Remove an unused field and fix some non-code typos.
[qemu/mini2440/sniper_sniper_test.git] / hw / slavio_serial.c
blob03bd534bd5e254ad348e8eb6b2c6731f4a0d26fb
1 /*
2 * QEMU Sparc SLAVIO serial port emulation
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "sun4m.h"
26 #include "qemu-char.h"
27 #include "console.h"
29 /* debug serial */
30 //#define DEBUG_SERIAL
32 /* debug keyboard */
33 //#define DEBUG_KBD
35 /* debug mouse */
36 //#define DEBUG_MOUSE
39 * This is the serial port, mouse and keyboard part of chip STP2001
40 * (Slave I/O), also produced as NCR89C105. See
41 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
43 * The serial ports implement full AMD AM8530 or Zilog Z8530 chips,
44 * mouse and keyboard ports don't implement all functions and they are
45 * only asynchronous. There is no DMA.
50 * Modifications:
51 * 2006-Aug-10 Igor Kovalenko : Renamed KBDQueue to SERIOQueue, implemented
52 * serial mouse queue.
53 * Implemented serial mouse protocol.
56 #ifdef DEBUG_SERIAL
57 #define SER_DPRINTF(fmt, args...) \
58 do { printf("SER: " fmt , ##args); } while (0)
59 #else
60 #define SER_DPRINTF(fmt, args...)
61 #endif
62 #ifdef DEBUG_KBD
63 #define KBD_DPRINTF(fmt, args...) \
64 do { printf("KBD: " fmt , ##args); } while (0)
65 #else
66 #define KBD_DPRINTF(fmt, args...)
67 #endif
68 #ifdef DEBUG_MOUSE
69 #define MS_DPRINTF(fmt, args...) \
70 do { printf("MSC: " fmt , ##args); } while (0)
71 #else
72 #define MS_DPRINTF(fmt, args...)
73 #endif
75 typedef enum {
76 chn_a, chn_b,
77 } chn_id_t;
79 #define CHN_C(s) ((s)->chn == chn_b? 'b' : 'a')
81 typedef enum {
82 ser, kbd, mouse,
83 } chn_type_t;
85 #define SERIO_QUEUE_SIZE 256
87 typedef struct {
88 uint8_t data[SERIO_QUEUE_SIZE];
89 int rptr, wptr, count;
90 } SERIOQueue;
92 #define SERIAL_REGS 16
93 typedef struct ChannelState {
94 qemu_irq irq;
95 int reg;
96 int rxint, txint, rxint_under_svc, txint_under_svc;
97 chn_id_t chn; // this channel, A (base+4) or B (base+0)
98 chn_type_t type;
99 struct ChannelState *otherchn;
100 uint8_t rx, tx, wregs[SERIAL_REGS], rregs[SERIAL_REGS];
101 SERIOQueue queue;
102 CharDriverState *chr;
103 int e0_mode, led_mode, caps_lock_mode, num_lock_mode;
104 int disabled;
105 } ChannelState;
107 struct SerialState {
108 struct ChannelState chn[2];
111 #define SERIAL_MAXADDR 7
112 #define SERIAL_SIZE (SERIAL_MAXADDR + 1)
113 #define SERIAL_CTRL 0
114 #define SERIAL_DATA 1
116 #define W_CMD 0
117 #define CMD_PTR_MASK 0x07
118 #define CMD_CMD_MASK 0x38
119 #define CMD_HI 0x08
120 #define CMD_CLR_TXINT 0x28
121 #define CMD_CLR_IUS 0x38
122 #define W_INTR 1
123 #define INTR_INTALL 0x01
124 #define INTR_TXINT 0x02
125 #define INTR_RXMODEMSK 0x18
126 #define INTR_RXINT1ST 0x08
127 #define INTR_RXINTALL 0x10
128 #define W_IVEC 2
129 #define W_RXCTRL 3
130 #define RXCTRL_RXEN 0x01
131 #define W_TXCTRL1 4
132 #define TXCTRL1_PAREN 0x01
133 #define TXCTRL1_PAREV 0x02
134 #define TXCTRL1_1STOP 0x04
135 #define TXCTRL1_1HSTOP 0x08
136 #define TXCTRL1_2STOP 0x0c
137 #define TXCTRL1_STPMSK 0x0c
138 #define TXCTRL1_CLK1X 0x00
139 #define TXCTRL1_CLK16X 0x40
140 #define TXCTRL1_CLK32X 0x80
141 #define TXCTRL1_CLK64X 0xc0
142 #define TXCTRL1_CLKMSK 0xc0
143 #define W_TXCTRL2 5
144 #define TXCTRL2_TXEN 0x08
145 #define TXCTRL2_BITMSK 0x60
146 #define TXCTRL2_5BITS 0x00
147 #define TXCTRL2_7BITS 0x20
148 #define TXCTRL2_6BITS 0x40
149 #define TXCTRL2_8BITS 0x60
150 #define W_SYNC1 6
151 #define W_SYNC2 7
152 #define W_TXBUF 8
153 #define W_MINTR 9
154 #define MINTR_STATUSHI 0x10
155 #define MINTR_RST_MASK 0xc0
156 #define MINTR_RST_B 0x40
157 #define MINTR_RST_A 0x80
158 #define MINTR_RST_ALL 0xc0
159 #define W_MISC1 10
160 #define W_CLOCK 11
161 #define CLOCK_TRXC 0x08
162 #define W_BRGLO 12
163 #define W_BRGHI 13
164 #define W_MISC2 14
165 #define MISC2_PLLDIS 0x30
166 #define W_EXTINT 15
167 #define EXTINT_DCD 0x08
168 #define EXTINT_SYNCINT 0x10
169 #define EXTINT_CTSINT 0x20
170 #define EXTINT_TXUNDRN 0x40
171 #define EXTINT_BRKINT 0x80
173 #define R_STATUS 0
174 #define STATUS_RXAV 0x01
175 #define STATUS_ZERO 0x02
176 #define STATUS_TXEMPTY 0x04
177 #define STATUS_DCD 0x08
178 #define STATUS_SYNC 0x10
179 #define STATUS_CTS 0x20
180 #define STATUS_TXUNDRN 0x40
181 #define STATUS_BRK 0x80
182 #define R_SPEC 1
183 #define SPEC_ALLSENT 0x01
184 #define SPEC_BITS8 0x06
185 #define R_IVEC 2
186 #define IVEC_TXINTB 0x00
187 #define IVEC_LONOINT 0x06
188 #define IVEC_LORXINTA 0x0c
189 #define IVEC_LORXINTB 0x04
190 #define IVEC_LOTXINTA 0x08
191 #define IVEC_HINOINT 0x60
192 #define IVEC_HIRXINTA 0x30
193 #define IVEC_HIRXINTB 0x20
194 #define IVEC_HITXINTA 0x10
195 #define R_INTR 3
196 #define INTR_EXTINTB 0x01
197 #define INTR_TXINTB 0x02
198 #define INTR_RXINTB 0x04
199 #define INTR_EXTINTA 0x08
200 #define INTR_TXINTA 0x10
201 #define INTR_RXINTA 0x20
202 #define R_IPEN 4
203 #define R_TXCTRL1 5
204 #define R_TXCTRL2 6
205 #define R_BC 7
206 #define R_RXBUF 8
207 #define R_RXCTRL 9
208 #define R_MISC 10
209 #define R_MISC1 11
210 #define R_BRGLO 12
211 #define R_BRGHI 13
212 #define R_MISC1I 14
213 #define R_EXTINT 15
215 static void handle_kbd_command(ChannelState *s, int val);
216 static int serial_can_receive(void *opaque);
217 static void serial_receive_byte(ChannelState *s, int ch);
219 static void clear_queue(void *opaque)
221 ChannelState *s = opaque;
222 SERIOQueue *q = &s->queue;
223 q->rptr = q->wptr = q->count = 0;
226 static void put_queue(void *opaque, int b)
228 ChannelState *s = opaque;
229 SERIOQueue *q = &s->queue;
231 SER_DPRINTF("channel %c put: 0x%02x\n", CHN_C(s), b);
232 if (q->count >= SERIO_QUEUE_SIZE)
233 return;
234 q->data[q->wptr] = b;
235 if (++q->wptr == SERIO_QUEUE_SIZE)
236 q->wptr = 0;
237 q->count++;
238 serial_receive_byte(s, 0);
241 static uint32_t get_queue(void *opaque)
243 ChannelState *s = opaque;
244 SERIOQueue *q = &s->queue;
245 int val;
247 if (q->count == 0) {
248 return 0;
249 } else {
250 val = q->data[q->rptr];
251 if (++q->rptr == SERIO_QUEUE_SIZE)
252 q->rptr = 0;
253 q->count--;
255 SER_DPRINTF("channel %c get 0x%02x\n", CHN_C(s), val);
256 if (q->count > 0)
257 serial_receive_byte(s, 0);
258 return val;
261 static int slavio_serial_update_irq_chn(ChannelState *s)
263 if ((s->wregs[W_INTR] & INTR_INTALL) && // interrupts enabled
264 (((s->wregs[W_INTR] & INTR_TXINT) && s->txint == 1) ||
265 // tx ints enabled, pending
266 ((((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINT1ST) ||
267 ((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINTALL)) &&
268 s->rxint == 1) || // rx ints enabled, pending
269 ((s->wregs[W_EXTINT] & EXTINT_BRKINT) &&
270 (s->rregs[R_STATUS] & STATUS_BRK)))) { // break int e&p
271 return 1;
273 return 0;
276 static void slavio_serial_update_irq(ChannelState *s)
278 int irq;
280 irq = slavio_serial_update_irq_chn(s);
281 irq |= slavio_serial_update_irq_chn(s->otherchn);
283 SER_DPRINTF("IRQ = %d\n", irq);
284 qemu_set_irq(s->irq, irq);
287 static void slavio_serial_reset_chn(ChannelState *s)
289 int i;
291 s->reg = 0;
292 for (i = 0; i < SERIAL_SIZE; i++) {
293 s->rregs[i] = 0;
294 s->wregs[i] = 0;
296 s->wregs[W_TXCTRL1] = TXCTRL1_1STOP; // 1X divisor, 1 stop bit, no parity
297 s->wregs[W_MINTR] = MINTR_RST_ALL;
298 s->wregs[W_CLOCK] = CLOCK_TRXC; // Synch mode tx clock = TRxC
299 s->wregs[W_MISC2] = MISC2_PLLDIS; // PLL disabled
300 s->wregs[W_EXTINT] = EXTINT_DCD | EXTINT_SYNCINT | EXTINT_CTSINT |
301 EXTINT_TXUNDRN | EXTINT_BRKINT; // Enable most interrupts
302 if (s->disabled)
303 s->rregs[R_STATUS] = STATUS_TXEMPTY | STATUS_DCD | STATUS_SYNC |
304 STATUS_CTS | STATUS_TXUNDRN;
305 else
306 s->rregs[R_STATUS] = STATUS_TXEMPTY | STATUS_TXUNDRN;
307 s->rregs[R_SPEC] = SPEC_BITS8 | SPEC_ALLSENT;
309 s->rx = s->tx = 0;
310 s->rxint = s->txint = 0;
311 s->rxint_under_svc = s->txint_under_svc = 0;
312 s->e0_mode = s->led_mode = s->caps_lock_mode = s->num_lock_mode = 0;
313 clear_queue(s);
316 static void slavio_serial_reset(void *opaque)
318 SerialState *s = opaque;
319 slavio_serial_reset_chn(&s->chn[0]);
320 slavio_serial_reset_chn(&s->chn[1]);
323 static inline void set_rxint(ChannelState *s)
325 s->rxint = 1;
326 if (!s->txint_under_svc) {
327 s->rxint_under_svc = 1;
328 if (s->chn == chn_a) {
329 if (s->wregs[W_MINTR] & MINTR_STATUSHI)
330 s->otherchn->rregs[R_IVEC] = IVEC_HIRXINTA;
331 else
332 s->otherchn->rregs[R_IVEC] = IVEC_LORXINTA;
333 } else {
334 if (s->wregs[W_MINTR] & MINTR_STATUSHI)
335 s->rregs[R_IVEC] = IVEC_HIRXINTB;
336 else
337 s->rregs[R_IVEC] = IVEC_LORXINTB;
340 if (s->chn == chn_a)
341 s->rregs[R_INTR] |= INTR_RXINTA;
342 else
343 s->otherchn->rregs[R_INTR] |= INTR_RXINTB;
344 slavio_serial_update_irq(s);
347 static inline void set_txint(ChannelState *s)
349 s->txint = 1;
350 if (!s->rxint_under_svc) {
351 s->txint_under_svc = 1;
352 if (s->chn == chn_a) {
353 if (s->wregs[W_MINTR] & MINTR_STATUSHI)
354 s->otherchn->rregs[R_IVEC] = IVEC_HITXINTA;
355 else
356 s->otherchn->rregs[R_IVEC] = IVEC_LOTXINTA;
357 } else {
358 s->rregs[R_IVEC] = IVEC_TXINTB;
361 if (s->chn == chn_a)
362 s->rregs[R_INTR] |= INTR_TXINTA;
363 else
364 s->otherchn->rregs[R_INTR] |= INTR_TXINTB;
365 slavio_serial_update_irq(s);
368 static inline void clr_rxint(ChannelState *s)
370 s->rxint = 0;
371 s->rxint_under_svc = 0;
372 if (s->chn == chn_a) {
373 if (s->wregs[W_MINTR] & MINTR_STATUSHI)
374 s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
375 else
376 s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
377 s->rregs[R_INTR] &= ~INTR_RXINTA;
378 } else {
379 if (s->wregs[W_MINTR] & MINTR_STATUSHI)
380 s->rregs[R_IVEC] = IVEC_HINOINT;
381 else
382 s->rregs[R_IVEC] = IVEC_LONOINT;
383 s->otherchn->rregs[R_INTR] &= ~INTR_RXINTB;
385 if (s->txint)
386 set_txint(s);
387 slavio_serial_update_irq(s);
390 static inline void clr_txint(ChannelState *s)
392 s->txint = 0;
393 s->txint_under_svc = 0;
394 if (s->chn == chn_a) {
395 if (s->wregs[W_MINTR] & MINTR_STATUSHI)
396 s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
397 else
398 s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
399 s->rregs[R_INTR] &= ~INTR_TXINTA;
400 } else {
401 if (s->wregs[W_MINTR] & MINTR_STATUSHI)
402 s->rregs[R_IVEC] = IVEC_HINOINT;
403 else
404 s->rregs[R_IVEC] = IVEC_LONOINT;
405 s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
407 if (s->rxint)
408 set_rxint(s);
409 slavio_serial_update_irq(s);
412 static void slavio_serial_update_parameters(ChannelState *s)
414 int speed, parity, data_bits, stop_bits;
415 QEMUSerialSetParams ssp;
417 if (!s->chr || s->type != ser)
418 return;
420 if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREN) {
421 if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREV)
422 parity = 'E';
423 else
424 parity = 'O';
425 } else {
426 parity = 'N';
428 if ((s->wregs[W_TXCTRL1] & TXCTRL1_STPMSK) == TXCTRL1_2STOP)
429 stop_bits = 2;
430 else
431 stop_bits = 1;
432 switch (s->wregs[W_TXCTRL2] & TXCTRL2_BITMSK) {
433 case TXCTRL2_5BITS:
434 data_bits = 5;
435 break;
436 case TXCTRL2_7BITS:
437 data_bits = 7;
438 break;
439 case TXCTRL2_6BITS:
440 data_bits = 6;
441 break;
442 default:
443 case TXCTRL2_8BITS:
444 data_bits = 8;
445 break;
447 speed = 2457600 / ((s->wregs[W_BRGLO] | (s->wregs[W_BRGHI] << 8)) + 2);
448 switch (s->wregs[W_TXCTRL1] & TXCTRL1_CLKMSK) {
449 case TXCTRL1_CLK1X:
450 break;
451 case TXCTRL1_CLK16X:
452 speed /= 16;
453 break;
454 case TXCTRL1_CLK32X:
455 speed /= 32;
456 break;
457 default:
458 case TXCTRL1_CLK64X:
459 speed /= 64;
460 break;
462 ssp.speed = speed;
463 ssp.parity = parity;
464 ssp.data_bits = data_bits;
465 ssp.stop_bits = stop_bits;
466 SER_DPRINTF("channel %c: speed=%d parity=%c data=%d stop=%d\n", CHN_C(s),
467 speed, parity, data_bits, stop_bits);
468 qemu_chr_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
471 static void slavio_serial_mem_writeb(void *opaque, target_phys_addr_t addr,
472 uint32_t val)
474 SerialState *serial = opaque;
475 ChannelState *s;
476 uint32_t saddr;
477 int newreg, channel;
479 val &= 0xff;
480 saddr = (addr & 3) >> 1;
481 channel = (addr & SERIAL_MAXADDR) >> 2;
482 s = &serial->chn[channel];
483 switch (saddr) {
484 case SERIAL_CTRL:
485 SER_DPRINTF("Write channel %c, reg[%d] = %2.2x\n", CHN_C(s), s->reg,
486 val & 0xff);
487 newreg = 0;
488 switch (s->reg) {
489 case W_CMD:
490 newreg = val & CMD_PTR_MASK;
491 val &= CMD_CMD_MASK;
492 switch (val) {
493 case CMD_HI:
494 newreg |= CMD_HI;
495 break;
496 case CMD_CLR_TXINT:
497 clr_txint(s);
498 break;
499 case CMD_CLR_IUS:
500 if (s->rxint_under_svc)
501 clr_rxint(s);
502 else if (s->txint_under_svc)
503 clr_txint(s);
504 break;
505 default:
506 break;
508 break;
509 case W_INTR ... W_RXCTRL:
510 case W_SYNC1 ... W_TXBUF:
511 case W_MISC1 ... W_CLOCK:
512 case W_MISC2 ... W_EXTINT:
513 s->wregs[s->reg] = val;
514 break;
515 case W_TXCTRL1:
516 case W_TXCTRL2:
517 s->wregs[s->reg] = val;
518 slavio_serial_update_parameters(s);
519 break;
520 case W_BRGLO:
521 case W_BRGHI:
522 s->wregs[s->reg] = val;
523 s->rregs[s->reg] = val;
524 slavio_serial_update_parameters(s);
525 break;
526 case W_MINTR:
527 switch (val & MINTR_RST_MASK) {
528 case 0:
529 default:
530 break;
531 case MINTR_RST_B:
532 slavio_serial_reset_chn(&serial->chn[1]);
533 return;
534 case MINTR_RST_A:
535 slavio_serial_reset_chn(&serial->chn[0]);
536 return;
537 case MINTR_RST_ALL:
538 slavio_serial_reset(serial);
539 return;
541 break;
542 default:
543 break;
545 if (s->reg == 0)
546 s->reg = newreg;
547 else
548 s->reg = 0;
549 break;
550 case SERIAL_DATA:
551 SER_DPRINTF("Write channel %c, ch %d\n", CHN_C(s), val);
552 s->tx = val;
553 if (s->wregs[W_TXCTRL2] & TXCTRL2_TXEN) { // tx enabled
554 if (s->chr)
555 qemu_chr_write(s->chr, &s->tx, 1);
556 else if (s->type == kbd && !s->disabled) {
557 handle_kbd_command(s, val);
560 s->rregs[R_STATUS] |= STATUS_TXEMPTY; // Tx buffer empty
561 s->rregs[R_SPEC] |= SPEC_ALLSENT; // All sent
562 set_txint(s);
563 break;
564 default:
565 break;
569 static uint32_t slavio_serial_mem_readb(void *opaque, target_phys_addr_t addr)
571 SerialState *serial = opaque;
572 ChannelState *s;
573 uint32_t saddr;
574 uint32_t ret;
575 int channel;
577 saddr = (addr & 3) >> 1;
578 channel = (addr & SERIAL_MAXADDR) >> 2;
579 s = &serial->chn[channel];
580 switch (saddr) {
581 case SERIAL_CTRL:
582 SER_DPRINTF("Read channel %c, reg[%d] = %2.2x\n", CHN_C(s), s->reg,
583 s->rregs[s->reg]);
584 ret = s->rregs[s->reg];
585 s->reg = 0;
586 return ret;
587 case SERIAL_DATA:
588 s->rregs[R_STATUS] &= ~STATUS_RXAV;
589 clr_rxint(s);
590 if (s->type == kbd || s->type == mouse)
591 ret = get_queue(s);
592 else
593 ret = s->rx;
594 SER_DPRINTF("Read channel %c, ch %d\n", CHN_C(s), ret);
595 if (s->chr)
596 qemu_chr_accept_input(s->chr);
597 return ret;
598 default:
599 break;
601 return 0;
604 static int serial_can_receive(void *opaque)
606 ChannelState *s = opaque;
607 int ret;
609 if (((s->wregs[W_RXCTRL] & RXCTRL_RXEN) == 0) // Rx not enabled
610 || ((s->rregs[R_STATUS] & STATUS_RXAV) == STATUS_RXAV))
611 // char already available
612 ret = 0;
613 else
614 ret = 1;
615 return ret;
618 static void serial_receive_byte(ChannelState *s, int ch)
620 SER_DPRINTF("channel %c put ch %d\n", CHN_C(s), ch);
621 s->rregs[R_STATUS] |= STATUS_RXAV;
622 s->rx = ch;
623 set_rxint(s);
626 static void serial_receive_break(ChannelState *s)
628 s->rregs[R_STATUS] |= STATUS_BRK;
629 slavio_serial_update_irq(s);
632 static void serial_receive1(void *opaque, const uint8_t *buf, int size)
634 ChannelState *s = opaque;
635 serial_receive_byte(s, buf[0]);
638 static void serial_event(void *opaque, int event)
640 ChannelState *s = opaque;
641 if (event == CHR_EVENT_BREAK)
642 serial_receive_break(s);
645 static CPUReadMemoryFunc *slavio_serial_mem_read[3] = {
646 slavio_serial_mem_readb,
647 NULL,
648 NULL,
651 static CPUWriteMemoryFunc *slavio_serial_mem_write[3] = {
652 slavio_serial_mem_writeb,
653 NULL,
654 NULL,
657 static void slavio_serial_save_chn(QEMUFile *f, ChannelState *s)
659 int tmp;
660 tmp = 0;
661 qemu_put_be32s(f, &tmp); /* unused, was IRQ. */
662 qemu_put_be32s(f, &s->reg);
663 qemu_put_be32s(f, &s->rxint);
664 qemu_put_be32s(f, &s->txint);
665 qemu_put_be32s(f, &s->rxint_under_svc);
666 qemu_put_be32s(f, &s->txint_under_svc);
667 qemu_put_8s(f, &s->rx);
668 qemu_put_8s(f, &s->tx);
669 qemu_put_buffer(f, s->wregs, SERIAL_REGS);
670 qemu_put_buffer(f, s->rregs, SERIAL_REGS);
673 static void slavio_serial_save(QEMUFile *f, void *opaque)
675 SerialState *s = opaque;
677 slavio_serial_save_chn(f, &s->chn[0]);
678 slavio_serial_save_chn(f, &s->chn[1]);
681 static int slavio_serial_load_chn(QEMUFile *f, ChannelState *s, int version_id)
683 int tmp;
685 if (version_id > 2)
686 return -EINVAL;
688 qemu_get_be32s(f, &tmp); /* unused */
689 qemu_get_be32s(f, &s->reg);
690 qemu_get_be32s(f, &s->rxint);
691 qemu_get_be32s(f, &s->txint);
692 if (version_id >= 2) {
693 qemu_get_be32s(f, &s->rxint_under_svc);
694 qemu_get_be32s(f, &s->txint_under_svc);
696 qemu_get_8s(f, &s->rx);
697 qemu_get_8s(f, &s->tx);
698 qemu_get_buffer(f, s->wregs, SERIAL_REGS);
699 qemu_get_buffer(f, s->rregs, SERIAL_REGS);
700 return 0;
703 static int slavio_serial_load(QEMUFile *f, void *opaque, int version_id)
705 SerialState *s = opaque;
706 int ret;
708 ret = slavio_serial_load_chn(f, &s->chn[0], version_id);
709 if (ret != 0)
710 return ret;
711 ret = slavio_serial_load_chn(f, &s->chn[1], version_id);
712 return ret;
716 SerialState *slavio_serial_init(target_phys_addr_t base, qemu_irq irq,
717 CharDriverState *chr1, CharDriverState *chr2)
719 int slavio_serial_io_memory, i;
720 SerialState *s;
722 s = qemu_mallocz(sizeof(SerialState));
723 if (!s)
724 return NULL;
726 slavio_serial_io_memory = cpu_register_io_memory(0, slavio_serial_mem_read,
727 slavio_serial_mem_write,
729 cpu_register_physical_memory(base, SERIAL_SIZE, slavio_serial_io_memory);
731 s->chn[0].chr = chr1;
732 s->chn[1].chr = chr2;
733 s->chn[0].disabled = 0;
734 s->chn[1].disabled = 0;
736 for (i = 0; i < 2; i++) {
737 s->chn[i].irq = irq;
738 s->chn[i].chn = 1 - i;
739 s->chn[i].type = ser;
740 if (s->chn[i].chr) {
741 qemu_chr_add_handlers(s->chn[i].chr, serial_can_receive,
742 serial_receive1, serial_event, &s->chn[i]);
745 s->chn[0].otherchn = &s->chn[1];
746 s->chn[1].otherchn = &s->chn[0];
747 register_savevm("slavio_serial", base, 2, slavio_serial_save,
748 slavio_serial_load, s);
749 qemu_register_reset(slavio_serial_reset, s);
750 slavio_serial_reset(s);
751 return s;
754 static const uint8_t keycodes[128] = {
755 127, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 53,
756 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 89, 76, 77, 78,
757 79, 80, 81, 82, 83, 84, 85, 86, 87, 42, 99, 88, 100, 101, 102, 103,
758 104, 105, 106, 107, 108, 109, 110, 47, 19, 121, 119, 5, 6, 8, 10, 12,
759 14, 16, 17, 18, 7, 98, 23, 68, 69, 70, 71, 91, 92, 93, 125, 112,
760 113, 114, 94, 50, 0, 0, 124, 9, 11, 0, 0, 0, 0, 0, 0, 0,
761 90, 0, 46, 22, 13, 111, 52, 20, 96, 24, 28, 74, 27, 123, 44, 66,
762 0, 45, 2, 4, 48, 0, 0, 21, 0, 0, 0, 0, 0, 120, 122, 67,
765 static const uint8_t e0_keycodes[128] = {
766 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
767 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 90, 76, 0, 0,
768 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
769 0, 0, 0, 0, 0, 109, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0,
770 0, 0, 0, 0, 0, 0, 0, 68, 69, 70, 0, 91, 0, 93, 0, 112,
771 113, 114, 94, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
772 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
773 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
776 static void sunkbd_event(void *opaque, int ch)
778 ChannelState *s = opaque;
779 int release = ch & 0x80;
781 KBD_DPRINTF("Untranslated keycode %2.2x (%s)\n", ch, release? "release" :
782 "press");
783 switch (ch) {
784 case 58: // Caps lock press
785 s->caps_lock_mode ^= 1;
786 if (s->caps_lock_mode == 2)
787 return; // Drop second press
788 break;
789 case 69: // Num lock press
790 s->num_lock_mode ^= 1;
791 if (s->num_lock_mode == 2)
792 return; // Drop second press
793 break;
794 case 186: // Caps lock release
795 s->caps_lock_mode ^= 2;
796 if (s->caps_lock_mode == 3)
797 return; // Drop first release
798 break;
799 case 197: // Num lock release
800 s->num_lock_mode ^= 2;
801 if (s->num_lock_mode == 3)
802 return; // Drop first release
803 break;
804 case 0xe0:
805 s->e0_mode = 1;
806 return;
807 default:
808 break;
810 if (s->e0_mode) {
811 s->e0_mode = 0;
812 ch = e0_keycodes[ch & 0x7f];
813 } else {
814 ch = keycodes[ch & 0x7f];
816 KBD_DPRINTF("Translated keycode %2.2x\n", ch);
817 put_queue(s, ch | release);
820 static void handle_kbd_command(ChannelState *s, int val)
822 KBD_DPRINTF("Command %d\n", val);
823 if (s->led_mode) { // Ignore led byte
824 s->led_mode = 0;
825 return;
827 switch (val) {
828 case 1: // Reset, return type code
829 clear_queue(s);
830 put_queue(s, 0xff);
831 put_queue(s, 4); // Type 4
832 put_queue(s, 0x7f);
833 break;
834 case 0xe: // Set leds
835 s->led_mode = 1;
836 break;
837 case 7: // Query layout
838 case 0xf:
839 clear_queue(s);
840 put_queue(s, 0xfe);
841 put_queue(s, 0); // XXX, layout?
842 break;
843 default:
844 break;
848 static void sunmouse_event(void *opaque,
849 int dx, int dy, int dz, int buttons_state)
851 ChannelState *s = opaque;
852 int ch;
854 MS_DPRINTF("dx=%d dy=%d buttons=%01x\n", dx, dy, buttons_state);
856 ch = 0x80 | 0x7; /* protocol start byte, no buttons pressed */
858 if (buttons_state & MOUSE_EVENT_LBUTTON)
859 ch ^= 0x4;
860 if (buttons_state & MOUSE_EVENT_MBUTTON)
861 ch ^= 0x2;
862 if (buttons_state & MOUSE_EVENT_RBUTTON)
863 ch ^= 0x1;
865 put_queue(s, ch);
867 ch = dx;
869 if (ch > 127)
870 ch=127;
871 else if (ch < -127)
872 ch=-127;
874 put_queue(s, ch & 0xff);
876 ch = -dy;
878 if (ch > 127)
879 ch=127;
880 else if (ch < -127)
881 ch=-127;
883 put_queue(s, ch & 0xff);
885 // MSC protocol specify two extra motion bytes
887 put_queue(s, 0);
888 put_queue(s, 0);
891 void slavio_serial_ms_kbd_init(target_phys_addr_t base, qemu_irq irq,
892 int disabled)
894 int slavio_serial_io_memory, i;
895 SerialState *s;
897 s = qemu_mallocz(sizeof(SerialState));
898 if (!s)
899 return;
900 for (i = 0; i < 2; i++) {
901 s->chn[i].irq = irq;
902 s->chn[i].chn = 1 - i;
903 s->chn[i].chr = NULL;
905 s->chn[0].otherchn = &s->chn[1];
906 s->chn[1].otherchn = &s->chn[0];
907 s->chn[0].type = mouse;
908 s->chn[1].type = kbd;
909 s->chn[0].disabled = disabled;
910 s->chn[1].disabled = disabled;
912 slavio_serial_io_memory = cpu_register_io_memory(0, slavio_serial_mem_read,
913 slavio_serial_mem_write,
915 cpu_register_physical_memory(base, SERIAL_SIZE, slavio_serial_io_memory);
917 qemu_add_mouse_event_handler(sunmouse_event, &s->chn[0], 0,
918 "QEMU Sun Mouse");
919 qemu_add_kbd_event_handler(sunkbd_event, &s->chn[1]);
920 register_savevm("slavio_serial_mouse", base, 2, slavio_serial_save,
921 slavio_serial_load, s);
922 qemu_register_reset(slavio_serial_reset, s);
923 slavio_serial_reset(s);