Fix a typo preventing GNUC builtins usage.
[qemu/mini2440/sniper_sniper_test.git] / target-sparc / op_helper.c
blobd3c502995aeb1b0dd001b55ff83685509dcf4851
1 #include "exec.h"
2 #include "host-utils.h"
3 #include "helper.h"
4 #if !defined(CONFIG_USER_ONLY)
5 #include "softmmu_exec.h"
6 #endif /* !defined(CONFIG_USER_ONLY) */
8 //#define DEBUG_MMU
9 //#define DEBUG_MXCC
10 //#define DEBUG_UNALIGNED
11 //#define DEBUG_UNASSIGNED
12 //#define DEBUG_ASI
13 //#define DEBUG_PCALL
15 #ifdef DEBUG_MMU
16 #define DPRINTF_MMU(fmt, args...) \
17 do { printf("MMU: " fmt , ##args); } while (0)
18 #else
19 #define DPRINTF_MMU(fmt, args...) do {} while (0)
20 #endif
22 #ifdef DEBUG_MXCC
23 #define DPRINTF_MXCC(fmt, args...) \
24 do { printf("MXCC: " fmt , ##args); } while (0)
25 #else
26 #define DPRINTF_MXCC(fmt, args...) do {} while (0)
27 #endif
29 #ifdef DEBUG_ASI
30 #define DPRINTF_ASI(fmt, args...) \
31 do { printf("ASI: " fmt , ##args); } while (0)
32 #else
33 #define DPRINTF_ASI(fmt, args...) do {} while (0)
34 #endif
36 #ifdef TARGET_SPARC64
37 #ifndef TARGET_ABI32
38 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
39 #else
40 #define AM_CHECK(env1) (1)
41 #endif
42 #endif
44 static inline void address_mask(CPUState *env1, target_ulong *addr)
46 #ifdef TARGET_SPARC64
47 if (AM_CHECK(env1))
48 *addr &= 0xffffffffULL;
49 #endif
52 void raise_exception(int tt)
54 env->exception_index = tt;
55 cpu_loop_exit();
58 void HELPER(raise_exception)(int tt)
60 raise_exception(tt);
63 static inline void set_cwp(int new_cwp)
65 cpu_set_cwp(env, new_cwp);
68 void helper_check_align(target_ulong addr, uint32_t align)
70 if (addr & align) {
71 #ifdef DEBUG_UNALIGNED
72 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
73 "\n", addr, env->pc);
74 #endif
75 raise_exception(TT_UNALIGNED);
79 #define F_HELPER(name, p) void helper_f##name##p(void)
81 #define F_BINOP(name) \
82 float32 helper_f ## name ## s (float32 src1, float32 src2) \
83 { \
84 return float32_ ## name (src1, src2, &env->fp_status); \
85 } \
86 F_HELPER(name, d) \
87 { \
88 DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \
89 } \
90 F_HELPER(name, q) \
91 { \
92 QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \
95 F_BINOP(add);
96 F_BINOP(sub);
97 F_BINOP(mul);
98 F_BINOP(div);
99 #undef F_BINOP
101 void helper_fsmuld(float32 src1, float32 src2)
103 DT0 = float64_mul(float32_to_float64(src1, &env->fp_status),
104 float32_to_float64(src2, &env->fp_status),
105 &env->fp_status);
108 void helper_fdmulq(void)
110 QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
111 float64_to_float128(DT1, &env->fp_status),
112 &env->fp_status);
115 float32 helper_fnegs(float32 src)
117 return float32_chs(src);
120 #ifdef TARGET_SPARC64
121 F_HELPER(neg, d)
123 DT0 = float64_chs(DT1);
126 F_HELPER(neg, q)
128 QT0 = float128_chs(QT1);
130 #endif
132 /* Integer to float conversion. */
133 float32 helper_fitos(int32_t src)
135 return int32_to_float32(src, &env->fp_status);
138 void helper_fitod(int32_t src)
140 DT0 = int32_to_float64(src, &env->fp_status);
143 void helper_fitoq(int32_t src)
145 QT0 = int32_to_float128(src, &env->fp_status);
148 #ifdef TARGET_SPARC64
149 float32 helper_fxtos(void)
151 return int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
154 F_HELPER(xto, d)
156 DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
159 F_HELPER(xto, q)
161 QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
163 #endif
164 #undef F_HELPER
166 /* floating point conversion */
167 float32 helper_fdtos(void)
169 return float64_to_float32(DT1, &env->fp_status);
172 void helper_fstod(float32 src)
174 DT0 = float32_to_float64(src, &env->fp_status);
177 float32 helper_fqtos(void)
179 return float128_to_float32(QT1, &env->fp_status);
182 void helper_fstoq(float32 src)
184 QT0 = float32_to_float128(src, &env->fp_status);
187 void helper_fqtod(void)
189 DT0 = float128_to_float64(QT1, &env->fp_status);
192 void helper_fdtoq(void)
194 QT0 = float64_to_float128(DT1, &env->fp_status);
197 /* Float to integer conversion. */
198 int32_t helper_fstoi(float32 src)
200 return float32_to_int32_round_to_zero(src, &env->fp_status);
203 int32_t helper_fdtoi(void)
205 return float64_to_int32_round_to_zero(DT1, &env->fp_status);
208 int32_t helper_fqtoi(void)
210 return float128_to_int32_round_to_zero(QT1, &env->fp_status);
213 #ifdef TARGET_SPARC64
214 void helper_fstox(float32 src)
216 *((int64_t *)&DT0) = float32_to_int64_round_to_zero(src, &env->fp_status);
219 void helper_fdtox(void)
221 *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
224 void helper_fqtox(void)
226 *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
229 void helper_faligndata(void)
231 uint64_t tmp;
233 tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
234 /* on many architectures a shift of 64 does nothing */
235 if ((env->gsr & 7) != 0) {
236 tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
238 *((uint64_t *)&DT0) = tmp;
241 #ifdef WORDS_BIGENDIAN
242 #define VIS_B64(n) b[7 - (n)]
243 #define VIS_W64(n) w[3 - (n)]
244 #define VIS_SW64(n) sw[3 - (n)]
245 #define VIS_L64(n) l[1 - (n)]
246 #define VIS_B32(n) b[3 - (n)]
247 #define VIS_W32(n) w[1 - (n)]
248 #else
249 #define VIS_B64(n) b[n]
250 #define VIS_W64(n) w[n]
251 #define VIS_SW64(n) sw[n]
252 #define VIS_L64(n) l[n]
253 #define VIS_B32(n) b[n]
254 #define VIS_W32(n) w[n]
255 #endif
257 typedef union {
258 uint8_t b[8];
259 uint16_t w[4];
260 int16_t sw[4];
261 uint32_t l[2];
262 float64 d;
263 } vis64;
265 typedef union {
266 uint8_t b[4];
267 uint16_t w[2];
268 uint32_t l;
269 float32 f;
270 } vis32;
272 void helper_fpmerge(void)
274 vis64 s, d;
276 s.d = DT0;
277 d.d = DT1;
279 // Reverse calculation order to handle overlap
280 d.VIS_B64(7) = s.VIS_B64(3);
281 d.VIS_B64(6) = d.VIS_B64(3);
282 d.VIS_B64(5) = s.VIS_B64(2);
283 d.VIS_B64(4) = d.VIS_B64(2);
284 d.VIS_B64(3) = s.VIS_B64(1);
285 d.VIS_B64(2) = d.VIS_B64(1);
286 d.VIS_B64(1) = s.VIS_B64(0);
287 //d.VIS_B64(0) = d.VIS_B64(0);
289 DT0 = d.d;
292 void helper_fmul8x16(void)
294 vis64 s, d;
295 uint32_t tmp;
297 s.d = DT0;
298 d.d = DT1;
300 #define PMUL(r) \
301 tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \
302 if ((tmp & 0xff) > 0x7f) \
303 tmp += 0x100; \
304 d.VIS_W64(r) = tmp >> 8;
306 PMUL(0);
307 PMUL(1);
308 PMUL(2);
309 PMUL(3);
310 #undef PMUL
312 DT0 = d.d;
315 void helper_fmul8x16al(void)
317 vis64 s, d;
318 uint32_t tmp;
320 s.d = DT0;
321 d.d = DT1;
323 #define PMUL(r) \
324 tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \
325 if ((tmp & 0xff) > 0x7f) \
326 tmp += 0x100; \
327 d.VIS_W64(r) = tmp >> 8;
329 PMUL(0);
330 PMUL(1);
331 PMUL(2);
332 PMUL(3);
333 #undef PMUL
335 DT0 = d.d;
338 void helper_fmul8x16au(void)
340 vis64 s, d;
341 uint32_t tmp;
343 s.d = DT0;
344 d.d = DT1;
346 #define PMUL(r) \
347 tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \
348 if ((tmp & 0xff) > 0x7f) \
349 tmp += 0x100; \
350 d.VIS_W64(r) = tmp >> 8;
352 PMUL(0);
353 PMUL(1);
354 PMUL(2);
355 PMUL(3);
356 #undef PMUL
358 DT0 = d.d;
361 void helper_fmul8sux16(void)
363 vis64 s, d;
364 uint32_t tmp;
366 s.d = DT0;
367 d.d = DT1;
369 #define PMUL(r) \
370 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
371 if ((tmp & 0xff) > 0x7f) \
372 tmp += 0x100; \
373 d.VIS_W64(r) = tmp >> 8;
375 PMUL(0);
376 PMUL(1);
377 PMUL(2);
378 PMUL(3);
379 #undef PMUL
381 DT0 = d.d;
384 void helper_fmul8ulx16(void)
386 vis64 s, d;
387 uint32_t tmp;
389 s.d = DT0;
390 d.d = DT1;
392 #define PMUL(r) \
393 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
394 if ((tmp & 0xff) > 0x7f) \
395 tmp += 0x100; \
396 d.VIS_W64(r) = tmp >> 8;
398 PMUL(0);
399 PMUL(1);
400 PMUL(2);
401 PMUL(3);
402 #undef PMUL
404 DT0 = d.d;
407 void helper_fmuld8sux16(void)
409 vis64 s, d;
410 uint32_t tmp;
412 s.d = DT0;
413 d.d = DT1;
415 #define PMUL(r) \
416 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
417 if ((tmp & 0xff) > 0x7f) \
418 tmp += 0x100; \
419 d.VIS_L64(r) = tmp;
421 // Reverse calculation order to handle overlap
422 PMUL(1);
423 PMUL(0);
424 #undef PMUL
426 DT0 = d.d;
429 void helper_fmuld8ulx16(void)
431 vis64 s, d;
432 uint32_t tmp;
434 s.d = DT0;
435 d.d = DT1;
437 #define PMUL(r) \
438 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
439 if ((tmp & 0xff) > 0x7f) \
440 tmp += 0x100; \
441 d.VIS_L64(r) = tmp;
443 // Reverse calculation order to handle overlap
444 PMUL(1);
445 PMUL(0);
446 #undef PMUL
448 DT0 = d.d;
451 void helper_fexpand(void)
453 vis32 s;
454 vis64 d;
456 s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
457 d.d = DT1;
458 d.VIS_W64(0) = s.VIS_B32(0) << 4;
459 d.VIS_W64(1) = s.VIS_B32(1) << 4;
460 d.VIS_W64(2) = s.VIS_B32(2) << 4;
461 d.VIS_W64(3) = s.VIS_B32(3) << 4;
463 DT0 = d.d;
466 #define VIS_HELPER(name, F) \
467 void name##16(void) \
469 vis64 s, d; \
471 s.d = DT0; \
472 d.d = DT1; \
474 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0)); \
475 d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1)); \
476 d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2)); \
477 d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3)); \
479 DT0 = d.d; \
482 uint32_t name##16s(uint32_t src1, uint32_t src2) \
484 vis32 s, d; \
486 s.l = src1; \
487 d.l = src2; \
489 d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0)); \
490 d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1)); \
492 return d.l; \
495 void name##32(void) \
497 vis64 s, d; \
499 s.d = DT0; \
500 d.d = DT1; \
502 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0)); \
503 d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1)); \
505 DT0 = d.d; \
508 uint32_t name##32s(uint32_t src1, uint32_t src2) \
510 vis32 s, d; \
512 s.l = src1; \
513 d.l = src2; \
515 d.l = F(d.l, s.l); \
517 return d.l; \
520 #define FADD(a, b) ((a) + (b))
521 #define FSUB(a, b) ((a) - (b))
522 VIS_HELPER(helper_fpadd, FADD)
523 VIS_HELPER(helper_fpsub, FSUB)
525 #define VIS_CMPHELPER(name, F) \
526 void name##16(void) \
528 vis64 s, d; \
530 s.d = DT0; \
531 d.d = DT1; \
533 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0; \
534 d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0; \
535 d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0; \
536 d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0; \
538 DT0 = d.d; \
541 void name##32(void) \
543 vis64 s, d; \
545 s.d = DT0; \
546 d.d = DT1; \
548 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0; \
549 d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0; \
551 DT0 = d.d; \
554 #define FCMPGT(a, b) ((a) > (b))
555 #define FCMPEQ(a, b) ((a) == (b))
556 #define FCMPLE(a, b) ((a) <= (b))
557 #define FCMPNE(a, b) ((a) != (b))
559 VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
560 VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
561 VIS_CMPHELPER(helper_fcmple, FCMPLE)
562 VIS_CMPHELPER(helper_fcmpne, FCMPNE)
563 #endif
565 void helper_check_ieee_exceptions(void)
567 target_ulong status;
569 status = get_float_exception_flags(&env->fp_status);
570 if (status) {
571 /* Copy IEEE 754 flags into FSR */
572 if (status & float_flag_invalid)
573 env->fsr |= FSR_NVC;
574 if (status & float_flag_overflow)
575 env->fsr |= FSR_OFC;
576 if (status & float_flag_underflow)
577 env->fsr |= FSR_UFC;
578 if (status & float_flag_divbyzero)
579 env->fsr |= FSR_DZC;
580 if (status & float_flag_inexact)
581 env->fsr |= FSR_NXC;
583 if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
584 /* Unmasked exception, generate a trap */
585 env->fsr |= FSR_FTT_IEEE_EXCP;
586 raise_exception(TT_FP_EXCP);
587 } else {
588 /* Accumulate exceptions */
589 env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
594 void helper_clear_float_exceptions(void)
596 set_float_exception_flags(0, &env->fp_status);
599 float32 helper_fabss(float32 src)
601 return float32_abs(src);
604 #ifdef TARGET_SPARC64
605 void helper_fabsd(void)
607 DT0 = float64_abs(DT1);
610 void helper_fabsq(void)
612 QT0 = float128_abs(QT1);
614 #endif
616 float32 helper_fsqrts(float32 src)
618 return float32_sqrt(src, &env->fp_status);
621 void helper_fsqrtd(void)
623 DT0 = float64_sqrt(DT1, &env->fp_status);
626 void helper_fsqrtq(void)
628 QT0 = float128_sqrt(QT1, &env->fp_status);
631 #define GEN_FCMP(name, size, reg1, reg2, FS, TRAP) \
632 void glue(helper_, name) (void) \
634 target_ulong new_fsr; \
636 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
637 switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \
638 case float_relation_unordered: \
639 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
640 if ((env->fsr & FSR_NVM) || TRAP) { \
641 env->fsr |= new_fsr; \
642 env->fsr |= FSR_NVC; \
643 env->fsr |= FSR_FTT_IEEE_EXCP; \
644 raise_exception(TT_FP_EXCP); \
645 } else { \
646 env->fsr |= FSR_NVA; \
648 break; \
649 case float_relation_less: \
650 new_fsr = FSR_FCC0 << FS; \
651 break; \
652 case float_relation_greater: \
653 new_fsr = FSR_FCC1 << FS; \
654 break; \
655 default: \
656 new_fsr = 0; \
657 break; \
659 env->fsr |= new_fsr; \
661 #define GEN_FCMPS(name, size, FS, TRAP) \
662 void glue(helper_, name)(float32 src1, float32 src2) \
664 target_ulong new_fsr; \
666 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
667 switch (glue(size, _compare) (src1, src2, &env->fp_status)) { \
668 case float_relation_unordered: \
669 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
670 if ((env->fsr & FSR_NVM) || TRAP) { \
671 env->fsr |= new_fsr; \
672 env->fsr |= FSR_NVC; \
673 env->fsr |= FSR_FTT_IEEE_EXCP; \
674 raise_exception(TT_FP_EXCP); \
675 } else { \
676 env->fsr |= FSR_NVA; \
678 break; \
679 case float_relation_less: \
680 new_fsr = FSR_FCC0 << FS; \
681 break; \
682 case float_relation_greater: \
683 new_fsr = FSR_FCC1 << FS; \
684 break; \
685 default: \
686 new_fsr = 0; \
687 break; \
689 env->fsr |= new_fsr; \
692 GEN_FCMPS(fcmps, float32, 0, 0);
693 GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
695 GEN_FCMPS(fcmpes, float32, 0, 1);
696 GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
698 GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
699 GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
701 #ifdef TARGET_SPARC64
702 GEN_FCMPS(fcmps_fcc1, float32, 22, 0);
703 GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
704 GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
706 GEN_FCMPS(fcmps_fcc2, float32, 24, 0);
707 GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
708 GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
710 GEN_FCMPS(fcmps_fcc3, float32, 26, 0);
711 GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
712 GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
714 GEN_FCMPS(fcmpes_fcc1, float32, 22, 1);
715 GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
716 GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
718 GEN_FCMPS(fcmpes_fcc2, float32, 24, 1);
719 GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
720 GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
722 GEN_FCMPS(fcmpes_fcc3, float32, 26, 1);
723 GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
724 GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
725 #endif
726 #undef GEN_FCMPS
728 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
729 defined(DEBUG_MXCC)
730 static void dump_mxcc(CPUState *env)
732 printf("mxccdata: %016llx %016llx %016llx %016llx\n",
733 env->mxccdata[0], env->mxccdata[1],
734 env->mxccdata[2], env->mxccdata[3]);
735 printf("mxccregs: %016llx %016llx %016llx %016llx\n"
736 " %016llx %016llx %016llx %016llx\n",
737 env->mxccregs[0], env->mxccregs[1],
738 env->mxccregs[2], env->mxccregs[3],
739 env->mxccregs[4], env->mxccregs[5],
740 env->mxccregs[6], env->mxccregs[7]);
742 #endif
744 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
745 && defined(DEBUG_ASI)
746 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
747 uint64_t r1)
749 switch (size)
751 case 1:
752 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
753 addr, asi, r1 & 0xff);
754 break;
755 case 2:
756 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
757 addr, asi, r1 & 0xffff);
758 break;
759 case 4:
760 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
761 addr, asi, r1 & 0xffffffff);
762 break;
763 case 8:
764 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
765 addr, asi, r1);
766 break;
769 #endif
771 #ifndef TARGET_SPARC64
772 #ifndef CONFIG_USER_ONLY
773 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
775 uint64_t ret = 0;
776 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
777 uint32_t last_addr = addr;
778 #endif
780 helper_check_align(addr, size - 1);
781 switch (asi) {
782 case 2: /* SuperSparc MXCC registers */
783 switch (addr) {
784 case 0x01c00a00: /* MXCC control register */
785 if (size == 8)
786 ret = env->mxccregs[3];
787 else
788 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
789 size);
790 break;
791 case 0x01c00a04: /* MXCC control register */
792 if (size == 4)
793 ret = env->mxccregs[3];
794 else
795 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
796 size);
797 break;
798 case 0x01c00c00: /* Module reset register */
799 if (size == 8) {
800 ret = env->mxccregs[5];
801 // should we do something here?
802 } else
803 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
804 size);
805 break;
806 case 0x01c00f00: /* MBus port address register */
807 if (size == 8)
808 ret = env->mxccregs[7];
809 else
810 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
811 size);
812 break;
813 default:
814 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
815 size);
816 break;
818 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
819 "addr = %08x -> ret = %" PRIx64 ","
820 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
821 #ifdef DEBUG_MXCC
822 dump_mxcc(env);
823 #endif
824 break;
825 case 3: /* MMU probe */
827 int mmulev;
829 mmulev = (addr >> 8) & 15;
830 if (mmulev > 4)
831 ret = 0;
832 else
833 ret = mmu_probe(env, addr, mmulev);
834 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
835 addr, mmulev, ret);
837 break;
838 case 4: /* read MMU regs */
840 int reg = (addr >> 8) & 0x1f;
842 ret = env->mmuregs[reg];
843 if (reg == 3) /* Fault status cleared on read */
844 env->mmuregs[3] = 0;
845 else if (reg == 0x13) /* Fault status read */
846 ret = env->mmuregs[3];
847 else if (reg == 0x14) /* Fault address read */
848 ret = env->mmuregs[4];
849 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
851 break;
852 case 5: // Turbosparc ITLB Diagnostic
853 case 6: // Turbosparc DTLB Diagnostic
854 case 7: // Turbosparc IOTLB Diagnostic
855 break;
856 case 9: /* Supervisor code access */
857 switch(size) {
858 case 1:
859 ret = ldub_code(addr);
860 break;
861 case 2:
862 ret = lduw_code(addr);
863 break;
864 default:
865 case 4:
866 ret = ldl_code(addr);
867 break;
868 case 8:
869 ret = ldq_code(addr);
870 break;
872 break;
873 case 0xa: /* User data access */
874 switch(size) {
875 case 1:
876 ret = ldub_user(addr);
877 break;
878 case 2:
879 ret = lduw_user(addr);
880 break;
881 default:
882 case 4:
883 ret = ldl_user(addr);
884 break;
885 case 8:
886 ret = ldq_user(addr);
887 break;
889 break;
890 case 0xb: /* Supervisor data access */
891 switch(size) {
892 case 1:
893 ret = ldub_kernel(addr);
894 break;
895 case 2:
896 ret = lduw_kernel(addr);
897 break;
898 default:
899 case 4:
900 ret = ldl_kernel(addr);
901 break;
902 case 8:
903 ret = ldq_kernel(addr);
904 break;
906 break;
907 case 0xc: /* I-cache tag */
908 case 0xd: /* I-cache data */
909 case 0xe: /* D-cache tag */
910 case 0xf: /* D-cache data */
911 break;
912 case 0x20: /* MMU passthrough */
913 switch(size) {
914 case 1:
915 ret = ldub_phys(addr);
916 break;
917 case 2:
918 ret = lduw_phys(addr);
919 break;
920 default:
921 case 4:
922 ret = ldl_phys(addr);
923 break;
924 case 8:
925 ret = ldq_phys(addr);
926 break;
928 break;
929 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
930 switch(size) {
931 case 1:
932 ret = ldub_phys((target_phys_addr_t)addr
933 | ((target_phys_addr_t)(asi & 0xf) << 32));
934 break;
935 case 2:
936 ret = lduw_phys((target_phys_addr_t)addr
937 | ((target_phys_addr_t)(asi & 0xf) << 32));
938 break;
939 default:
940 case 4:
941 ret = ldl_phys((target_phys_addr_t)addr
942 | ((target_phys_addr_t)(asi & 0xf) << 32));
943 break;
944 case 8:
945 ret = ldq_phys((target_phys_addr_t)addr
946 | ((target_phys_addr_t)(asi & 0xf) << 32));
947 break;
949 break;
950 case 0x30: // Turbosparc secondary cache diagnostic
951 case 0x31: // Turbosparc RAM snoop
952 case 0x32: // Turbosparc page table descriptor diagnostic
953 case 0x39: /* data cache diagnostic register */
954 ret = 0;
955 break;
956 case 8: /* User code access, XXX */
957 default:
958 do_unassigned_access(addr, 0, 0, asi, size);
959 ret = 0;
960 break;
962 if (sign) {
963 switch(size) {
964 case 1:
965 ret = (int8_t) ret;
966 break;
967 case 2:
968 ret = (int16_t) ret;
969 break;
970 case 4:
971 ret = (int32_t) ret;
972 break;
973 default:
974 break;
977 #ifdef DEBUG_ASI
978 dump_asi("read ", last_addr, asi, size, ret);
979 #endif
980 return ret;
983 void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
985 helper_check_align(addr, size - 1);
986 switch(asi) {
987 case 2: /* SuperSparc MXCC registers */
988 switch (addr) {
989 case 0x01c00000: /* MXCC stream data register 0 */
990 if (size == 8)
991 env->mxccdata[0] = val;
992 else
993 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
994 size);
995 break;
996 case 0x01c00008: /* MXCC stream data register 1 */
997 if (size == 8)
998 env->mxccdata[1] = val;
999 else
1000 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1001 size);
1002 break;
1003 case 0x01c00010: /* MXCC stream data register 2 */
1004 if (size == 8)
1005 env->mxccdata[2] = val;
1006 else
1007 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1008 size);
1009 break;
1010 case 0x01c00018: /* MXCC stream data register 3 */
1011 if (size == 8)
1012 env->mxccdata[3] = val;
1013 else
1014 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1015 size);
1016 break;
1017 case 0x01c00100: /* MXCC stream source */
1018 if (size == 8)
1019 env->mxccregs[0] = val;
1020 else
1021 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1022 size);
1023 env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1025 env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1027 env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1028 16);
1029 env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1030 24);
1031 break;
1032 case 0x01c00200: /* MXCC stream destination */
1033 if (size == 8)
1034 env->mxccregs[1] = val;
1035 else
1036 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1037 size);
1038 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0,
1039 env->mxccdata[0]);
1040 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8,
1041 env->mxccdata[1]);
1042 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
1043 env->mxccdata[2]);
1044 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
1045 env->mxccdata[3]);
1046 break;
1047 case 0x01c00a00: /* MXCC control register */
1048 if (size == 8)
1049 env->mxccregs[3] = val;
1050 else
1051 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1052 size);
1053 break;
1054 case 0x01c00a04: /* MXCC control register */
1055 if (size == 4)
1056 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
1057 | val;
1058 else
1059 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1060 size);
1061 break;
1062 case 0x01c00e00: /* MXCC error register */
1063 // writing a 1 bit clears the error
1064 if (size == 8)
1065 env->mxccregs[6] &= ~val;
1066 else
1067 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1068 size);
1069 break;
1070 case 0x01c00f00: /* MBus port address register */
1071 if (size == 8)
1072 env->mxccregs[7] = val;
1073 else
1074 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1075 size);
1076 break;
1077 default:
1078 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1079 size);
1080 break;
1082 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
1083 asi, size, addr, val);
1084 #ifdef DEBUG_MXCC
1085 dump_mxcc(env);
1086 #endif
1087 break;
1088 case 3: /* MMU flush */
1090 int mmulev;
1092 mmulev = (addr >> 8) & 15;
1093 DPRINTF_MMU("mmu flush level %d\n", mmulev);
1094 switch (mmulev) {
1095 case 0: // flush page
1096 tlb_flush_page(env, addr & 0xfffff000);
1097 break;
1098 case 1: // flush segment (256k)
1099 case 2: // flush region (16M)
1100 case 3: // flush context (4G)
1101 case 4: // flush entire
1102 tlb_flush(env, 1);
1103 break;
1104 default:
1105 break;
1107 #ifdef DEBUG_MMU
1108 dump_mmu(env);
1109 #endif
1111 break;
1112 case 4: /* write MMU regs */
1114 int reg = (addr >> 8) & 0x1f;
1115 uint32_t oldreg;
1117 oldreg = env->mmuregs[reg];
1118 switch(reg) {
1119 case 0: // Control Register
1120 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1121 (val & 0x00ffffff);
1122 // Mappings generated during no-fault mode or MMU
1123 // disabled mode are invalid in normal mode
1124 if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
1125 (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm)))
1126 tlb_flush(env, 1);
1127 break;
1128 case 1: // Context Table Pointer Register
1129 env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
1130 break;
1131 case 2: // Context Register
1132 env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
1133 if (oldreg != env->mmuregs[reg]) {
1134 /* we flush when the MMU context changes because
1135 QEMU has no MMU context support */
1136 tlb_flush(env, 1);
1138 break;
1139 case 3: // Synchronous Fault Status Register with Clear
1140 case 4: // Synchronous Fault Address Register
1141 break;
1142 case 0x10: // TLB Replacement Control Register
1143 env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
1144 break;
1145 case 0x13: // Synchronous Fault Status Register with Read and Clear
1146 env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
1147 break;
1148 case 0x14: // Synchronous Fault Address Register
1149 env->mmuregs[4] = val;
1150 break;
1151 default:
1152 env->mmuregs[reg] = val;
1153 break;
1155 if (oldreg != env->mmuregs[reg]) {
1156 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1157 reg, oldreg, env->mmuregs[reg]);
1159 #ifdef DEBUG_MMU
1160 dump_mmu(env);
1161 #endif
1163 break;
1164 case 5: // Turbosparc ITLB Diagnostic
1165 case 6: // Turbosparc DTLB Diagnostic
1166 case 7: // Turbosparc IOTLB Diagnostic
1167 break;
1168 case 0xa: /* User data access */
1169 switch(size) {
1170 case 1:
1171 stb_user(addr, val);
1172 break;
1173 case 2:
1174 stw_user(addr, val);
1175 break;
1176 default:
1177 case 4:
1178 stl_user(addr, val);
1179 break;
1180 case 8:
1181 stq_user(addr, val);
1182 break;
1184 break;
1185 case 0xb: /* Supervisor data access */
1186 switch(size) {
1187 case 1:
1188 stb_kernel(addr, val);
1189 break;
1190 case 2:
1191 stw_kernel(addr, val);
1192 break;
1193 default:
1194 case 4:
1195 stl_kernel(addr, val);
1196 break;
1197 case 8:
1198 stq_kernel(addr, val);
1199 break;
1201 break;
1202 case 0xc: /* I-cache tag */
1203 case 0xd: /* I-cache data */
1204 case 0xe: /* D-cache tag */
1205 case 0xf: /* D-cache data */
1206 case 0x10: /* I/D-cache flush page */
1207 case 0x11: /* I/D-cache flush segment */
1208 case 0x12: /* I/D-cache flush region */
1209 case 0x13: /* I/D-cache flush context */
1210 case 0x14: /* I/D-cache flush user */
1211 break;
1212 case 0x17: /* Block copy, sta access */
1214 // val = src
1215 // addr = dst
1216 // copy 32 bytes
1217 unsigned int i;
1218 uint32_t src = val & ~3, dst = addr & ~3, temp;
1220 for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
1221 temp = ldl_kernel(src);
1222 stl_kernel(dst, temp);
1225 break;
1226 case 0x1f: /* Block fill, stda access */
1228 // addr = dst
1229 // fill 32 bytes with val
1230 unsigned int i;
1231 uint32_t dst = addr & 7;
1233 for (i = 0; i < 32; i += 8, dst += 8)
1234 stq_kernel(dst, val);
1236 break;
1237 case 0x20: /* MMU passthrough */
1239 switch(size) {
1240 case 1:
1241 stb_phys(addr, val);
1242 break;
1243 case 2:
1244 stw_phys(addr, val);
1245 break;
1246 case 4:
1247 default:
1248 stl_phys(addr, val);
1249 break;
1250 case 8:
1251 stq_phys(addr, val);
1252 break;
1255 break;
1256 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1258 switch(size) {
1259 case 1:
1260 stb_phys((target_phys_addr_t)addr
1261 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1262 break;
1263 case 2:
1264 stw_phys((target_phys_addr_t)addr
1265 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1266 break;
1267 case 4:
1268 default:
1269 stl_phys((target_phys_addr_t)addr
1270 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1271 break;
1272 case 8:
1273 stq_phys((target_phys_addr_t)addr
1274 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1275 break;
1278 break;
1279 case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
1280 case 0x31: // store buffer data, Ross RT620 I-cache flush or
1281 // Turbosparc snoop RAM
1282 case 0x32: // store buffer control or Turbosparc page table
1283 // descriptor diagnostic
1284 case 0x36: /* I-cache flash clear */
1285 case 0x37: /* D-cache flash clear */
1286 case 0x38: /* breakpoint diagnostics */
1287 case 0x4c: /* breakpoint action */
1288 break;
1289 case 8: /* User code access, XXX */
1290 case 9: /* Supervisor code access, XXX */
1291 default:
1292 do_unassigned_access(addr, 1, 0, asi, size);
1293 break;
1295 #ifdef DEBUG_ASI
1296 dump_asi("write", addr, asi, size, val);
1297 #endif
1300 #endif /* CONFIG_USER_ONLY */
1301 #else /* TARGET_SPARC64 */
1303 #ifdef CONFIG_USER_ONLY
1304 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1306 uint64_t ret = 0;
1307 #if defined(DEBUG_ASI)
1308 target_ulong last_addr = addr;
1309 #endif
1311 if (asi < 0x80)
1312 raise_exception(TT_PRIV_ACT);
1314 helper_check_align(addr, size - 1);
1315 address_mask(env, &addr);
1317 switch (asi) {
1318 case 0x82: // Primary no-fault
1319 case 0x8a: // Primary no-fault LE
1320 if (page_check_range(addr, size, PAGE_READ) == -1) {
1321 #ifdef DEBUG_ASI
1322 dump_asi("read ", last_addr, asi, size, ret);
1323 #endif
1324 return 0;
1326 // Fall through
1327 case 0x80: // Primary
1328 case 0x88: // Primary LE
1330 switch(size) {
1331 case 1:
1332 ret = ldub_raw(addr);
1333 break;
1334 case 2:
1335 ret = lduw_raw(addr);
1336 break;
1337 case 4:
1338 ret = ldl_raw(addr);
1339 break;
1340 default:
1341 case 8:
1342 ret = ldq_raw(addr);
1343 break;
1346 break;
1347 case 0x83: // Secondary no-fault
1348 case 0x8b: // Secondary no-fault LE
1349 if (page_check_range(addr, size, PAGE_READ) == -1) {
1350 #ifdef DEBUG_ASI
1351 dump_asi("read ", last_addr, asi, size, ret);
1352 #endif
1353 return 0;
1355 // Fall through
1356 case 0x81: // Secondary
1357 case 0x89: // Secondary LE
1358 // XXX
1359 break;
1360 default:
1361 break;
1364 /* Convert from little endian */
1365 switch (asi) {
1366 case 0x88: // Primary LE
1367 case 0x89: // Secondary LE
1368 case 0x8a: // Primary no-fault LE
1369 case 0x8b: // Secondary no-fault LE
1370 switch(size) {
1371 case 2:
1372 ret = bswap16(ret);
1373 break;
1374 case 4:
1375 ret = bswap32(ret);
1376 break;
1377 case 8:
1378 ret = bswap64(ret);
1379 break;
1380 default:
1381 break;
1383 default:
1384 break;
1387 /* Convert to signed number */
1388 if (sign) {
1389 switch(size) {
1390 case 1:
1391 ret = (int8_t) ret;
1392 break;
1393 case 2:
1394 ret = (int16_t) ret;
1395 break;
1396 case 4:
1397 ret = (int32_t) ret;
1398 break;
1399 default:
1400 break;
1403 #ifdef DEBUG_ASI
1404 dump_asi("read ", last_addr, asi, size, ret);
1405 #endif
1406 return ret;
1409 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
1411 #ifdef DEBUG_ASI
1412 dump_asi("write", addr, asi, size, val);
1413 #endif
1414 if (asi < 0x80)
1415 raise_exception(TT_PRIV_ACT);
1417 helper_check_align(addr, size - 1);
1418 address_mask(env, &addr);
1420 /* Convert to little endian */
1421 switch (asi) {
1422 case 0x88: // Primary LE
1423 case 0x89: // Secondary LE
1424 switch(size) {
1425 case 2:
1426 addr = bswap16(addr);
1427 break;
1428 case 4:
1429 addr = bswap32(addr);
1430 break;
1431 case 8:
1432 addr = bswap64(addr);
1433 break;
1434 default:
1435 break;
1437 default:
1438 break;
1441 switch(asi) {
1442 case 0x80: // Primary
1443 case 0x88: // Primary LE
1445 switch(size) {
1446 case 1:
1447 stb_raw(addr, val);
1448 break;
1449 case 2:
1450 stw_raw(addr, val);
1451 break;
1452 case 4:
1453 stl_raw(addr, val);
1454 break;
1455 case 8:
1456 default:
1457 stq_raw(addr, val);
1458 break;
1461 break;
1462 case 0x81: // Secondary
1463 case 0x89: // Secondary LE
1464 // XXX
1465 return;
1467 case 0x82: // Primary no-fault, RO
1468 case 0x83: // Secondary no-fault, RO
1469 case 0x8a: // Primary no-fault LE, RO
1470 case 0x8b: // Secondary no-fault LE, RO
1471 default:
1472 do_unassigned_access(addr, 1, 0, 1, size);
1473 return;
1477 #else /* CONFIG_USER_ONLY */
1479 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1481 uint64_t ret = 0;
1482 #if defined(DEBUG_ASI)
1483 target_ulong last_addr = addr;
1484 #endif
1486 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1487 || ((env->def->features & CPU_FEATURE_HYPV)
1488 && asi >= 0x30 && asi < 0x80
1489 && !(env->hpstate & HS_PRIV)))
1490 raise_exception(TT_PRIV_ACT);
1492 helper_check_align(addr, size - 1);
1493 switch (asi) {
1494 case 0x82: // Primary no-fault
1495 case 0x8a: // Primary no-fault LE
1496 if (cpu_get_phys_page_debug(env, addr) == -1ULL) {
1497 #ifdef DEBUG_ASI
1498 dump_asi("read ", last_addr, asi, size, ret);
1499 #endif
1500 return 0;
1502 // Fall through
1503 case 0x10: // As if user primary
1504 case 0x18: // As if user primary LE
1505 case 0x80: // Primary
1506 case 0x88: // Primary LE
1507 case 0xe2: // UA2007 Primary block init
1508 case 0xe3: // UA2007 Secondary block init
1509 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1510 if ((env->def->features & CPU_FEATURE_HYPV)
1511 && env->hpstate & HS_PRIV) {
1512 switch(size) {
1513 case 1:
1514 ret = ldub_hypv(addr);
1515 break;
1516 case 2:
1517 ret = lduw_hypv(addr);
1518 break;
1519 case 4:
1520 ret = ldl_hypv(addr);
1521 break;
1522 default:
1523 case 8:
1524 ret = ldq_hypv(addr);
1525 break;
1527 } else {
1528 switch(size) {
1529 case 1:
1530 ret = ldub_kernel(addr);
1531 break;
1532 case 2:
1533 ret = lduw_kernel(addr);
1534 break;
1535 case 4:
1536 ret = ldl_kernel(addr);
1537 break;
1538 default:
1539 case 8:
1540 ret = ldq_kernel(addr);
1541 break;
1544 } else {
1545 switch(size) {
1546 case 1:
1547 ret = ldub_user(addr);
1548 break;
1549 case 2:
1550 ret = lduw_user(addr);
1551 break;
1552 case 4:
1553 ret = ldl_user(addr);
1554 break;
1555 default:
1556 case 8:
1557 ret = ldq_user(addr);
1558 break;
1561 break;
1562 case 0x14: // Bypass
1563 case 0x15: // Bypass, non-cacheable
1564 case 0x1c: // Bypass LE
1565 case 0x1d: // Bypass, non-cacheable LE
1567 switch(size) {
1568 case 1:
1569 ret = ldub_phys(addr);
1570 break;
1571 case 2:
1572 ret = lduw_phys(addr);
1573 break;
1574 case 4:
1575 ret = ldl_phys(addr);
1576 break;
1577 default:
1578 case 8:
1579 ret = ldq_phys(addr);
1580 break;
1582 break;
1584 case 0x24: // Nucleus quad LDD 128 bit atomic
1585 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
1586 // Only ldda allowed
1587 raise_exception(TT_ILL_INSN);
1588 return 0;
1589 case 0x83: // Secondary no-fault
1590 case 0x8b: // Secondary no-fault LE
1591 if (cpu_get_phys_page_debug(env, addr) == -1ULL) {
1592 #ifdef DEBUG_ASI
1593 dump_asi("read ", last_addr, asi, size, ret);
1594 #endif
1595 return 0;
1597 // Fall through
1598 case 0x04: // Nucleus
1599 case 0x0c: // Nucleus Little Endian (LE)
1600 case 0x11: // As if user secondary
1601 case 0x19: // As if user secondary LE
1602 case 0x4a: // UPA config
1603 case 0x81: // Secondary
1604 case 0x89: // Secondary LE
1605 // XXX
1606 break;
1607 case 0x45: // LSU
1608 ret = env->lsu;
1609 break;
1610 case 0x50: // I-MMU regs
1612 int reg = (addr >> 3) & 0xf;
1614 ret = env->immuregs[reg];
1615 break;
1617 case 0x51: // I-MMU 8k TSB pointer
1618 case 0x52: // I-MMU 64k TSB pointer
1619 // XXX
1620 break;
1621 case 0x55: // I-MMU data access
1623 int reg = (addr >> 3) & 0x3f;
1625 ret = env->itlb_tte[reg];
1626 break;
1628 case 0x56: // I-MMU tag read
1630 int reg = (addr >> 3) & 0x3f;
1632 ret = env->itlb_tag[reg];
1633 break;
1635 case 0x58: // D-MMU regs
1637 int reg = (addr >> 3) & 0xf;
1639 ret = env->dmmuregs[reg];
1640 break;
1642 case 0x5d: // D-MMU data access
1644 int reg = (addr >> 3) & 0x3f;
1646 ret = env->dtlb_tte[reg];
1647 break;
1649 case 0x5e: // D-MMU tag read
1651 int reg = (addr >> 3) & 0x3f;
1653 ret = env->dtlb_tag[reg];
1654 break;
1656 case 0x46: // D-cache data
1657 case 0x47: // D-cache tag access
1658 case 0x4b: // E-cache error enable
1659 case 0x4c: // E-cache asynchronous fault status
1660 case 0x4d: // E-cache asynchronous fault address
1661 case 0x4e: // E-cache tag data
1662 case 0x66: // I-cache instruction access
1663 case 0x67: // I-cache tag access
1664 case 0x6e: // I-cache predecode
1665 case 0x6f: // I-cache LRU etc.
1666 case 0x76: // E-cache tag
1667 case 0x7e: // E-cache tag
1668 break;
1669 case 0x59: // D-MMU 8k TSB pointer
1670 case 0x5a: // D-MMU 64k TSB pointer
1671 case 0x5b: // D-MMU data pointer
1672 case 0x48: // Interrupt dispatch, RO
1673 case 0x49: // Interrupt data receive
1674 case 0x7f: // Incoming interrupt vector, RO
1675 // XXX
1676 break;
1677 case 0x54: // I-MMU data in, WO
1678 case 0x57: // I-MMU demap, WO
1679 case 0x5c: // D-MMU data in, WO
1680 case 0x5f: // D-MMU demap, WO
1681 case 0x77: // Interrupt vector, WO
1682 default:
1683 do_unassigned_access(addr, 0, 0, 1, size);
1684 ret = 0;
1685 break;
1688 /* Convert from little endian */
1689 switch (asi) {
1690 case 0x0c: // Nucleus Little Endian (LE)
1691 case 0x18: // As if user primary LE
1692 case 0x19: // As if user secondary LE
1693 case 0x1c: // Bypass LE
1694 case 0x1d: // Bypass, non-cacheable LE
1695 case 0x88: // Primary LE
1696 case 0x89: // Secondary LE
1697 case 0x8a: // Primary no-fault LE
1698 case 0x8b: // Secondary no-fault LE
1699 switch(size) {
1700 case 2:
1701 ret = bswap16(ret);
1702 break;
1703 case 4:
1704 ret = bswap32(ret);
1705 break;
1706 case 8:
1707 ret = bswap64(ret);
1708 break;
1709 default:
1710 break;
1712 default:
1713 break;
1716 /* Convert to signed number */
1717 if (sign) {
1718 switch(size) {
1719 case 1:
1720 ret = (int8_t) ret;
1721 break;
1722 case 2:
1723 ret = (int16_t) ret;
1724 break;
1725 case 4:
1726 ret = (int32_t) ret;
1727 break;
1728 default:
1729 break;
1732 #ifdef DEBUG_ASI
1733 dump_asi("read ", last_addr, asi, size, ret);
1734 #endif
1735 return ret;
1738 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
1740 #ifdef DEBUG_ASI
1741 dump_asi("write", addr, asi, size, val);
1742 #endif
1743 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1744 || ((env->def->features & CPU_FEATURE_HYPV)
1745 && asi >= 0x30 && asi < 0x80
1746 && !(env->hpstate & HS_PRIV)))
1747 raise_exception(TT_PRIV_ACT);
1749 helper_check_align(addr, size - 1);
1750 /* Convert to little endian */
1751 switch (asi) {
1752 case 0x0c: // Nucleus Little Endian (LE)
1753 case 0x18: // As if user primary LE
1754 case 0x19: // As if user secondary LE
1755 case 0x1c: // Bypass LE
1756 case 0x1d: // Bypass, non-cacheable LE
1757 case 0x88: // Primary LE
1758 case 0x89: // Secondary LE
1759 switch(size) {
1760 case 2:
1761 addr = bswap16(addr);
1762 break;
1763 case 4:
1764 addr = bswap32(addr);
1765 break;
1766 case 8:
1767 addr = bswap64(addr);
1768 break;
1769 default:
1770 break;
1772 default:
1773 break;
1776 switch(asi) {
1777 case 0x10: // As if user primary
1778 case 0x18: // As if user primary LE
1779 case 0x80: // Primary
1780 case 0x88: // Primary LE
1781 case 0xe2: // UA2007 Primary block init
1782 case 0xe3: // UA2007 Secondary block init
1783 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1784 if ((env->def->features & CPU_FEATURE_HYPV)
1785 && env->hpstate & HS_PRIV) {
1786 switch(size) {
1787 case 1:
1788 stb_hypv(addr, val);
1789 break;
1790 case 2:
1791 stw_hypv(addr, val);
1792 break;
1793 case 4:
1794 stl_hypv(addr, val);
1795 break;
1796 case 8:
1797 default:
1798 stq_hypv(addr, val);
1799 break;
1801 } else {
1802 switch(size) {
1803 case 1:
1804 stb_kernel(addr, val);
1805 break;
1806 case 2:
1807 stw_kernel(addr, val);
1808 break;
1809 case 4:
1810 stl_kernel(addr, val);
1811 break;
1812 case 8:
1813 default:
1814 stq_kernel(addr, val);
1815 break;
1818 } else {
1819 switch(size) {
1820 case 1:
1821 stb_user(addr, val);
1822 break;
1823 case 2:
1824 stw_user(addr, val);
1825 break;
1826 case 4:
1827 stl_user(addr, val);
1828 break;
1829 case 8:
1830 default:
1831 stq_user(addr, val);
1832 break;
1835 break;
1836 case 0x14: // Bypass
1837 case 0x15: // Bypass, non-cacheable
1838 case 0x1c: // Bypass LE
1839 case 0x1d: // Bypass, non-cacheable LE
1841 switch(size) {
1842 case 1:
1843 stb_phys(addr, val);
1844 break;
1845 case 2:
1846 stw_phys(addr, val);
1847 break;
1848 case 4:
1849 stl_phys(addr, val);
1850 break;
1851 case 8:
1852 default:
1853 stq_phys(addr, val);
1854 break;
1857 return;
1858 case 0x24: // Nucleus quad LDD 128 bit atomic
1859 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
1860 // Only ldda allowed
1861 raise_exception(TT_ILL_INSN);
1862 return;
1863 case 0x04: // Nucleus
1864 case 0x0c: // Nucleus Little Endian (LE)
1865 case 0x11: // As if user secondary
1866 case 0x19: // As if user secondary LE
1867 case 0x4a: // UPA config
1868 case 0x81: // Secondary
1869 case 0x89: // Secondary LE
1870 // XXX
1871 return;
1872 case 0x45: // LSU
1874 uint64_t oldreg;
1876 oldreg = env->lsu;
1877 env->lsu = val & (DMMU_E | IMMU_E);
1878 // Mappings generated during D/I MMU disabled mode are
1879 // invalid in normal mode
1880 if (oldreg != env->lsu) {
1881 DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
1882 oldreg, env->lsu);
1883 #ifdef DEBUG_MMU
1884 dump_mmu(env);
1885 #endif
1886 tlb_flush(env, 1);
1888 return;
1890 case 0x50: // I-MMU regs
1892 int reg = (addr >> 3) & 0xf;
1893 uint64_t oldreg;
1895 oldreg = env->immuregs[reg];
1896 switch(reg) {
1897 case 0: // RO
1898 case 4:
1899 return;
1900 case 1: // Not in I-MMU
1901 case 2:
1902 case 7:
1903 case 8:
1904 return;
1905 case 3: // SFSR
1906 if ((val & 1) == 0)
1907 val = 0; // Clear SFSR
1908 break;
1909 case 5: // TSB access
1910 case 6: // Tag access
1911 default:
1912 break;
1914 env->immuregs[reg] = val;
1915 if (oldreg != env->immuregs[reg]) {
1916 DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08"
1917 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1919 #ifdef DEBUG_MMU
1920 dump_mmu(env);
1921 #endif
1922 return;
1924 case 0x54: // I-MMU data in
1926 unsigned int i;
1928 // Try finding an invalid entry
1929 for (i = 0; i < 64; i++) {
1930 if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
1931 env->itlb_tag[i] = env->immuregs[6];
1932 env->itlb_tte[i] = val;
1933 return;
1936 // Try finding an unlocked entry
1937 for (i = 0; i < 64; i++) {
1938 if ((env->itlb_tte[i] & 0x40) == 0) {
1939 env->itlb_tag[i] = env->immuregs[6];
1940 env->itlb_tte[i] = val;
1941 return;
1944 // error state?
1945 return;
1947 case 0x55: // I-MMU data access
1949 // TODO: auto demap
1951 unsigned int i = (addr >> 3) & 0x3f;
1953 env->itlb_tag[i] = env->immuregs[6];
1954 env->itlb_tte[i] = val;
1955 return;
1957 case 0x57: // I-MMU demap
1959 unsigned int i;
1961 for (i = 0; i < 64; i++) {
1962 if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0) {
1963 target_ulong mask = 0xffffffffffffe000ULL;
1965 mask <<= 3 * ((env->itlb_tte[i] >> 61) & 3);
1966 if ((val & mask) == (env->itlb_tag[i] & mask)) {
1967 env->itlb_tag[i] = 0;
1968 env->itlb_tte[i] = 0;
1970 return;
1974 return;
1975 case 0x58: // D-MMU regs
1977 int reg = (addr >> 3) & 0xf;
1978 uint64_t oldreg;
1980 oldreg = env->dmmuregs[reg];
1981 switch(reg) {
1982 case 0: // RO
1983 case 4:
1984 return;
1985 case 3: // SFSR
1986 if ((val & 1) == 0) {
1987 val = 0; // Clear SFSR, Fault address
1988 env->dmmuregs[4] = 0;
1990 env->dmmuregs[reg] = val;
1991 break;
1992 case 1: // Primary context
1993 case 2: // Secondary context
1994 case 5: // TSB access
1995 case 6: // Tag access
1996 case 7: // Virtual Watchpoint
1997 case 8: // Physical Watchpoint
1998 default:
1999 break;
2001 env->dmmuregs[reg] = val;
2002 if (oldreg != env->dmmuregs[reg]) {
2003 DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08"
2004 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
2006 #ifdef DEBUG_MMU
2007 dump_mmu(env);
2008 #endif
2009 return;
2011 case 0x5c: // D-MMU data in
2013 unsigned int i;
2015 // Try finding an invalid entry
2016 for (i = 0; i < 64; i++) {
2017 if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
2018 env->dtlb_tag[i] = env->dmmuregs[6];
2019 env->dtlb_tte[i] = val;
2020 return;
2023 // Try finding an unlocked entry
2024 for (i = 0; i < 64; i++) {
2025 if ((env->dtlb_tte[i] & 0x40) == 0) {
2026 env->dtlb_tag[i] = env->dmmuregs[6];
2027 env->dtlb_tte[i] = val;
2028 return;
2031 // error state?
2032 return;
2034 case 0x5d: // D-MMU data access
2036 unsigned int i = (addr >> 3) & 0x3f;
2038 env->dtlb_tag[i] = env->dmmuregs[6];
2039 env->dtlb_tte[i] = val;
2040 return;
2042 case 0x5f: // D-MMU demap
2044 unsigned int i;
2046 for (i = 0; i < 64; i++) {
2047 if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0) {
2048 target_ulong mask = 0xffffffffffffe000ULL;
2050 mask <<= 3 * ((env->dtlb_tte[i] >> 61) & 3);
2051 if ((val & mask) == (env->dtlb_tag[i] & mask)) {
2052 env->dtlb_tag[i] = 0;
2053 env->dtlb_tte[i] = 0;
2055 return;
2059 return;
2060 case 0x49: // Interrupt data receive
2061 // XXX
2062 return;
2063 case 0x46: // D-cache data
2064 case 0x47: // D-cache tag access
2065 case 0x4b: // E-cache error enable
2066 case 0x4c: // E-cache asynchronous fault status
2067 case 0x4d: // E-cache asynchronous fault address
2068 case 0x4e: // E-cache tag data
2069 case 0x66: // I-cache instruction access
2070 case 0x67: // I-cache tag access
2071 case 0x6e: // I-cache predecode
2072 case 0x6f: // I-cache LRU etc.
2073 case 0x76: // E-cache tag
2074 case 0x7e: // E-cache tag
2075 return;
2076 case 0x51: // I-MMU 8k TSB pointer, RO
2077 case 0x52: // I-MMU 64k TSB pointer, RO
2078 case 0x56: // I-MMU tag read, RO
2079 case 0x59: // D-MMU 8k TSB pointer, RO
2080 case 0x5a: // D-MMU 64k TSB pointer, RO
2081 case 0x5b: // D-MMU data pointer, RO
2082 case 0x5e: // D-MMU tag read, RO
2083 case 0x48: // Interrupt dispatch, RO
2084 case 0x7f: // Incoming interrupt vector, RO
2085 case 0x82: // Primary no-fault, RO
2086 case 0x83: // Secondary no-fault, RO
2087 case 0x8a: // Primary no-fault LE, RO
2088 case 0x8b: // Secondary no-fault LE, RO
2089 default:
2090 do_unassigned_access(addr, 1, 0, 1, size);
2091 return;
2094 #endif /* CONFIG_USER_ONLY */
2096 void helper_ldda_asi(target_ulong addr, int asi, int rd)
2098 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2099 || ((env->def->features & CPU_FEATURE_HYPV)
2100 && asi >= 0x30 && asi < 0x80
2101 && !(env->hpstate & HS_PRIV)))
2102 raise_exception(TT_PRIV_ACT);
2104 switch (asi) {
2105 case 0x24: // Nucleus quad LDD 128 bit atomic
2106 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2107 helper_check_align(addr, 0xf);
2108 if (rd == 0) {
2109 env->gregs[1] = ldq_kernel(addr + 8);
2110 if (asi == 0x2c)
2111 bswap64s(&env->gregs[1]);
2112 } else if (rd < 8) {
2113 env->gregs[rd] = ldq_kernel(addr);
2114 env->gregs[rd + 1] = ldq_kernel(addr + 8);
2115 if (asi == 0x2c) {
2116 bswap64s(&env->gregs[rd]);
2117 bswap64s(&env->gregs[rd + 1]);
2119 } else {
2120 env->regwptr[rd] = ldq_kernel(addr);
2121 env->regwptr[rd + 1] = ldq_kernel(addr + 8);
2122 if (asi == 0x2c) {
2123 bswap64s(&env->regwptr[rd]);
2124 bswap64s(&env->regwptr[rd + 1]);
2127 break;
2128 default:
2129 helper_check_align(addr, 0x3);
2130 if (rd == 0)
2131 env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
2132 else if (rd < 8) {
2133 env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
2134 env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2135 } else {
2136 env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0);
2137 env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2139 break;
2143 void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
2145 unsigned int i;
2146 target_ulong val;
2148 helper_check_align(addr, 3);
2149 switch (asi) {
2150 case 0xf0: // Block load primary
2151 case 0xf1: // Block load secondary
2152 case 0xf8: // Block load primary LE
2153 case 0xf9: // Block load secondary LE
2154 if (rd & 7) {
2155 raise_exception(TT_ILL_INSN);
2156 return;
2158 helper_check_align(addr, 0x3f);
2159 for (i = 0; i < 16; i++) {
2160 *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
2162 addr += 4;
2165 return;
2166 default:
2167 break;
2170 val = helper_ld_asi(addr, asi, size, 0);
2171 switch(size) {
2172 default:
2173 case 4:
2174 *((uint32_t *)&env->fpr[rd]) = val;
2175 break;
2176 case 8:
2177 *((int64_t *)&DT0) = val;
2178 break;
2179 case 16:
2180 // XXX
2181 break;
2185 void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
2187 unsigned int i;
2188 target_ulong val = 0;
2190 helper_check_align(addr, 3);
2191 switch (asi) {
2192 case 0xe0: // UA2007 Block commit store primary (cache flush)
2193 case 0xe1: // UA2007 Block commit store secondary (cache flush)
2194 case 0xf0: // Block store primary
2195 case 0xf1: // Block store secondary
2196 case 0xf8: // Block store primary LE
2197 case 0xf9: // Block store secondary LE
2198 if (rd & 7) {
2199 raise_exception(TT_ILL_INSN);
2200 return;
2202 helper_check_align(addr, 0x3f);
2203 for (i = 0; i < 16; i++) {
2204 val = *(uint32_t *)&env->fpr[rd++];
2205 helper_st_asi(addr, val, asi & 0x8f, 4);
2206 addr += 4;
2209 return;
2210 default:
2211 break;
2214 switch(size) {
2215 default:
2216 case 4:
2217 val = *((uint32_t *)&env->fpr[rd]);
2218 break;
2219 case 8:
2220 val = *((int64_t *)&DT0);
2221 break;
2222 case 16:
2223 // XXX
2224 break;
2226 helper_st_asi(addr, val, asi, size);
2229 target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
2230 target_ulong val2, uint32_t asi)
2232 target_ulong ret;
2234 val2 &= 0xffffffffUL;
2235 ret = helper_ld_asi(addr, asi, 4, 0);
2236 ret &= 0xffffffffUL;
2237 if (val2 == ret)
2238 helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4);
2239 return ret;
2242 target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
2243 target_ulong val2, uint32_t asi)
2245 target_ulong ret;
2247 ret = helper_ld_asi(addr, asi, 8, 0);
2248 if (val2 == ret)
2249 helper_st_asi(addr, val1, asi, 8);
2250 return ret;
2252 #endif /* TARGET_SPARC64 */
2254 #ifndef TARGET_SPARC64
2255 void helper_rett(void)
2257 unsigned int cwp;
2259 if (env->psret == 1)
2260 raise_exception(TT_ILL_INSN);
2262 env->psret = 1;
2263 cwp = cpu_cwp_inc(env, env->cwp + 1) ;
2264 if (env->wim & (1 << cwp)) {
2265 raise_exception(TT_WIN_UNF);
2267 set_cwp(cwp);
2268 env->psrs = env->psrps;
2270 #endif
2272 target_ulong helper_udiv(target_ulong a, target_ulong b)
2274 uint64_t x0;
2275 uint32_t x1;
2277 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
2278 x1 = b;
2280 if (x1 == 0) {
2281 raise_exception(TT_DIV_ZERO);
2284 x0 = x0 / x1;
2285 if (x0 > 0xffffffff) {
2286 env->cc_src2 = 1;
2287 return 0xffffffff;
2288 } else {
2289 env->cc_src2 = 0;
2290 return x0;
2294 target_ulong helper_sdiv(target_ulong a, target_ulong b)
2296 int64_t x0;
2297 int32_t x1;
2299 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
2300 x1 = b;
2302 if (x1 == 0) {
2303 raise_exception(TT_DIV_ZERO);
2306 x0 = x0 / x1;
2307 if ((int32_t) x0 != x0) {
2308 env->cc_src2 = 1;
2309 return x0 < 0? 0x80000000: 0x7fffffff;
2310 } else {
2311 env->cc_src2 = 0;
2312 return x0;
2316 void helper_stdf(target_ulong addr, int mem_idx)
2318 helper_check_align(addr, 7);
2319 #if !defined(CONFIG_USER_ONLY)
2320 switch (mem_idx) {
2321 case 0:
2322 stfq_user(addr, DT0);
2323 break;
2324 case 1:
2325 stfq_kernel(addr, DT0);
2326 break;
2327 #ifdef TARGET_SPARC64
2328 case 2:
2329 stfq_hypv(addr, DT0);
2330 break;
2331 #endif
2332 default:
2333 break;
2335 #else
2336 address_mask(env, &addr);
2337 stfq_raw(addr, DT0);
2338 #endif
2341 void helper_lddf(target_ulong addr, int mem_idx)
2343 helper_check_align(addr, 7);
2344 #if !defined(CONFIG_USER_ONLY)
2345 switch (mem_idx) {
2346 case 0:
2347 DT0 = ldfq_user(addr);
2348 break;
2349 case 1:
2350 DT0 = ldfq_kernel(addr);
2351 break;
2352 #ifdef TARGET_SPARC64
2353 case 2:
2354 DT0 = ldfq_hypv(addr);
2355 break;
2356 #endif
2357 default:
2358 break;
2360 #else
2361 address_mask(env, &addr);
2362 DT0 = ldfq_raw(addr);
2363 #endif
2366 void helper_ldqf(target_ulong addr, int mem_idx)
2368 // XXX add 128 bit load
2369 CPU_QuadU u;
2371 helper_check_align(addr, 7);
2372 #if !defined(CONFIG_USER_ONLY)
2373 switch (mem_idx) {
2374 case 0:
2375 u.ll.upper = ldq_user(addr);
2376 u.ll.lower = ldq_user(addr + 8);
2377 QT0 = u.q;
2378 break;
2379 case 1:
2380 u.ll.upper = ldq_kernel(addr);
2381 u.ll.lower = ldq_kernel(addr + 8);
2382 QT0 = u.q;
2383 break;
2384 #ifdef TARGET_SPARC64
2385 case 2:
2386 u.ll.upper = ldq_hypv(addr);
2387 u.ll.lower = ldq_hypv(addr + 8);
2388 QT0 = u.q;
2389 break;
2390 #endif
2391 default:
2392 break;
2394 #else
2395 address_mask(env, &addr);
2396 u.ll.upper = ldq_raw(addr);
2397 u.ll.lower = ldq_raw((addr + 8) & 0xffffffffULL);
2398 QT0 = u.q;
2399 #endif
2402 void helper_stqf(target_ulong addr, int mem_idx)
2404 // XXX add 128 bit store
2405 CPU_QuadU u;
2407 helper_check_align(addr, 7);
2408 #if !defined(CONFIG_USER_ONLY)
2409 switch (mem_idx) {
2410 case 0:
2411 u.q = QT0;
2412 stq_user(addr, u.ll.upper);
2413 stq_user(addr + 8, u.ll.lower);
2414 break;
2415 case 1:
2416 u.q = QT0;
2417 stq_kernel(addr, u.ll.upper);
2418 stq_kernel(addr + 8, u.ll.lower);
2419 break;
2420 #ifdef TARGET_SPARC64
2421 case 2:
2422 u.q = QT0;
2423 stq_hypv(addr, u.ll.upper);
2424 stq_hypv(addr + 8, u.ll.lower);
2425 break;
2426 #endif
2427 default:
2428 break;
2430 #else
2431 u.q = QT0;
2432 address_mask(env, &addr);
2433 stq_raw(addr, u.ll.upper);
2434 stq_raw((addr + 8) & 0xffffffffULL, u.ll.lower);
2435 #endif
2438 static inline void set_fsr(void)
2440 int rnd_mode;
2442 switch (env->fsr & FSR_RD_MASK) {
2443 case FSR_RD_NEAREST:
2444 rnd_mode = float_round_nearest_even;
2445 break;
2446 default:
2447 case FSR_RD_ZERO:
2448 rnd_mode = float_round_to_zero;
2449 break;
2450 case FSR_RD_POS:
2451 rnd_mode = float_round_up;
2452 break;
2453 case FSR_RD_NEG:
2454 rnd_mode = float_round_down;
2455 break;
2457 set_float_rounding_mode(rnd_mode, &env->fp_status);
2460 void helper_ldfsr(uint32_t new_fsr)
2462 env->fsr = (new_fsr & FSR_LDFSR_MASK) | (env->fsr & FSR_LDFSR_OLDMASK);
2463 set_fsr();
2466 #ifdef TARGET_SPARC64
2467 void helper_ldxfsr(uint64_t new_fsr)
2469 env->fsr = (new_fsr & FSR_LDXFSR_MASK) | (env->fsr & FSR_LDXFSR_OLDMASK);
2470 set_fsr();
2472 #endif
2474 void helper_debug(void)
2476 env->exception_index = EXCP_DEBUG;
2477 cpu_loop_exit();
2480 #ifndef TARGET_SPARC64
2481 /* XXX: use another pointer for %iN registers to avoid slow wrapping
2482 handling ? */
2483 void helper_save(void)
2485 uint32_t cwp;
2487 cwp = cpu_cwp_dec(env, env->cwp - 1);
2488 if (env->wim & (1 << cwp)) {
2489 raise_exception(TT_WIN_OVF);
2491 set_cwp(cwp);
2494 void helper_restore(void)
2496 uint32_t cwp;
2498 cwp = cpu_cwp_inc(env, env->cwp + 1);
2499 if (env->wim & (1 << cwp)) {
2500 raise_exception(TT_WIN_UNF);
2502 set_cwp(cwp);
2505 void helper_wrpsr(target_ulong new_psr)
2507 if ((new_psr & PSR_CWP) >= env->nwindows)
2508 raise_exception(TT_ILL_INSN);
2509 else
2510 PUT_PSR(env, new_psr);
2513 target_ulong helper_rdpsr(void)
2515 return GET_PSR(env);
2518 #else
2519 /* XXX: use another pointer for %iN registers to avoid slow wrapping
2520 handling ? */
2521 void helper_save(void)
2523 uint32_t cwp;
2525 cwp = cpu_cwp_dec(env, env->cwp - 1);
2526 if (env->cansave == 0) {
2527 raise_exception(TT_SPILL | (env->otherwin != 0 ?
2528 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2529 ((env->wstate & 0x7) << 2)));
2530 } else {
2531 if (env->cleanwin - env->canrestore == 0) {
2532 // XXX Clean windows without trap
2533 raise_exception(TT_CLRWIN);
2534 } else {
2535 env->cansave--;
2536 env->canrestore++;
2537 set_cwp(cwp);
2542 void helper_restore(void)
2544 uint32_t cwp;
2546 cwp = cpu_cwp_inc(env, env->cwp + 1);
2547 if (env->canrestore == 0) {
2548 raise_exception(TT_FILL | (env->otherwin != 0 ?
2549 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2550 ((env->wstate & 0x7) << 2)));
2551 } else {
2552 env->cansave++;
2553 env->canrestore--;
2554 set_cwp(cwp);
2558 void helper_flushw(void)
2560 if (env->cansave != env->nwindows - 2) {
2561 raise_exception(TT_SPILL | (env->otherwin != 0 ?
2562 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2563 ((env->wstate & 0x7) << 2)));
2567 void helper_saved(void)
2569 env->cansave++;
2570 if (env->otherwin == 0)
2571 env->canrestore--;
2572 else
2573 env->otherwin--;
2576 void helper_restored(void)
2578 env->canrestore++;
2579 if (env->cleanwin < env->nwindows - 1)
2580 env->cleanwin++;
2581 if (env->otherwin == 0)
2582 env->cansave--;
2583 else
2584 env->otherwin--;
2587 target_ulong helper_rdccr(void)
2589 return GET_CCR(env);
2592 void helper_wrccr(target_ulong new_ccr)
2594 PUT_CCR(env, new_ccr);
2597 // CWP handling is reversed in V9, but we still use the V8 register
2598 // order.
2599 target_ulong helper_rdcwp(void)
2601 return GET_CWP64(env);
2604 void helper_wrcwp(target_ulong new_cwp)
2606 PUT_CWP64(env, new_cwp);
2609 // This function uses non-native bit order
2610 #define GET_FIELD(X, FROM, TO) \
2611 ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
2613 // This function uses the order in the manuals, i.e. bit 0 is 2^0
2614 #define GET_FIELD_SP(X, FROM, TO) \
2615 GET_FIELD(X, 63 - (TO), 63 - (FROM))
2617 target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
2619 return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
2620 (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
2621 (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
2622 (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
2623 (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
2624 (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
2625 (((pixel_addr >> 55) & 1) << 4) |
2626 (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
2627 GET_FIELD_SP(pixel_addr, 11, 12);
2630 target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
2632 uint64_t tmp;
2634 tmp = addr + offset;
2635 env->gsr &= ~7ULL;
2636 env->gsr |= tmp & 7ULL;
2637 return tmp & ~7ULL;
2640 target_ulong helper_popc(target_ulong val)
2642 return ctpop64(val);
2645 static inline uint64_t *get_gregset(uint64_t pstate)
2647 switch (pstate) {
2648 default:
2649 case 0:
2650 return env->bgregs;
2651 case PS_AG:
2652 return env->agregs;
2653 case PS_MG:
2654 return env->mgregs;
2655 case PS_IG:
2656 return env->igregs;
2660 static inline void change_pstate(uint64_t new_pstate)
2662 uint64_t pstate_regs, new_pstate_regs;
2663 uint64_t *src, *dst;
2665 pstate_regs = env->pstate & 0xc01;
2666 new_pstate_regs = new_pstate & 0xc01;
2667 if (new_pstate_regs != pstate_regs) {
2668 // Switch global register bank
2669 src = get_gregset(new_pstate_regs);
2670 dst = get_gregset(pstate_regs);
2671 memcpy32(dst, env->gregs);
2672 memcpy32(env->gregs, src);
2674 env->pstate = new_pstate;
2677 void helper_wrpstate(target_ulong new_state)
2679 if (!(env->def->features & CPU_FEATURE_GL))
2680 change_pstate(new_state & 0xf3f);
2683 void helper_done(void)
2685 env->pc = env->tsptr->tpc;
2686 env->npc = env->tsptr->tnpc + 4;
2687 PUT_CCR(env, env->tsptr->tstate >> 32);
2688 env->asi = (env->tsptr->tstate >> 24) & 0xff;
2689 change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
2690 PUT_CWP64(env, env->tsptr->tstate & 0xff);
2691 env->tl--;
2692 env->tsptr = &env->ts[env->tl & MAXTL_MASK];
2695 void helper_retry(void)
2697 env->pc = env->tsptr->tpc;
2698 env->npc = env->tsptr->tnpc;
2699 PUT_CCR(env, env->tsptr->tstate >> 32);
2700 env->asi = (env->tsptr->tstate >> 24) & 0xff;
2701 change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
2702 PUT_CWP64(env, env->tsptr->tstate & 0xff);
2703 env->tl--;
2704 env->tsptr = &env->ts[env->tl & MAXTL_MASK];
2707 void helper_set_softint(uint64_t value)
2709 env->softint |= (uint32_t)value;
2712 void helper_clear_softint(uint64_t value)
2714 env->softint &= (uint32_t)~value;
2717 void helper_write_softint(uint64_t value)
2719 env->softint = (uint32_t)value;
2721 #endif
2723 void helper_flush(target_ulong addr)
2725 addr &= ~7;
2726 tb_invalidate_page_range(addr, addr + 8);
2729 #ifdef TARGET_SPARC64
2730 #ifdef DEBUG_PCALL
2731 static const char * const excp_names[0x80] = {
2732 [TT_TFAULT] = "Instruction Access Fault",
2733 [TT_TMISS] = "Instruction Access MMU Miss",
2734 [TT_CODE_ACCESS] = "Instruction Access Error",
2735 [TT_ILL_INSN] = "Illegal Instruction",
2736 [TT_PRIV_INSN] = "Privileged Instruction",
2737 [TT_NFPU_INSN] = "FPU Disabled",
2738 [TT_FP_EXCP] = "FPU Exception",
2739 [TT_TOVF] = "Tag Overflow",
2740 [TT_CLRWIN] = "Clean Windows",
2741 [TT_DIV_ZERO] = "Division By Zero",
2742 [TT_DFAULT] = "Data Access Fault",
2743 [TT_DMISS] = "Data Access MMU Miss",
2744 [TT_DATA_ACCESS] = "Data Access Error",
2745 [TT_DPROT] = "Data Protection Error",
2746 [TT_UNALIGNED] = "Unaligned Memory Access",
2747 [TT_PRIV_ACT] = "Privileged Action",
2748 [TT_EXTINT | 0x1] = "External Interrupt 1",
2749 [TT_EXTINT | 0x2] = "External Interrupt 2",
2750 [TT_EXTINT | 0x3] = "External Interrupt 3",
2751 [TT_EXTINT | 0x4] = "External Interrupt 4",
2752 [TT_EXTINT | 0x5] = "External Interrupt 5",
2753 [TT_EXTINT | 0x6] = "External Interrupt 6",
2754 [TT_EXTINT | 0x7] = "External Interrupt 7",
2755 [TT_EXTINT | 0x8] = "External Interrupt 8",
2756 [TT_EXTINT | 0x9] = "External Interrupt 9",
2757 [TT_EXTINT | 0xa] = "External Interrupt 10",
2758 [TT_EXTINT | 0xb] = "External Interrupt 11",
2759 [TT_EXTINT | 0xc] = "External Interrupt 12",
2760 [TT_EXTINT | 0xd] = "External Interrupt 13",
2761 [TT_EXTINT | 0xe] = "External Interrupt 14",
2762 [TT_EXTINT | 0xf] = "External Interrupt 15",
2764 #endif
2766 void do_interrupt(CPUState *env)
2768 int intno = env->exception_index;
2770 #ifdef DEBUG_PCALL
2771 if (loglevel & CPU_LOG_INT) {
2772 static int count;
2773 const char *name;
2775 if (intno < 0 || intno >= 0x180)
2776 name = "Unknown";
2777 else if (intno >= 0x100)
2778 name = "Trap Instruction";
2779 else if (intno >= 0xc0)
2780 name = "Window Fill";
2781 else if (intno >= 0x80)
2782 name = "Window Spill";
2783 else {
2784 name = excp_names[intno];
2785 if (!name)
2786 name = "Unknown";
2789 fprintf(logfile, "%6d: %s (v=%04x) pc=%016" PRIx64 " npc=%016" PRIx64
2790 " SP=%016" PRIx64 "\n",
2791 count, name, intno,
2792 env->pc,
2793 env->npc, env->regwptr[6]);
2794 cpu_dump_state(env, logfile, fprintf, 0);
2795 #if 0
2797 int i;
2798 uint8_t *ptr;
2800 fprintf(logfile, " code=");
2801 ptr = (uint8_t *)env->pc;
2802 for(i = 0; i < 16; i++) {
2803 fprintf(logfile, " %02x", ldub(ptr + i));
2805 fprintf(logfile, "\n");
2807 #endif
2808 count++;
2810 #endif
2811 #if !defined(CONFIG_USER_ONLY)
2812 if (env->tl >= env->maxtl) {
2813 cpu_abort(env, "Trap 0x%04x while trap level (%d) >= MAXTL (%d),"
2814 " Error state", env->exception_index, env->tl, env->maxtl);
2815 return;
2817 #endif
2818 if (env->tl < env->maxtl - 1) {
2819 env->tl++;
2820 } else {
2821 env->pstate |= PS_RED;
2822 if (env->tl < env->maxtl)
2823 env->tl++;
2825 env->tsptr = &env->ts[env->tl & MAXTL_MASK];
2826 env->tsptr->tstate = ((uint64_t)GET_CCR(env) << 32) |
2827 ((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) |
2828 GET_CWP64(env);
2829 env->tsptr->tpc = env->pc;
2830 env->tsptr->tnpc = env->npc;
2831 env->tsptr->tt = intno;
2832 if (!(env->def->features & CPU_FEATURE_GL)) {
2833 switch (intno) {
2834 case TT_IVEC:
2835 change_pstate(PS_PEF | PS_PRIV | PS_IG);
2836 break;
2837 case TT_TFAULT:
2838 case TT_TMISS:
2839 case TT_DFAULT:
2840 case TT_DMISS:
2841 case TT_DPROT:
2842 change_pstate(PS_PEF | PS_PRIV | PS_MG);
2843 break;
2844 default:
2845 change_pstate(PS_PEF | PS_PRIV | PS_AG);
2846 break;
2849 if (intno == TT_CLRWIN)
2850 cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - 1));
2851 else if ((intno & 0x1c0) == TT_SPILL)
2852 cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - env->cansave - 2));
2853 else if ((intno & 0x1c0) == TT_FILL)
2854 cpu_set_cwp(env, cpu_cwp_inc(env, env->cwp + 1));
2855 env->tbr &= ~0x7fffULL;
2856 env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
2857 env->pc = env->tbr;
2858 env->npc = env->pc + 4;
2859 env->exception_index = 0;
2861 #else
2862 #ifdef DEBUG_PCALL
2863 static const char * const excp_names[0x80] = {
2864 [TT_TFAULT] = "Instruction Access Fault",
2865 [TT_ILL_INSN] = "Illegal Instruction",
2866 [TT_PRIV_INSN] = "Privileged Instruction",
2867 [TT_NFPU_INSN] = "FPU Disabled",
2868 [TT_WIN_OVF] = "Window Overflow",
2869 [TT_WIN_UNF] = "Window Underflow",
2870 [TT_UNALIGNED] = "Unaligned Memory Access",
2871 [TT_FP_EXCP] = "FPU Exception",
2872 [TT_DFAULT] = "Data Access Fault",
2873 [TT_TOVF] = "Tag Overflow",
2874 [TT_EXTINT | 0x1] = "External Interrupt 1",
2875 [TT_EXTINT | 0x2] = "External Interrupt 2",
2876 [TT_EXTINT | 0x3] = "External Interrupt 3",
2877 [TT_EXTINT | 0x4] = "External Interrupt 4",
2878 [TT_EXTINT | 0x5] = "External Interrupt 5",
2879 [TT_EXTINT | 0x6] = "External Interrupt 6",
2880 [TT_EXTINT | 0x7] = "External Interrupt 7",
2881 [TT_EXTINT | 0x8] = "External Interrupt 8",
2882 [TT_EXTINT | 0x9] = "External Interrupt 9",
2883 [TT_EXTINT | 0xa] = "External Interrupt 10",
2884 [TT_EXTINT | 0xb] = "External Interrupt 11",
2885 [TT_EXTINT | 0xc] = "External Interrupt 12",
2886 [TT_EXTINT | 0xd] = "External Interrupt 13",
2887 [TT_EXTINT | 0xe] = "External Interrupt 14",
2888 [TT_EXTINT | 0xf] = "External Interrupt 15",
2889 [TT_TOVF] = "Tag Overflow",
2890 [TT_CODE_ACCESS] = "Instruction Access Error",
2891 [TT_DATA_ACCESS] = "Data Access Error",
2892 [TT_DIV_ZERO] = "Division By Zero",
2893 [TT_NCP_INSN] = "Coprocessor Disabled",
2895 #endif
2897 void do_interrupt(CPUState *env)
2899 int cwp, intno = env->exception_index;
2901 #ifdef DEBUG_PCALL
2902 if (loglevel & CPU_LOG_INT) {
2903 static int count;
2904 const char *name;
2906 if (intno < 0 || intno >= 0x100)
2907 name = "Unknown";
2908 else if (intno >= 0x80)
2909 name = "Trap Instruction";
2910 else {
2911 name = excp_names[intno];
2912 if (!name)
2913 name = "Unknown";
2916 fprintf(logfile, "%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n",
2917 count, name, intno,
2918 env->pc,
2919 env->npc, env->regwptr[6]);
2920 cpu_dump_state(env, logfile, fprintf, 0);
2921 #if 0
2923 int i;
2924 uint8_t *ptr;
2926 fprintf(logfile, " code=");
2927 ptr = (uint8_t *)env->pc;
2928 for(i = 0; i < 16; i++) {
2929 fprintf(logfile, " %02x", ldub(ptr + i));
2931 fprintf(logfile, "\n");
2933 #endif
2934 count++;
2936 #endif
2937 #if !defined(CONFIG_USER_ONLY)
2938 if (env->psret == 0) {
2939 cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state",
2940 env->exception_index);
2941 return;
2943 #endif
2944 env->psret = 0;
2945 cwp = cpu_cwp_dec(env, env->cwp - 1);
2946 cpu_set_cwp(env, cwp);
2947 env->regwptr[9] = env->pc;
2948 env->regwptr[10] = env->npc;
2949 env->psrps = env->psrs;
2950 env->psrs = 1;
2951 env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
2952 env->pc = env->tbr;
2953 env->npc = env->pc + 4;
2954 env->exception_index = 0;
2956 #endif
2958 #if !defined(CONFIG_USER_ONLY)
2960 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
2961 void *retaddr);
2963 #define MMUSUFFIX _mmu
2964 #define ALIGNED_ONLY
2966 #define SHIFT 0
2967 #include "softmmu_template.h"
2969 #define SHIFT 1
2970 #include "softmmu_template.h"
2972 #define SHIFT 2
2973 #include "softmmu_template.h"
2975 #define SHIFT 3
2976 #include "softmmu_template.h"
2978 /* XXX: make it generic ? */
2979 static void cpu_restore_state2(void *retaddr)
2981 TranslationBlock *tb;
2982 unsigned long pc;
2984 if (retaddr) {
2985 /* now we have a real cpu fault */
2986 pc = (unsigned long)retaddr;
2987 tb = tb_find_pc(pc);
2988 if (tb) {
2989 /* the PC is inside the translated code. It means that we have
2990 a virtual CPU fault */
2991 cpu_restore_state(tb, env, pc, (void *)(long)env->cond);
2996 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
2997 void *retaddr)
2999 #ifdef DEBUG_UNALIGNED
3000 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
3001 "\n", addr, env->pc);
3002 #endif
3003 cpu_restore_state2(retaddr);
3004 raise_exception(TT_UNALIGNED);
3007 /* try to fill the TLB and return an exception if error. If retaddr is
3008 NULL, it means that the function was called in C code (i.e. not
3009 from generated code or from helper.c) */
3010 /* XXX: fix it to restore all registers */
3011 void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
3013 int ret;
3014 CPUState *saved_env;
3016 /* XXX: hack to restore env in all cases, even if not called from
3017 generated code */
3018 saved_env = env;
3019 env = cpu_single_env;
3021 ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
3022 if (ret) {
3023 cpu_restore_state2(retaddr);
3024 cpu_loop_exit();
3026 env = saved_env;
3029 #endif
3031 #ifndef TARGET_SPARC64
3032 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
3033 int is_asi, int size)
3035 CPUState *saved_env;
3037 /* XXX: hack to restore env in all cases, even if not called from
3038 generated code */
3039 saved_env = env;
3040 env = cpu_single_env;
3041 #ifdef DEBUG_UNASSIGNED
3042 if (is_asi)
3043 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
3044 " asi 0x%02x from " TARGET_FMT_lx "\n",
3045 is_exec ? "exec" : is_write ? "write" : "read", size,
3046 size == 1 ? "" : "s", addr, is_asi, env->pc);
3047 else
3048 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
3049 " from " TARGET_FMT_lx "\n",
3050 is_exec ? "exec" : is_write ? "write" : "read", size,
3051 size == 1 ? "" : "s", addr, env->pc);
3052 #endif
3053 if (env->mmuregs[3]) /* Fault status register */
3054 env->mmuregs[3] = 1; /* overflow (not read before another fault) */
3055 if (is_asi)
3056 env->mmuregs[3] |= 1 << 16;
3057 if (env->psrs)
3058 env->mmuregs[3] |= 1 << 5;
3059 if (is_exec)
3060 env->mmuregs[3] |= 1 << 6;
3061 if (is_write)
3062 env->mmuregs[3] |= 1 << 7;
3063 env->mmuregs[3] |= (5 << 2) | 2;
3064 env->mmuregs[4] = addr; /* Fault address register */
3065 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
3066 if (is_exec)
3067 raise_exception(TT_CODE_ACCESS);
3068 else
3069 raise_exception(TT_DATA_ACCESS);
3071 env = saved_env;
3073 #else
3074 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
3075 int is_asi, int size)
3077 #ifdef DEBUG_UNASSIGNED
3078 CPUState *saved_env;
3080 /* XXX: hack to restore env in all cases, even if not called from
3081 generated code */
3082 saved_env = env;
3083 env = cpu_single_env;
3084 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
3085 "\n", addr, env->pc);
3086 env = saved_env;
3087 #endif
3088 if (is_exec)
3089 raise_exception(TT_CODE_ACCESS);
3090 else
3091 raise_exception(TT_DATA_ACCESS);
3093 #endif
3095 #ifdef TARGET_SPARC64
3096 void helper_tick_set_count(void *opaque, uint64_t count)
3098 #if !defined(CONFIG_USER_ONLY)
3099 cpu_tick_set_count(opaque, count);
3100 #endif
3103 uint64_t helper_tick_get_count(void *opaque)
3105 #if !defined(CONFIG_USER_ONLY)
3106 return cpu_tick_get_count(opaque);
3107 #else
3108 return 0;
3109 #endif
3112 void helper_tick_set_limit(void *opaque, uint64_t limit)
3114 #if !defined(CONFIG_USER_ONLY)
3115 cpu_tick_set_limit(opaque, limit);
3116 #endif
3118 #endif