Prepare for handling different BSD mmap() flags
[qemu/mini2440/sniper_sniper_test.git] / exec.c
blob3523c9577ebea86dcf159343810d920ca677a77f
1 /*
2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "config.h"
21 #ifdef _WIN32
22 #define WIN32_LEAN_AND_MEAN
23 #include <windows.h>
24 #else
25 #include <sys/types.h>
26 #include <sys/mman.h>
27 #endif
28 #include <stdlib.h>
29 #include <stdio.h>
30 #include <stdarg.h>
31 #include <string.h>
32 #include <errno.h>
33 #include <unistd.h>
34 #include <inttypes.h>
36 #include "cpu.h"
37 #include "exec-all.h"
38 #include "qemu-common.h"
39 #include "tcg.h"
40 #include "hw/hw.h"
41 #include "osdep.h"
42 #include "kvm.h"
43 #if defined(CONFIG_USER_ONLY)
44 #include <qemu.h>
45 #endif
47 //#define DEBUG_TB_INVALIDATE
48 //#define DEBUG_FLUSH
49 //#define DEBUG_TLB
50 //#define DEBUG_UNASSIGNED
52 /* make various TB consistency checks */
53 //#define DEBUG_TB_CHECK
54 //#define DEBUG_TLB_CHECK
56 //#define DEBUG_IOPORT
57 //#define DEBUG_SUBPAGE
59 #if !defined(CONFIG_USER_ONLY)
60 /* TB consistency checks only implemented for usermode emulation. */
61 #undef DEBUG_TB_CHECK
62 #endif
64 #define SMC_BITMAP_USE_THRESHOLD 10
66 #define MMAP_AREA_START 0x00000000
67 #define MMAP_AREA_END 0xa8000000
69 #if defined(TARGET_SPARC64)
70 #define TARGET_PHYS_ADDR_SPACE_BITS 41
71 #elif defined(TARGET_SPARC)
72 #define TARGET_PHYS_ADDR_SPACE_BITS 36
73 #elif defined(TARGET_ALPHA)
74 #define TARGET_PHYS_ADDR_SPACE_BITS 42
75 #define TARGET_VIRT_ADDR_SPACE_BITS 42
76 #elif defined(TARGET_PPC64)
77 #define TARGET_PHYS_ADDR_SPACE_BITS 42
78 #elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
79 #define TARGET_PHYS_ADDR_SPACE_BITS 42
80 #elif defined(TARGET_I386) && !defined(USE_KQEMU)
81 #define TARGET_PHYS_ADDR_SPACE_BITS 36
82 #else
83 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
84 #define TARGET_PHYS_ADDR_SPACE_BITS 32
85 #endif
87 static TranslationBlock *tbs;
88 int code_gen_max_blocks;
89 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
90 static int nb_tbs;
91 /* any access to the tbs or the page table must use this lock */
92 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
94 #if defined(__arm__) || defined(__sparc_v9__)
95 /* The prologue must be reachable with a direct jump. ARM and Sparc64
96 have limited branch ranges (possibly also PPC) so place it in a
97 section close to code segment. */
98 #define code_gen_section \
99 __attribute__((__section__(".gen_code"))) \
100 __attribute__((aligned (32)))
101 #else
102 #define code_gen_section \
103 __attribute__((aligned (32)))
104 #endif
106 uint8_t code_gen_prologue[1024] code_gen_section;
107 static uint8_t *code_gen_buffer;
108 static unsigned long code_gen_buffer_size;
109 /* threshold to flush the translated code buffer */
110 static unsigned long code_gen_buffer_max_size;
111 uint8_t *code_gen_ptr;
113 #if !defined(CONFIG_USER_ONLY)
114 ram_addr_t phys_ram_size;
115 int phys_ram_fd;
116 uint8_t *phys_ram_base;
117 uint8_t *phys_ram_dirty;
118 static int in_migration;
119 static ram_addr_t phys_ram_alloc_offset = 0;
120 #endif
122 CPUState *first_cpu;
123 /* current CPU in the current thread. It is only valid inside
124 cpu_exec() */
125 CPUState *cpu_single_env;
126 /* 0 = Do not count executed instructions.
127 1 = Precise instruction counting.
128 2 = Adaptive rate instruction counting. */
129 int use_icount = 0;
130 /* Current instruction counter. While executing translated code this may
131 include some instructions that have not yet been executed. */
132 int64_t qemu_icount;
134 typedef struct PageDesc {
135 /* list of TBs intersecting this ram page */
136 TranslationBlock *first_tb;
137 /* in order to optimize self modifying code, we count the number
138 of lookups we do to a given page to use a bitmap */
139 unsigned int code_write_count;
140 uint8_t *code_bitmap;
141 #if defined(CONFIG_USER_ONLY)
142 unsigned long flags;
143 #endif
144 } PageDesc;
146 typedef struct PhysPageDesc {
147 /* offset in host memory of the page + io_index in the low bits */
148 ram_addr_t phys_offset;
149 } PhysPageDesc;
151 #define L2_BITS 10
152 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
153 /* XXX: this is a temporary hack for alpha target.
154 * In the future, this is to be replaced by a multi-level table
155 * to actually be able to handle the complete 64 bits address space.
157 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
158 #else
159 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
160 #endif
162 #define L1_SIZE (1 << L1_BITS)
163 #define L2_SIZE (1 << L2_BITS)
165 unsigned long qemu_real_host_page_size;
166 unsigned long qemu_host_page_bits;
167 unsigned long qemu_host_page_size;
168 unsigned long qemu_host_page_mask;
170 /* XXX: for system emulation, it could just be an array */
171 static PageDesc *l1_map[L1_SIZE];
172 static PhysPageDesc **l1_phys_map;
174 #if !defined(CONFIG_USER_ONLY)
175 static void io_mem_init(void);
177 /* io memory support */
178 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
179 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
180 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
181 static int io_mem_nb;
182 static int io_mem_watch;
183 #endif
185 /* log support */
186 static const char *logfilename = "/tmp/qemu.log";
187 FILE *logfile;
188 int loglevel;
189 static int log_append = 0;
191 /* statistics */
192 static int tlb_flush_count;
193 static int tb_flush_count;
194 static int tb_phys_invalidate_count;
196 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
197 typedef struct subpage_t {
198 target_phys_addr_t base;
199 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
200 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
201 void *opaque[TARGET_PAGE_SIZE][2][4];
202 } subpage_t;
204 #ifdef _WIN32
205 static void map_exec(void *addr, long size)
207 DWORD old_protect;
208 VirtualProtect(addr, size,
209 PAGE_EXECUTE_READWRITE, &old_protect);
212 #else
213 static void map_exec(void *addr, long size)
215 unsigned long start, end, page_size;
217 page_size = getpagesize();
218 start = (unsigned long)addr;
219 start &= ~(page_size - 1);
221 end = (unsigned long)addr + size;
222 end += page_size - 1;
223 end &= ~(page_size - 1);
225 mprotect((void *)start, end - start,
226 PROT_READ | PROT_WRITE | PROT_EXEC);
228 #endif
230 static void page_init(void)
232 /* NOTE: we can always suppose that qemu_host_page_size >=
233 TARGET_PAGE_SIZE */
234 #ifdef _WIN32
236 SYSTEM_INFO system_info;
238 GetSystemInfo(&system_info);
239 qemu_real_host_page_size = system_info.dwPageSize;
241 #else
242 qemu_real_host_page_size = getpagesize();
243 #endif
244 if (qemu_host_page_size == 0)
245 qemu_host_page_size = qemu_real_host_page_size;
246 if (qemu_host_page_size < TARGET_PAGE_SIZE)
247 qemu_host_page_size = TARGET_PAGE_SIZE;
248 qemu_host_page_bits = 0;
249 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
250 qemu_host_page_bits++;
251 qemu_host_page_mask = ~(qemu_host_page_size - 1);
252 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
253 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
255 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
257 long long startaddr, endaddr;
258 FILE *f;
259 int n;
261 mmap_lock();
262 last_brk = (unsigned long)sbrk(0);
263 f = fopen("/proc/self/maps", "r");
264 if (f) {
265 do {
266 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
267 if (n == 2) {
268 startaddr = MIN(startaddr,
269 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
270 endaddr = MIN(endaddr,
271 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
272 page_set_flags(startaddr & TARGET_PAGE_MASK,
273 TARGET_PAGE_ALIGN(endaddr),
274 PAGE_RESERVED);
276 } while (!feof(f));
277 fclose(f);
279 mmap_unlock();
281 #endif
284 static inline PageDesc **page_l1_map(target_ulong index)
286 #if TARGET_LONG_BITS > 32
287 /* Host memory outside guest VM. For 32-bit targets we have already
288 excluded high addresses. */
289 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
290 return NULL;
291 #endif
292 return &l1_map[index >> L2_BITS];
295 static inline PageDesc *page_find_alloc(target_ulong index)
297 PageDesc **lp, *p;
298 lp = page_l1_map(index);
299 if (!lp)
300 return NULL;
302 p = *lp;
303 if (!p) {
304 /* allocate if not found */
305 #if defined(CONFIG_USER_ONLY)
306 unsigned long addr;
307 size_t len = sizeof(PageDesc) * L2_SIZE;
308 /* Don't use qemu_malloc because it may recurse. */
309 p = mmap(0, len, PROT_READ | PROT_WRITE,
310 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
311 *lp = p;
312 addr = h2g(p);
313 if (addr == (target_ulong)addr) {
314 page_set_flags(addr & TARGET_PAGE_MASK,
315 TARGET_PAGE_ALIGN(addr + len),
316 PAGE_RESERVED);
318 #else
319 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
320 *lp = p;
321 #endif
323 return p + (index & (L2_SIZE - 1));
326 static inline PageDesc *page_find(target_ulong index)
328 PageDesc **lp, *p;
329 lp = page_l1_map(index);
330 if (!lp)
331 return NULL;
333 p = *lp;
334 if (!p)
335 return 0;
336 return p + (index & (L2_SIZE - 1));
339 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
341 void **lp, **p;
342 PhysPageDesc *pd;
344 p = (void **)l1_phys_map;
345 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
347 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
348 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
349 #endif
350 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
351 p = *lp;
352 if (!p) {
353 /* allocate if not found */
354 if (!alloc)
355 return NULL;
356 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
357 memset(p, 0, sizeof(void *) * L1_SIZE);
358 *lp = p;
360 #endif
361 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
362 pd = *lp;
363 if (!pd) {
364 int i;
365 /* allocate if not found */
366 if (!alloc)
367 return NULL;
368 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
369 *lp = pd;
370 for (i = 0; i < L2_SIZE; i++)
371 pd[i].phys_offset = IO_MEM_UNASSIGNED;
373 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
376 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
378 return phys_page_find_alloc(index, 0);
381 #if !defined(CONFIG_USER_ONLY)
382 static void tlb_protect_code(ram_addr_t ram_addr);
383 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
384 target_ulong vaddr);
385 #define mmap_lock() do { } while(0)
386 #define mmap_unlock() do { } while(0)
387 #endif
389 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
391 #if defined(CONFIG_USER_ONLY)
392 /* Currently it is not recommanded to allocate big chunks of data in
393 user mode. It will change when a dedicated libc will be used */
394 #define USE_STATIC_CODE_GEN_BUFFER
395 #endif
397 #ifdef USE_STATIC_CODE_GEN_BUFFER
398 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
399 #endif
401 static void code_gen_alloc(unsigned long tb_size)
403 #ifdef USE_STATIC_CODE_GEN_BUFFER
404 code_gen_buffer = static_code_gen_buffer;
405 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
406 map_exec(code_gen_buffer, code_gen_buffer_size);
407 #else
408 code_gen_buffer_size = tb_size;
409 if (code_gen_buffer_size == 0) {
410 #if defined(CONFIG_USER_ONLY)
411 /* in user mode, phys_ram_size is not meaningful */
412 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
413 #else
414 /* XXX: needs ajustments */
415 code_gen_buffer_size = (unsigned long)(phys_ram_size / 4);
416 #endif
418 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
419 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
420 /* The code gen buffer location may have constraints depending on
421 the host cpu and OS */
422 #if defined(__linux__)
424 int flags;
425 void *start = NULL;
427 flags = MAP_PRIVATE | MAP_ANONYMOUS;
428 #if defined(__x86_64__)
429 flags |= MAP_32BIT;
430 /* Cannot map more than that */
431 if (code_gen_buffer_size > (800 * 1024 * 1024))
432 code_gen_buffer_size = (800 * 1024 * 1024);
433 #elif defined(__sparc_v9__)
434 // Map the buffer below 2G, so we can use direct calls and branches
435 flags |= MAP_FIXED;
436 start = (void *) 0x60000000UL;
437 if (code_gen_buffer_size > (512 * 1024 * 1024))
438 code_gen_buffer_size = (512 * 1024 * 1024);
439 #endif
440 code_gen_buffer = mmap(start, code_gen_buffer_size,
441 PROT_WRITE | PROT_READ | PROT_EXEC,
442 flags, -1, 0);
443 if (code_gen_buffer == MAP_FAILED) {
444 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
445 exit(1);
448 #elif defined(__FreeBSD__)
450 int flags;
451 void *addr = NULL;
452 flags = MAP_PRIVATE | MAP_ANONYMOUS;
453 #if defined(__x86_64__)
454 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
455 * 0x40000000 is free */
456 flags |= MAP_FIXED;
457 addr = (void *)0x40000000;
458 /* Cannot map more than that */
459 if (code_gen_buffer_size > (800 * 1024 * 1024))
460 code_gen_buffer_size = (800 * 1024 * 1024);
461 #endif
462 code_gen_buffer = mmap(addr, code_gen_buffer_size,
463 PROT_WRITE | PROT_READ | PROT_EXEC,
464 flags, -1, 0);
465 if (code_gen_buffer == MAP_FAILED) {
466 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
467 exit(1);
470 #else
471 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
472 if (!code_gen_buffer) {
473 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
474 exit(1);
476 map_exec(code_gen_buffer, code_gen_buffer_size);
477 #endif
478 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
479 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
480 code_gen_buffer_max_size = code_gen_buffer_size -
481 code_gen_max_block_size();
482 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
483 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
486 /* Must be called before using the QEMU cpus. 'tb_size' is the size
487 (in bytes) allocated to the translation buffer. Zero means default
488 size. */
489 void cpu_exec_init_all(unsigned long tb_size)
491 cpu_gen_init();
492 code_gen_alloc(tb_size);
493 code_gen_ptr = code_gen_buffer;
494 page_init();
495 #if !defined(CONFIG_USER_ONLY)
496 io_mem_init();
497 #endif
500 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
502 #define CPU_COMMON_SAVE_VERSION 1
504 static void cpu_common_save(QEMUFile *f, void *opaque)
506 CPUState *env = opaque;
508 qemu_put_be32s(f, &env->halted);
509 qemu_put_be32s(f, &env->interrupt_request);
512 static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
514 CPUState *env = opaque;
516 if (version_id != CPU_COMMON_SAVE_VERSION)
517 return -EINVAL;
519 qemu_get_be32s(f, &env->halted);
520 qemu_get_be32s(f, &env->interrupt_request);
521 tlb_flush(env, 1);
523 return 0;
525 #endif
527 void cpu_exec_init(CPUState *env)
529 CPUState **penv;
530 int cpu_index;
532 env->next_cpu = NULL;
533 penv = &first_cpu;
534 cpu_index = 0;
535 while (*penv != NULL) {
536 penv = (CPUState **)&(*penv)->next_cpu;
537 cpu_index++;
539 env->cpu_index = cpu_index;
540 TAILQ_INIT(&env->breakpoints);
541 TAILQ_INIT(&env->watchpoints);
542 *penv = env;
543 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
544 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
545 cpu_common_save, cpu_common_load, env);
546 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
547 cpu_save, cpu_load, env);
548 #endif
551 static inline void invalidate_page_bitmap(PageDesc *p)
553 if (p->code_bitmap) {
554 qemu_free(p->code_bitmap);
555 p->code_bitmap = NULL;
557 p->code_write_count = 0;
560 /* set to NULL all the 'first_tb' fields in all PageDescs */
561 static void page_flush_tb(void)
563 int i, j;
564 PageDesc *p;
566 for(i = 0; i < L1_SIZE; i++) {
567 p = l1_map[i];
568 if (p) {
569 for(j = 0; j < L2_SIZE; j++) {
570 p->first_tb = NULL;
571 invalidate_page_bitmap(p);
572 p++;
578 /* flush all the translation blocks */
579 /* XXX: tb_flush is currently not thread safe */
580 void tb_flush(CPUState *env1)
582 CPUState *env;
583 #if defined(DEBUG_FLUSH)
584 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
585 (unsigned long)(code_gen_ptr - code_gen_buffer),
586 nb_tbs, nb_tbs > 0 ?
587 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
588 #endif
589 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
590 cpu_abort(env1, "Internal error: code buffer overflow\n");
592 nb_tbs = 0;
594 for(env = first_cpu; env != NULL; env = env->next_cpu) {
595 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
598 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
599 page_flush_tb();
601 code_gen_ptr = code_gen_buffer;
602 /* XXX: flush processor icache at this point if cache flush is
603 expensive */
604 tb_flush_count++;
607 #ifdef DEBUG_TB_CHECK
609 static void tb_invalidate_check(target_ulong address)
611 TranslationBlock *tb;
612 int i;
613 address &= TARGET_PAGE_MASK;
614 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
615 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
616 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
617 address >= tb->pc + tb->size)) {
618 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
619 address, (long)tb->pc, tb->size);
625 /* verify that all the pages have correct rights for code */
626 static void tb_page_check(void)
628 TranslationBlock *tb;
629 int i, flags1, flags2;
631 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
632 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
633 flags1 = page_get_flags(tb->pc);
634 flags2 = page_get_flags(tb->pc + tb->size - 1);
635 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
636 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
637 (long)tb->pc, tb->size, flags1, flags2);
643 static void tb_jmp_check(TranslationBlock *tb)
645 TranslationBlock *tb1;
646 unsigned int n1;
648 /* suppress any remaining jumps to this TB */
649 tb1 = tb->jmp_first;
650 for(;;) {
651 n1 = (long)tb1 & 3;
652 tb1 = (TranslationBlock *)((long)tb1 & ~3);
653 if (n1 == 2)
654 break;
655 tb1 = tb1->jmp_next[n1];
657 /* check end of list */
658 if (tb1 != tb) {
659 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
663 #endif
665 /* invalidate one TB */
666 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
667 int next_offset)
669 TranslationBlock *tb1;
670 for(;;) {
671 tb1 = *ptb;
672 if (tb1 == tb) {
673 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
674 break;
676 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
680 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
682 TranslationBlock *tb1;
683 unsigned int n1;
685 for(;;) {
686 tb1 = *ptb;
687 n1 = (long)tb1 & 3;
688 tb1 = (TranslationBlock *)((long)tb1 & ~3);
689 if (tb1 == tb) {
690 *ptb = tb1->page_next[n1];
691 break;
693 ptb = &tb1->page_next[n1];
697 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
699 TranslationBlock *tb1, **ptb;
700 unsigned int n1;
702 ptb = &tb->jmp_next[n];
703 tb1 = *ptb;
704 if (tb1) {
705 /* find tb(n) in circular list */
706 for(;;) {
707 tb1 = *ptb;
708 n1 = (long)tb1 & 3;
709 tb1 = (TranslationBlock *)((long)tb1 & ~3);
710 if (n1 == n && tb1 == tb)
711 break;
712 if (n1 == 2) {
713 ptb = &tb1->jmp_first;
714 } else {
715 ptb = &tb1->jmp_next[n1];
718 /* now we can suppress tb(n) from the list */
719 *ptb = tb->jmp_next[n];
721 tb->jmp_next[n] = NULL;
725 /* reset the jump entry 'n' of a TB so that it is not chained to
726 another TB */
727 static inline void tb_reset_jump(TranslationBlock *tb, int n)
729 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
732 void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
734 CPUState *env;
735 PageDesc *p;
736 unsigned int h, n1;
737 target_phys_addr_t phys_pc;
738 TranslationBlock *tb1, *tb2;
740 /* remove the TB from the hash list */
741 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
742 h = tb_phys_hash_func(phys_pc);
743 tb_remove(&tb_phys_hash[h], tb,
744 offsetof(TranslationBlock, phys_hash_next));
746 /* remove the TB from the page list */
747 if (tb->page_addr[0] != page_addr) {
748 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
749 tb_page_remove(&p->first_tb, tb);
750 invalidate_page_bitmap(p);
752 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
753 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
754 tb_page_remove(&p->first_tb, tb);
755 invalidate_page_bitmap(p);
758 tb_invalidated_flag = 1;
760 /* remove the TB from the hash list */
761 h = tb_jmp_cache_hash_func(tb->pc);
762 for(env = first_cpu; env != NULL; env = env->next_cpu) {
763 if (env->tb_jmp_cache[h] == tb)
764 env->tb_jmp_cache[h] = NULL;
767 /* suppress this TB from the two jump lists */
768 tb_jmp_remove(tb, 0);
769 tb_jmp_remove(tb, 1);
771 /* suppress any remaining jumps to this TB */
772 tb1 = tb->jmp_first;
773 for(;;) {
774 n1 = (long)tb1 & 3;
775 if (n1 == 2)
776 break;
777 tb1 = (TranslationBlock *)((long)tb1 & ~3);
778 tb2 = tb1->jmp_next[n1];
779 tb_reset_jump(tb1, n1);
780 tb1->jmp_next[n1] = NULL;
781 tb1 = tb2;
783 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
785 tb_phys_invalidate_count++;
788 static inline void set_bits(uint8_t *tab, int start, int len)
790 int end, mask, end1;
792 end = start + len;
793 tab += start >> 3;
794 mask = 0xff << (start & 7);
795 if ((start & ~7) == (end & ~7)) {
796 if (start < end) {
797 mask &= ~(0xff << (end & 7));
798 *tab |= mask;
800 } else {
801 *tab++ |= mask;
802 start = (start + 8) & ~7;
803 end1 = end & ~7;
804 while (start < end1) {
805 *tab++ = 0xff;
806 start += 8;
808 if (start < end) {
809 mask = ~(0xff << (end & 7));
810 *tab |= mask;
815 static void build_page_bitmap(PageDesc *p)
817 int n, tb_start, tb_end;
818 TranslationBlock *tb;
820 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
821 if (!p->code_bitmap)
822 return;
824 tb = p->first_tb;
825 while (tb != NULL) {
826 n = (long)tb & 3;
827 tb = (TranslationBlock *)((long)tb & ~3);
828 /* NOTE: this is subtle as a TB may span two physical pages */
829 if (n == 0) {
830 /* NOTE: tb_end may be after the end of the page, but
831 it is not a problem */
832 tb_start = tb->pc & ~TARGET_PAGE_MASK;
833 tb_end = tb_start + tb->size;
834 if (tb_end > TARGET_PAGE_SIZE)
835 tb_end = TARGET_PAGE_SIZE;
836 } else {
837 tb_start = 0;
838 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
840 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
841 tb = tb->page_next[n];
845 TranslationBlock *tb_gen_code(CPUState *env,
846 target_ulong pc, target_ulong cs_base,
847 int flags, int cflags)
849 TranslationBlock *tb;
850 uint8_t *tc_ptr;
851 target_ulong phys_pc, phys_page2, virt_page2;
852 int code_gen_size;
854 phys_pc = get_phys_addr_code(env, pc);
855 tb = tb_alloc(pc);
856 if (!tb) {
857 /* flush must be done */
858 tb_flush(env);
859 /* cannot fail at this point */
860 tb = tb_alloc(pc);
861 /* Don't forget to invalidate previous TB info. */
862 tb_invalidated_flag = 1;
864 tc_ptr = code_gen_ptr;
865 tb->tc_ptr = tc_ptr;
866 tb->cs_base = cs_base;
867 tb->flags = flags;
868 tb->cflags = cflags;
869 cpu_gen_code(env, tb, &code_gen_size);
870 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
872 /* check next page if needed */
873 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
874 phys_page2 = -1;
875 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
876 phys_page2 = get_phys_addr_code(env, virt_page2);
878 tb_link_phys(tb, phys_pc, phys_page2);
879 return tb;
882 /* invalidate all TBs which intersect with the target physical page
883 starting in range [start;end[. NOTE: start and end must refer to
884 the same physical page. 'is_cpu_write_access' should be true if called
885 from a real cpu write access: the virtual CPU will exit the current
886 TB if code is modified inside this TB. */
887 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
888 int is_cpu_write_access)
890 TranslationBlock *tb, *tb_next, *saved_tb;
891 CPUState *env = cpu_single_env;
892 target_ulong tb_start, tb_end;
893 PageDesc *p;
894 int n;
895 #ifdef TARGET_HAS_PRECISE_SMC
896 int current_tb_not_found = is_cpu_write_access;
897 TranslationBlock *current_tb = NULL;
898 int current_tb_modified = 0;
899 target_ulong current_pc = 0;
900 target_ulong current_cs_base = 0;
901 int current_flags = 0;
902 #endif /* TARGET_HAS_PRECISE_SMC */
904 p = page_find(start >> TARGET_PAGE_BITS);
905 if (!p)
906 return;
907 if (!p->code_bitmap &&
908 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
909 is_cpu_write_access) {
910 /* build code bitmap */
911 build_page_bitmap(p);
914 /* we remove all the TBs in the range [start, end[ */
915 /* XXX: see if in some cases it could be faster to invalidate all the code */
916 tb = p->first_tb;
917 while (tb != NULL) {
918 n = (long)tb & 3;
919 tb = (TranslationBlock *)((long)tb & ~3);
920 tb_next = tb->page_next[n];
921 /* NOTE: this is subtle as a TB may span two physical pages */
922 if (n == 0) {
923 /* NOTE: tb_end may be after the end of the page, but
924 it is not a problem */
925 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
926 tb_end = tb_start + tb->size;
927 } else {
928 tb_start = tb->page_addr[1];
929 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
931 if (!(tb_end <= start || tb_start >= end)) {
932 #ifdef TARGET_HAS_PRECISE_SMC
933 if (current_tb_not_found) {
934 current_tb_not_found = 0;
935 current_tb = NULL;
936 if (env->mem_io_pc) {
937 /* now we have a real cpu fault */
938 current_tb = tb_find_pc(env->mem_io_pc);
941 if (current_tb == tb &&
942 (current_tb->cflags & CF_COUNT_MASK) != 1) {
943 /* If we are modifying the current TB, we must stop
944 its execution. We could be more precise by checking
945 that the modification is after the current PC, but it
946 would require a specialized function to partially
947 restore the CPU state */
949 current_tb_modified = 1;
950 cpu_restore_state(current_tb, env,
951 env->mem_io_pc, NULL);
952 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
953 &current_flags);
955 #endif /* TARGET_HAS_PRECISE_SMC */
956 /* we need to do that to handle the case where a signal
957 occurs while doing tb_phys_invalidate() */
958 saved_tb = NULL;
959 if (env) {
960 saved_tb = env->current_tb;
961 env->current_tb = NULL;
963 tb_phys_invalidate(tb, -1);
964 if (env) {
965 env->current_tb = saved_tb;
966 if (env->interrupt_request && env->current_tb)
967 cpu_interrupt(env, env->interrupt_request);
970 tb = tb_next;
972 #if !defined(CONFIG_USER_ONLY)
973 /* if no code remaining, no need to continue to use slow writes */
974 if (!p->first_tb) {
975 invalidate_page_bitmap(p);
976 if (is_cpu_write_access) {
977 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
980 #endif
981 #ifdef TARGET_HAS_PRECISE_SMC
982 if (current_tb_modified) {
983 /* we generate a block containing just the instruction
984 modifying the memory. It will ensure that it cannot modify
985 itself */
986 env->current_tb = NULL;
987 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
988 cpu_resume_from_signal(env, NULL);
990 #endif
993 /* len must be <= 8 and start must be a multiple of len */
994 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
996 PageDesc *p;
997 int offset, b;
998 #if 0
999 if (1) {
1000 if (loglevel) {
1001 fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1002 cpu_single_env->mem_io_vaddr, len,
1003 cpu_single_env->eip,
1004 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1007 #endif
1008 p = page_find(start >> TARGET_PAGE_BITS);
1009 if (!p)
1010 return;
1011 if (p->code_bitmap) {
1012 offset = start & ~TARGET_PAGE_MASK;
1013 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1014 if (b & ((1 << len) - 1))
1015 goto do_invalidate;
1016 } else {
1017 do_invalidate:
1018 tb_invalidate_phys_page_range(start, start + len, 1);
1022 #if !defined(CONFIG_SOFTMMU)
1023 static void tb_invalidate_phys_page(target_phys_addr_t addr,
1024 unsigned long pc, void *puc)
1026 TranslationBlock *tb;
1027 PageDesc *p;
1028 int n;
1029 #ifdef TARGET_HAS_PRECISE_SMC
1030 TranslationBlock *current_tb = NULL;
1031 CPUState *env = cpu_single_env;
1032 int current_tb_modified = 0;
1033 target_ulong current_pc = 0;
1034 target_ulong current_cs_base = 0;
1035 int current_flags = 0;
1036 #endif
1038 addr &= TARGET_PAGE_MASK;
1039 p = page_find(addr >> TARGET_PAGE_BITS);
1040 if (!p)
1041 return;
1042 tb = p->first_tb;
1043 #ifdef TARGET_HAS_PRECISE_SMC
1044 if (tb && pc != 0) {
1045 current_tb = tb_find_pc(pc);
1047 #endif
1048 while (tb != NULL) {
1049 n = (long)tb & 3;
1050 tb = (TranslationBlock *)((long)tb & ~3);
1051 #ifdef TARGET_HAS_PRECISE_SMC
1052 if (current_tb == tb &&
1053 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1054 /* If we are modifying the current TB, we must stop
1055 its execution. We could be more precise by checking
1056 that the modification is after the current PC, but it
1057 would require a specialized function to partially
1058 restore the CPU state */
1060 current_tb_modified = 1;
1061 cpu_restore_state(current_tb, env, pc, puc);
1062 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1063 &current_flags);
1065 #endif /* TARGET_HAS_PRECISE_SMC */
1066 tb_phys_invalidate(tb, addr);
1067 tb = tb->page_next[n];
1069 p->first_tb = NULL;
1070 #ifdef TARGET_HAS_PRECISE_SMC
1071 if (current_tb_modified) {
1072 /* we generate a block containing just the instruction
1073 modifying the memory. It will ensure that it cannot modify
1074 itself */
1075 env->current_tb = NULL;
1076 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1077 cpu_resume_from_signal(env, puc);
1079 #endif
1081 #endif
1083 /* add the tb in the target page and protect it if necessary */
1084 static inline void tb_alloc_page(TranslationBlock *tb,
1085 unsigned int n, target_ulong page_addr)
1087 PageDesc *p;
1088 TranslationBlock *last_first_tb;
1090 tb->page_addr[n] = page_addr;
1091 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
1092 tb->page_next[n] = p->first_tb;
1093 last_first_tb = p->first_tb;
1094 p->first_tb = (TranslationBlock *)((long)tb | n);
1095 invalidate_page_bitmap(p);
1097 #if defined(TARGET_HAS_SMC) || 1
1099 #if defined(CONFIG_USER_ONLY)
1100 if (p->flags & PAGE_WRITE) {
1101 target_ulong addr;
1102 PageDesc *p2;
1103 int prot;
1105 /* force the host page as non writable (writes will have a
1106 page fault + mprotect overhead) */
1107 page_addr &= qemu_host_page_mask;
1108 prot = 0;
1109 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1110 addr += TARGET_PAGE_SIZE) {
1112 p2 = page_find (addr >> TARGET_PAGE_BITS);
1113 if (!p2)
1114 continue;
1115 prot |= p2->flags;
1116 p2->flags &= ~PAGE_WRITE;
1117 page_get_flags(addr);
1119 mprotect(g2h(page_addr), qemu_host_page_size,
1120 (prot & PAGE_BITS) & ~PAGE_WRITE);
1121 #ifdef DEBUG_TB_INVALIDATE
1122 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1123 page_addr);
1124 #endif
1126 #else
1127 /* if some code is already present, then the pages are already
1128 protected. So we handle the case where only the first TB is
1129 allocated in a physical page */
1130 if (!last_first_tb) {
1131 tlb_protect_code(page_addr);
1133 #endif
1135 #endif /* TARGET_HAS_SMC */
1138 /* Allocate a new translation block. Flush the translation buffer if
1139 too many translation blocks or too much generated code. */
1140 TranslationBlock *tb_alloc(target_ulong pc)
1142 TranslationBlock *tb;
1144 if (nb_tbs >= code_gen_max_blocks ||
1145 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1146 return NULL;
1147 tb = &tbs[nb_tbs++];
1148 tb->pc = pc;
1149 tb->cflags = 0;
1150 return tb;
1153 void tb_free(TranslationBlock *tb)
1155 /* In practice this is mostly used for single use temporary TB
1156 Ignore the hard cases and just back up if this TB happens to
1157 be the last one generated. */
1158 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1159 code_gen_ptr = tb->tc_ptr;
1160 nb_tbs--;
1164 /* add a new TB and link it to the physical page tables. phys_page2 is
1165 (-1) to indicate that only one page contains the TB. */
1166 void tb_link_phys(TranslationBlock *tb,
1167 target_ulong phys_pc, target_ulong phys_page2)
1169 unsigned int h;
1170 TranslationBlock **ptb;
1172 /* Grab the mmap lock to stop another thread invalidating this TB
1173 before we are done. */
1174 mmap_lock();
1175 /* add in the physical hash table */
1176 h = tb_phys_hash_func(phys_pc);
1177 ptb = &tb_phys_hash[h];
1178 tb->phys_hash_next = *ptb;
1179 *ptb = tb;
1181 /* add in the page list */
1182 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1183 if (phys_page2 != -1)
1184 tb_alloc_page(tb, 1, phys_page2);
1185 else
1186 tb->page_addr[1] = -1;
1188 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1189 tb->jmp_next[0] = NULL;
1190 tb->jmp_next[1] = NULL;
1192 /* init original jump addresses */
1193 if (tb->tb_next_offset[0] != 0xffff)
1194 tb_reset_jump(tb, 0);
1195 if (tb->tb_next_offset[1] != 0xffff)
1196 tb_reset_jump(tb, 1);
1198 #ifdef DEBUG_TB_CHECK
1199 tb_page_check();
1200 #endif
1201 mmap_unlock();
1204 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1205 tb[1].tc_ptr. Return NULL if not found */
1206 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1208 int m_min, m_max, m;
1209 unsigned long v;
1210 TranslationBlock *tb;
1212 if (nb_tbs <= 0)
1213 return NULL;
1214 if (tc_ptr < (unsigned long)code_gen_buffer ||
1215 tc_ptr >= (unsigned long)code_gen_ptr)
1216 return NULL;
1217 /* binary search (cf Knuth) */
1218 m_min = 0;
1219 m_max = nb_tbs - 1;
1220 while (m_min <= m_max) {
1221 m = (m_min + m_max) >> 1;
1222 tb = &tbs[m];
1223 v = (unsigned long)tb->tc_ptr;
1224 if (v == tc_ptr)
1225 return tb;
1226 else if (tc_ptr < v) {
1227 m_max = m - 1;
1228 } else {
1229 m_min = m + 1;
1232 return &tbs[m_max];
1235 static void tb_reset_jump_recursive(TranslationBlock *tb);
1237 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1239 TranslationBlock *tb1, *tb_next, **ptb;
1240 unsigned int n1;
1242 tb1 = tb->jmp_next[n];
1243 if (tb1 != NULL) {
1244 /* find head of list */
1245 for(;;) {
1246 n1 = (long)tb1 & 3;
1247 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1248 if (n1 == 2)
1249 break;
1250 tb1 = tb1->jmp_next[n1];
1252 /* we are now sure now that tb jumps to tb1 */
1253 tb_next = tb1;
1255 /* remove tb from the jmp_first list */
1256 ptb = &tb_next->jmp_first;
1257 for(;;) {
1258 tb1 = *ptb;
1259 n1 = (long)tb1 & 3;
1260 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1261 if (n1 == n && tb1 == tb)
1262 break;
1263 ptb = &tb1->jmp_next[n1];
1265 *ptb = tb->jmp_next[n];
1266 tb->jmp_next[n] = NULL;
1268 /* suppress the jump to next tb in generated code */
1269 tb_reset_jump(tb, n);
1271 /* suppress jumps in the tb on which we could have jumped */
1272 tb_reset_jump_recursive(tb_next);
1276 static void tb_reset_jump_recursive(TranslationBlock *tb)
1278 tb_reset_jump_recursive2(tb, 0);
1279 tb_reset_jump_recursive2(tb, 1);
1282 #if defined(TARGET_HAS_ICE)
1283 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1285 target_phys_addr_t addr;
1286 target_ulong pd;
1287 ram_addr_t ram_addr;
1288 PhysPageDesc *p;
1290 addr = cpu_get_phys_page_debug(env, pc);
1291 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1292 if (!p) {
1293 pd = IO_MEM_UNASSIGNED;
1294 } else {
1295 pd = p->phys_offset;
1297 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1298 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1300 #endif
1302 /* Add a watchpoint. */
1303 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1304 int flags, CPUWatchpoint **watchpoint)
1306 target_ulong len_mask = ~(len - 1);
1307 CPUWatchpoint *wp;
1309 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1310 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1311 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1312 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1313 return -EINVAL;
1315 wp = qemu_malloc(sizeof(*wp));
1316 if (!wp)
1317 return -ENOMEM;
1319 wp->vaddr = addr;
1320 wp->len_mask = len_mask;
1321 wp->flags = flags;
1323 /* keep all GDB-injected watchpoints in front */
1324 if (flags & BP_GDB)
1325 TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1326 else
1327 TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1329 tlb_flush_page(env, addr);
1331 if (watchpoint)
1332 *watchpoint = wp;
1333 return 0;
1336 /* Remove a specific watchpoint. */
1337 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1338 int flags)
1340 target_ulong len_mask = ~(len - 1);
1341 CPUWatchpoint *wp;
1343 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1344 if (addr == wp->vaddr && len_mask == wp->len_mask
1345 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1346 cpu_watchpoint_remove_by_ref(env, wp);
1347 return 0;
1350 return -ENOENT;
1353 /* Remove a specific watchpoint by reference. */
1354 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1356 TAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1358 tlb_flush_page(env, watchpoint->vaddr);
1360 qemu_free(watchpoint);
1363 /* Remove all matching watchpoints. */
1364 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1366 CPUWatchpoint *wp, *next;
1368 TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1369 if (wp->flags & mask)
1370 cpu_watchpoint_remove_by_ref(env, wp);
1374 /* Add a breakpoint. */
1375 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1376 CPUBreakpoint **breakpoint)
1378 #if defined(TARGET_HAS_ICE)
1379 CPUBreakpoint *bp;
1381 bp = qemu_malloc(sizeof(*bp));
1382 if (!bp)
1383 return -ENOMEM;
1385 bp->pc = pc;
1386 bp->flags = flags;
1388 /* keep all GDB-injected breakpoints in front */
1389 if (flags & BP_GDB)
1390 TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1391 else
1392 TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1394 breakpoint_invalidate(env, pc);
1396 if (breakpoint)
1397 *breakpoint = bp;
1398 return 0;
1399 #else
1400 return -ENOSYS;
1401 #endif
1404 /* Remove a specific breakpoint. */
1405 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1407 #if defined(TARGET_HAS_ICE)
1408 CPUBreakpoint *bp;
1410 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1411 if (bp->pc == pc && bp->flags == flags) {
1412 cpu_breakpoint_remove_by_ref(env, bp);
1413 return 0;
1416 return -ENOENT;
1417 #else
1418 return -ENOSYS;
1419 #endif
1422 /* Remove a specific breakpoint by reference. */
1423 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1425 #if defined(TARGET_HAS_ICE)
1426 TAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1428 breakpoint_invalidate(env, breakpoint->pc);
1430 qemu_free(breakpoint);
1431 #endif
1434 /* Remove all matching breakpoints. */
1435 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1437 #if defined(TARGET_HAS_ICE)
1438 CPUBreakpoint *bp, *next;
1440 TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1441 if (bp->flags & mask)
1442 cpu_breakpoint_remove_by_ref(env, bp);
1444 #endif
1447 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1448 CPU loop after each instruction */
1449 void cpu_single_step(CPUState *env, int enabled)
1451 #if defined(TARGET_HAS_ICE)
1452 if (env->singlestep_enabled != enabled) {
1453 env->singlestep_enabled = enabled;
1454 /* must flush all the translated code to avoid inconsistancies */
1455 /* XXX: only flush what is necessary */
1456 tb_flush(env);
1458 #endif
1461 /* enable or disable low levels log */
1462 void cpu_set_log(int log_flags)
1464 loglevel = log_flags;
1465 if (loglevel && !logfile) {
1466 logfile = fopen(logfilename, log_append ? "a" : "w");
1467 if (!logfile) {
1468 perror(logfilename);
1469 _exit(1);
1471 #if !defined(CONFIG_SOFTMMU)
1472 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1474 static char logfile_buf[4096];
1475 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1477 #else
1478 setvbuf(logfile, NULL, _IOLBF, 0);
1479 #endif
1480 log_append = 1;
1482 if (!loglevel && logfile) {
1483 fclose(logfile);
1484 logfile = NULL;
1488 void cpu_set_log_filename(const char *filename)
1490 logfilename = strdup(filename);
1491 if (logfile) {
1492 fclose(logfile);
1493 logfile = NULL;
1495 cpu_set_log(loglevel);
1498 /* mask must never be zero, except for A20 change call */
1499 void cpu_interrupt(CPUState *env, int mask)
1501 #if !defined(USE_NPTL)
1502 TranslationBlock *tb;
1503 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1504 #endif
1505 int old_mask;
1507 old_mask = env->interrupt_request;
1508 /* FIXME: This is probably not threadsafe. A different thread could
1509 be in the middle of a read-modify-write operation. */
1510 env->interrupt_request |= mask;
1511 #if defined(USE_NPTL)
1512 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1513 problem and hope the cpu will stop of its own accord. For userspace
1514 emulation this often isn't actually as bad as it sounds. Often
1515 signals are used primarily to interrupt blocking syscalls. */
1516 #else
1517 if (use_icount) {
1518 env->icount_decr.u16.high = 0xffff;
1519 #ifndef CONFIG_USER_ONLY
1520 /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means
1521 an async event happened and we need to process it. */
1522 if (!can_do_io(env)
1523 && (mask & ~(old_mask | CPU_INTERRUPT_EXIT)) != 0) {
1524 cpu_abort(env, "Raised interrupt while not in I/O function");
1526 #endif
1527 } else {
1528 tb = env->current_tb;
1529 /* if the cpu is currently executing code, we must unlink it and
1530 all the potentially executing TB */
1531 if (tb && !testandset(&interrupt_lock)) {
1532 env->current_tb = NULL;
1533 tb_reset_jump_recursive(tb);
1534 resetlock(&interrupt_lock);
1537 #endif
1540 void cpu_reset_interrupt(CPUState *env, int mask)
1542 env->interrupt_request &= ~mask;
1545 const CPULogItem cpu_log_items[] = {
1546 { CPU_LOG_TB_OUT_ASM, "out_asm",
1547 "show generated host assembly code for each compiled TB" },
1548 { CPU_LOG_TB_IN_ASM, "in_asm",
1549 "show target assembly code for each compiled TB" },
1550 { CPU_LOG_TB_OP, "op",
1551 "show micro ops for each compiled TB" },
1552 { CPU_LOG_TB_OP_OPT, "op_opt",
1553 "show micro ops "
1554 #ifdef TARGET_I386
1555 "before eflags optimization and "
1556 #endif
1557 "after liveness analysis" },
1558 { CPU_LOG_INT, "int",
1559 "show interrupts/exceptions in short format" },
1560 { CPU_LOG_EXEC, "exec",
1561 "show trace before each executed TB (lots of logs)" },
1562 { CPU_LOG_TB_CPU, "cpu",
1563 "show CPU state before block translation" },
1564 #ifdef TARGET_I386
1565 { CPU_LOG_PCALL, "pcall",
1566 "show protected mode far calls/returns/exceptions" },
1567 #endif
1568 #ifdef DEBUG_IOPORT
1569 { CPU_LOG_IOPORT, "ioport",
1570 "show all i/o ports accesses" },
1571 #endif
1572 { 0, NULL, NULL },
1575 static int cmp1(const char *s1, int n, const char *s2)
1577 if (strlen(s2) != n)
1578 return 0;
1579 return memcmp(s1, s2, n) == 0;
1582 /* takes a comma separated list of log masks. Return 0 if error. */
1583 int cpu_str_to_log_mask(const char *str)
1585 const CPULogItem *item;
1586 int mask;
1587 const char *p, *p1;
1589 p = str;
1590 mask = 0;
1591 for(;;) {
1592 p1 = strchr(p, ',');
1593 if (!p1)
1594 p1 = p + strlen(p);
1595 if(cmp1(p,p1-p,"all")) {
1596 for(item = cpu_log_items; item->mask != 0; item++) {
1597 mask |= item->mask;
1599 } else {
1600 for(item = cpu_log_items; item->mask != 0; item++) {
1601 if (cmp1(p, p1 - p, item->name))
1602 goto found;
1604 return 0;
1606 found:
1607 mask |= item->mask;
1608 if (*p1 != ',')
1609 break;
1610 p = p1 + 1;
1612 return mask;
1615 void cpu_abort(CPUState *env, const char *fmt, ...)
1617 va_list ap;
1618 va_list ap2;
1620 va_start(ap, fmt);
1621 va_copy(ap2, ap);
1622 fprintf(stderr, "qemu: fatal: ");
1623 vfprintf(stderr, fmt, ap);
1624 fprintf(stderr, "\n");
1625 #ifdef TARGET_I386
1626 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1627 #else
1628 cpu_dump_state(env, stderr, fprintf, 0);
1629 #endif
1630 if (logfile) {
1631 fprintf(logfile, "qemu: fatal: ");
1632 vfprintf(logfile, fmt, ap2);
1633 fprintf(logfile, "\n");
1634 #ifdef TARGET_I386
1635 cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1636 #else
1637 cpu_dump_state(env, logfile, fprintf, 0);
1638 #endif
1639 fflush(logfile);
1640 fclose(logfile);
1642 va_end(ap2);
1643 va_end(ap);
1644 abort();
1647 CPUState *cpu_copy(CPUState *env)
1649 CPUState *new_env = cpu_init(env->cpu_model_str);
1650 /* preserve chaining and index */
1651 CPUState *next_cpu = new_env->next_cpu;
1652 int cpu_index = new_env->cpu_index;
1653 memcpy(new_env, env, sizeof(CPUState));
1654 new_env->next_cpu = next_cpu;
1655 new_env->cpu_index = cpu_index;
1656 return new_env;
1659 #if !defined(CONFIG_USER_ONLY)
1661 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1663 unsigned int i;
1665 /* Discard jump cache entries for any tb which might potentially
1666 overlap the flushed page. */
1667 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1668 memset (&env->tb_jmp_cache[i], 0,
1669 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1671 i = tb_jmp_cache_hash_page(addr);
1672 memset (&env->tb_jmp_cache[i], 0,
1673 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1676 /* NOTE: if flush_global is true, also flush global entries (not
1677 implemented yet) */
1678 void tlb_flush(CPUState *env, int flush_global)
1680 int i;
1682 #if defined(DEBUG_TLB)
1683 printf("tlb_flush:\n");
1684 #endif
1685 /* must reset current TB so that interrupts cannot modify the
1686 links while we are modifying them */
1687 env->current_tb = NULL;
1689 for(i = 0; i < CPU_TLB_SIZE; i++) {
1690 env->tlb_table[0][i].addr_read = -1;
1691 env->tlb_table[0][i].addr_write = -1;
1692 env->tlb_table[0][i].addr_code = -1;
1693 env->tlb_table[1][i].addr_read = -1;
1694 env->tlb_table[1][i].addr_write = -1;
1695 env->tlb_table[1][i].addr_code = -1;
1696 #if (NB_MMU_MODES >= 3)
1697 env->tlb_table[2][i].addr_read = -1;
1698 env->tlb_table[2][i].addr_write = -1;
1699 env->tlb_table[2][i].addr_code = -1;
1700 #if (NB_MMU_MODES == 4)
1701 env->tlb_table[3][i].addr_read = -1;
1702 env->tlb_table[3][i].addr_write = -1;
1703 env->tlb_table[3][i].addr_code = -1;
1704 #endif
1705 #endif
1708 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1710 #ifdef USE_KQEMU
1711 if (env->kqemu_enabled) {
1712 kqemu_flush(env, flush_global);
1714 #endif
1715 tlb_flush_count++;
1718 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1720 if (addr == (tlb_entry->addr_read &
1721 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1722 addr == (tlb_entry->addr_write &
1723 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1724 addr == (tlb_entry->addr_code &
1725 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1726 tlb_entry->addr_read = -1;
1727 tlb_entry->addr_write = -1;
1728 tlb_entry->addr_code = -1;
1732 void tlb_flush_page(CPUState *env, target_ulong addr)
1734 int i;
1736 #if defined(DEBUG_TLB)
1737 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1738 #endif
1739 /* must reset current TB so that interrupts cannot modify the
1740 links while we are modifying them */
1741 env->current_tb = NULL;
1743 addr &= TARGET_PAGE_MASK;
1744 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1745 tlb_flush_entry(&env->tlb_table[0][i], addr);
1746 tlb_flush_entry(&env->tlb_table[1][i], addr);
1747 #if (NB_MMU_MODES >= 3)
1748 tlb_flush_entry(&env->tlb_table[2][i], addr);
1749 #if (NB_MMU_MODES == 4)
1750 tlb_flush_entry(&env->tlb_table[3][i], addr);
1751 #endif
1752 #endif
1754 tlb_flush_jmp_cache(env, addr);
1756 #ifdef USE_KQEMU
1757 if (env->kqemu_enabled) {
1758 kqemu_flush_page(env, addr);
1760 #endif
1763 /* update the TLBs so that writes to code in the virtual page 'addr'
1764 can be detected */
1765 static void tlb_protect_code(ram_addr_t ram_addr)
1767 cpu_physical_memory_reset_dirty(ram_addr,
1768 ram_addr + TARGET_PAGE_SIZE,
1769 CODE_DIRTY_FLAG);
1772 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1773 tested for self modifying code */
1774 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1775 target_ulong vaddr)
1777 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1780 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1781 unsigned long start, unsigned long length)
1783 unsigned long addr;
1784 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1785 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1786 if ((addr - start) < length) {
1787 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1792 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1793 int dirty_flags)
1795 CPUState *env;
1796 unsigned long length, start1;
1797 int i, mask, len;
1798 uint8_t *p;
1800 start &= TARGET_PAGE_MASK;
1801 end = TARGET_PAGE_ALIGN(end);
1803 length = end - start;
1804 if (length == 0)
1805 return;
1806 len = length >> TARGET_PAGE_BITS;
1807 #ifdef USE_KQEMU
1808 /* XXX: should not depend on cpu context */
1809 env = first_cpu;
1810 if (env->kqemu_enabled) {
1811 ram_addr_t addr;
1812 addr = start;
1813 for(i = 0; i < len; i++) {
1814 kqemu_set_notdirty(env, addr);
1815 addr += TARGET_PAGE_SIZE;
1818 #endif
1819 mask = ~dirty_flags;
1820 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1821 for(i = 0; i < len; i++)
1822 p[i] &= mask;
1824 /* we modify the TLB cache so that the dirty bit will be set again
1825 when accessing the range */
1826 start1 = start + (unsigned long)phys_ram_base;
1827 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1828 for(i = 0; i < CPU_TLB_SIZE; i++)
1829 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
1830 for(i = 0; i < CPU_TLB_SIZE; i++)
1831 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
1832 #if (NB_MMU_MODES >= 3)
1833 for(i = 0; i < CPU_TLB_SIZE; i++)
1834 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1835 #if (NB_MMU_MODES == 4)
1836 for(i = 0; i < CPU_TLB_SIZE; i++)
1837 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1838 #endif
1839 #endif
1843 int cpu_physical_memory_set_dirty_tracking(int enable)
1845 in_migration = enable;
1846 return 0;
1849 int cpu_physical_memory_get_dirty_tracking(void)
1851 return in_migration;
1854 void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr)
1856 if (kvm_enabled())
1857 kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1860 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1862 ram_addr_t ram_addr;
1864 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1865 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
1866 tlb_entry->addend - (unsigned long)phys_ram_base;
1867 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1868 tlb_entry->addr_write |= TLB_NOTDIRTY;
1873 /* update the TLB according to the current state of the dirty bits */
1874 void cpu_tlb_update_dirty(CPUState *env)
1876 int i;
1877 for(i = 0; i < CPU_TLB_SIZE; i++)
1878 tlb_update_dirty(&env->tlb_table[0][i]);
1879 for(i = 0; i < CPU_TLB_SIZE; i++)
1880 tlb_update_dirty(&env->tlb_table[1][i]);
1881 #if (NB_MMU_MODES >= 3)
1882 for(i = 0; i < CPU_TLB_SIZE; i++)
1883 tlb_update_dirty(&env->tlb_table[2][i]);
1884 #if (NB_MMU_MODES == 4)
1885 for(i = 0; i < CPU_TLB_SIZE; i++)
1886 tlb_update_dirty(&env->tlb_table[3][i]);
1887 #endif
1888 #endif
1891 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1893 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1894 tlb_entry->addr_write = vaddr;
1897 /* update the TLB corresponding to virtual page vaddr
1898 so that it is no longer dirty */
1899 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1901 int i;
1903 vaddr &= TARGET_PAGE_MASK;
1904 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1905 tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
1906 tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
1907 #if (NB_MMU_MODES >= 3)
1908 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
1909 #if (NB_MMU_MODES == 4)
1910 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
1911 #endif
1912 #endif
1915 /* add a new TLB entry. At most one entry for a given virtual address
1916 is permitted. Return 0 if OK or 2 if the page could not be mapped
1917 (can only happen in non SOFTMMU mode for I/O pages or pages
1918 conflicting with the host address space). */
1919 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1920 target_phys_addr_t paddr, int prot,
1921 int mmu_idx, int is_softmmu)
1923 PhysPageDesc *p;
1924 unsigned long pd;
1925 unsigned int index;
1926 target_ulong address;
1927 target_ulong code_address;
1928 target_phys_addr_t addend;
1929 int ret;
1930 CPUTLBEntry *te;
1931 CPUWatchpoint *wp;
1932 target_phys_addr_t iotlb;
1934 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
1935 if (!p) {
1936 pd = IO_MEM_UNASSIGNED;
1937 } else {
1938 pd = p->phys_offset;
1940 #if defined(DEBUG_TLB)
1941 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1942 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
1943 #endif
1945 ret = 0;
1946 address = vaddr;
1947 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1948 /* IO memory case (romd handled later) */
1949 address |= TLB_MMIO;
1951 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1952 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1953 /* Normal RAM. */
1954 iotlb = pd & TARGET_PAGE_MASK;
1955 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
1956 iotlb |= IO_MEM_NOTDIRTY;
1957 else
1958 iotlb |= IO_MEM_ROM;
1959 } else {
1960 /* IO handlers are currently passed a phsical address.
1961 It would be nice to pass an offset from the base address
1962 of that region. This would avoid having to special case RAM,
1963 and avoid full address decoding in every device.
1964 We can't use the high bits of pd for this because
1965 IO_MEM_ROMD uses these as a ram address. */
1966 iotlb = (pd & ~TARGET_PAGE_MASK) + paddr;
1969 code_address = address;
1970 /* Make accesses to pages with watchpoints go via the
1971 watchpoint trap routines. */
1972 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1973 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
1974 iotlb = io_mem_watch + paddr;
1975 /* TODO: The memory case can be optimized by not trapping
1976 reads of pages with a write breakpoint. */
1977 address |= TLB_MMIO;
1981 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1982 env->iotlb[mmu_idx][index] = iotlb - vaddr;
1983 te = &env->tlb_table[mmu_idx][index];
1984 te->addend = addend - vaddr;
1985 if (prot & PAGE_READ) {
1986 te->addr_read = address;
1987 } else {
1988 te->addr_read = -1;
1991 if (prot & PAGE_EXEC) {
1992 te->addr_code = code_address;
1993 } else {
1994 te->addr_code = -1;
1996 if (prot & PAGE_WRITE) {
1997 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
1998 (pd & IO_MEM_ROMD)) {
1999 /* Write access calls the I/O callback. */
2000 te->addr_write = address | TLB_MMIO;
2001 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2002 !cpu_physical_memory_is_dirty(pd)) {
2003 te->addr_write = address | TLB_NOTDIRTY;
2004 } else {
2005 te->addr_write = address;
2007 } else {
2008 te->addr_write = -1;
2010 return ret;
2013 #else
2015 void tlb_flush(CPUState *env, int flush_global)
2019 void tlb_flush_page(CPUState *env, target_ulong addr)
2023 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2024 target_phys_addr_t paddr, int prot,
2025 int mmu_idx, int is_softmmu)
2027 return 0;
2030 /* dump memory mappings */
2031 void page_dump(FILE *f)
2033 unsigned long start, end;
2034 int i, j, prot, prot1;
2035 PageDesc *p;
2037 fprintf(f, "%-8s %-8s %-8s %s\n",
2038 "start", "end", "size", "prot");
2039 start = -1;
2040 end = -1;
2041 prot = 0;
2042 for(i = 0; i <= L1_SIZE; i++) {
2043 if (i < L1_SIZE)
2044 p = l1_map[i];
2045 else
2046 p = NULL;
2047 for(j = 0;j < L2_SIZE; j++) {
2048 if (!p)
2049 prot1 = 0;
2050 else
2051 prot1 = p[j].flags;
2052 if (prot1 != prot) {
2053 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2054 if (start != -1) {
2055 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2056 start, end, end - start,
2057 prot & PAGE_READ ? 'r' : '-',
2058 prot & PAGE_WRITE ? 'w' : '-',
2059 prot & PAGE_EXEC ? 'x' : '-');
2061 if (prot1 != 0)
2062 start = end;
2063 else
2064 start = -1;
2065 prot = prot1;
2067 if (!p)
2068 break;
2073 int page_get_flags(target_ulong address)
2075 PageDesc *p;
2077 p = page_find(address >> TARGET_PAGE_BITS);
2078 if (!p)
2079 return 0;
2080 return p->flags;
2083 /* modify the flags of a page and invalidate the code if
2084 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2085 depending on PAGE_WRITE */
2086 void page_set_flags(target_ulong start, target_ulong end, int flags)
2088 PageDesc *p;
2089 target_ulong addr;
2091 /* mmap_lock should already be held. */
2092 start = start & TARGET_PAGE_MASK;
2093 end = TARGET_PAGE_ALIGN(end);
2094 if (flags & PAGE_WRITE)
2095 flags |= PAGE_WRITE_ORG;
2096 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2097 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
2098 /* We may be called for host regions that are outside guest
2099 address space. */
2100 if (!p)
2101 return;
2102 /* if the write protection is set, then we invalidate the code
2103 inside */
2104 if (!(p->flags & PAGE_WRITE) &&
2105 (flags & PAGE_WRITE) &&
2106 p->first_tb) {
2107 tb_invalidate_phys_page(addr, 0, NULL);
2109 p->flags = flags;
2113 int page_check_range(target_ulong start, target_ulong len, int flags)
2115 PageDesc *p;
2116 target_ulong end;
2117 target_ulong addr;
2119 if (start + len < start)
2120 /* we've wrapped around */
2121 return -1;
2123 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2124 start = start & TARGET_PAGE_MASK;
2126 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2127 p = page_find(addr >> TARGET_PAGE_BITS);
2128 if( !p )
2129 return -1;
2130 if( !(p->flags & PAGE_VALID) )
2131 return -1;
2133 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2134 return -1;
2135 if (flags & PAGE_WRITE) {
2136 if (!(p->flags & PAGE_WRITE_ORG))
2137 return -1;
2138 /* unprotect the page if it was put read-only because it
2139 contains translated code */
2140 if (!(p->flags & PAGE_WRITE)) {
2141 if (!page_unprotect(addr, 0, NULL))
2142 return -1;
2144 return 0;
2147 return 0;
2150 /* called from signal handler: invalidate the code and unprotect the
2151 page. Return TRUE if the fault was succesfully handled. */
2152 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2154 unsigned int page_index, prot, pindex;
2155 PageDesc *p, *p1;
2156 target_ulong host_start, host_end, addr;
2158 /* Technically this isn't safe inside a signal handler. However we
2159 know this only ever happens in a synchronous SEGV handler, so in
2160 practice it seems to be ok. */
2161 mmap_lock();
2163 host_start = address & qemu_host_page_mask;
2164 page_index = host_start >> TARGET_PAGE_BITS;
2165 p1 = page_find(page_index);
2166 if (!p1) {
2167 mmap_unlock();
2168 return 0;
2170 host_end = host_start + qemu_host_page_size;
2171 p = p1;
2172 prot = 0;
2173 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2174 prot |= p->flags;
2175 p++;
2177 /* if the page was really writable, then we change its
2178 protection back to writable */
2179 if (prot & PAGE_WRITE_ORG) {
2180 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2181 if (!(p1[pindex].flags & PAGE_WRITE)) {
2182 mprotect((void *)g2h(host_start), qemu_host_page_size,
2183 (prot & PAGE_BITS) | PAGE_WRITE);
2184 p1[pindex].flags |= PAGE_WRITE;
2185 /* and since the content will be modified, we must invalidate
2186 the corresponding translated code. */
2187 tb_invalidate_phys_page(address, pc, puc);
2188 #ifdef DEBUG_TB_CHECK
2189 tb_invalidate_check(address);
2190 #endif
2191 mmap_unlock();
2192 return 1;
2195 mmap_unlock();
2196 return 0;
2199 static inline void tlb_set_dirty(CPUState *env,
2200 unsigned long addr, target_ulong vaddr)
2203 #endif /* defined(CONFIG_USER_ONLY) */
2205 #if !defined(CONFIG_USER_ONLY)
2206 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2207 ram_addr_t memory);
2208 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2209 ram_addr_t orig_memory);
2210 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2211 need_subpage) \
2212 do { \
2213 if (addr > start_addr) \
2214 start_addr2 = 0; \
2215 else { \
2216 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2217 if (start_addr2 > 0) \
2218 need_subpage = 1; \
2221 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2222 end_addr2 = TARGET_PAGE_SIZE - 1; \
2223 else { \
2224 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2225 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2226 need_subpage = 1; \
2228 } while (0)
2230 /* register physical memory. 'size' must be a multiple of the target
2231 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2232 io memory page */
2233 void cpu_register_physical_memory(target_phys_addr_t start_addr,
2234 ram_addr_t size,
2235 ram_addr_t phys_offset)
2237 target_phys_addr_t addr, end_addr;
2238 PhysPageDesc *p;
2239 CPUState *env;
2240 ram_addr_t orig_size = size;
2241 void *subpage;
2243 #ifdef USE_KQEMU
2244 /* XXX: should not depend on cpu context */
2245 env = first_cpu;
2246 if (env->kqemu_enabled) {
2247 kqemu_set_phys_mem(start_addr, size, phys_offset);
2249 #endif
2250 if (kvm_enabled())
2251 kvm_set_phys_mem(start_addr, size, phys_offset);
2253 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2254 end_addr = start_addr + (target_phys_addr_t)size;
2255 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2256 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2257 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2258 ram_addr_t orig_memory = p->phys_offset;
2259 target_phys_addr_t start_addr2, end_addr2;
2260 int need_subpage = 0;
2262 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2263 need_subpage);
2264 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2265 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2266 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2267 &p->phys_offset, orig_memory);
2268 } else {
2269 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2270 >> IO_MEM_SHIFT];
2272 subpage_register(subpage, start_addr2, end_addr2, phys_offset);
2273 } else {
2274 p->phys_offset = phys_offset;
2275 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2276 (phys_offset & IO_MEM_ROMD))
2277 phys_offset += TARGET_PAGE_SIZE;
2279 } else {
2280 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2281 p->phys_offset = phys_offset;
2282 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2283 (phys_offset & IO_MEM_ROMD))
2284 phys_offset += TARGET_PAGE_SIZE;
2285 else {
2286 target_phys_addr_t start_addr2, end_addr2;
2287 int need_subpage = 0;
2289 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2290 end_addr2, need_subpage);
2292 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2293 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2294 &p->phys_offset, IO_MEM_UNASSIGNED);
2295 subpage_register(subpage, start_addr2, end_addr2,
2296 phys_offset);
2302 /* since each CPU stores ram addresses in its TLB cache, we must
2303 reset the modified entries */
2304 /* XXX: slow ! */
2305 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2306 tlb_flush(env, 1);
2310 /* XXX: temporary until new memory mapping API */
2311 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2313 PhysPageDesc *p;
2315 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2316 if (!p)
2317 return IO_MEM_UNASSIGNED;
2318 return p->phys_offset;
2321 /* XXX: better than nothing */
2322 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2324 ram_addr_t addr;
2325 if ((phys_ram_alloc_offset + size) > phys_ram_size) {
2326 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
2327 (uint64_t)size, (uint64_t)phys_ram_size);
2328 abort();
2330 addr = phys_ram_alloc_offset;
2331 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2332 return addr;
2335 void qemu_ram_free(ram_addr_t addr)
2339 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2341 #ifdef DEBUG_UNASSIGNED
2342 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2343 #endif
2344 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2345 do_unassigned_access(addr, 0, 0, 0, 1);
2346 #endif
2347 return 0;
2350 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2352 #ifdef DEBUG_UNASSIGNED
2353 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2354 #endif
2355 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2356 do_unassigned_access(addr, 0, 0, 0, 2);
2357 #endif
2358 return 0;
2361 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2363 #ifdef DEBUG_UNASSIGNED
2364 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2365 #endif
2366 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2367 do_unassigned_access(addr, 0, 0, 0, 4);
2368 #endif
2369 return 0;
2372 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2374 #ifdef DEBUG_UNASSIGNED
2375 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2376 #endif
2377 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2378 do_unassigned_access(addr, 1, 0, 0, 1);
2379 #endif
2382 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2384 #ifdef DEBUG_UNASSIGNED
2385 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2386 #endif
2387 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2388 do_unassigned_access(addr, 1, 0, 0, 2);
2389 #endif
2392 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2394 #ifdef DEBUG_UNASSIGNED
2395 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2396 #endif
2397 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2398 do_unassigned_access(addr, 1, 0, 0, 4);
2399 #endif
2402 static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2403 unassigned_mem_readb,
2404 unassigned_mem_readw,
2405 unassigned_mem_readl,
2408 static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2409 unassigned_mem_writeb,
2410 unassigned_mem_writew,
2411 unassigned_mem_writel,
2414 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2415 uint32_t val)
2417 int dirty_flags;
2418 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2419 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2420 #if !defined(CONFIG_USER_ONLY)
2421 tb_invalidate_phys_page_fast(ram_addr, 1);
2422 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2423 #endif
2425 stb_p(phys_ram_base + ram_addr, val);
2426 #ifdef USE_KQEMU
2427 if (cpu_single_env->kqemu_enabled &&
2428 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2429 kqemu_modify_page(cpu_single_env, ram_addr);
2430 #endif
2431 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2432 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2433 /* we remove the notdirty callback only if the code has been
2434 flushed */
2435 if (dirty_flags == 0xff)
2436 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2439 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2440 uint32_t val)
2442 int dirty_flags;
2443 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2444 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2445 #if !defined(CONFIG_USER_ONLY)
2446 tb_invalidate_phys_page_fast(ram_addr, 2);
2447 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2448 #endif
2450 stw_p(phys_ram_base + ram_addr, val);
2451 #ifdef USE_KQEMU
2452 if (cpu_single_env->kqemu_enabled &&
2453 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2454 kqemu_modify_page(cpu_single_env, ram_addr);
2455 #endif
2456 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2457 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2458 /* we remove the notdirty callback only if the code has been
2459 flushed */
2460 if (dirty_flags == 0xff)
2461 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2464 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2465 uint32_t val)
2467 int dirty_flags;
2468 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2469 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2470 #if !defined(CONFIG_USER_ONLY)
2471 tb_invalidate_phys_page_fast(ram_addr, 4);
2472 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2473 #endif
2475 stl_p(phys_ram_base + ram_addr, val);
2476 #ifdef USE_KQEMU
2477 if (cpu_single_env->kqemu_enabled &&
2478 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2479 kqemu_modify_page(cpu_single_env, ram_addr);
2480 #endif
2481 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2482 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2483 /* we remove the notdirty callback only if the code has been
2484 flushed */
2485 if (dirty_flags == 0xff)
2486 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2489 static CPUReadMemoryFunc *error_mem_read[3] = {
2490 NULL, /* never used */
2491 NULL, /* never used */
2492 NULL, /* never used */
2495 static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2496 notdirty_mem_writeb,
2497 notdirty_mem_writew,
2498 notdirty_mem_writel,
2501 /* Generate a debug exception if a watchpoint has been hit. */
2502 static void check_watchpoint(int offset, int len_mask, int flags)
2504 CPUState *env = cpu_single_env;
2505 target_ulong pc, cs_base;
2506 TranslationBlock *tb;
2507 target_ulong vaddr;
2508 CPUWatchpoint *wp;
2509 int cpu_flags;
2511 if (env->watchpoint_hit) {
2512 /* We re-entered the check after replacing the TB. Now raise
2513 * the debug interrupt so that is will trigger after the
2514 * current instruction. */
2515 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2516 return;
2518 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2519 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
2520 if ((vaddr == (wp->vaddr & len_mask) ||
2521 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2522 wp->flags |= BP_WATCHPOINT_HIT;
2523 if (!env->watchpoint_hit) {
2524 env->watchpoint_hit = wp;
2525 tb = tb_find_pc(env->mem_io_pc);
2526 if (!tb) {
2527 cpu_abort(env, "check_watchpoint: could not find TB for "
2528 "pc=%p", (void *)env->mem_io_pc);
2530 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2531 tb_phys_invalidate(tb, -1);
2532 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2533 env->exception_index = EXCP_DEBUG;
2534 } else {
2535 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2536 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2538 cpu_resume_from_signal(env, NULL);
2540 } else {
2541 wp->flags &= ~BP_WATCHPOINT_HIT;
2546 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2547 so these check for a hit then pass through to the normal out-of-line
2548 phys routines. */
2549 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2551 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
2552 return ldub_phys(addr);
2555 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2557 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
2558 return lduw_phys(addr);
2561 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2563 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
2564 return ldl_phys(addr);
2567 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2568 uint32_t val)
2570 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
2571 stb_phys(addr, val);
2574 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2575 uint32_t val)
2577 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
2578 stw_phys(addr, val);
2581 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2582 uint32_t val)
2584 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
2585 stl_phys(addr, val);
2588 static CPUReadMemoryFunc *watch_mem_read[3] = {
2589 watch_mem_readb,
2590 watch_mem_readw,
2591 watch_mem_readl,
2594 static CPUWriteMemoryFunc *watch_mem_write[3] = {
2595 watch_mem_writeb,
2596 watch_mem_writew,
2597 watch_mem_writel,
2600 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2601 unsigned int len)
2603 uint32_t ret;
2604 unsigned int idx;
2606 idx = SUBPAGE_IDX(addr - mmio->base);
2607 #if defined(DEBUG_SUBPAGE)
2608 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2609 mmio, len, addr, idx);
2610 #endif
2611 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], addr);
2613 return ret;
2616 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2617 uint32_t value, unsigned int len)
2619 unsigned int idx;
2621 idx = SUBPAGE_IDX(addr - mmio->base);
2622 #if defined(DEBUG_SUBPAGE)
2623 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2624 mmio, len, addr, idx, value);
2625 #endif
2626 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], addr, value);
2629 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2631 #if defined(DEBUG_SUBPAGE)
2632 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2633 #endif
2635 return subpage_readlen(opaque, addr, 0);
2638 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2639 uint32_t value)
2641 #if defined(DEBUG_SUBPAGE)
2642 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2643 #endif
2644 subpage_writelen(opaque, addr, value, 0);
2647 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2649 #if defined(DEBUG_SUBPAGE)
2650 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2651 #endif
2653 return subpage_readlen(opaque, addr, 1);
2656 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2657 uint32_t value)
2659 #if defined(DEBUG_SUBPAGE)
2660 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2661 #endif
2662 subpage_writelen(opaque, addr, value, 1);
2665 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2667 #if defined(DEBUG_SUBPAGE)
2668 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2669 #endif
2671 return subpage_readlen(opaque, addr, 2);
2674 static void subpage_writel (void *opaque,
2675 target_phys_addr_t addr, uint32_t value)
2677 #if defined(DEBUG_SUBPAGE)
2678 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2679 #endif
2680 subpage_writelen(opaque, addr, value, 2);
2683 static CPUReadMemoryFunc *subpage_read[] = {
2684 &subpage_readb,
2685 &subpage_readw,
2686 &subpage_readl,
2689 static CPUWriteMemoryFunc *subpage_write[] = {
2690 &subpage_writeb,
2691 &subpage_writew,
2692 &subpage_writel,
2695 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2696 ram_addr_t memory)
2698 int idx, eidx;
2699 unsigned int i;
2701 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2702 return -1;
2703 idx = SUBPAGE_IDX(start);
2704 eidx = SUBPAGE_IDX(end);
2705 #if defined(DEBUG_SUBPAGE)
2706 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2707 mmio, start, end, idx, eidx, memory);
2708 #endif
2709 memory >>= IO_MEM_SHIFT;
2710 for (; idx <= eidx; idx++) {
2711 for (i = 0; i < 4; i++) {
2712 if (io_mem_read[memory][i]) {
2713 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2714 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2716 if (io_mem_write[memory][i]) {
2717 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2718 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2723 return 0;
2726 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2727 ram_addr_t orig_memory)
2729 subpage_t *mmio;
2730 int subpage_memory;
2732 mmio = qemu_mallocz(sizeof(subpage_t));
2733 if (mmio != NULL) {
2734 mmio->base = base;
2735 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2736 #if defined(DEBUG_SUBPAGE)
2737 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2738 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2739 #endif
2740 *phys = subpage_memory | IO_MEM_SUBPAGE;
2741 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory);
2744 return mmio;
2747 static void io_mem_init(void)
2749 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
2750 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
2751 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
2752 io_mem_nb = 5;
2754 io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
2755 watch_mem_write, NULL);
2756 /* alloc dirty bits array */
2757 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
2758 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
2761 /* mem_read and mem_write are arrays of functions containing the
2762 function to access byte (index 0), word (index 1) and dword (index
2763 2). Functions can be omitted with a NULL function pointer. The
2764 registered functions may be modified dynamically later.
2765 If io_index is non zero, the corresponding io zone is
2766 modified. If it is zero, a new io zone is allocated. The return
2767 value can be used with cpu_register_physical_memory(). (-1) is
2768 returned if error. */
2769 int cpu_register_io_memory(int io_index,
2770 CPUReadMemoryFunc **mem_read,
2771 CPUWriteMemoryFunc **mem_write,
2772 void *opaque)
2774 int i, subwidth = 0;
2776 if (io_index <= 0) {
2777 if (io_mem_nb >= IO_MEM_NB_ENTRIES)
2778 return -1;
2779 io_index = io_mem_nb++;
2780 } else {
2781 if (io_index >= IO_MEM_NB_ENTRIES)
2782 return -1;
2785 for(i = 0;i < 3; i++) {
2786 if (!mem_read[i] || !mem_write[i])
2787 subwidth = IO_MEM_SUBWIDTH;
2788 io_mem_read[io_index][i] = mem_read[i];
2789 io_mem_write[io_index][i] = mem_write[i];
2791 io_mem_opaque[io_index] = opaque;
2792 return (io_index << IO_MEM_SHIFT) | subwidth;
2795 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2797 return io_mem_write[io_index >> IO_MEM_SHIFT];
2800 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2802 return io_mem_read[io_index >> IO_MEM_SHIFT];
2805 #endif /* !defined(CONFIG_USER_ONLY) */
2807 /* physical memory access (slow version, mainly for debug) */
2808 #if defined(CONFIG_USER_ONLY)
2809 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2810 int len, int is_write)
2812 int l, flags;
2813 target_ulong page;
2814 void * p;
2816 while (len > 0) {
2817 page = addr & TARGET_PAGE_MASK;
2818 l = (page + TARGET_PAGE_SIZE) - addr;
2819 if (l > len)
2820 l = len;
2821 flags = page_get_flags(page);
2822 if (!(flags & PAGE_VALID))
2823 return;
2824 if (is_write) {
2825 if (!(flags & PAGE_WRITE))
2826 return;
2827 /* XXX: this code should not depend on lock_user */
2828 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2829 /* FIXME - should this return an error rather than just fail? */
2830 return;
2831 memcpy(p, buf, l);
2832 unlock_user(p, addr, l);
2833 } else {
2834 if (!(flags & PAGE_READ))
2835 return;
2836 /* XXX: this code should not depend on lock_user */
2837 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2838 /* FIXME - should this return an error rather than just fail? */
2839 return;
2840 memcpy(buf, p, l);
2841 unlock_user(p, addr, 0);
2843 len -= l;
2844 buf += l;
2845 addr += l;
2849 #else
2850 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2851 int len, int is_write)
2853 int l, io_index;
2854 uint8_t *ptr;
2855 uint32_t val;
2856 target_phys_addr_t page;
2857 unsigned long pd;
2858 PhysPageDesc *p;
2860 while (len > 0) {
2861 page = addr & TARGET_PAGE_MASK;
2862 l = (page + TARGET_PAGE_SIZE) - addr;
2863 if (l > len)
2864 l = len;
2865 p = phys_page_find(page >> TARGET_PAGE_BITS);
2866 if (!p) {
2867 pd = IO_MEM_UNASSIGNED;
2868 } else {
2869 pd = p->phys_offset;
2872 if (is_write) {
2873 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2874 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2875 /* XXX: could force cpu_single_env to NULL to avoid
2876 potential bugs */
2877 if (l >= 4 && ((addr & 3) == 0)) {
2878 /* 32 bit write access */
2879 val = ldl_p(buf);
2880 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2881 l = 4;
2882 } else if (l >= 2 && ((addr & 1) == 0)) {
2883 /* 16 bit write access */
2884 val = lduw_p(buf);
2885 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
2886 l = 2;
2887 } else {
2888 /* 8 bit write access */
2889 val = ldub_p(buf);
2890 io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
2891 l = 1;
2893 } else {
2894 unsigned long addr1;
2895 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2896 /* RAM case */
2897 ptr = phys_ram_base + addr1;
2898 memcpy(ptr, buf, l);
2899 if (!cpu_physical_memory_is_dirty(addr1)) {
2900 /* invalidate code */
2901 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
2902 /* set dirty bit */
2903 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
2904 (0xff & ~CODE_DIRTY_FLAG);
2907 } else {
2908 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2909 !(pd & IO_MEM_ROMD)) {
2910 /* I/O case */
2911 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2912 if (l >= 4 && ((addr & 3) == 0)) {
2913 /* 32 bit read access */
2914 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2915 stl_p(buf, val);
2916 l = 4;
2917 } else if (l >= 2 && ((addr & 1) == 0)) {
2918 /* 16 bit read access */
2919 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
2920 stw_p(buf, val);
2921 l = 2;
2922 } else {
2923 /* 8 bit read access */
2924 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
2925 stb_p(buf, val);
2926 l = 1;
2928 } else {
2929 /* RAM case */
2930 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2931 (addr & ~TARGET_PAGE_MASK);
2932 memcpy(buf, ptr, l);
2935 len -= l;
2936 buf += l;
2937 addr += l;
2941 /* used for ROM loading : can write in RAM and ROM */
2942 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
2943 const uint8_t *buf, int len)
2945 int l;
2946 uint8_t *ptr;
2947 target_phys_addr_t page;
2948 unsigned long pd;
2949 PhysPageDesc *p;
2951 while (len > 0) {
2952 page = addr & TARGET_PAGE_MASK;
2953 l = (page + TARGET_PAGE_SIZE) - addr;
2954 if (l > len)
2955 l = len;
2956 p = phys_page_find(page >> TARGET_PAGE_BITS);
2957 if (!p) {
2958 pd = IO_MEM_UNASSIGNED;
2959 } else {
2960 pd = p->phys_offset;
2963 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2964 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
2965 !(pd & IO_MEM_ROMD)) {
2966 /* do nothing */
2967 } else {
2968 unsigned long addr1;
2969 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2970 /* ROM/RAM case */
2971 ptr = phys_ram_base + addr1;
2972 memcpy(ptr, buf, l);
2974 len -= l;
2975 buf += l;
2976 addr += l;
2981 /* warning: addr must be aligned */
2982 uint32_t ldl_phys(target_phys_addr_t addr)
2984 int io_index;
2985 uint8_t *ptr;
2986 uint32_t val;
2987 unsigned long pd;
2988 PhysPageDesc *p;
2990 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2991 if (!p) {
2992 pd = IO_MEM_UNASSIGNED;
2993 } else {
2994 pd = p->phys_offset;
2997 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2998 !(pd & IO_MEM_ROMD)) {
2999 /* I/O case */
3000 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3001 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3002 } else {
3003 /* RAM case */
3004 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3005 (addr & ~TARGET_PAGE_MASK);
3006 val = ldl_p(ptr);
3008 return val;
3011 /* warning: addr must be aligned */
3012 uint64_t ldq_phys(target_phys_addr_t addr)
3014 int io_index;
3015 uint8_t *ptr;
3016 uint64_t val;
3017 unsigned long pd;
3018 PhysPageDesc *p;
3020 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3021 if (!p) {
3022 pd = IO_MEM_UNASSIGNED;
3023 } else {
3024 pd = p->phys_offset;
3027 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3028 !(pd & IO_MEM_ROMD)) {
3029 /* I/O case */
3030 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3031 #ifdef TARGET_WORDS_BIGENDIAN
3032 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3033 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3034 #else
3035 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3036 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3037 #endif
3038 } else {
3039 /* RAM case */
3040 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3041 (addr & ~TARGET_PAGE_MASK);
3042 val = ldq_p(ptr);
3044 return val;
3047 /* XXX: optimize */
3048 uint32_t ldub_phys(target_phys_addr_t addr)
3050 uint8_t val;
3051 cpu_physical_memory_read(addr, &val, 1);
3052 return val;
3055 /* XXX: optimize */
3056 uint32_t lduw_phys(target_phys_addr_t addr)
3058 uint16_t val;
3059 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3060 return tswap16(val);
3063 /* warning: addr must be aligned. The ram page is not masked as dirty
3064 and the code inside is not invalidated. It is useful if the dirty
3065 bits are used to track modified PTEs */
3066 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3068 int io_index;
3069 uint8_t *ptr;
3070 unsigned long pd;
3071 PhysPageDesc *p;
3073 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3074 if (!p) {
3075 pd = IO_MEM_UNASSIGNED;
3076 } else {
3077 pd = p->phys_offset;
3080 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3081 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3082 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3083 } else {
3084 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3085 ptr = phys_ram_base + addr1;
3086 stl_p(ptr, val);
3088 if (unlikely(in_migration)) {
3089 if (!cpu_physical_memory_is_dirty(addr1)) {
3090 /* invalidate code */
3091 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3092 /* set dirty bit */
3093 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3094 (0xff & ~CODE_DIRTY_FLAG);
3100 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3102 int io_index;
3103 uint8_t *ptr;
3104 unsigned long pd;
3105 PhysPageDesc *p;
3107 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3108 if (!p) {
3109 pd = IO_MEM_UNASSIGNED;
3110 } else {
3111 pd = p->phys_offset;
3114 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3115 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3116 #ifdef TARGET_WORDS_BIGENDIAN
3117 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3118 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3119 #else
3120 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3121 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3122 #endif
3123 } else {
3124 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3125 (addr & ~TARGET_PAGE_MASK);
3126 stq_p(ptr, val);
3130 /* warning: addr must be aligned */
3131 void stl_phys(target_phys_addr_t addr, uint32_t val)
3133 int io_index;
3134 uint8_t *ptr;
3135 unsigned long pd;
3136 PhysPageDesc *p;
3138 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3139 if (!p) {
3140 pd = IO_MEM_UNASSIGNED;
3141 } else {
3142 pd = p->phys_offset;
3145 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3146 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3147 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3148 } else {
3149 unsigned long addr1;
3150 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3151 /* RAM case */
3152 ptr = phys_ram_base + addr1;
3153 stl_p(ptr, val);
3154 if (!cpu_physical_memory_is_dirty(addr1)) {
3155 /* invalidate code */
3156 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3157 /* set dirty bit */
3158 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3159 (0xff & ~CODE_DIRTY_FLAG);
3164 /* XXX: optimize */
3165 void stb_phys(target_phys_addr_t addr, uint32_t val)
3167 uint8_t v = val;
3168 cpu_physical_memory_write(addr, &v, 1);
3171 /* XXX: optimize */
3172 void stw_phys(target_phys_addr_t addr, uint32_t val)
3174 uint16_t v = tswap16(val);
3175 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3178 /* XXX: optimize */
3179 void stq_phys(target_phys_addr_t addr, uint64_t val)
3181 val = tswap64(val);
3182 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3185 #endif
3187 /* virtual memory access for debug */
3188 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3189 uint8_t *buf, int len, int is_write)
3191 int l;
3192 target_phys_addr_t phys_addr;
3193 target_ulong page;
3195 while (len > 0) {
3196 page = addr & TARGET_PAGE_MASK;
3197 phys_addr = cpu_get_phys_page_debug(env, page);
3198 /* if no physical page mapped, return an error */
3199 if (phys_addr == -1)
3200 return -1;
3201 l = (page + TARGET_PAGE_SIZE) - addr;
3202 if (l > len)
3203 l = len;
3204 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
3205 buf, l, is_write);
3206 len -= l;
3207 buf += l;
3208 addr += l;
3210 return 0;
3213 /* in deterministic execution mode, instructions doing device I/Os
3214 must be at the end of the TB */
3215 void cpu_io_recompile(CPUState *env, void *retaddr)
3217 TranslationBlock *tb;
3218 uint32_t n, cflags;
3219 target_ulong pc, cs_base;
3220 uint64_t flags;
3222 tb = tb_find_pc((unsigned long)retaddr);
3223 if (!tb) {
3224 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3225 retaddr);
3227 n = env->icount_decr.u16.low + tb->icount;
3228 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3229 /* Calculate how many instructions had been executed before the fault
3230 occurred. */
3231 n = n - env->icount_decr.u16.low;
3232 /* Generate a new TB ending on the I/O insn. */
3233 n++;
3234 /* On MIPS and SH, delay slot instructions can only be restarted if
3235 they were already the first instruction in the TB. If this is not
3236 the first instruction in a TB then re-execute the preceding
3237 branch. */
3238 #if defined(TARGET_MIPS)
3239 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3240 env->active_tc.PC -= 4;
3241 env->icount_decr.u16.low++;
3242 env->hflags &= ~MIPS_HFLAG_BMASK;
3244 #elif defined(TARGET_SH4)
3245 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3246 && n > 1) {
3247 env->pc -= 2;
3248 env->icount_decr.u16.low++;
3249 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3251 #endif
3252 /* This should never happen. */
3253 if (n > CF_COUNT_MASK)
3254 cpu_abort(env, "TB too big during recompile");
3256 cflags = n | CF_LAST_IO;
3257 pc = tb->pc;
3258 cs_base = tb->cs_base;
3259 flags = tb->flags;
3260 tb_phys_invalidate(tb, -1);
3261 /* FIXME: In theory this could raise an exception. In practice
3262 we have already translated the block once so it's probably ok. */
3263 tb_gen_code(env, pc, cs_base, flags, cflags);
3264 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3265 the first in the TB) then we end up generating a whole new TB and
3266 repeating the fault, which is horribly inefficient.
3267 Better would be to execute just this insn uncached, or generate a
3268 second new TB. */
3269 cpu_resume_from_signal(env, NULL);
3272 void dump_exec_info(FILE *f,
3273 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3275 int i, target_code_size, max_target_code_size;
3276 int direct_jmp_count, direct_jmp2_count, cross_page;
3277 TranslationBlock *tb;
3279 target_code_size = 0;
3280 max_target_code_size = 0;
3281 cross_page = 0;
3282 direct_jmp_count = 0;
3283 direct_jmp2_count = 0;
3284 for(i = 0; i < nb_tbs; i++) {
3285 tb = &tbs[i];
3286 target_code_size += tb->size;
3287 if (tb->size > max_target_code_size)
3288 max_target_code_size = tb->size;
3289 if (tb->page_addr[1] != -1)
3290 cross_page++;
3291 if (tb->tb_next_offset[0] != 0xffff) {
3292 direct_jmp_count++;
3293 if (tb->tb_next_offset[1] != 0xffff) {
3294 direct_jmp2_count++;
3298 /* XXX: avoid using doubles ? */
3299 cpu_fprintf(f, "Translation buffer state:\n");
3300 cpu_fprintf(f, "gen code size %ld/%ld\n",
3301 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3302 cpu_fprintf(f, "TB count %d/%d\n",
3303 nb_tbs, code_gen_max_blocks);
3304 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3305 nb_tbs ? target_code_size / nb_tbs : 0,
3306 max_target_code_size);
3307 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3308 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3309 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3310 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3311 cross_page,
3312 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3313 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3314 direct_jmp_count,
3315 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3316 direct_jmp2_count,
3317 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3318 cpu_fprintf(f, "\nStatistics:\n");
3319 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3320 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3321 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3322 tcg_dump_info(f, cpu_fprintf);
3325 #if !defined(CONFIG_USER_ONLY)
3327 #define MMUSUFFIX _cmmu
3328 #define GETPC() NULL
3329 #define env cpu_single_env
3330 #define SOFTMMU_CODE_ACCESS
3332 #define SHIFT 0
3333 #include "softmmu_template.h"
3335 #define SHIFT 1
3336 #include "softmmu_template.h"
3338 #define SHIFT 2
3339 #include "softmmu_template.h"
3341 #define SHIFT 3
3342 #include "softmmu_template.h"
3344 #undef env
3346 #endif