
2815 #else
2816 #define SPLAT_ELEMENT(element) (ARRAY_SIZE(r->element)-1 - _SPLAT_MASKED(element))
2817 #endif
2818 #define VSPLT(suffix, element) \
2819 void helper_vsplt##suffix (ppc_avr_t *r, ppc_avr_t *b, uint32_t splat) \
2821 uint32_t s = b->element[SPLAT_ELEMENT(element)]; \
2822 int i; \
2823 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2824 r->element[i] = s; \
2827 VSPLT(b, u8)
2828 VSPLT(h, u16)
2829 VSPLT(w, u32)
2830 #undef VSPLT
2831 #undef SPLAT_ELEMENT
2832 #undef _SPLAT_MASKED
2834 #define VSPLTI(suffix, element, splat_type) \
2835 void helper_vspltis##suffix (ppc_avr_t *r, uint32_t splat) \
2837 splat_type x = (int8_t)(splat << 3) >> 3; \
2838 int i; \
2839 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2840 r->element[i] = x; \
2843 VSPLTI(b, s8, int8_t)
2844 VSPLTI(h, s16, int16_t)
2845 VSPLTI(w, s32, int32_t)
2846 #undef VSPLTI
2848 #define VSR(suffix, element) \
2849 void helper_vsr##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2851 int i; \
2852 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2853 unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \
2854 unsigned int shift = b->element[i] & mask; \
2855 r->element[i] = a->element[i] >> shift; \
2858 VSR(ab, s8)
2859 VSR(ah, s16)
2860 VSR(aw, s32)
2861 VSR(b, u8)
2862 VSR(h, u16)
2863 VSR(w, u32)
2864 #undef VSR
2866 void helper_vsro (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2868 int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf;
2870 #if defined (WORDS_BIGENDIAN)
2871 memmove (&r->u8[sh], &a->u8[0], 16-sh);
2872 memset (&r->u8[0], 0, sh);
2873 #else
2874 memmove (&r->u8[0], &a->u8[sh], 16-sh);
2875 memset (&r->u8[16-sh], 0, sh);
2876 #endif
2879 void helper_vsubcuw (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2881 int i;
2882 for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
2883 r->u32[i] = a->u32[i] >= b->u32[i];
2887 void helper_vsumsws (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2889 int64_t t;
2890 int i, upper;
2891 ppc_avr_t result;
2892 int sat = 0;
2894 #if defined(WORDS_BIGENDIAN)
2895 upper = ARRAY_SIZE(r->s32)-1;
2896 #else
2897 upper = 0;
2898 #endif
2899 t = (int64_t)b->s32[upper];
2900 for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
2901 t += a->s32[i];
2902 result.s32[i] = 0;
2904 result.s32[upper] = cvtsdsw(t, &sat);
2905 *r = result;
2907 if (sat) {
2908 env->vscr |= (1 << VSCR_SAT);
2912 void helper_vsum2sws (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2914 int i, j, upper;
2915 ppc_avr_t result;
2916 int sat = 0;
2918 #if defined(WORDS_BIGENDIAN)
2919 upper = 1;
2920 #else
2921 upper = 0;
2922 #endif
2923 for (i = 0; i < ARRAY_SIZE(r->u64); i++) {
2924 int64_t t = (int64_t)b->s32[upper+i*2];
2925 result.u64[i] = 0;
2926 for (j = 0; j < ARRAY_SIZE(r->u64); j++) {
2927 t += a->s32[2*i+j];
2929 result.s32[upper+i*2] = cvtsdsw(t, &sat);
2932 *r = result;
2933 if (sat) {
2934 env->vscr |= (1 << VSCR_SAT);
2938 void helper_vsum4sbs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2940 int i, j;
2941 int sat = 0;
2943 for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
2944 int64_t t = (int64_t)b->s32[i];
2945 for (j = 0; j < ARRAY_SIZE(r->s32); j++) {
2946 t += a->s8[4*i+j];
2948 r->s32[i] = cvtsdsw(t, &sat);
2951 if (sat) {
2952 env->vscr |= (1 << VSCR_SAT);
2956 void helper_vsum4shs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2958 int sat = 0;
2959 int i;
2961 for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
2962 int64_t t = (int64_t)b->s32[i];
2963 t += a->s16[2*i] + a->s16[2*i+1];
2964 r->s32[i] = cvtsdsw(t, &sat);
2967 if (sat) {
2968 env->vscr |= (1 << VSCR_SAT);
2972 void helper_vsum4ubs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2974 int i, j;
2975 int sat = 0;
2977 for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
2978 uint64_t t = (uint64_t)b->u32[i];
2979 for (j = 0; j < ARRAY_SIZE(r->u32); j++) {
2980 t += a->u8[4*i+j];
2982 r->u32[i] = cvtuduw(t, &sat);
2985 if (sat) {
2986 env->vscr |= (1 << VSCR_SAT);
2990 #if defined(WORDS_BIGENDIAN)
2991 #define UPKHI 1
2992 #define UPKLO 0
2993 #else
2994 #define UPKHI 0
2995 #define UPKLO 1
2996 #endif
2997 #define VUPKPX(suffix, hi) \
2998 void helper_vupk##suffix (ppc_avr_t *r, ppc_avr_t *b) \
3000 int i; \
3001 ppc_avr_t result; \
3002 for (i = 0; i < ARRAY_SIZE(r->u32); i++) { \
3003 uint16_t e = b->u16[hi ? i : i+4]; \
3004 uint8_t a = (e >> 15) ? 0xff : 0; \
3005 uint8_t r = (e >> 10) & 0x1f; \
3006 uint8_t g = (e >> 5) & 0x1f; \
3007 uint8_t b = e & 0x1f; \
3008 result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b; \
3010 *r = result; \
3012 VUPKPX(lpx, UPKLO)
3013 VUPKPX(hpx, UPKHI)
3014 #undef VUPKPX
3016 #define VUPK(suffix, unpacked, packee, hi) \
3017 void helper_vupk##suffix (ppc_avr_t *r, ppc_avr_t *b) \
3019 int i; \
3020 ppc_avr_t result; \
3021 if (hi) { \
3022 for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) { \
3023 result.unpacked[i] = b->packee[i]; \
3025 } else { \
3026 for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); i++) { \
3027 result.unpacked[i-ARRAY_SIZE(r->unpacked)] = b->packee[i]; \
3030 *r = result; \
3032 VUPK(hsb, s16, s8, UPKHI)
3033 VUPK(hsh, s32, s16, UPKHI)
3034 VUPK(lsb, s16, s8, UPKLO)
3035 VUPK(lsh, s32, s16, UPKLO)
3036 #undef VUPK
3037 #undef UPKHI
3038 #undef UPKLO
3040 #undef DO_HANDLE_NAN
3041 #undef HANDLE_NAN1
3042 #undef HANDLE_NAN2
3043 #undef HANDLE_NAN3
3044 #undef VECTOR_FOR_INORDER_I
3045 #undef HI_IDX
3046 #undef LO_IDX
3048 /*****************************************************************************/
3049 /* SPE extension helpers */
3050 /* Use a table to make this quicker */
3051 static uint8_t hbrev[16] = {
3052 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
3053 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
3056 static always_inline uint8_t byte_reverse (uint8_t val)
3058 return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
3061 static always_inline uint32_t word_reverse (uint32_t val)
3063 return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
3064 (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
3067 #define MASKBITS 16 // Random value - to be fixed (implementation dependant)
3068 target_ulong helper_brinc (target_ulong arg1, target_ulong arg2)
3070 uint32_t a, b, d, mask;
3072 mask = UINT32_MAX >> (32 - MASKBITS);
3073 a = arg1 & mask;
3074 b = arg2 & mask;
3075 d = word_reverse(1 + word_reverse(a | ~b));
3076 return (arg1 & ~mask) | (d & b);
3079 uint32_t helper_cntlsw32 (uint32_t val)
3081 if (val & 0x80000000)
3082 return clz32(~val);
3083 else
3084 return clz32(val);
3087 uint32_t helper_cntlzw32 (uint32_t val)
3089 return clz32(val);
3092 /* Single-precision floating-point conversions */
3093 static always_inline uint32_t efscfsi (uint32_t val)
3095 CPU_FloatU u;
3097 u.f = int32_to_float32(val, &env->vec_status);
3099 return u.l;
3102 static always_inline uint32_t efscfui (uint32_t val)
3104 CPU_FloatU u;
3106 u.f = uint32_to_float32(val, &env->vec_status);
3108 return u.l;
3111 static always_inline int32_t efsctsi (uint32_t val)
3113 CPU_FloatU u;
3115 u.l = val;
3116 /* NaN are not treated the same way IEEE 754 does */
3117 if (unlikely(float32_is_nan(u.f)))
3118 return 0;
3120 return float32_to_int32(u.f, &env->vec_status);
3123 static always_inline uint32_t efsctui (uint32_t val)
3125 CPU_FloatU u;
3127 u.l = val;
3128 /* NaN are not treated the same way IEEE 754 does */
3129 if (unlikely(float32_is_nan(u.f)))
3130 return 0;
3132 return float32_to_uint32(u.f, &env->vec_status);
3135 static always_inline uint32_t efsctsiz (uint32_t val)
3137 CPU_FloatU u;
3139 u.l = val;
3140 /* NaN are not treated the same way IEEE 754 does */
3141 if (unlikely(float32_is_nan(u.f)))
3142 return 0;
3144 return float32_to_int32_round_to_zero(u.f, &env->vec_status);
3147 static always_inline uint32_t efsctuiz (uint32_t val)
3149 CPU_FloatU u;
3151 u.l = val;
3152 /* NaN are not treated the same way IEEE 754 does */
3153 if (unlikely(float32_is_nan(u.f)))
3154 return 0;
3156 return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
3159 static always_inline uint32_t efscfsf (uint32_t val)
3161 CPU_FloatU u;
3162 float32 tmp;
3164 u.f = int32_to_float32(val, &env->vec_status);
3165 tmp = int64_to_float32(1ULL << 32, &env->vec_status);
3166 u.f = float32_div(u.f, tmp, &env->vec_status);
3168 return u.l;
3171 static always_inline uint32_t efscfuf (uint32_t val)
3173 CPU_FloatU u;
3174 float32 tmp;
3176 u.f = uint32_to_float32(val, &env->vec_status);
3177 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
3178 u.f = float32_div(u.f, tmp, &env->vec_status);
3180 return u.l;
3183 static always_inline uint32_t efsctsf (uint32_t val)
3185 CPU_FloatU u;
3186 float32 tmp;
3188 u.l = val;
3189 /* NaN are not treated the same way IEEE 754 does */
3190 if (unlikely(float32_is_nan(u.f)))
3191 return 0;
3192 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
3193 u.f = float32_mul(u.f, tmp, &env->vec_status);
3195 return float32_to_int32(u.f, &env->vec_status);
3198 static always_inline uint32_t efsctuf (uint32_t val)
3200 CPU_FloatU u;
3201 float32 tmp;
3203 u.l = val;
3204 /* NaN are not treated the same way IEEE 754 does */
3205 if (unlikely(float32_is_nan(u.f)))
3206 return 0;
3207 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
3208 u.f = float32_mul(u.f, tmp, &env->vec_status);
3210 return float32_to_uint32(u.f, &env->vec_status);
3213 #define HELPER_SPE_SINGLE_CONV(name) \
3214 uint32_t helper_e##name (uint32_t val) \
3216 return e##name(val); \
3218 /* efscfsi */
3219 HELPER_SPE_SINGLE_CONV(fscfsi);
3220 /* efscfui */
3221 HELPER_SPE_SINGLE_CONV(fscfui);
3222 /* efscfuf */
3223 HELPER_SPE_SINGLE_CONV(fscfuf);
3224 /* efscfsf */
3225 HELPER_SPE_SINGLE_CONV(fscfsf);
3226 /* efsctsi */
3227 HELPER_SPE_SINGLE_CONV(fsctsi);
3228 /* efsctui */
3229 HELPER_SPE_SINGLE_CONV(fsctui);
3230 /* efsctsiz */
3231 HELPER_SPE_SINGLE_CONV(fsctsiz);
3232 /* efsctuiz */
3233 HELPER_SPE_SINGLE_CONV(fsctuiz);
3234 /* efsctsf */
3235 HELPER_SPE_SINGLE_CONV(fsctsf);
3236 /* efsctuf */
3237 HELPER_SPE_SINGLE_CONV(fsctuf);
3239 #define HELPER_SPE_VECTOR_CONV(name) \
3240 uint64_t helper_ev##name (uint64_t val) \
3242 return ((uint64_t)e##name(val >> 32) << 32) | \
3243 (uint64_t)e##name(val); \
3245 /* evfscfsi */
3246 HELPER_SPE_VECTOR_CONV(fscfsi);
3247 /* evfscfui */
3248 HELPER_SPE_VECTOR_CONV(fscfui);
3249 /* evfscfuf */
3250 HELPER_SPE_VECTOR_CONV(fscfuf);
3251 /* evfscfsf */
3252 HELPER_SPE_VECTOR_CONV(fscfsf);
3253 /* evfsctsi */
3254 HELPER_SPE_VECTOR_CONV(fsctsi);
3255 /* evfsctui */
3256 HELPER_SPE_VECTOR_CONV(fsctui);
3257 /* evfsctsiz */
3258 HELPER_SPE_VECTOR_CONV(fsctsiz);
3259 /* evfsctuiz */
3260 HELPER_SPE_VECTOR_CONV(fsctuiz);
3261 /* evfsctsf */
3262 HELPER_SPE_VECTOR_CONV(fsctsf);
3263 /* evfsctuf */
3264 HELPER_SPE_VECTOR_CONV(fsctuf);
3266 /* Single-precision floating-point arithmetic */
3267 static always_inline uint32_t efsadd (uint32_t op1, uint32_t op2)
3269 CPU_FloatU u1, u2;
3270 u1.l = op1;
3271 u2.l = op2;
3272 u1.f = float32_add(u1.f, u2.f, &env->vec_status);
3273 return u1.l;
3276 static always_inline uint32_t efssub (uint32_t op1, uint32_t op2)
3278 CPU_FloatU u1, u2;
3279 u1.l = op1;
3280 u2.l = op2;
3281 u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
3282 return u1.l;
3285 static always_inline uint32_t efsmul (uint32_t op1, uint32_t op2)
3287 CPU_FloatU u1, u2;
3288 u1.l = op1;
3289 u2.l = op2;
3290 u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
3291 return u1.l;
3294 static always_inline uint32_t efsdiv (uint32_t op1, uint32_t op2)
3296 CPU_FloatU u1, u2;
3297 u1.l = op1;
3298 u2.l = op2;
3299 u1.f = float32_div(u1.f, u2.f, &env->vec_status);
3300 return u1.l;
3303 #define HELPER_SPE_SINGLE_ARITH(name) \
3304 uint32_t helper_e##name (uint32_t op1, uint32_t op2) \
3306 return e##name(op1, op2); \
3308 /* efsadd */
3309 HELPER_SPE_SINGLE_ARITH(fsadd);
3310 /* efssub */
3311 HELPER_SPE_SINGLE_ARITH(fssub);
3312 /* efsmul */
3313 HELPER_SPE_SINGLE_ARITH(fsmul);
3314 /* efsdiv */
3315 HELPER_SPE_SINGLE_ARITH(fsdiv);
3317 #define HELPER_SPE_VECTOR_ARITH(name) \
3318 uint64_t helper_ev##name (uint64_t op1, uint64_t op2) \
3320 return ((uint64_t)e##name(op1 >> 32, op2 >> 32) << 32) | \
3321 (uint64_t)e##name(op1, op2); \
3323 /* evfsadd */
3324 HELPER_SPE_VECTOR_ARITH(fsadd);
3325 /* evfssub */
3326 HELPER_SPE_VECTOR_ARITH(fssub);
3327 /* evfsmul */
3328 HELPER_SPE_VECTOR_ARITH(fsmul);
3329 /* evfsdiv */
3330 HELPER_SPE_VECTOR_ARITH(fsdiv);
3332 /* Single-precision floating-point comparisons */
3333 static always_inline uint32_t efststlt (uint32_t op1, uint32_t op2)
3335 CPU_FloatU u1, u2;
3336 u1.l = op1;
3337 u2.l = op2;
3338 return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
3341 static always_inline uint32_t efststgt (uint32_t op1, uint32_t op2)
3343 CPU_FloatU u1, u2;
3344 u1.l = op1;
3345 u2.l = op2;
3346 return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
3349 static always_inline uint32_t efststeq (uint32_t op1, uint32_t op2)
3351 CPU_FloatU u1, u2;
3352 u1.l = op1;
3353 u2.l = op2;
3354 return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
3357 static always_inline uint32_t efscmplt (uint32_t op1, uint32_t op2)
3359 /* XXX: TODO: test special values (NaN, infinites, ...) */
3360 return efststlt(op1, op2);
3363 static always_inline uint32_t efscmpgt (uint32_t op1, uint32_t op2)
3365 /* XXX: TODO: test special values (NaN, infinites, ...) */
3366 return efststgt(op1, op2);
3369 static always_inline uint32_t efscmpeq (uint32_t op1, uint32_t op2)
3371 /* XXX: TODO: test special values (NaN, infinites, ...) */
3372 return efststeq(op1, op2);
3375 #define HELPER_SINGLE_SPE_CMP(name) \
3376 uint32_t helper_e##name (uint32_t op1, uint32_t op2) \
3378 return e##name(op1, op2) << 2; \
3380 /* efststlt */
3381 HELPER_SINGLE_SPE_CMP(fststlt);
3382 /* efststgt */
3383 HELPER_SINGLE_SPE_CMP(fststgt);
3384 /* efststeq */
3385 HELPER_SINGLE_SPE_CMP(fststeq);
3386 /* efscmplt */
3387 HELPER_SINGLE_SPE_CMP(fscmplt);
3388 /* efscmpgt */
3389 HELPER_SINGLE_SPE_CMP(fscmpgt);
3390 /* efscmpeq */
3391 HELPER_SINGLE_SPE_CMP(fscmpeq);
3393 static always_inline uint32_t evcmp_merge (int t0, int t1)
3395 return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
3398 #define HELPER_VECTOR_SPE_CMP(name) \
3399 uint32_t helper_ev##name (uint64_t op1, uint64_t op2) \
3401 return evcmp_merge(e##name(op1 >> 32, op2 >> 32), e##name(op1, op2)); \
3403 /* evfststlt */
3404 HELPER_VECTOR_SPE_CMP(fststlt);
3405 /* evfststgt */
3406 HELPER_VECTOR_SPE_CMP(fststgt);
3407 /* evfststeq */
3408 HELPER_VECTOR_SPE_CMP(fststeq);
3409 /* evfscmplt */
3410 HELPER_VECTOR_SPE_CMP(fscmplt);
3411 /* evfscmpgt */
3412 HELPER_VECTOR_SPE_CMP(fscmpgt);
3413 /* evfscmpeq */
3414 HELPER_VECTOR_SPE_CMP(fscmpeq);
3416 /* Double-precision floating-point conversion */
3417 uint64_t helper_efdcfsi (uint32_t val)
3419 CPU_DoubleU u;
3421 u.d = int32_to_float64(val, &env->vec_status);
3423 return u.ll;
3426 uint64_t helper_efdcfsid (uint64_t val)
3428 CPU_DoubleU u;
3430 u.d = int64_to_float64(val, &env->vec_status);
3432 return u.ll;
3435 uint64_t helper_efdcfui (uint32_t val)
3437 CPU_DoubleU u;
3439 u.d = uint32_to_float64(val, &env->vec_status);
3441 return u.ll;
3444 uint64_t helper_efdcfuid (uint64_t val)
3446 CPU_DoubleU u;
3448 u.d = uint64_to_float64(val, &env->vec_status);
3450 return u.ll;
3453 uint32_t helper_efdctsi (uint64_t val)
3455 CPU_DoubleU u;
3457 u.ll = val;
3458 /* NaN are not treated the same way IEEE 754 does */
3459 if (unlikely(float64_is_nan(u.d)))
3460 return 0;
3462 return float64_to_int32(u.d, &env->vec_status);
3465 uint32_t helper_efdctui (uint64_t val)
3467 CPU_DoubleU u;
3469 u.ll = val;
3470 /* NaN are not treated the same way IEEE 754 does */
3471 if (unlikely(float64_is_nan(u.d)))
3472 return 0;
3474 return float64_to_uint32(u.d, &env->vec_status);
3477 uint32_t helper_efdctsiz (uint64_t val)
3479 CPU_DoubleU u;
3481 u.ll = val;
3482 /* NaN are not treated the same way IEEE 754 does */
3483 if (unlikely(float64_is_nan(u.d)))
3484 return 0;
3486 return float64_to_int32_round_to_zero(u.d, &env->vec_status);
3489 uint64_t helper_efdctsidz (uint64_t val)
3491 CPU_DoubleU u;
3493 u.ll = val;
3494 /* NaN are not treated the same way IEEE 754 does */
3495 if (unlikely(float64_is_nan(u.d)))
3496 return 0;
3498 return float64_to_int64_round_to_zero(u.d, &env->vec_status);
3501 uint32_t helper_efdctuiz (uint64_t val)
3503 CPU_DoubleU u;
3505 u.ll = val;
3506 /* NaN are not treated the same way IEEE 754 does */
3507 if (unlikely(float64_is_nan(u.d)))
3508 return 0;
3510 return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
3513 uint64_t helper_efdctuidz (uint64_t val)
3515 CPU_DoubleU u;
3517 u.ll = val;
3518 /* NaN are not treated the same way IEEE 754 does */
3519 if (unlikely(float64_is_nan(u.d)))
3520 return 0;
3522 return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
3525 uint64_t helper_efdcfsf (uint32_t val)
3527 CPU_DoubleU u;
3528 float64 tmp;
3530 u.d = int32_to_float64(val, &env->vec_status);
3531 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
3532 u.d = float64_div(u.d, tmp, &env->vec_status);
3534 return u.ll;
3537 uint64_t helper_efdcfuf (uint32_t val)
3539 CPU_DoubleU u;
3540 float64 tmp;
3542 u.d = uint32_to_float64(val, &env->vec_status);
3543 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
3544 u.d = float64_div(u.d, tmp, &env->vec_status);
3546 return u.ll;
3549 uint32_t helper_efdctsf (uint64_t val)
3551 CPU_DoubleU u;
3552 float64 tmp;
3554 u.ll = val;
3555 /* NaN are not treated the same way IEEE 754 does */
3556 if (unlikely(float64_is_nan(u.d)))
3557 return 0;
3558 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
3559 u.d = float64_mul(u.d, tmp, &env->vec_status);
3561 return float64_to_int32(u.d, &env->vec_status);
3564 uint32_t helper_efdctuf (uint64_t val)
3566 CPU_DoubleU u;
3567 float64 tmp;
3569 u.ll = val;
3570 /* NaN are not treated the same way IEEE 754 does */
3571 if (unlikely(float64_is_nan(u.d)))
3572 return 0;
3573 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
3574 u.d = float64_mul(u.d, tmp, &env->vec_status);
3576 return float64_to_uint32(u.d, &env->vec_status);
3579 uint32_t helper_efscfd (uint64_t val)
3581 CPU_DoubleU u1;
3582 CPU_FloatU u2;
3584 u1.ll = val;
3585 u2.f = float64_to_float32(u1.d, &env->vec_status);
3587 return u2.l;
3590 uint64_t helper_efdcfs (uint32_t val)
3592 CPU_DoubleU u2;
3593 CPU_FloatU u1;
3595 u1.l = val;
3596 u2.d = float32_to_float64(u1.f, &env->vec_status);
3598 return u2.ll;
3601 /* Double precision fixed-point arithmetic */
3602 uint64_t helper_efdadd (uint64_t op1, uint64_t op2)
3604 CPU_DoubleU u1, u2;
3605 u1.ll = op1;
3606 u2.ll = op2;
3607 u1.d = float64_add(u1.d, u2.d, &env->vec_status);
3608 return u1.ll;
3611 uint64_t helper_efdsub (uint64_t op1, uint64_t op2)
3613 CPU_DoubleU u1, u2;
3614 u1.ll = op1;
3615 u2.ll = op2;
3616 u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
3617 return u1.ll;
3620 uint64_t helper_efdmul (uint64_t op1, uint64_t op2)
3622 CPU_DoubleU u1, u2;
3623 u1.ll = op1;
3624 u2.ll = op2;
3625 u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
3626 return u1.ll;
3629 uint64_t helper_efddiv (uint64_t op1, uint64_t op2)
3631 CPU_DoubleU u1, u2;
3632 u1.ll = op1;
3633 u2.ll = op2;
3634 u1.d = float64_div(u1.d, u2.d, &env->vec_status);
3635 return u1.ll;
3638 /* Double precision floating point helpers */
3639 uint32_t helper_efdtstlt (uint64_t op1, uint64_t op2)
3641 CPU_DoubleU u1, u2;
3642 u1.ll = op1;
3643 u2.ll = op2;
3644 return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
3647 uint32_t helper_efdtstgt (uint64_t op1, uint64_t op2)
3649 CPU_DoubleU u1, u2;
3650 u1.ll = op1;
3651 u2.ll = op2;
3652 return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
3655 uint32_t helper_efdtsteq (uint64_t op1, uint64_t op2)
3657 CPU_DoubleU u1, u2;
3658 u1.ll = op1;
3659 u2.ll = op2;
3660 return float64_eq(u1.d, u2.d, &env->vec_status) ? 4 : 0;
3663 uint32_t helper_efdcmplt (uint64_t op1, uint64_t op2)
3665 /* XXX: TODO: test special values (NaN, infinites, ...) */
3666 return helper_efdtstlt(op1, op2);
3669 uint32_t helper_efdcmpgt (uint64_t op1, uint64_t op2)
3671 /* XXX: TODO: test special values (NaN, infinites, ...) */
3672 return helper_efdtstgt(op1, op2);
3675 uint32_t helper_efdcmpeq (uint64_t op1, uint64_t op2)
3677 /* XXX: TODO: test special values (NaN, infinites, ...) */
3678 return helper_efdtsteq(op1, op2);
3681 /*****************************************************************************/
3682 /* Softmmu support */
3683 #if !defined (CONFIG_USER_ONLY)
3685 #define MMUSUFFIX _mmu
3687 #define SHIFT 0
3688 #include "softmmu_template.h"
3690 #define SHIFT 1
3691 #include "softmmu_template.h"
3693 #define SHIFT 2
3694 #include "softmmu_template.h"
3696 #define SHIFT 3
3697 #include "softmmu_template.h"
3699 /* try to fill the TLB and return an exception if error. If retaddr is
3700 NULL, it means that the function was called in C code (i.e. not
3701 from generated code or from helper.c) */
3702 /* XXX: fix it to restore all registers */
3703 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
3705 TranslationBlock *tb;
3706 CPUState *saved_env;
3707 unsigned long pc;
3708 int ret;
3710 /* XXX: hack to restore env in all cases, even if not called from
3711 generated code */
3712 saved_env = env;
3713 env = cpu_single_env;
3714 ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
3715 if (unlikely(ret != 0)) {
3716 if (likely(retaddr)) {
3717 /* now we have a real cpu fault */
3718 pc = (unsigned long)retaddr;
3719 tb = tb_find_pc(pc);
3720 if (likely(tb)) {
3721 /* the PC is inside the translated code. It means that we have
3722 a virtual CPU fault */
3723 cpu_restore_state(tb, env, pc, NULL);
3726 helper_raise_exception_err(env->exception_index, env->error_code);
3728 env = saved_env;
3731 /* Segment registers load and store */
3732 target_ulong helper_load_sr (target_ulong sr_num)
3734 return env->sr[sr_num];
3737 void helper_store_sr (target_ulong sr_num, target_ulong val)
3739 ppc_store_sr(env, sr_num, val);
3742 /* SLB management */
3743 #if defined(TARGET_PPC64)
3744 target_ulong helper_load_slb (target_ulong slb_nr)
3746 return ppc_load_slb(env, slb_nr);
3749 void helper_store_slb (target_ulong slb_nr, target_ulong rs)
3751 ppc_store_slb(env, slb_nr, rs);
3754 void helper_slbia (void)
3756 ppc_slb_invalidate_all(env);
3759 void helper_slbie (target_ulong addr)
3761 ppc_slb_invalidate_one(env, addr);
3764 #endif /* defined(TARGET_PPC64) */
3766 /* TLB management */
3767 void helper_tlbia (void)
3769 ppc_tlb_invalidate_all(env);
3772 void helper_tlbie (target_ulong addr)
3774 ppc_tlb_invalidate_one(env, addr);
3777 /* Software driven TLBs management */
3778 /* PowerPC 602/603 software TLB load instructions helpers */
3779 static void do_6xx_tlb (target_ulong new_EPN, int is_code)
3781 target_ulong RPN, CMP, EPN;
3782 int way;
3784 RPN = env->spr[SPR_RPA];
3785 if (is_code) {
3786 CMP = env->spr[SPR_ICMP];
3787 EPN = env->spr[SPR_IMISS];
3788 } else {
3789 CMP = env->spr[SPR_DCMP];
3790 EPN = env->spr[SPR_DMISS];
3792 way = (env->spr[SPR_SRR1] >> 17) & 1;
3793 LOG_SWTLB("%s: EPN " ADDRX " " ADDRX " PTE0 " ADDRX
3794 " PTE1 " ADDRX " way %d\n",
3795 __func__, new_EPN, EPN, CMP, RPN, way);
3796 /* Store this TLB */
3797 ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK),
3798 way, is_code, CMP, RPN);
3801 void helper_6xx_tlbd (target_ulong EPN)
3803 do_6xx_tlb(EPN, 0);
3806 void helper_6xx_tlbi (target_ulong EPN)
3808 do_6xx_tlb(EPN, 1);
3811 /* PowerPC 74xx software TLB load instructions helpers */
3812 static void do_74xx_tlb (target_ulong new_EPN, int is_code)
3814 target_ulong RPN, CMP, EPN;
3815 int way;
3817 RPN = env->spr[SPR_PTELO];
3818 CMP = env->spr[SPR_PTEHI];
3819 EPN = env->spr[SPR_TLBMISS] & ~0x3;
3820 way = env->spr[SPR_TLBMISS] & 0x3;
3821 LOG_SWTLB("%s: EPN " ADDRX " " ADDRX " PTE0 " ADDRX
3822 " PTE1 " ADDRX " way %d\n",
3823 __func__, new_EPN, EPN, CMP, RPN, way);
3824 /* Store this TLB */
3825 ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK),
3826 way, is_code, CMP, RPN);
3829 void helper_74xx_tlbd (target_ulong EPN)
3831 do_74xx_tlb(EPN, 0);
3834 void helper_74xx_tlbi (target_ulong EPN)
3836 do_74xx_tlb(EPN, 1);
3839 static always_inline target_ulong booke_tlb_to_page_size (int size)
3841 return 1024 << (2 * size);
3844 static always_inline int booke_page_size_to_tlb (target_ulong page_size)
3846 int size;
3848 switch (page_size) {
3849 case 0x00000400UL:
3850 size = 0x0;
3851 break;
3852 case 0x00001000UL:
3853 size = 0x1;
3854 break;
3855 case 0x00004000UL:
3856 size = 0x2;
3857 break;
3858 case 0x00010000UL:
3859 size = 0x3;
3860 break;
3861 case 0x00040000UL:
3862 size = 0x4;
3863 break;
3864 case 0x00100000UL:
3865 size = 0x5;
3866 break;
3867 case 0x00400000UL:
3868 size = 0x6;
3869 break;
3870 case 0x01000000UL:
3871 size = 0x7;
3872 break;
3873 case 0x04000000UL:
3874 size = 0x8;
3875 break;
3876 case 0x10000000UL:
3877 size = 0x9;
3878 break;
3879 case 0x40000000UL:
3880 size = 0xA;
3881 break;
3882 #if defined (TARGET_PPC64)
3883 case 0x000100000000ULL:
3884 size = 0xB;
3885 break;
3886 case 0x000400000000ULL:
3887 size = 0xC;
3888 break;
3889 case 0x001000000000ULL:
3890 size = 0xD;
3891 break;
3892 case 0x004000000000ULL:
3893 size = 0xE;
3894 break;
3895 case 0x010000000000ULL:
3896 size = 0xF;
3897 break;
3898 #endif
3899 default:
3900 size = -1;
3901 break;
3904 return size;
3907 /* Helpers for 4xx TLB management */
3908 target_ulong helper_4xx_tlbre_lo (target_ulong entry)
3910 ppcemb_tlb_t *tlb;
3911 target_ulong ret;
3912 int size;
3914 entry &= 0x3F;
3915 tlb = &env->tlb[entry].tlbe;
3916 ret = tlb->EPN;
3917 if (tlb->prot & PAGE_VALID)
3918 ret |= 0x400;
3919 size = booke_page_size_to_tlb(tlb->size);
3920 if (size < 0 || size > 0x7)
3921 size = 1;
3922 ret |= size << 7;
3923 env->spr[SPR_40x_PID] = tlb->PID;
3924 return ret;
3927 target_ulong helper_4xx_tlbre_hi (target_ulong entry)
3929 ppcemb_tlb_t *tlb;
3930 target_ulong ret;
3932 entry &= 0x3F;
3933 tlb = &env->tlb[entry].tlbe;
3934 ret = tlb->RPN;
3935 if (tlb->prot & PAGE_EXEC)
3936 ret |= 0x200;
3937 if (tlb->prot & PAGE_WRITE)
3938 ret |= 0x100;
3939 return ret;
3942 void helper_4xx_tlbwe_hi (target_ulong entry, target_ulong val)
3944 ppcemb_tlb_t *tlb;
3945 target_ulong page, end;
3947 LOG_SWTLB("%s entry %d val " ADDRX "\n", __func__, (int)entry, val);
3948 entry &= 0x3F;
3949 tlb = &env->tlb[entry].tlbe;
3950 /* Invalidate previous TLB (if it's valid) */
3951 if (tlb->prot & PAGE_VALID) {
3952 end = tlb->EPN + tlb->size;
3953 LOG_SWTLB("%s: invalidate old TLB %d start " ADDRX
3954 " end " ADDRX "\n", __func__, (int)entry, tlb->EPN, end);
3955 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
3956 tlb_flush_page(env, page);
3958 tlb->size = booke_tlb_to_page_size((val >> 7) & 0x7);
3959 /* We cannot handle TLB size < TARGET_PAGE_SIZE.
3960 * If this ever occurs, one should use the ppcemb target instead
3961 * of the ppc or ppc64 one
3963 if ((val & 0x40) && tlb->size < TARGET_PAGE_SIZE) {
3964 cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u "
3965 "are not supported (%d)\n",
3966 tlb->size, TARGET_PAGE_SIZE, (int)((val >> 7) & 0x7));
3968 tlb->EPN = val & ~(tlb->size - 1);
3969 if (val & 0x40)
3970 tlb->prot |= PAGE_VALID;
3971 else
3972 tlb->prot &= ~PAGE_VALID;
3973 if (val & 0x20) {
3974 /* XXX: TO BE FIXED */
3975 cpu_abort(env, "Little-endian TLB entries are not supported by now\n");
3977 tlb->PID = env->spr[SPR_40x_PID]; /* PID */
3978 tlb->attr = val & 0xFF;
3979 LOG_SWTLB("%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
3980 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
3981 (int)entry, tlb->RPN, tlb->EPN, tlb->size,
3982 tlb->prot & PAGE_READ ? 'r' : '-',
3983 tlb->prot & PAGE_WRITE ? 'w' : '-',
3984 tlb->prot & PAGE_EXEC ? 'x' : '-',
3985 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
3986 /* Invalidate new TLB (if valid) */
3987 if (tlb->prot & PAGE_VALID) {
3988 end = tlb->EPN + tlb->size;
3989 LOG_SWTLB("%s: invalidate TLB %d start " ADDRX
3990 " end " ADDRX "\n", __func__, (int)entry, tlb->EPN, end);
3991 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
3992 tlb_flush_page(env, page);
3996 void helper_4xx_tlbwe_lo (target_ulong entry, target_ulong val)
3998 ppcemb_tlb_t *tlb;
4000 LOG_SWTLB("%s entry %i val " ADDRX "\n", __func__, (int)entry, val);
4001 entry &= 0x3F;
4002 tlb = &env->tlb[entry].tlbe;
4003 tlb->RPN = val & 0xFFFFFC00;
4004 tlb->prot = PAGE_READ;
4005 if (val & 0x200)
4006 tlb->prot |= PAGE_EXEC;
4007 if (val & 0x100)
4008 tlb->prot |= PAGE_WRITE;
4009 LOG_SWTLB("%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
4010 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
4011 (int)entry, tlb->RPN, tlb->EPN, tlb->size,
4012 tlb->prot & PAGE_READ ? 'r' : '-',
4013 tlb->prot & PAGE_WRITE ? 'w' : '-',
4014 tlb->prot & PAGE_EXEC ? 'x' : '-',
4015 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
4018 target_ulong helper_4xx_tlbsx (target_ulong address)
4020 return ppcemb_tlb_search(env, address, env->spr[SPR_40x_PID]);
4023 /* PowerPC 440 TLB management */
4024 void helper_440_tlbwe (uint32_t word, target_ulong entry, target_ulong value)
4026 ppcemb_tlb_t *tlb;
4027 target_ulong EPN, RPN, size;
4028 int do_flush_tlbs;
4030 LOG_SWTLB("%s word %d entry %d value " ADDRX "\n",
4031 __func__, word, (int)entry, value);
4032 do_flush_tlbs = 0;
4033 entry &= 0x3F;
4034 tlb = &env->tlb[entry].tlbe;
4035 switch (word) {
4036 default:
4037 /* Just here to please gcc */
4038 case 0:
4039 EPN = value & 0xFFFFFC00;
4040 if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN)
4041 do_flush_tlbs = 1;
4042 tlb->EPN = EPN;
4043 size = booke_tlb_to_page_size((value >> 4) & 0xF);
4044 if ((tlb->prot & PAGE_VALID) && tlb->size < size)
4045 do_flush_tlbs = 1;
4046 tlb->size = size;
4047 tlb->attr &= ~0x1;
4048 tlb->attr |= (value >> 8) & 1;
4049 if (value & 0x200) {
4050 tlb->prot |= PAGE_VALID;
4051 } else {
4052 if (tlb->prot & PAGE_VALID) {
4053 tlb->prot &= ~PAGE_VALID;
4054 do_flush_tlbs = 1;
4057 tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF;
4058 if (do_flush_tlbs)
4059 tlb_flush(env, 1);
4060 break;
4061 case 1:
4062 RPN = value & 0xFFFFFC0F;
4063 if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN)
4064 tlb_flush(env, 1);
4065 tlb->RPN = RPN;
4066 break;
4067 case 2:
4068 tlb->attr = (tlb->attr & 0x1) | (value & 0x0000FF00);
4069 tlb->prot = tlb->prot & PAGE_VALID;
4070 if (value & 0x1)
4071 tlb->prot |= PAGE_READ << 4;
4072 if (value & 0x2)
4073 tlb->prot |= PAGE_WRITE << 4;
4074 if (value & 0x4)
4075 tlb->prot |= PAGE_EXEC << 4;
4076 if (value & 0x8)
4077 tlb->prot |= PAGE_READ;
4078 if (value & 0x10)
4079 tlb->prot |= PAGE_WRITE;
4080 if (value & 0x20)
4081 tlb->prot |= PAGE_EXEC;
4082 break;
4086 target_ulong helper_440_tlbre (uint32_t word, target_ulong entry)
4088 ppcemb_tlb_t *tlb;
4089 target_ulong ret;
4090 int size;
4092 entry &= 0x3F;
4093 tlb = &env->tlb[entry].tlbe;
4094 switch (word) {
4095 default:
4096 /* Just here to please gcc */
4097 case 0:
4098 ret = tlb->EPN;
4099 size = booke_page_size_to_tlb(tlb->size);
4100 if (size < 0 || size > 0xF)
4101 size = 1;
4102 ret |= size << 4;
4103 if (tlb->attr & 0x1)
4104 ret |= 0x100;
4105 if (tlb->prot & PAGE_VALID)
4106 ret |= 0x200;
4107 env->spr[SPR_440_MMUCR] &= ~0x000000FF;
4108 env->spr[SPR_440_MMUCR] |= tlb->PID;
4109 break;
4110 case 1:
4111 ret = tlb->RPN;
4112 break;
4113 case 2:
4114 ret = tlb->attr & ~0x1;
4115 if (tlb->prot & (PAGE_READ << 4))
4116 ret |= 0x1;
4117 if (tlb->prot & (PAGE_WRITE << 4))
4118 ret |= 0x2;
4119 if (tlb->prot & (PAGE_EXEC << 4))
4120 ret |= 0x4;
4121 if (tlb->prot & PAGE_READ)
4122 ret |= 0x8;
4123 if (tlb->prot & PAGE_WRITE)
4124 ret |= 0x10;
4125 if (tlb->prot & PAGE_EXEC)
4126 ret |= 0x20;
4127 break;
4129 return ret;
4132 target_ulong helper_440_tlbsx (target_ulong address)
4134 return ppcemb_tlb_search(env, address, env->spr[SPR_440_MMUCR] & 0xFF);
4137 #endif /* !CONFIG_USER_ONLY */