2 * QEMU generic PowerPC hardware System Emulator
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 #include "qemu-timer.h"
31 //#define PPC_DEBUG_IRQ
32 //#define PPC_DEBUG_TB
34 static void cpu_ppc_tb_stop (CPUState
*env
);
35 static void cpu_ppc_tb_start (CPUState
*env
);
37 static void ppc_set_irq (CPUState
*env
, int n_IRQ
, int level
)
40 env
->pending_interrupts
|= 1 << n_IRQ
;
41 cpu_interrupt(env
, CPU_INTERRUPT_HARD
);
43 env
->pending_interrupts
&= ~(1 << n_IRQ
);
44 if (env
->pending_interrupts
== 0)
45 cpu_reset_interrupt(env
, CPU_INTERRUPT_HARD
);
47 #if defined(PPC_DEBUG_IRQ)
48 if (loglevel
& CPU_LOG_INT
) {
49 fprintf(logfile
, "%s: %p n_IRQ %d level %d => pending %08" PRIx32
50 "req %08x\n", __func__
, env
, n_IRQ
, level
,
51 env
->pending_interrupts
, env
->interrupt_request
);
56 /* PowerPC 6xx / 7xx internal IRQ controller */
57 static void ppc6xx_set_irq (void *opaque
, int pin
, int level
)
59 CPUState
*env
= opaque
;
62 #if defined(PPC_DEBUG_IRQ)
63 if (loglevel
& CPU_LOG_INT
) {
64 fprintf(logfile
, "%s: env %p pin %d level %d\n", __func__
,
68 cur_level
= (env
->irq_input_state
>> pin
) & 1;
69 /* Don't generate spurious events */
70 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
72 case PPC6xx_INPUT_TBEN
:
73 /* Level sensitive - active high */
74 #if defined(PPC_DEBUG_IRQ)
75 if (loglevel
& CPU_LOG_INT
) {
76 fprintf(logfile
, "%s: %s the time base\n",
77 __func__
, level
? "start" : "stop");
81 cpu_ppc_tb_start(env
);
85 case PPC6xx_INPUT_INT
:
86 /* Level sensitive - active high */
87 #if defined(PPC_DEBUG_IRQ)
88 if (loglevel
& CPU_LOG_INT
) {
89 fprintf(logfile
, "%s: set the external IRQ state to %d\n",
93 ppc_set_irq(env
, PPC_INTERRUPT_EXT
, level
);
95 case PPC6xx_INPUT_SMI
:
96 /* Level sensitive - active high */
97 #if defined(PPC_DEBUG_IRQ)
98 if (loglevel
& CPU_LOG_INT
) {
99 fprintf(logfile
, "%s: set the SMI IRQ state to %d\n",
103 ppc_set_irq(env
, PPC_INTERRUPT_SMI
, level
);
105 case PPC6xx_INPUT_MCP
:
106 /* Negative edge sensitive */
107 /* XXX: TODO: actual reaction may depends on HID0 status
108 * 603/604/740/750: check HID0[EMCP]
110 if (cur_level
== 1 && level
== 0) {
111 #if defined(PPC_DEBUG_IRQ)
112 if (loglevel
& CPU_LOG_INT
) {
113 fprintf(logfile
, "%s: raise machine check state\n",
117 ppc_set_irq(env
, PPC_INTERRUPT_MCK
, 1);
120 case PPC6xx_INPUT_CKSTP_IN
:
121 /* Level sensitive - active low */
122 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
123 /* XXX: Note that the only way to restart the CPU is to reset it */
125 #if defined(PPC_DEBUG_IRQ)
126 if (loglevel
& CPU_LOG_INT
) {
127 fprintf(logfile
, "%s: stop the CPU\n", __func__
);
133 case PPC6xx_INPUT_HRESET
:
134 /* Level sensitive - active low */
136 #if defined(PPC_DEBUG_IRQ)
137 if (loglevel
& CPU_LOG_INT
) {
138 fprintf(logfile
, "%s: reset the CPU\n", __func__
);
141 env
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
146 qemu_system_reset_request();
150 case PPC6xx_INPUT_SRESET
:
151 #if defined(PPC_DEBUG_IRQ)
152 if (loglevel
& CPU_LOG_INT
) {
153 fprintf(logfile
, "%s: set the RESET IRQ state to %d\n",
157 ppc_set_irq(env
, PPC_INTERRUPT_RESET
, level
);
160 /* Unknown pin - do nothing */
161 #if defined(PPC_DEBUG_IRQ)
162 if (loglevel
& CPU_LOG_INT
) {
163 fprintf(logfile
, "%s: unknown IRQ pin %d\n", __func__
, pin
);
169 env
->irq_input_state
|= 1 << pin
;
171 env
->irq_input_state
&= ~(1 << pin
);
175 void ppc6xx_irq_init (CPUState
*env
)
177 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc6xx_set_irq
, env
,
181 #if defined(TARGET_PPC64)
182 /* PowerPC 970 internal IRQ controller */
183 static void ppc970_set_irq (void *opaque
, int pin
, int level
)
185 CPUState
*env
= opaque
;
188 #if defined(PPC_DEBUG_IRQ)
189 if (loglevel
& CPU_LOG_INT
) {
190 fprintf(logfile
, "%s: env %p pin %d level %d\n", __func__
,
194 cur_level
= (env
->irq_input_state
>> pin
) & 1;
195 /* Don't generate spurious events */
196 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
198 case PPC970_INPUT_INT
:
199 /* Level sensitive - active high */
200 #if defined(PPC_DEBUG_IRQ)
201 if (loglevel
& CPU_LOG_INT
) {
202 fprintf(logfile
, "%s: set the external IRQ state to %d\n",
206 ppc_set_irq(env
, PPC_INTERRUPT_EXT
, level
);
208 case PPC970_INPUT_THINT
:
209 /* Level sensitive - active high */
210 #if defined(PPC_DEBUG_IRQ)
211 if (loglevel
& CPU_LOG_INT
) {
212 fprintf(logfile
, "%s: set the SMI IRQ state to %d\n", __func__
,
216 ppc_set_irq(env
, PPC_INTERRUPT_THERM
, level
);
218 case PPC970_INPUT_MCP
:
219 /* Negative edge sensitive */
220 /* XXX: TODO: actual reaction may depends on HID0 status
221 * 603/604/740/750: check HID0[EMCP]
223 if (cur_level
== 1 && level
== 0) {
224 #if defined(PPC_DEBUG_IRQ)
225 if (loglevel
& CPU_LOG_INT
) {
226 fprintf(logfile
, "%s: raise machine check state\n",
230 ppc_set_irq(env
, PPC_INTERRUPT_MCK
, 1);
233 case PPC970_INPUT_CKSTP
:
234 /* Level sensitive - active low */
235 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
237 #if defined(PPC_DEBUG_IRQ)
238 if (loglevel
& CPU_LOG_INT
) {
239 fprintf(logfile
, "%s: stop the CPU\n", __func__
);
244 #if defined(PPC_DEBUG_IRQ)
245 if (loglevel
& CPU_LOG_INT
) {
246 fprintf(logfile
, "%s: restart the CPU\n", __func__
);
252 case PPC970_INPUT_HRESET
:
253 /* Level sensitive - active low */
256 #if defined(PPC_DEBUG_IRQ)
257 if (loglevel
& CPU_LOG_INT
) {
258 fprintf(logfile
, "%s: reset the CPU\n", __func__
);
265 case PPC970_INPUT_SRESET
:
266 #if defined(PPC_DEBUG_IRQ)
267 if (loglevel
& CPU_LOG_INT
) {
268 fprintf(logfile
, "%s: set the RESET IRQ state to %d\n",
272 ppc_set_irq(env
, PPC_INTERRUPT_RESET
, level
);
274 case PPC970_INPUT_TBEN
:
275 #if defined(PPC_DEBUG_IRQ)
276 if (loglevel
& CPU_LOG_INT
) {
277 fprintf(logfile
, "%s: set the TBEN state to %d\n", __func__
,
284 /* Unknown pin - do nothing */
285 #if defined(PPC_DEBUG_IRQ)
286 if (loglevel
& CPU_LOG_INT
) {
287 fprintf(logfile
, "%s: unknown IRQ pin %d\n", __func__
, pin
);
293 env
->irq_input_state
|= 1 << pin
;
295 env
->irq_input_state
&= ~(1 << pin
);
299 void ppc970_irq_init (CPUState
*env
)
301 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc970_set_irq
, env
,
304 #endif /* defined(TARGET_PPC64) */
306 /* PowerPC 40x internal IRQ controller */
307 static void ppc40x_set_irq (void *opaque
, int pin
, int level
)
309 CPUState
*env
= opaque
;
312 #if defined(PPC_DEBUG_IRQ)
313 if (loglevel
& CPU_LOG_INT
) {
314 fprintf(logfile
, "%s: env %p pin %d level %d\n", __func__
,
318 cur_level
= (env
->irq_input_state
>> pin
) & 1;
319 /* Don't generate spurious events */
320 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
322 case PPC40x_INPUT_RESET_SYS
:
324 #if defined(PPC_DEBUG_IRQ)
325 if (loglevel
& CPU_LOG_INT
) {
326 fprintf(logfile
, "%s: reset the PowerPC system\n",
330 ppc40x_system_reset(env
);
333 case PPC40x_INPUT_RESET_CHIP
:
335 #if defined(PPC_DEBUG_IRQ)
336 if (loglevel
& CPU_LOG_INT
) {
337 fprintf(logfile
, "%s: reset the PowerPC chip\n", __func__
);
340 ppc40x_chip_reset(env
);
343 case PPC40x_INPUT_RESET_CORE
:
344 /* XXX: TODO: update DBSR[MRR] */
346 #if defined(PPC_DEBUG_IRQ)
347 if (loglevel
& CPU_LOG_INT
) {
348 fprintf(logfile
, "%s: reset the PowerPC core\n", __func__
);
351 ppc40x_core_reset(env
);
354 case PPC40x_INPUT_CINT
:
355 /* Level sensitive - active high */
356 #if defined(PPC_DEBUG_IRQ)
357 if (loglevel
& CPU_LOG_INT
) {
358 fprintf(logfile
, "%s: set the critical IRQ state to %d\n",
362 ppc_set_irq(env
, PPC_INTERRUPT_CEXT
, level
);
364 case PPC40x_INPUT_INT
:
365 /* Level sensitive - active high */
366 #if defined(PPC_DEBUG_IRQ)
367 if (loglevel
& CPU_LOG_INT
) {
368 fprintf(logfile
, "%s: set the external IRQ state to %d\n",
372 ppc_set_irq(env
, PPC_INTERRUPT_EXT
, level
);
374 case PPC40x_INPUT_HALT
:
375 /* Level sensitive - active low */
377 #if defined(PPC_DEBUG_IRQ)
378 if (loglevel
& CPU_LOG_INT
) {
379 fprintf(logfile
, "%s: stop the CPU\n", __func__
);
384 #if defined(PPC_DEBUG_IRQ)
385 if (loglevel
& CPU_LOG_INT
) {
386 fprintf(logfile
, "%s: restart the CPU\n", __func__
);
392 case PPC40x_INPUT_DEBUG
:
393 /* Level sensitive - active high */
394 #if defined(PPC_DEBUG_IRQ)
395 if (loglevel
& CPU_LOG_INT
) {
396 fprintf(logfile
, "%s: set the debug pin state to %d\n",
400 ppc_set_irq(env
, PPC_INTERRUPT_DEBUG
, level
);
403 /* Unknown pin - do nothing */
404 #if defined(PPC_DEBUG_IRQ)
405 if (loglevel
& CPU_LOG_INT
) {
406 fprintf(logfile
, "%s: unknown IRQ pin %d\n", __func__
, pin
);
412 env
->irq_input_state
|= 1 << pin
;
414 env
->irq_input_state
&= ~(1 << pin
);
418 void ppc40x_irq_init (CPUState
*env
)
420 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc40x_set_irq
,
421 env
, PPC40x_INPUT_NB
);
424 /*****************************************************************************/
425 /* PowerPC time base and decrementer emulation */
427 /* Time base management */
428 int64_t tb_offset
; /* Compensation */
429 int64_t atb_offset
; /* Compensation */
430 uint32_t tb_freq
; /* TB frequency */
431 /* Decrementer management */
432 uint64_t decr_next
; /* Tick for next decr interrupt */
433 uint32_t decr_freq
; /* decrementer frequency */
434 struct QEMUTimer
*decr_timer
;
435 /* Hypervisor decrementer management */
436 uint64_t hdecr_next
; /* Tick for next hdecr interrupt */
437 struct QEMUTimer
*hdecr_timer
;
443 static always_inline
uint64_t cpu_ppc_get_tb (ppc_tb_t
*tb_env
, uint64_t vmclk
,
446 /* TB time in tb periods */
447 return muldiv64(vmclk
, tb_env
->tb_freq
, ticks_per_sec
) + tb_offset
;
450 uint32_t cpu_ppc_load_tbl (CPUState
*env
)
452 ppc_tb_t
*tb_env
= env
->tb_env
;
455 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock(vm_clock
), tb_env
->tb_offset
);
456 #if defined(PPC_DEBUG_TB)
458 fprintf(logfile
, "%s: tb %016" PRIx64
"\n", __func__
, tb
);
462 return tb
& 0xFFFFFFFF;
465 static always_inline
uint32_t _cpu_ppc_load_tbu (CPUState
*env
)
467 ppc_tb_t
*tb_env
= env
->tb_env
;
470 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock(vm_clock
), tb_env
->tb_offset
);
471 #if defined(PPC_DEBUG_TB)
473 fprintf(logfile
, "%s: tb %016" PRIx64
"\n", __func__
, tb
);
480 uint32_t cpu_ppc_load_tbu (CPUState
*env
)
482 return _cpu_ppc_load_tbu(env
);
485 static always_inline
void cpu_ppc_store_tb (ppc_tb_t
*tb_env
, uint64_t vmclk
,
489 *tb_offsetp
= value
- muldiv64(vmclk
, tb_env
->tb_freq
, ticks_per_sec
);
492 fprintf(logfile
, "%s: tb %016" PRIx64
" offset %08" PRIx64
"\n",
493 __func__
, value
, *tb_offsetp
);
498 void cpu_ppc_store_tbl (CPUState
*env
, uint32_t value
)
500 ppc_tb_t
*tb_env
= env
->tb_env
;
503 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock(vm_clock
), tb_env
->tb_offset
);
504 tb
&= 0xFFFFFFFF00000000ULL
;
505 cpu_ppc_store_tb(tb_env
, qemu_get_clock(vm_clock
),
506 &tb_env
->tb_offset
, tb
| (uint64_t)value
);
509 static always_inline
void _cpu_ppc_store_tbu (CPUState
*env
, uint32_t value
)
511 ppc_tb_t
*tb_env
= env
->tb_env
;
514 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock(vm_clock
), tb_env
->tb_offset
);
515 tb
&= 0x00000000FFFFFFFFULL
;
516 cpu_ppc_store_tb(tb_env
, qemu_get_clock(vm_clock
),
517 &tb_env
->tb_offset
, ((uint64_t)value
<< 32) | tb
);
520 void cpu_ppc_store_tbu (CPUState
*env
, uint32_t value
)
522 _cpu_ppc_store_tbu(env
, value
);
525 uint32_t cpu_ppc_load_atbl (CPUState
*env
)
527 ppc_tb_t
*tb_env
= env
->tb_env
;
530 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock(vm_clock
), tb_env
->atb_offset
);
531 #if defined(PPC_DEBUG_TB)
533 fprintf(logfile
, "%s: tb %016" PRIx64
"\n", __func__
, tb
);
537 return tb
& 0xFFFFFFFF;
540 uint32_t cpu_ppc_load_atbu (CPUState
*env
)
542 ppc_tb_t
*tb_env
= env
->tb_env
;
545 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock(vm_clock
), tb_env
->atb_offset
);
546 #if defined(PPC_DEBUG_TB)
548 fprintf(logfile
, "%s: tb %016" PRIx64
"\n", __func__
, tb
);
555 void cpu_ppc_store_atbl (CPUState
*env
, uint32_t value
)
557 ppc_tb_t
*tb_env
= env
->tb_env
;
560 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock(vm_clock
), tb_env
->atb_offset
);
561 tb
&= 0xFFFFFFFF00000000ULL
;
562 cpu_ppc_store_tb(tb_env
, qemu_get_clock(vm_clock
),
563 &tb_env
->atb_offset
, tb
| (uint64_t)value
);
566 void cpu_ppc_store_atbu (CPUState
*env
, uint32_t value
)
568 ppc_tb_t
*tb_env
= env
->tb_env
;
571 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock(vm_clock
), tb_env
->atb_offset
);
572 tb
&= 0x00000000FFFFFFFFULL
;
573 cpu_ppc_store_tb(tb_env
, qemu_get_clock(vm_clock
),
574 &tb_env
->atb_offset
, ((uint64_t)value
<< 32) | tb
);
577 static void cpu_ppc_tb_stop (CPUState
*env
)
579 ppc_tb_t
*tb_env
= env
->tb_env
;
580 uint64_t tb
, atb
, vmclk
;
582 /* If the time base is already frozen, do nothing */
583 if (tb_env
->tb_freq
!= 0) {
584 vmclk
= qemu_get_clock(vm_clock
);
585 /* Get the time base */
586 tb
= cpu_ppc_get_tb(tb_env
, vmclk
, tb_env
->tb_offset
);
587 /* Get the alternate time base */
588 atb
= cpu_ppc_get_tb(tb_env
, vmclk
, tb_env
->atb_offset
);
589 /* Store the time base value (ie compute the current offset) */
590 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->tb_offset
, tb
);
591 /* Store the alternate time base value (compute the current offset) */
592 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->atb_offset
, atb
);
593 /* Set the time base frequency to zero */
595 /* Now, the time bases are frozen to tb_offset / atb_offset value */
599 static void cpu_ppc_tb_start (CPUState
*env
)
601 ppc_tb_t
*tb_env
= env
->tb_env
;
602 uint64_t tb
, atb
, vmclk
;
604 /* If the time base is not frozen, do nothing */
605 if (tb_env
->tb_freq
== 0) {
606 vmclk
= qemu_get_clock(vm_clock
);
607 /* Get the time base from tb_offset */
608 tb
= tb_env
->tb_offset
;
609 /* Get the alternate time base from atb_offset */
610 atb
= tb_env
->atb_offset
;
611 /* Restore the tb frequency from the decrementer frequency */
612 tb_env
->tb_freq
= tb_env
->decr_freq
;
613 /* Store the time base value */
614 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->tb_offset
, tb
);
615 /* Store the alternate time base value */
616 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->atb_offset
, atb
);
620 static always_inline
uint32_t _cpu_ppc_load_decr (CPUState
*env
,
623 ppc_tb_t
*tb_env
= env
->tb_env
;
627 diff
= tb_env
->decr_next
- qemu_get_clock(vm_clock
);
629 decr
= muldiv64(diff
, tb_env
->decr_freq
, ticks_per_sec
);
631 decr
= -muldiv64(-diff
, tb_env
->decr_freq
, ticks_per_sec
);
632 #if defined(PPC_DEBUG_TB)
634 fprintf(logfile
, "%s: %08" PRIx32
"\n", __func__
, decr
);
641 uint32_t cpu_ppc_load_decr (CPUState
*env
)
643 ppc_tb_t
*tb_env
= env
->tb_env
;
645 return _cpu_ppc_load_decr(env
, &tb_env
->decr_next
);
648 uint32_t cpu_ppc_load_hdecr (CPUState
*env
)
650 ppc_tb_t
*tb_env
= env
->tb_env
;
652 return _cpu_ppc_load_decr(env
, &tb_env
->hdecr_next
);
655 uint64_t cpu_ppc_load_purr (CPUState
*env
)
657 ppc_tb_t
*tb_env
= env
->tb_env
;
660 diff
= qemu_get_clock(vm_clock
) - tb_env
->purr_start
;
662 return tb_env
->purr_load
+ muldiv64(diff
, tb_env
->tb_freq
, ticks_per_sec
);
665 /* When decrementer expires,
666 * all we need to do is generate or queue a CPU exception
668 static always_inline
void cpu_ppc_decr_excp (CPUState
*env
)
673 fprintf(logfile
, "raise decrementer exception\n");
676 ppc_set_irq(env
, PPC_INTERRUPT_DECR
, 1);
679 static always_inline
void cpu_ppc_hdecr_excp (CPUState
*env
)
684 fprintf(logfile
, "raise decrementer exception\n");
687 ppc_set_irq(env
, PPC_INTERRUPT_HDECR
, 1);
690 static void __cpu_ppc_store_decr (CPUState
*env
, uint64_t *nextp
,
691 struct QEMUTimer
*timer
,
692 void (*raise_excp
)(CPUState
*),
693 uint32_t decr
, uint32_t value
,
696 ppc_tb_t
*tb_env
= env
->tb_env
;
701 fprintf(logfile
, "%s: %08" PRIx32
" => %08" PRIx32
"\n", __func__
,
705 now
= qemu_get_clock(vm_clock
);
706 next
= now
+ muldiv64(value
, ticks_per_sec
, tb_env
->decr_freq
);
708 next
+= *nextp
- now
;
713 qemu_mod_timer(timer
, next
);
714 /* If we set a negative value and the decrementer was positive,
715 * raise an exception.
717 if ((value
& 0x80000000) && !(decr
& 0x80000000))
721 static always_inline
void _cpu_ppc_store_decr (CPUState
*env
, uint32_t decr
,
722 uint32_t value
, int is_excp
)
724 ppc_tb_t
*tb_env
= env
->tb_env
;
726 __cpu_ppc_store_decr(env
, &tb_env
->decr_next
, tb_env
->decr_timer
,
727 &cpu_ppc_decr_excp
, decr
, value
, is_excp
);
730 void cpu_ppc_store_decr (CPUState
*env
, uint32_t value
)
732 _cpu_ppc_store_decr(env
, cpu_ppc_load_decr(env
), value
, 0);
735 static void cpu_ppc_decr_cb (void *opaque
)
737 _cpu_ppc_store_decr(opaque
, 0x00000000, 0xFFFFFFFF, 1);
740 static always_inline
void _cpu_ppc_store_hdecr (CPUState
*env
, uint32_t hdecr
,
741 uint32_t value
, int is_excp
)
743 ppc_tb_t
*tb_env
= env
->tb_env
;
745 if (tb_env
->hdecr_timer
!= NULL
) {
746 __cpu_ppc_store_decr(env
, &tb_env
->hdecr_next
, tb_env
->hdecr_timer
,
747 &cpu_ppc_hdecr_excp
, hdecr
, value
, is_excp
);
751 void cpu_ppc_store_hdecr (CPUState
*env
, uint32_t value
)
753 _cpu_ppc_store_hdecr(env
, cpu_ppc_load_hdecr(env
), value
, 0);
756 static void cpu_ppc_hdecr_cb (void *opaque
)
758 _cpu_ppc_store_hdecr(opaque
, 0x00000000, 0xFFFFFFFF, 1);
761 void cpu_ppc_store_purr (CPUState
*env
, uint64_t value
)
763 ppc_tb_t
*tb_env
= env
->tb_env
;
765 tb_env
->purr_load
= value
;
766 tb_env
->purr_start
= qemu_get_clock(vm_clock
);
769 static void cpu_ppc_set_tb_clk (void *opaque
, uint32_t freq
)
771 CPUState
*env
= opaque
;
772 ppc_tb_t
*tb_env
= env
->tb_env
;
774 tb_env
->tb_freq
= freq
;
775 tb_env
->decr_freq
= freq
;
776 /* There is a bug in Linux 2.4 kernels:
777 * if a decrementer exception is pending when it enables msr_ee at startup,
778 * it's not ready to handle it...
780 _cpu_ppc_store_decr(env
, 0xFFFFFFFF, 0xFFFFFFFF, 0);
781 _cpu_ppc_store_hdecr(env
, 0xFFFFFFFF, 0xFFFFFFFF, 0);
782 cpu_ppc_store_purr(env
, 0x0000000000000000ULL
);
785 /* Set up (once) timebase frequency (in Hz) */
786 clk_setup_cb
cpu_ppc_tb_init (CPUState
*env
, uint32_t freq
)
790 tb_env
= qemu_mallocz(sizeof(ppc_tb_t
));
793 env
->tb_env
= tb_env
;
794 /* Create new timer */
795 tb_env
->decr_timer
= qemu_new_timer(vm_clock
, &cpu_ppc_decr_cb
, env
);
797 /* XXX: find a suitable condition to enable the hypervisor decrementer
799 tb_env
->hdecr_timer
= qemu_new_timer(vm_clock
, &cpu_ppc_hdecr_cb
, env
);
801 tb_env
->hdecr_timer
= NULL
;
803 cpu_ppc_set_tb_clk(env
, freq
);
805 return &cpu_ppc_set_tb_clk
;
808 /* Specific helpers for POWER & PowerPC 601 RTC */
809 clk_setup_cb
cpu_ppc601_rtc_init (CPUState
*env
)
811 return cpu_ppc_tb_init(env
, 7812500);
814 void cpu_ppc601_store_rtcu (CPUState
*env
, uint32_t value
)
816 _cpu_ppc_store_tbu(env
, value
);
819 uint32_t cpu_ppc601_load_rtcu (CPUState
*env
)
821 return _cpu_ppc_load_tbu(env
);
824 void cpu_ppc601_store_rtcl (CPUState
*env
, uint32_t value
)
826 cpu_ppc_store_tbl(env
, value
& 0x3FFFFF80);
829 uint32_t cpu_ppc601_load_rtcl (CPUState
*env
)
831 return cpu_ppc_load_tbl(env
) & 0x3FFFFF80;
834 /*****************************************************************************/
835 /* Embedded PowerPC timers */
838 typedef struct ppcemb_timer_t ppcemb_timer_t
;
839 struct ppcemb_timer_t
{
840 uint64_t pit_reload
; /* PIT auto-reload value */
841 uint64_t fit_next
; /* Tick for next FIT interrupt */
842 struct QEMUTimer
*fit_timer
;
843 uint64_t wdt_next
; /* Tick for next WDT interrupt */
844 struct QEMUTimer
*wdt_timer
;
847 /* Fixed interval timer */
848 static void cpu_4xx_fit_cb (void *opaque
)
852 ppcemb_timer_t
*ppcemb_timer
;
856 tb_env
= env
->tb_env
;
857 ppcemb_timer
= tb_env
->opaque
;
858 now
= qemu_get_clock(vm_clock
);
859 switch ((env
->spr
[SPR_40x_TCR
] >> 24) & 0x3) {
873 /* Cannot occur, but makes gcc happy */
876 next
= now
+ muldiv64(next
, ticks_per_sec
, tb_env
->tb_freq
);
879 qemu_mod_timer(ppcemb_timer
->fit_timer
, next
);
880 env
->spr
[SPR_40x_TSR
] |= 1 << 26;
881 if ((env
->spr
[SPR_40x_TCR
] >> 23) & 0x1)
882 ppc_set_irq(env
, PPC_INTERRUPT_FIT
, 1);
885 fprintf(logfile
, "%s: ir %d TCR " ADDRX
" TSR " ADDRX
"\n", __func__
,
886 (int)((env
->spr
[SPR_40x_TCR
] >> 23) & 0x1),
887 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
]);
892 /* Programmable interval timer */
893 static void start_stop_pit (CPUState
*env
, ppc_tb_t
*tb_env
, int is_excp
)
895 ppcemb_timer_t
*ppcemb_timer
;
898 ppcemb_timer
= tb_env
->opaque
;
899 if (ppcemb_timer
->pit_reload
<= 1 ||
900 !((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1) ||
901 (is_excp
&& !((env
->spr
[SPR_40x_TCR
] >> 22) & 0x1))) {
905 fprintf(logfile
, "%s: stop PIT\n", __func__
);
908 qemu_del_timer(tb_env
->decr_timer
);
912 fprintf(logfile
, "%s: start PIT %016" PRIx64
"\n",
913 __func__
, ppcemb_timer
->pit_reload
);
916 now
= qemu_get_clock(vm_clock
);
917 next
= now
+ muldiv64(ppcemb_timer
->pit_reload
,
918 ticks_per_sec
, tb_env
->decr_freq
);
920 next
+= tb_env
->decr_next
- now
;
923 qemu_mod_timer(tb_env
->decr_timer
, next
);
924 tb_env
->decr_next
= next
;
928 static void cpu_4xx_pit_cb (void *opaque
)
932 ppcemb_timer_t
*ppcemb_timer
;
935 tb_env
= env
->tb_env
;
936 ppcemb_timer
= tb_env
->opaque
;
937 env
->spr
[SPR_40x_TSR
] |= 1 << 27;
938 if ((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1)
939 ppc_set_irq(env
, PPC_INTERRUPT_PIT
, 1);
940 start_stop_pit(env
, tb_env
, 1);
943 fprintf(logfile
, "%s: ar %d ir %d TCR " ADDRX
" TSR " ADDRX
" "
944 "%016" PRIx64
"\n", __func__
,
945 (int)((env
->spr
[SPR_40x_TCR
] >> 22) & 0x1),
946 (int)((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1),
947 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
],
948 ppcemb_timer
->pit_reload
);
954 static void cpu_4xx_wdt_cb (void *opaque
)
958 ppcemb_timer_t
*ppcemb_timer
;
962 tb_env
= env
->tb_env
;
963 ppcemb_timer
= tb_env
->opaque
;
964 now
= qemu_get_clock(vm_clock
);
965 switch ((env
->spr
[SPR_40x_TCR
] >> 30) & 0x3) {
979 /* Cannot occur, but makes gcc happy */
982 next
= now
+ muldiv64(next
, ticks_per_sec
, tb_env
->decr_freq
);
987 fprintf(logfile
, "%s: TCR " ADDRX
" TSR " ADDRX
"\n", __func__
,
988 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
]);
991 switch ((env
->spr
[SPR_40x_TSR
] >> 30) & 0x3) {
994 qemu_mod_timer(ppcemb_timer
->wdt_timer
, next
);
995 ppcemb_timer
->wdt_next
= next
;
996 env
->spr
[SPR_40x_TSR
] |= 1 << 31;
999 qemu_mod_timer(ppcemb_timer
->wdt_timer
, next
);
1000 ppcemb_timer
->wdt_next
= next
;
1001 env
->spr
[SPR_40x_TSR
] |= 1 << 30;
1002 if ((env
->spr
[SPR_40x_TCR
] >> 27) & 0x1)
1003 ppc_set_irq(env
, PPC_INTERRUPT_WDT
, 1);
1006 env
->spr
[SPR_40x_TSR
] &= ~0x30000000;
1007 env
->spr
[SPR_40x_TSR
] |= env
->spr
[SPR_40x_TCR
] & 0x30000000;
1008 switch ((env
->spr
[SPR_40x_TCR
] >> 28) & 0x3) {
1012 case 0x1: /* Core reset */
1013 ppc40x_core_reset(env
);
1015 case 0x2: /* Chip reset */
1016 ppc40x_chip_reset(env
);
1018 case 0x3: /* System reset */
1019 ppc40x_system_reset(env
);
1025 void store_40x_pit (CPUState
*env
, target_ulong val
)
1028 ppcemb_timer_t
*ppcemb_timer
;
1030 tb_env
= env
->tb_env
;
1031 ppcemb_timer
= tb_env
->opaque
;
1033 if (loglevel
!= 0) {
1034 fprintf(logfile
, "%s val" ADDRX
"\n", __func__
, val
);
1037 ppcemb_timer
->pit_reload
= val
;
1038 start_stop_pit(env
, tb_env
, 0);
1041 target_ulong
load_40x_pit (CPUState
*env
)
1043 return cpu_ppc_load_decr(env
);
1046 void store_booke_tsr (CPUState
*env
, target_ulong val
)
1049 if (loglevel
!= 0) {
1050 fprintf(logfile
, "%s: val " ADDRX
"\n", __func__
, val
);
1053 env
->spr
[SPR_40x_TSR
] &= ~(val
& 0xFC000000);
1054 if (val
& 0x80000000)
1055 ppc_set_irq(env
, PPC_INTERRUPT_PIT
, 0);
1058 void store_booke_tcr (CPUState
*env
, target_ulong val
)
1062 tb_env
= env
->tb_env
;
1064 if (loglevel
!= 0) {
1065 fprintf(logfile
, "%s: val " ADDRX
"\n", __func__
, val
);
1068 env
->spr
[SPR_40x_TCR
] = val
& 0xFFC00000;
1069 start_stop_pit(env
, tb_env
, 1);
1070 cpu_4xx_wdt_cb(env
);
1073 static void ppc_emb_set_tb_clk (void *opaque
, uint32_t freq
)
1075 CPUState
*env
= opaque
;
1076 ppc_tb_t
*tb_env
= env
->tb_env
;
1079 if (loglevel
!= 0) {
1080 fprintf(logfile
, "%s set new frequency to %" PRIu32
"\n", __func__
,
1084 tb_env
->tb_freq
= freq
;
1085 tb_env
->decr_freq
= freq
;
1086 /* XXX: we should also update all timers */
1089 clk_setup_cb
ppc_emb_timers_init (CPUState
*env
, uint32_t freq
)
1092 ppcemb_timer_t
*ppcemb_timer
;
1094 tb_env
= qemu_mallocz(sizeof(ppc_tb_t
));
1095 if (tb_env
== NULL
) {
1098 env
->tb_env
= tb_env
;
1099 ppcemb_timer
= qemu_mallocz(sizeof(ppcemb_timer_t
));
1100 tb_env
->tb_freq
= freq
;
1101 tb_env
->decr_freq
= freq
;
1102 tb_env
->opaque
= ppcemb_timer
;
1104 if (loglevel
!= 0) {
1105 fprintf(logfile
, "%s freq %" PRIu32
"\n", __func__
, freq
);
1108 if (ppcemb_timer
!= NULL
) {
1109 /* We use decr timer for PIT */
1110 tb_env
->decr_timer
= qemu_new_timer(vm_clock
, &cpu_4xx_pit_cb
, env
);
1111 ppcemb_timer
->fit_timer
=
1112 qemu_new_timer(vm_clock
, &cpu_4xx_fit_cb
, env
);
1113 ppcemb_timer
->wdt_timer
=
1114 qemu_new_timer(vm_clock
, &cpu_4xx_wdt_cb
, env
);
1117 return &ppc_emb_set_tb_clk
;
1120 /*****************************************************************************/
1121 /* Embedded PowerPC Device Control Registers */
1122 typedef struct ppc_dcrn_t ppc_dcrn_t
;
1124 dcr_read_cb dcr_read
;
1125 dcr_write_cb dcr_write
;
1129 /* XXX: on 460, DCR addresses are 32 bits wide,
1130 * using DCRIPR to get the 22 upper bits of the DCR address
1132 #define DCRN_NB 1024
1134 ppc_dcrn_t dcrn
[DCRN_NB
];
1135 int (*read_error
)(int dcrn
);
1136 int (*write_error
)(int dcrn
);
1139 int ppc_dcr_read (ppc_dcr_t
*dcr_env
, int dcrn
, target_ulong
*valp
)
1143 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1145 dcr
= &dcr_env
->dcrn
[dcrn
];
1146 if (dcr
->dcr_read
== NULL
)
1148 *valp
= (*dcr
->dcr_read
)(dcr
->opaque
, dcrn
);
1153 if (dcr_env
->read_error
!= NULL
)
1154 return (*dcr_env
->read_error
)(dcrn
);
1159 int ppc_dcr_write (ppc_dcr_t
*dcr_env
, int dcrn
, target_ulong val
)
1163 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1165 dcr
= &dcr_env
->dcrn
[dcrn
];
1166 if (dcr
->dcr_write
== NULL
)
1168 (*dcr
->dcr_write
)(dcr
->opaque
, dcrn
, val
);
1173 if (dcr_env
->write_error
!= NULL
)
1174 return (*dcr_env
->write_error
)(dcrn
);
1179 int ppc_dcr_register (CPUState
*env
, int dcrn
, void *opaque
,
1180 dcr_read_cb dcr_read
, dcr_write_cb dcr_write
)
1185 dcr_env
= env
->dcr_env
;
1186 if (dcr_env
== NULL
)
1188 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1190 dcr
= &dcr_env
->dcrn
[dcrn
];
1191 if (dcr
->opaque
!= NULL
||
1192 dcr
->dcr_read
!= NULL
||
1193 dcr
->dcr_write
!= NULL
)
1195 dcr
->opaque
= opaque
;
1196 dcr
->dcr_read
= dcr_read
;
1197 dcr
->dcr_write
= dcr_write
;
1202 int ppc_dcr_init (CPUState
*env
, int (*read_error
)(int dcrn
),
1203 int (*write_error
)(int dcrn
))
1207 dcr_env
= qemu_mallocz(sizeof(ppc_dcr_t
));
1208 if (dcr_env
== NULL
)
1210 dcr_env
->read_error
= read_error
;
1211 dcr_env
->write_error
= write_error
;
1212 env
->dcr_env
= dcr_env
;
1218 /*****************************************************************************/
1219 /* Handle system reset (for now, just stop emulation) */
1220 void cpu_ppc_reset (CPUState
*env
)
1222 printf("Reset asked... Stop emulation\n");
1227 /*****************************************************************************/
1229 void PPC_debug_write (void *opaque
, uint32_t addr
, uint32_t val
)
1241 printf("Set loglevel to %04" PRIx32
"\n", val
);
1242 cpu_set_log(val
| 0x100);
1247 /*****************************************************************************/
1249 static inline uint32_t nvram_read (nvram_t
*nvram
, uint32_t addr
)
1251 return (*nvram
->read_fn
)(nvram
->opaque
, addr
);;
1254 static inline void nvram_write (nvram_t
*nvram
, uint32_t addr
, uint32_t val
)
1256 (*nvram
->write_fn
)(nvram
->opaque
, addr
, val
);
1259 void NVRAM_set_byte (nvram_t
*nvram
, uint32_t addr
, uint8_t value
)
1261 nvram_write(nvram
, addr
, value
);
1264 uint8_t NVRAM_get_byte (nvram_t
*nvram
, uint32_t addr
)
1266 return nvram_read(nvram
, addr
);
1269 void NVRAM_set_word (nvram_t
*nvram
, uint32_t addr
, uint16_t value
)
1271 nvram_write(nvram
, addr
, value
>> 8);
1272 nvram_write(nvram
, addr
+ 1, value
& 0xFF);
1275 uint16_t NVRAM_get_word (nvram_t
*nvram
, uint32_t addr
)
1279 tmp
= nvram_read(nvram
, addr
) << 8;
1280 tmp
|= nvram_read(nvram
, addr
+ 1);
1285 void NVRAM_set_lword (nvram_t
*nvram
, uint32_t addr
, uint32_t value
)
1287 nvram_write(nvram
, addr
, value
>> 24);
1288 nvram_write(nvram
, addr
+ 1, (value
>> 16) & 0xFF);
1289 nvram_write(nvram
, addr
+ 2, (value
>> 8) & 0xFF);
1290 nvram_write(nvram
, addr
+ 3, value
& 0xFF);
1293 uint32_t NVRAM_get_lword (nvram_t
*nvram
, uint32_t addr
)
1297 tmp
= nvram_read(nvram
, addr
) << 24;
1298 tmp
|= nvram_read(nvram
, addr
+ 1) << 16;
1299 tmp
|= nvram_read(nvram
, addr
+ 2) << 8;
1300 tmp
|= nvram_read(nvram
, addr
+ 3);
1305 void NVRAM_set_string (nvram_t
*nvram
, uint32_t addr
,
1306 const char *str
, uint32_t max
)
1310 for (i
= 0; i
< max
&& str
[i
] != '\0'; i
++) {
1311 nvram_write(nvram
, addr
+ i
, str
[i
]);
1313 nvram_write(nvram
, addr
+ i
, str
[i
]);
1314 nvram_write(nvram
, addr
+ max
- 1, '\0');
1317 int NVRAM_get_string (nvram_t
*nvram
, uint8_t *dst
, uint16_t addr
, int max
)
1321 memset(dst
, 0, max
);
1322 for (i
= 0; i
< max
; i
++) {
1323 dst
[i
] = NVRAM_get_byte(nvram
, addr
+ i
);
1331 static uint16_t NVRAM_crc_update (uint16_t prev
, uint16_t value
)
1334 uint16_t pd
, pd1
, pd2
;
1339 pd2
= ((pd
>> 4) & 0x000F) ^ pd1
;
1340 tmp
^= (pd1
<< 3) | (pd1
<< 8);
1341 tmp
^= pd2
| (pd2
<< 7) | (pd2
<< 12);
1346 uint16_t NVRAM_compute_crc (nvram_t
*nvram
, uint32_t start
, uint32_t count
)
1349 uint16_t crc
= 0xFFFF;
1354 for (i
= 0; i
!= count
; i
++) {
1355 crc
= NVRAM_crc_update(crc
, NVRAM_get_word(nvram
, start
+ i
));
1358 crc
= NVRAM_crc_update(crc
, NVRAM_get_byte(nvram
, start
+ i
) << 8);
1364 #define CMDLINE_ADDR 0x017ff000
1366 int PPC_NVRAM_set_params (nvram_t
*nvram
, uint16_t NVRAM_size
,
1368 uint32_t RAM_size
, int boot_device
,
1369 uint32_t kernel_image
, uint32_t kernel_size
,
1370 const char *cmdline
,
1371 uint32_t initrd_image
, uint32_t initrd_size
,
1372 uint32_t NVRAM_image
,
1373 int width
, int height
, int depth
)
1377 /* Set parameters for Open Hack'Ware BIOS */
1378 NVRAM_set_string(nvram
, 0x00, "QEMU_BIOS", 16);
1379 NVRAM_set_lword(nvram
, 0x10, 0x00000002); /* structure v2 */
1380 NVRAM_set_word(nvram
, 0x14, NVRAM_size
);
1381 NVRAM_set_string(nvram
, 0x20, arch
, 16);
1382 NVRAM_set_lword(nvram
, 0x30, RAM_size
);
1383 NVRAM_set_byte(nvram
, 0x34, boot_device
);
1384 NVRAM_set_lword(nvram
, 0x38, kernel_image
);
1385 NVRAM_set_lword(nvram
, 0x3C, kernel_size
);
1387 /* XXX: put the cmdline in NVRAM too ? */
1388 strcpy((char *)(phys_ram_base
+ CMDLINE_ADDR
), cmdline
);
1389 NVRAM_set_lword(nvram
, 0x40, CMDLINE_ADDR
);
1390 NVRAM_set_lword(nvram
, 0x44, strlen(cmdline
));
1392 NVRAM_set_lword(nvram
, 0x40, 0);
1393 NVRAM_set_lword(nvram
, 0x44, 0);
1395 NVRAM_set_lword(nvram
, 0x48, initrd_image
);
1396 NVRAM_set_lword(nvram
, 0x4C, initrd_size
);
1397 NVRAM_set_lword(nvram
, 0x50, NVRAM_image
);
1399 NVRAM_set_word(nvram
, 0x54, width
);
1400 NVRAM_set_word(nvram
, 0x56, height
);
1401 NVRAM_set_word(nvram
, 0x58, depth
);
1402 crc
= NVRAM_compute_crc(nvram
, 0x00, 0xF8);
1403 NVRAM_set_word(nvram
, 0xFC, crc
);