4 * Copyright IBM, Corp. 2007
7 * Anthony Liguori <aliguori@us.ibm.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
19 //#define VIRTIO_ZERO_COPY
21 /* from Linux's linux/virtio_pci.h */
23 /* A 32-bit r/o bitmask of the features supported by the host */
24 #define VIRTIO_PCI_HOST_FEATURES 0
26 /* A 32-bit r/w bitmask of features activated by the guest */
27 #define VIRTIO_PCI_GUEST_FEATURES 4
29 /* A 32-bit r/w PFN for the currently selected queue */
30 #define VIRTIO_PCI_QUEUE_PFN 8
32 /* A 16-bit r/o queue size for the currently selected queue */
33 #define VIRTIO_PCI_QUEUE_NUM 12
35 /* A 16-bit r/w queue selector */
36 #define VIRTIO_PCI_QUEUE_SEL 14
38 /* A 16-bit r/w queue notifier */
39 #define VIRTIO_PCI_QUEUE_NOTIFY 16
41 /* An 8-bit device status register. */
42 #define VIRTIO_PCI_STATUS 18
44 /* An 8-bit r/o interrupt status register. Reading the value will return the
45 * current contents of the ISR and will also clear it. This is effectively
46 * a read-and-acknowledge. */
47 #define VIRTIO_PCI_ISR 19
49 #define VIRTIO_PCI_CONFIG 20
51 /* Virtio ABI version, if we increment this, we break the guest driver. */
52 #define VIRTIO_PCI_ABI_VERSION 0
54 /* How many bits to shift physical queue address written to QUEUE_PFN.
55 * 12 is historical, and due to x86 page size. */
56 #define VIRTIO_PCI_QUEUE_ADDR_SHIFT 12
58 /* The alignment to use between consumer and producer parts of vring.
59 * x86 pagesize again. */
60 #define VIRTIO_PCI_VRING_ALIGN 4096
62 /* QEMU doesn't strictly need write barriers since everything runs in
63 * lock-step. We'll leave the calls to wmb() in though to make it obvious for
64 * KVM or if kqemu gets SMP support.
66 #define wmb() do { } while (0)
68 typedef struct VRingDesc
76 typedef struct VRingAvail
83 typedef struct VRingUsedElem
89 typedef struct VRingUsed
93 VRingUsedElem ring
[0];
99 target_phys_addr_t desc
;
100 target_phys_addr_t avail
;
101 target_phys_addr_t used
;
108 uint16_t last_avail_idx
;
110 void (*handle_output
)(VirtIODevice
*vdev
, VirtQueue
*vq
);
113 #define VIRTIO_PCI_QUEUE_MAX 16
115 /* virt queue functions */
116 #ifdef VIRTIO_ZERO_COPY
117 static void *virtio_map_gpa(target_phys_addr_t addr
, size_t size
)
120 target_phys_addr_t addr1
;
122 off
= cpu_get_physical_page_desc(addr
);
123 if ((off
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
124 fprintf(stderr
, "virtio DMA to IO ram\n");
128 off
= (off
& TARGET_PAGE_MASK
) | (addr
& ~TARGET_PAGE_MASK
);
130 for (addr1
= addr
+ TARGET_PAGE_SIZE
;
131 addr1
< TARGET_PAGE_ALIGN(addr
+ size
);
132 addr1
+= TARGET_PAGE_SIZE
) {
135 off1
= cpu_get_physical_page_desc(addr1
);
136 if ((off1
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
137 fprintf(stderr
, "virtio DMA to IO ram\n");
141 off1
= (off1
& TARGET_PAGE_MASK
) | (addr1
& ~TARGET_PAGE_MASK
);
143 if (off1
!= (off
+ (addr1
- addr
))) {
144 fprintf(stderr
, "discontigous virtio memory\n");
149 return phys_ram_base
+ off
;
153 static void virtqueue_init(VirtQueue
*vq
, target_phys_addr_t pa
)
156 vq
->vring
.avail
= pa
+ vq
->vring
.num
* sizeof(VRingDesc
);
157 vq
->vring
.used
= vring_align(vq
->vring
.avail
+
158 offsetof(VRingAvail
, ring
[vq
->vring
.num
]),
159 VIRTIO_PCI_VRING_ALIGN
);
162 static inline uint64_t vring_desc_addr(VirtQueue
*vq
, int i
)
164 target_phys_addr_t pa
;
165 pa
= vq
->vring
.desc
+ sizeof(VRingDesc
) * i
+ offsetof(VRingDesc
, addr
);
169 static inline uint32_t vring_desc_len(VirtQueue
*vq
, int i
)
171 target_phys_addr_t pa
;
172 pa
= vq
->vring
.desc
+ sizeof(VRingDesc
) * i
+ offsetof(VRingDesc
, len
);
176 static inline uint16_t vring_desc_flags(VirtQueue
*vq
, int i
)
178 target_phys_addr_t pa
;
179 pa
= vq
->vring
.desc
+ sizeof(VRingDesc
) * i
+ offsetof(VRingDesc
, flags
);
180 return lduw_phys(pa
);
183 static inline uint16_t vring_desc_next(VirtQueue
*vq
, int i
)
185 target_phys_addr_t pa
;
186 pa
= vq
->vring
.desc
+ sizeof(VRingDesc
) * i
+ offsetof(VRingDesc
, next
);
187 return lduw_phys(pa
);
190 static inline uint16_t vring_avail_flags(VirtQueue
*vq
)
192 target_phys_addr_t pa
;
193 pa
= vq
->vring
.avail
+ offsetof(VRingAvail
, flags
);
194 return lduw_phys(pa
);
197 static inline uint16_t vring_avail_idx(VirtQueue
*vq
)
199 target_phys_addr_t pa
;
200 pa
= vq
->vring
.avail
+ offsetof(VRingAvail
, idx
);
201 return lduw_phys(pa
);
204 static inline uint16_t vring_avail_ring(VirtQueue
*vq
, int i
)
206 target_phys_addr_t pa
;
207 pa
= vq
->vring
.avail
+ offsetof(VRingAvail
, ring
[i
]);
208 return lduw_phys(pa
);
211 static inline void vring_used_ring_id(VirtQueue
*vq
, int i
, uint32_t val
)
213 target_phys_addr_t pa
;
214 pa
= vq
->vring
.used
+ offsetof(VRingUsed
, ring
[i
].id
);
218 static inline void vring_used_ring_len(VirtQueue
*vq
, int i
, uint32_t val
)
220 target_phys_addr_t pa
;
221 pa
= vq
->vring
.used
+ offsetof(VRingUsed
, ring
[i
].len
);
225 static uint16_t vring_used_idx(VirtQueue
*vq
)
227 target_phys_addr_t pa
;
228 pa
= vq
->vring
.used
+ offsetof(VRingUsed
, idx
);
229 return lduw_phys(pa
);
232 static inline void vring_used_idx_increment(VirtQueue
*vq
, uint16_t val
)
234 target_phys_addr_t pa
;
235 pa
= vq
->vring
.used
+ offsetof(VRingUsed
, idx
);
236 stw_phys(pa
, vring_used_idx(vq
) + val
);
239 static inline void vring_used_flags_set_bit(VirtQueue
*vq
, int mask
)
241 target_phys_addr_t pa
;
242 pa
= vq
->vring
.used
+ offsetof(VRingUsed
, flags
);
243 stw_phys(pa
, lduw_phys(pa
) | mask
);
246 static inline void vring_used_flags_unset_bit(VirtQueue
*vq
, int mask
)
248 target_phys_addr_t pa
;
249 pa
= vq
->vring
.used
+ offsetof(VRingUsed
, flags
);
250 stw_phys(pa
, lduw_phys(pa
) & ~mask
);
253 void virtio_queue_set_notification(VirtQueue
*vq
, int enable
)
256 vring_used_flags_unset_bit(vq
, VRING_USED_F_NO_NOTIFY
);
258 vring_used_flags_set_bit(vq
, VRING_USED_F_NO_NOTIFY
);
261 int virtio_queue_ready(VirtQueue
*vq
)
263 return vq
->vring
.avail
!= 0;
266 int virtio_queue_empty(VirtQueue
*vq
)
268 return vring_avail_idx(vq
) == vq
->last_avail_idx
;
271 void virtqueue_fill(VirtQueue
*vq
, const VirtQueueElement
*elem
,
272 unsigned int len
, unsigned int idx
)
277 #ifndef VIRTIO_ZERO_COPY
278 for (i
= 0; i
< elem
->out_num
; i
++)
279 qemu_free(elem
->out_sg
[i
].iov_base
);
283 for (i
= 0; i
< elem
->in_num
; i
++) {
284 size_t size
= MIN(len
- offset
, elem
->in_sg
[i
].iov_len
);
286 #ifdef VIRTIO_ZERO_COPY
288 ram_addr_t addr
= (uint8_t *)elem
->in_sg
[i
].iov_base
- phys_ram_base
;
291 for (off
= 0; off
< size
; off
+= TARGET_PAGE_SIZE
)
292 cpu_physical_memory_set_dirty(addr
+ off
);
296 cpu_physical_memory_write(elem
->in_addr
[i
],
297 elem
->in_sg
[i
].iov_base
,
300 qemu_free(elem
->in_sg
[i
].iov_base
);
306 idx
= (idx
+ vring_used_idx(vq
)) % vq
->vring
.num
;
308 /* Get a pointer to the next entry in the used ring. */
309 vring_used_ring_id(vq
, idx
, elem
->index
);
310 vring_used_ring_len(vq
, idx
, len
);
313 void virtqueue_flush(VirtQueue
*vq
, unsigned int count
)
315 /* Make sure buffer is written before we update index. */
317 vring_used_idx_increment(vq
, count
);
321 void virtqueue_push(VirtQueue
*vq
, const VirtQueueElement
*elem
,
324 virtqueue_fill(vq
, elem
, len
, 0);
325 virtqueue_flush(vq
, 1);
328 static int virtqueue_num_heads(VirtQueue
*vq
, unsigned int idx
)
330 uint16_t num_heads
= vring_avail_idx(vq
) - idx
;
332 /* Check it isn't doing very strange things with descriptor numbers. */
333 if (num_heads
> vq
->vring
.num
) {
334 fprintf(stderr
, "Guest moved used index from %u to %u",
335 idx
, vring_avail_idx(vq
));
342 static unsigned int virtqueue_get_head(VirtQueue
*vq
, unsigned int idx
)
346 /* Grab the next descriptor number they're advertising, and increment
347 * the index we've seen. */
348 head
= vring_avail_ring(vq
, idx
% vq
->vring
.num
);
350 /* If their number is silly, that's a fatal mistake. */
351 if (head
>= vq
->vring
.num
) {
352 fprintf(stderr
, "Guest says index %u is available", head
);
359 static unsigned virtqueue_next_desc(VirtQueue
*vq
, unsigned int i
)
363 /* If this descriptor says it doesn't chain, we're done. */
364 if (!(vring_desc_flags(vq
, i
) & VRING_DESC_F_NEXT
))
365 return vq
->vring
.num
;
367 /* Check they're not leading us off end of descriptors. */
368 next
= vring_desc_next(vq
, i
);
369 /* Make sure compiler knows to grab that: we don't want it changing! */
372 if (next
>= vq
->vring
.num
) {
373 fprintf(stderr
, "Desc next is %u", next
);
380 int virtqueue_avail_bytes(VirtQueue
*vq
, int in_bytes
, int out_bytes
)
383 int num_bufs
, in_total
, out_total
;
385 idx
= vq
->last_avail_idx
;
387 num_bufs
= in_total
= out_total
= 0;
388 while (virtqueue_num_heads(vq
, idx
)) {
391 i
= virtqueue_get_head(vq
, idx
++);
393 /* If we've got too many, that implies a descriptor loop. */
394 if (++num_bufs
> vq
->vring
.num
) {
395 fprintf(stderr
, "Looped descriptor");
399 if (vring_desc_flags(vq
, i
) & VRING_DESC_F_WRITE
) {
401 (in_total
+= vring_desc_len(vq
, i
)) >= in_bytes
)
405 (out_total
+= vring_desc_len(vq
, i
)) >= out_bytes
)
408 } while ((i
= virtqueue_next_desc(vq
, i
)) != vq
->vring
.num
);
414 int virtqueue_pop(VirtQueue
*vq
, VirtQueueElement
*elem
)
416 unsigned int i
, head
;
418 if (!virtqueue_num_heads(vq
, vq
->last_avail_idx
))
421 /* When we start there are none of either input nor output. */
422 elem
->out_num
= elem
->in_num
= 0;
424 i
= head
= virtqueue_get_head(vq
, vq
->last_avail_idx
++);
428 if (vring_desc_flags(vq
, i
) & VRING_DESC_F_WRITE
) {
429 elem
->in_addr
[elem
->in_num
] = vring_desc_addr(vq
, i
);
430 sg
= &elem
->in_sg
[elem
->in_num
++];
432 sg
= &elem
->out_sg
[elem
->out_num
++];
434 /* Grab the first descriptor, and check it's OK. */
435 sg
->iov_len
= vring_desc_len(vq
, i
);
437 #ifdef VIRTIO_ZERO_COPY
438 sg
->iov_base
= virtio_map_gpa(vring_desc_addr(vq
, i
), sg
->iov_len
);
440 /* cap individual scatter element size to prevent unbounded allocations
441 of memory from the guest. Practically speaking, no virtio driver
442 will ever pass more than a page in each element. We set the cap to
443 be 2MB in case for some reason a large page makes it way into the
444 sg list. When we implement a zero copy API, this limitation will
446 if (sg
->iov_len
> (2 << 20))
447 sg
->iov_len
= 2 << 20;
449 sg
->iov_base
= qemu_malloc(sg
->iov_len
);
451 !(vring_desc_flags(vq
, i
) & VRING_DESC_F_WRITE
)) {
452 cpu_physical_memory_read(vring_desc_addr(vq
, i
),
457 if (sg
->iov_base
== NULL
) {
458 fprintf(stderr
, "Invalid mapping\n");
462 /* If we've got too many, that implies a descriptor loop. */
463 if ((elem
->in_num
+ elem
->out_num
) > vq
->vring
.num
) {
464 fprintf(stderr
, "Looped descriptor");
467 } while ((i
= virtqueue_next_desc(vq
, i
)) != vq
->vring
.num
);
473 return elem
->in_num
+ elem
->out_num
;
478 static VirtIODevice
*to_virtio_device(PCIDevice
*pci_dev
)
480 return (VirtIODevice
*)pci_dev
;
483 static void virtio_update_irq(VirtIODevice
*vdev
)
485 qemu_set_irq(vdev
->pci_dev
.irq
[0], vdev
->isr
& 1);
488 static void virtio_reset(void *opaque
)
490 VirtIODevice
*vdev
= opaque
;
500 virtio_update_irq(vdev
);
502 for(i
= 0; i
< VIRTIO_PCI_QUEUE_MAX
; i
++) {
503 vdev
->vq
[i
].vring
.desc
= 0;
504 vdev
->vq
[i
].vring
.avail
= 0;
505 vdev
->vq
[i
].vring
.used
= 0;
506 vdev
->vq
[i
].last_avail_idx
= 0;
511 static void virtio_ioport_write(void *opaque
, uint32_t addr
, uint32_t val
)
513 VirtIODevice
*vdev
= to_virtio_device(opaque
);
519 case VIRTIO_PCI_GUEST_FEATURES
:
520 if (vdev
->set_features
)
521 vdev
->set_features(vdev
, val
);
522 vdev
->features
= val
;
524 case VIRTIO_PCI_QUEUE_PFN
:
525 pa
= (ram_addr_t
)val
<< VIRTIO_PCI_QUEUE_ADDR_SHIFT
;
526 vdev
->vq
[vdev
->queue_sel
].pfn
= val
;
530 virtqueue_init(&vdev
->vq
[vdev
->queue_sel
], pa
);
533 case VIRTIO_PCI_QUEUE_SEL
:
534 if (val
< VIRTIO_PCI_QUEUE_MAX
)
535 vdev
->queue_sel
= val
;
537 case VIRTIO_PCI_QUEUE_NOTIFY
:
538 if (val
< VIRTIO_PCI_QUEUE_MAX
&& vdev
->vq
[val
].vring
.desc
)
539 vdev
->vq
[val
].handle_output(vdev
, &vdev
->vq
[val
]);
541 case VIRTIO_PCI_STATUS
:
542 vdev
->status
= val
& 0xFF;
543 if (vdev
->status
== 0)
549 static uint32_t virtio_ioport_read(void *opaque
, uint32_t addr
)
551 VirtIODevice
*vdev
= to_virtio_device(opaque
);
552 uint32_t ret
= 0xFFFFFFFF;
557 case VIRTIO_PCI_HOST_FEATURES
:
558 ret
= vdev
->get_features(vdev
);
559 ret
|= (1 << VIRTIO_F_NOTIFY_ON_EMPTY
);
561 case VIRTIO_PCI_GUEST_FEATURES
:
562 ret
= vdev
->features
;
564 case VIRTIO_PCI_QUEUE_PFN
:
565 ret
= vdev
->vq
[vdev
->queue_sel
].pfn
;
567 case VIRTIO_PCI_QUEUE_NUM
:
568 ret
= vdev
->vq
[vdev
->queue_sel
].vring
.num
;
570 case VIRTIO_PCI_QUEUE_SEL
:
571 ret
= vdev
->queue_sel
;
573 case VIRTIO_PCI_STATUS
:
577 /* reading from the ISR also clears it. */
580 virtio_update_irq(vdev
);
589 static uint32_t virtio_config_readb(void *opaque
, uint32_t addr
)
591 VirtIODevice
*vdev
= opaque
;
594 vdev
->get_config(vdev
, vdev
->config
);
596 addr
-= vdev
->addr
+ VIRTIO_PCI_CONFIG
;
597 if (addr
> (vdev
->config_len
- sizeof(val
)))
600 memcpy(&val
, vdev
->config
+ addr
, sizeof(val
));
604 static uint32_t virtio_config_readw(void *opaque
, uint32_t addr
)
606 VirtIODevice
*vdev
= opaque
;
609 vdev
->get_config(vdev
, vdev
->config
);
611 addr
-= vdev
->addr
+ VIRTIO_PCI_CONFIG
;
612 if (addr
> (vdev
->config_len
- sizeof(val
)))
615 memcpy(&val
, vdev
->config
+ addr
, sizeof(val
));
619 static uint32_t virtio_config_readl(void *opaque
, uint32_t addr
)
621 VirtIODevice
*vdev
= opaque
;
624 vdev
->get_config(vdev
, vdev
->config
);
626 addr
-= vdev
->addr
+ VIRTIO_PCI_CONFIG
;
627 if (addr
> (vdev
->config_len
- sizeof(val
)))
630 memcpy(&val
, vdev
->config
+ addr
, sizeof(val
));
634 static void virtio_config_writeb(void *opaque
, uint32_t addr
, uint32_t data
)
636 VirtIODevice
*vdev
= opaque
;
639 addr
-= vdev
->addr
+ VIRTIO_PCI_CONFIG
;
640 if (addr
> (vdev
->config_len
- sizeof(val
)))
643 memcpy(vdev
->config
+ addr
, &val
, sizeof(val
));
645 if (vdev
->set_config
)
646 vdev
->set_config(vdev
, vdev
->config
);
649 static void virtio_config_writew(void *opaque
, uint32_t addr
, uint32_t data
)
651 VirtIODevice
*vdev
= opaque
;
654 addr
-= vdev
->addr
+ VIRTIO_PCI_CONFIG
;
655 if (addr
> (vdev
->config_len
- sizeof(val
)))
658 memcpy(vdev
->config
+ addr
, &val
, sizeof(val
));
660 if (vdev
->set_config
)
661 vdev
->set_config(vdev
, vdev
->config
);
664 static void virtio_config_writel(void *opaque
, uint32_t addr
, uint32_t data
)
666 VirtIODevice
*vdev
= opaque
;
669 addr
-= vdev
->addr
+ VIRTIO_PCI_CONFIG
;
670 if (addr
> (vdev
->config_len
- sizeof(val
)))
673 memcpy(vdev
->config
+ addr
, &val
, sizeof(val
));
675 if (vdev
->set_config
)
676 vdev
->set_config(vdev
, vdev
->config
);
679 static void virtio_map(PCIDevice
*pci_dev
, int region_num
,
680 uint32_t addr
, uint32_t size
, int type
)
682 VirtIODevice
*vdev
= to_virtio_device(pci_dev
);
686 for (i
= 0; i
< 3; i
++) {
687 register_ioport_write(addr
, 20, 1 << i
, virtio_ioport_write
, vdev
);
688 register_ioport_read(addr
, 20, 1 << i
, virtio_ioport_read
, vdev
);
691 if (vdev
->config_len
) {
692 register_ioport_write(addr
+ 20, vdev
->config_len
, 1,
693 virtio_config_writeb
, vdev
);
694 register_ioport_write(addr
+ 20, vdev
->config_len
, 2,
695 virtio_config_writew
, vdev
);
696 register_ioport_write(addr
+ 20, vdev
->config_len
, 4,
697 virtio_config_writel
, vdev
);
698 register_ioport_read(addr
+ 20, vdev
->config_len
, 1,
699 virtio_config_readb
, vdev
);
700 register_ioport_read(addr
+ 20, vdev
->config_len
, 2,
701 virtio_config_readw
, vdev
);
702 register_ioport_read(addr
+ 20, vdev
->config_len
, 4,
703 virtio_config_readl
, vdev
);
705 vdev
->get_config(vdev
, vdev
->config
);
709 VirtQueue
*virtio_add_queue(VirtIODevice
*vdev
, int queue_size
,
710 void (*handle_output
)(VirtIODevice
*, VirtQueue
*))
714 for (i
= 0; i
< VIRTIO_PCI_QUEUE_MAX
; i
++) {
715 if (vdev
->vq
[i
].vring
.num
== 0)
719 if (i
== VIRTIO_PCI_QUEUE_MAX
|| queue_size
> VIRTQUEUE_MAX_SIZE
)
722 vdev
->vq
[i
].vring
.num
= queue_size
;
723 vdev
->vq
[i
].handle_output
= handle_output
;
728 void virtio_notify(VirtIODevice
*vdev
, VirtQueue
*vq
)
730 /* Always notify when queue is empty */
731 if ((vq
->inuse
|| vring_avail_idx(vq
) != vq
->last_avail_idx
) &&
732 (vring_avail_flags(vq
) & VRING_AVAIL_F_NO_INTERRUPT
))
736 virtio_update_irq(vdev
);
739 void virtio_notify_config(VirtIODevice
*vdev
)
742 virtio_update_irq(vdev
);
745 void virtio_save(VirtIODevice
*vdev
, QEMUFile
*f
)
749 pci_device_save(&vdev
->pci_dev
, f
);
751 qemu_put_be32s(f
, &vdev
->addr
);
752 qemu_put_8s(f
, &vdev
->status
);
753 qemu_put_8s(f
, &vdev
->isr
);
754 qemu_put_be16s(f
, &vdev
->queue_sel
);
755 qemu_put_be32s(f
, &vdev
->features
);
756 qemu_put_be32(f
, vdev
->config_len
);
757 qemu_put_buffer(f
, vdev
->config
, vdev
->config_len
);
759 for (i
= 0; i
< VIRTIO_PCI_QUEUE_MAX
; i
++) {
760 if (vdev
->vq
[i
].vring
.num
== 0)
766 for (i
= 0; i
< VIRTIO_PCI_QUEUE_MAX
; i
++) {
767 if (vdev
->vq
[i
].vring
.num
== 0)
770 qemu_put_be32(f
, vdev
->vq
[i
].vring
.num
);
771 qemu_put_be32s(f
, &vdev
->vq
[i
].pfn
);
772 qemu_put_be16s(f
, &vdev
->vq
[i
].last_avail_idx
);
776 void virtio_load(VirtIODevice
*vdev
, QEMUFile
*f
)
780 pci_device_load(&vdev
->pci_dev
, f
);
782 qemu_get_be32s(f
, &vdev
->addr
);
783 qemu_get_8s(f
, &vdev
->status
);
784 qemu_get_8s(f
, &vdev
->isr
);
785 qemu_get_be16s(f
, &vdev
->queue_sel
);
786 qemu_get_be32s(f
, &vdev
->features
);
787 vdev
->config_len
= qemu_get_be32(f
);
788 qemu_get_buffer(f
, vdev
->config
, vdev
->config_len
);
790 num
= qemu_get_be32(f
);
792 for (i
= 0; i
< num
; i
++) {
793 vdev
->vq
[i
].vring
.num
= qemu_get_be32(f
);
794 qemu_get_be32s(f
, &vdev
->vq
[i
].pfn
);
795 qemu_get_be16s(f
, &vdev
->vq
[i
].last_avail_idx
);
797 if (vdev
->vq
[i
].pfn
) {
798 target_phys_addr_t pa
;
800 pa
= (ram_addr_t
)vdev
->vq
[i
].pfn
<< VIRTIO_PCI_QUEUE_ADDR_SHIFT
;
801 virtqueue_init(&vdev
->vq
[i
], pa
);
805 virtio_update_irq(vdev
);
808 VirtIODevice
*virtio_init_pci(PCIBus
*bus
, const char *name
,
809 uint16_t vendor
, uint16_t device
,
810 uint16_t subvendor
, uint16_t subdevice
,
811 uint8_t class_code
, uint8_t subclass_code
,
812 uint8_t pif
, size_t config_size
,
820 pci_dev
= pci_register_device(bus
, name
, struct_size
,
825 vdev
= to_virtio_device(pci_dev
);
830 vdev
->vq
= qemu_mallocz(sizeof(VirtQueue
) * VIRTIO_PCI_QUEUE_MAX
);
832 config
= pci_dev
->config
;
833 config
[0x00] = vendor
& 0xFF;
834 config
[0x01] = (vendor
>> 8) & 0xFF;
835 config
[0x02] = device
& 0xFF;
836 config
[0x03] = (device
>> 8) & 0xFF;
838 config
[0x08] = VIRTIO_PCI_ABI_VERSION
;
841 config
[0x0a] = subclass_code
;
842 config
[0x0b] = class_code
;
845 config
[0x2c] = subvendor
& 0xFF;
846 config
[0x2d] = (subvendor
>> 8) & 0xFF;
847 config
[0x2e] = subdevice
& 0xFF;
848 config
[0x2f] = (subdevice
>> 8) & 0xFF;
853 vdev
->config_len
= config_size
;
854 if (vdev
->config_len
)
855 vdev
->config
= qemu_mallocz(config_size
);
859 size
= 20 + config_size
;
861 size
= 1 << qemu_fls(size
);
863 pci_register_io_region(pci_dev
, 0, size
, PCI_ADDRESS_SPACE_IO
,
865 qemu_register_reset(virtio_reset
, vdev
);